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Abstract 

One of the application areas of genetic algorithms is parameter optimization. This paper addresses the problem of 
optimizing a set of parameters that represent the weights of criteria, where the sum of all weights is 1. A chromosome 
represents the values of the weights, possibly along with some cut-off points. A new crossover operation, called continuous 
uniform crossover, is proposed, such that it produces valid chromosomes given that the parent chromosomes are valid. The 
new crossover technique is applied to the problem of multicriteria inventory classification. The results are compared with 
the classical inventory classification technique using the Analytical Hierarchy Process. @ 1998 Elsevier Science B.V. 
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1. Introduction 

It is not uncommon to observe companies of even 
moderate sizes to carry thousands of different items in 
inventory. These items are kept for various purposes 
and include raw materials, components used in prod- 
ucts, items used for activities to support production 
such as maintenance, cleaning, etc. Recently, the num- 
ber of items carried in inventory increased drastically 
with the increase of  customer pressure demanding dif- 
ferent models of products. In order to obtain a com- 
petitive advantage in the market, companies have to 
respond to satisfy the various demands of customers; 
this results in an increased number of different items 
carded in inventory in smaller quantities. 

Faced with the heavy burden of dealing with a large 
number of  items, companies must classify the items in 
inventory and develop effective inventory control poli- 
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cies for these classes. The classical ABC classification, 
developed at General Electric during the 1950's, is the 
most popular scheme to classify the items in inventory. 
The scheme is based on the Pareto principle of the 18th 
century economist, Villefredo Pareto, stating that 20% 
of the people controlled 80% of the wealth. Empirical 
studies indicate that 5-20% of all items account for 
55-65% of total dollar volume, 20-30% of all items 
account for 20-40% of total dollar volume, and the re- 
maining 50-75% of all items account for only 5-25% 
of total dollar volume. In the classical ABC classifi- 
cation, items are ordered in descending order of  their 
annual dollar usage values which are the products of 
annual usage quantities and the average unit prices of 
the items. The relatively small number of items at the 
top of the list controlling the majority of the total an- 
num dollar usage constitutes class A and the majority 
of the items at the bottom of the list controlling a rel- 
atively small portion of the total annual dollar usage 
constitutes class C. Items between the above classes 
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constitute class B. The designation of these classes is 
arbitrary and the number of classes may be increased 
depending on the extent to which a firm wants to dif- 
ferentiate control efforts. Tight management control of 
ordering procedures and individual demand forecasts 
should be made for class A items. Class C items should 
receive a loose control, such as a simple two-bin sys- 
tem, and class B items should have a control effort that 
lies between these two extremes. Thus, in a typical 
firm, concentrating effort on tight control for class A 
items and a loose one for class C items result in sub- 
stantial savings. Silver and Peterson [14] suggested 
some inventory control policies for the above classes. 

The regions for the classes are easily specified by 
examining the curve of the cumulative percentage of 
total annual dollar usage versus the percentage of items 
in the ordered list described above. The curve is an 
increasing concave one and the regions are typically 
distinguished from each other by the change in slope; 
the range for the regions depends on the company, 
type of industry, etc. 

The wide popularity of the procedure is due to its 
simplicity, applicability to numerous situations and the 
empirically observed benefits on inventory manage- 
ment. However, the procedure has a serious drawback 
that may inhibit the effectiveness of the procedure in 
some situations. The criterion utilized in the classical 
ABC classification is the annual dollar usage; using 
one criterion only may create problems of significant 
financial loss. For example, class C items with long 
lead times or class A items prone to obsolescence may 
incur financial losses as a result of possible interrup- 
tion of production and/or huge inventory levels. 

It has been suggested by Flores and Whybark [4] 
that ABC classification considering multiple criteria, 
such as lead time, criticality, commonality, obsoles- 
cence and substitutability can provide a more compre- 
hensive managerial control. To tackle the difficulties 
of using only one criterion, Flores et al. [ 5 ] have pro- 
posed the use of joint criteria matrix for two criteria. 
The resulting matrix requires the development of nine 
different policies, and for more than two criteria it be- 
comes impractical to use the procedure. 

Analytical Hierarchy Process (AHP) developed by 
Saaty [ 13 ] has been successfully applied to multicri- 
teria inventory classification by Flores et al. [5 ]. They 
have used the AHP to reduce multiple criteria to a uni- 
variate and consistent measure. However, Flores et al. 

have taken average unit cost and annual dollar usage 
as two different criteria among others. The problem 
with this approach is that the annual dollar usage and 
the unit price of items are usually measured in differ- 
ent units. For example, unit prices of some items are 
given in $/kgs, while some in S/meters. On the other 
hand, for the applicability of this approach, the unit 
of a criterion must not change from item to item. For 
that reason, we combined these two criteria in one cri- 
terion as the total annual dollar usage, of which the 
measuring unit is dollars. 

In this paper we propose an alternative method that 
uses a genetic algorithm to learn the weights of crite- 
ria. In the sequel, we first discuss the outline of AHP 
and its application in multicriteria inventory classifi- 
cation. A brief introduction to the genetic algorithms 
is followed by the description of the alternative mul- 
ticriteria inventory classification scheme using a ge- 
netic algorithm. Finally, we compare the AHP and the 
genetic algorithm approaches on two sample invento- 
ries. The paper concludes with a general discussion of 
the application of genetic algorithms to multicriteria 
classification problems. 

2. AHP in muiticriteria inventory classification 

The AHP was proposed by Saaty [13] to aid de- 
cision makers in situations involving a finite set of 
alternatives and multiple objectives. The procedure 
has been successfully applied to numerous areas, such 
as marketing [3,12], forecasting foreign exchange 
rates [16], among others; Zahedi [ 17] discusses the 
application areas of the procedure. The procedure 
consists of the following steps: 

1. In the first step the pairwise comparison matrix A 
is constructed. This is the most crucial step of the pro- 
cedure in the sense that the input of the decision maker 
about criteria preferences is assessed; the quality of 
the output depends directly on this step. The decision 
maker is asked to assign a value in a scale 1 through 
9 for each pair of criteria. These pairwise compar- 
isons are combined in a square matrix called pairwise 
comparison matrix. Given a comparison matrix A, the 
entry Aij represents the relative strength of criterion 
Ci when compared to Cj. Thus, Aij is expected to be 
wi/wj, where wi and wj are the relative strengths of 
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the criteria Ci and Cj, respectively. A value of 1 for Aij 
represents that criteria Ci and Cj to be of equal impor- 
tance, whereas a value of 9 represents criterion Ci to 
be absolutely more important than criterion Cj. Note 
that Aij = 1/Aji with the diagonal values equal to 1. 

2. In this step, the consistency of the pairwise com- 
parison matrix A is checked, first. The matrix is con- 
sistent if Aik = Aij • A j k  for all i, j, k ~< n, where n is 
the size of the matrix (number of criteria). Saaty [ 13 ] 
has shown that if the diagonal of a matrix A consists 
o f  ones  ( A i i  = 1) for all i, and if A is consistent, then 
small variations of the Aij keep the largest eigenvalue 
Amax close to n, and the remaining eigenvalues close to 
zero. Therefore, if A is a matrix of pairwise compar- 
ison values, in order to find a weight vector, a vector 
w that satisfies Aw = ~.maxW is to be found. 

Inconsistency of a pairwise comparison matrix is 
due to the inconsistent comparisons of the decision 
maker. In that case, the decision maker is asked to 
modify the matrix repeatedly until the matrix is con- 
sistent. 

3. The next step is the computation of a vector of 
priorities, w = (wl, w2 . . . . .  wk). The eigenvector of 
the comparison matrix with the largest eigenvalue pro- 
vides the priority ordering of the criteria, that is their 
weights. The values of this vector are between 0 and 
1, and their sum is 1. Saaty [ 13] has presented some 
approximate methods to compute the eigenvector of a 
matrix, since the computation of the exact eigenvec- 
tor is complex and time-consuming. Among the ap- 
proximate methods, the following one results the best 
approximation: divide each entry in column i by the 
sum of the entries in column i, and estimate the vector 
of largest eigenvalues by taking the average of the en- 
tries in row i. For each item in inventory, the criteria 
values are organized in a way that the higher values 
increase the probability of an item being in class A. 

4. As the criteria have different units of measure, the 
measures have to be converted to a common 0-1 scale 
and the weighted score of each item is computed as 

k i j  -- m i n i  
ws(w, i) = Z wj 

j=l maxj - minj ' 

where k is the number of  criteria, ij is the value 
of item i for criterion j ,  and maxj and minj are 
maximum and minimum values of criterion j among 
all items, respectively. 

5. Finally the items in the inventory are sorted 
in the decreasing order of their weighted sum. The 
classification of items in this sorted list is determined 
by specifying the cutoff points; for example, the first 
20% of the items are classified as class A, the next 
20% as class B, and the remaining as class C. 

The procedure is based on a few assumptions of 
which should be checked prior to applying the tech- 
nique to the problem on hand. The first assumption is 
about the measuring units of criteria: the units of the 
items must be identical for the criterion considered. 
The assumption imposes that the units of  items for a 
specific criterion should not differ from item to item. 
The difficulty caused by different units can be over- 
come by combining the several criteria to create a new 
one. For example, if the average unit cost and annual 
usage are taken as two separate criteria, the units for 
the first criterion would stay the same for the items as 
dollars per item, but the units for the second criterion 
might vary from item to item, such as meters per year, 
kgs per year, etc. If these two criteria are combined by 
multiplying them to create the criterion of annual dol- 
lar usage, the units of this criterion would be identical 
for all the items as dollars per year. 

The second assumption is about the value function 
of the decision maker; it is assumed that the decision 
maker has an additive value function. In other words, 
the mutually preferentially independence of the objec- 
tives should be checked with the decision maker. If  
the value function has a nonadditive form, then com- 
bining some criteria to create a new one, analogous to 
the above example, may satisfy the assumption. 

Finally, the comparisons of the decision maker are 
assumed to be consistent; otherwise, several attempts 
may be required to obtain consistent pairwise compar- 
isons. It might be quite difficult to obtain a consistent 
matrix. 

The method is a useful and powerful tool to con- 
struct mathematical models of problems that involve 
multiple objectives and qualitative factors such as 
subjective judgments. Hence, it has been quite suc- 
cessful to satisfy the needs of  decision makers in var- 
ious environments as demonstrated by the wealth of 
reports published about the method in the literature. 
Zahedi gives a comprehensive survey of the method 
and its applications [ 17]. On the other hand, there are 
some drawbacks that may cause serious difficulties 
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in practice. One of the important drawbacks of the 
method is that a significant amount of subjectivity is 
involved in pairwise comparisons. Consequently, the 
resulting classification may be far away from satisfy- 
ing the objective of the company. Different decision 
makers may assess different comparison matrices due 
to various reasons. Another drawback of the method 
is that it is quite difficult to compare two criteria 
and assign a numerical value. It may be difficult to 
assign a numerical value to the figure of speech used 
to emphasize the comparisons, such as 'strongly' 
or 'demonstrably' more important. Furthermore, the 
range of the scale values being between 1 and 9 causes 
difficulties. Adopting a different scale may lead to a 
different classification. The scale and its implications 
should be explained fully to the decision maker prior 
to any analysis. Different decision makers may prefer 
different scales. 

In the following section we discuss some properties 
of genetic algorithms and present an alternative inven- 
tory classification scheme with multiple criteria using 
a genetic algorithm. 

3. Genetic algorithms 

Genetic algorithms are general-purpose search algo- 
rithms that use principles inspired by natural popula- 
tion genetics to evolve solutions to problems [ 11 ]. Ge- 
netic algorithms have been applied to a wide range of 
optimization and learning problems, including routing 
and scheduling [2,15], engineering design optimiza- 
tion [ 1,6], curve fitting [ 8] and machine learning [9]. 
The reader is referred to [ 7] for a thorough coverage 
of genetic algorithm applications in various areas. 

The basic idea in genetic algorithms is to maintain 
a population of knowledge structures (also called 
chromosomes) that represent candidate solutions to 
the current problem. A chromosome is a sequence 
of genes. The population evolves over time through 
competition and controlled variation. The initial pop- 
ulation can be initialized using whatever knowledge 
is available about possible solutions. Each member of 
the population is evaluated and assigned a measure of 
its fitness as a solution. After evaluating each struc- 
ture in the population, a new population of structures 
is formed in two steps. First, structures in the current 
population are selected for replication based on their 

relative fitness. High-performing structures might be 
chosen several times for reproduction, while poorly 
performing structures might not be chosen at all. 
Next, the selected structures are altered using ideal- 
ized genetic operators to form a new set of structures 
for evaluation. The primary genetic search operator is 
the crossover operator, which combines the features 
of two parent structures to form two offsprings similar 
to the parents. The role of the crossover operation is 
to form new fit chromosomes from fit parents. There 
are many possible forms of crossover: the simplest 
swaps corresponding segments of a string, list or vec- 
tor representation of the parents. In generating new 
structures for testing, the crossover operator usually 
draws only on the information present in the structures 
of the current knowledge base. If  specific information 
is missing, due to storage limitations or loss incurred 
during the selection process of a previous generation, 
then crossover cannot produce new structures that 
contain it. A mutation operator which alters one or 
more components of a selected structure, provides 
the way to introduce new information into the knowl- 
edge base. A wide range of mutation operators have 
been proposed, ranging from completely random al- 
terations to more heuristically motivated local search 
operators. In most cases, mutation serves as a sec- 
ondary search operator that ensures the reachability 
of all points in the search space. 

The resulting offsprings are then evaluated and in- 
serted back into the population. This process continues 
until either, an absolute fittest structure is detected in 
the population or a predetermined stopping criterion 
(e.g., maximum number of generations or maximum 
number of fitness evaluations) is reached. 

Genetic algorithms can be used in parameter op- 
timization problems by encoding a set of parameter 
values in a structure of the population. In that case, 
each structure represents a possible set of parameters 
of the system being optimized. Then, a fittest struc- 
ture that represents the optimum setting of parameters 
is searched via a genetic algorithm. 

4. Application of GA to multicriteria inventory 
classification 

Here we propose an alternative method to learn the 
weight vector along with the cut-off values for multi- 
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criteria inventory classification. The method proposed 
here, called GAMIC (for Genetic Algorithm for Mul- 
ticriteria Inventory Classification), uses a genetic al- 
gorithm to learn the weights of criteria along with AB 
and BC cut-off points from preclassified items. Once 
the criteria weights are obtained, the weighted scores 
of the items in the inventory are computed similarly 
to the approach with AHP. Then the items with scores 
greater than AB cut-off value are classified as A, those 
with values between AB and BC as class B, and the 
remaining items are classified as class C. 

4.1. Encoding 

A chromosome encodes the weight vector along 
with two cut-off points. The values of the genes are real 
values between 0 and 1. The total value of the elements 
of the weight vector is always 1. Also the AB cut- 
off value (XAB) is always greater than the BC cut-off 
value (xBC). Therefore, if the classification is based 
on k criteria, a chromosome c is a vector defined as 

c = <w, ,  w2 . . . . .  wk,  xAB,  x B c ) .  

Here, wj represents the weight of the j-th criterion, 

~'~jk=l wj = 1, and XBC < XAB. In this representation 
the relative weight of a criterion can be encoded as 
an absolute value in a chromosome. That is, an allele 
(value of a gene) represents the weight of the corre- 
sponding criterion, independent of the other alleles. 

Given a chromosome e, classification of an inven- 
tory item i is done by computing its weighted sum, 
ws(c, i) as follows: 

k 
.. ij -- min_.___Z j 

ws(c, i) = ~ wj 
mini" maxj 

Here ij is the value of the item i for the criterion j, 
maxj and mini are maximum and minimum values of 
criterion j among all inventory items. The classifica- 
tion of an inventory item i according to chromosome 
c is 

A ifXAB <~ ws(c, i ) ,  
classification(c,i) = B if xBc ~< ws(c,i)  < XAS, 

C, otherwise. 

Given this encoding scheme, GAMIC applies the 
standard genetic operators (reproduction, crossover, 
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and mutation) to the chromosomes in the popula- 
tion [7]. GAMIC applies fitness proportionateroulette 
wheel selection in reproduction. GAMIC also uses the 
elitist approach, i.e. the best chromosome is always 
copied to the next generation. The evaluation of the fit- 
ness of a chromosome, the crossover, and the mutation 
operations employed by GAMIC are described below. 

4.2. Fitness function 

The fitness of a chromosome reflects its ability to 
classify the training set correctly. Therefore, any mis- 
classified item should introduce a penalty. However, 
due to the linear ordering among the classes, we have 
to distinguish the error made by classifying a class A 
item as a class B item than as a class C item. In our 
implementation the fitness of a chromosome c was 
computed as 

t 
1 

fitness(c) = t ~ pi, 
i=1 

1, classification(i, c) = class(i), 
Pi = 0.4, [classification(i,c) - class(i)l = 1, 

0, otherwise, 

where t is the size of the training set, and class(i) 
is the classification given to the i-th training instance 
by the decision maker. Note that this fitness function 
prefers a chromosome making a single mistake with 
with a difference of 2 to a chromosome making two 
mistakes with difference 1. 

4.3. Crossover 

The most important operation in a genetic algorithm 
is the crossover operation. Randomly selected pairs 
of chromosomes go under crossover operation with a 
fixed probability, Pc. Although the initial population 
is setup in a way that all chromosomes represent legal 
codings (each allele is between 0 and 1, the sum of all 
weight values is 1, and the AB cut-off is less than the 
BC cut-off), standard crossover operations are bound 
to result in illegal codings. For example, consider the 
following two chromosomes: 

x=  (0.1 0.4 0.3 I 0,2), 

y=(0 .1  0.3 0.1 I 0,5). 
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A classic 1-point crossover operation would yield the 
following offsprings: 

x'=(0.1 0.4 0.3 0,5}, 
y ' = ( 0 . 1  0.3 0.1 0,2).  

t 1.3 > 1 and 2j4__1 y~ -- 0.7 < 1, both Since ~j41 xj = 

x ~ and y~ represent illegal weight settings. 
Here we propose a new form of  uniform crossover 

operation for structures that are vectors of  continuous 
values, called continuous uniform crossover, which 
guarantees the legality of  the offsprings. 

Continuous uniform crossover." Given two chromo- 
somes x = (xt ,x2 . . . . .  Xn) and y = (Yl,Y2 . . . . .  Yn), 
the offsprings are defined as xt= t ~ .. (x 1,x 2, .,xln) and 
y t =  t t (Yl, Y2 . . . . .  y~), where 

X~ = SXi + ( 1  - -  s)yi,  

y[ = ( 1 - s) Xi + syi. 

Here s, called stride, is constant through a single 
crossover operation. This crossover preserves the 
sum of  any subset of  genes. In the case of  inventory 
classification, if the genes 1 through m encode the 
criteria weights, then ~-~i~t xi = 1. After the crossover 
operation, 

m n l  

Zx' Z i = s  X i + ( 1 - - s )  y i = s + ( 1 - - s ) = l .  
i=l i=1 i=1 

1 and This is true for both offsprings: ~--~iml X i = 

~-~iml y[ = 1. Further, this crossover preserves the 
greater-than relation between genes, as well. That is, 
if XAB > xBC, then X~B > X~C. Therefore, continuous 
uniform crossover preserves the legality of  chromo- 
somes for the multicriteria ABC classification. 

The choice of  the stride (s) is an important issue. 
If  s = 0, the offsprings are the same as the parents. 
If  0 ~< s then alleles remain to be between 0 and 1, 
however the alleles get closer to each other through 
generations. If  s = 0.5, then both offsprings are the 
same, and the alleles are equal to the average values 
of  the respective alleles in the parents. On the other 
hand, if s < 0, the alleles diverge from the respective 
values in the parents. However, if s < 0, then alleles 
may be outside of  the limits; that is an allele may get 
a negative value of  a value greater than 1, although 

their sum is still 1. In that case, a normalization of  the 
chromosome is needed. For s < 0, after the crossover 
we check if any allele is less than 0 ( if  any allele is 
greater than l, then there exists at least one allele less 
than 0). In that case we first subtract the minimum 
allele from all alleles, then set 

xi 
xi- S L  

x j '  

where k is the number of  criteria. Again, if s < 0, then 
XAB may be smaller than xac; in that case we swap 
the values of  XAB and XBC. In our implementation we 
chose s randomly from [ - 0 . 5 ,  0.5] for each crossover 
operation. 

4.4. Mutation 

The mutation operation in our implementation sets 
the value of  a gene to either 0 or 1, with equal prob- 
ability. I f  a chromosome is modified by the mutation 
operation, it has to be normalized as in the case of  the 
uniform crossover operation with s < 0. 

5. Empirical comparisons 

In order to exemplify the application of  the GAMIC 
algorithm, we here present its behavior on two small 
sample inventory classification tasks. We also provide 
the application of  the AHP approach on the same tasks 
for a comparison. Although the sample inventories 
used here are relatively small, the size of  the inventory 
has no effect on the applicability of  these methods. 

In these experiments, we used a human decision 
maker who is actually responsible for the inventory. 
The classification accuracy of  both GAMIC and AHP 
algorithms were measured in terms of  their similarity 
to the classification of  the decision maker. 

5.1. University stationary inventory 

This example involves the stationary items held 
in the stockroom of the Purchasing Department of  a 
medium size University. The Department is respon- 
sible for procuring, receiving, and keeping inventory 
as well as deciding on the timing, procurement order 
sizes and on-hand inventory levels. It is a highly cen- 
tralized department in which most of  the major deci- 
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Fig. 1. Best and average fitness values through generations in the 
stationary inventory. 
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sions are made by a manager; hereafter we will call 
the manager the decision maker. The decision maker 
has the full authority to develop procurement and in- 
ventory stocking policies for the items held in the 
Department. The inventory consists of 145 stationary 
items. 

The decision maker classified the items according 
to four criteria, as follows: 
CI: Annual dollar usage. 
C2: Number of requests for the item in a year. 
C3: Lead time. 
Ca: Replacability (0: replaceable, 1: sometimes re- 

placeable; 2: cannot be replaced). 
We first asked the decision maker to name ten items 

from each of the three classes. In order to minimize 
subjectivity, we also requested the decision maker to 
make his selection from the characteristic and distin- 
guishing items. This set of 30 items formed our train- 
ing set for the GA. The genetic algorithm was run on 
a population of 100 chromosomes, with Pc = 0.7 and 
Pm= 0.001. Our genetic algorithm converged on the 
training set in the 132nd generation after 9285 func- 
tion evaluations. During this process GAMIC has per- 
formed 4580 crossover operations and 75 mutations. 
The best and average fitness values in each generation 
are shown in Fig. 1. The weights learned by GAMIC 
are as follows: Wl = 0.268, w2 = 0.359, w3 = 0.034, 

Table 1 
Comparison of classifications made by the GAMIC and AHP with 
respect to decision maker, on the stationary inventory. Entry in the 
i-th row and j-th column represents the number of  classifications 
made by decision maker as class i and by the corresponding 
algorithm as class j 

Decision GAMIC AHP 

maker A B C A B C 

A 26 23 3 0 12 8 6 
B 27 1 21 5 11 12 4 
C 92 0 1 91 6 9 77 

Total 145 24 25 96 29 29 87 

w4 = 0.339 and the cut-off points are XAB = 0.347, 
XBC = 0.228. 

We classified the remaining 115 items using the 
weights and cut-off values learned by the GA. The 
decision maker also was asked to classify these test 
items. The decision maker's classification did not 
agree with GAMIC on 10 items. The results of the 
classifications by GAMIC versus the decision maker 
are given in Table 1. 

In order to compare with the AHP technique, the 
decision maker was asked to pairwise compare the 
four criteria. In the third attempt the decision maker 
was able to obtain a consistent matrix. The weights 
obtained by the AHP technique are as follows: wl = 
0.558, w2 = 0.233, w3 = 0.156, w4 = 0.052 and the 
cut-off points are XAB = 0.157, XBC = 0.113. All 145 
items were then classified according to the weights 
learned by the AHP technique. The results of the 
classifications by AHP versus the decision maker are 
given in Table 1. The decision maker did not agree 
with the classification of 44 items. As a result we 
conclude that the genetic algorithm method proposed 
here performed much better than the AHP technique 
in our test set. 

5.2. Explosive inventory 

This example involves the items held in the site 
warehouse of a company that undertakes rock exca- 
vation tasks using explosives [ 10]. The number of 
criteria used in the classification of the items in that 
inventory is larger relative to the previous example in- 
ventory: 
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C~: Unit price. 
C2 : Number of requests for the item in a year. 
C3 : Lead time. 
C4: Scarcity. 
C5 : Durability. 
C6 : Substitutability. 
C7 : Repearability. 
C8 : Order size requirement. 
C9 : Stockability. 
Cl0: Commonality. 

The criteria C4 through Cl0 take integer values be- 
tween 0 and 5. The criteria values are assigned to items 
in such a way that higher values increase the likeli- 
hood of an item to be placed in class A. 

The characteristics of the 115 items held in the in- 
ventory vary significantly. For example, a highly ex- 
pensive explosive with a short shelf-life (low durabil- 
ity), and a particular size nail with high substitutabil- 
ity, stockability, commonality, and durability are in the 
same inventory. 

The decision maker in this example is the manager 
of the warehouse, who is the sole responsible person 
in maintaining the inventory. 

In a similar manner, we first asked the decision 
maker to name five items from each of the three 
classes. In order to minimize subjectivity, we also 
requested the decision maker to make his selection of 
the above 15 items in such a way that he is absolutely 
certain about the classes each item belongs to. This 
set of 15 items formed our training set for the GA. 
The genetic algorithm was run using the same set 
of parameters; that is, a population of 100 chromo- 
somes, with Pc = 0.7 and pm = 0.001. Our genetic 
algorithm converged on the training set in the 340th 
generation after 24 003 function evaluations. During 
this process GAMIC has performed 11 888 crossover 
operations and 427 mutations. The best and average 
fitness values in each generation are shown in Fig. 2. 
The weights learned by GAMIC are as follows: 
Wl = 0.151, w2 = 0.009, w3 = 0.276, w4 = 0.137, 
w5 = 0.072, w6 = 0.168, w7 = 0.000, w8 = 0.013, 
w9 = 0.035, wl0 = 0.138 and the cut-off points are 
XAB = 0.476, XBC = 0.325. 

We classified the remaining 100 items using the 
weights and cut-off values learned by the GA. The 
decision maker also was asked to classify these test 
items. The decision maker's classification did not 
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Fig. 2. Best and average fitness values through generations in the 
explosives inventory. 

agree with GAMIC on 5 items. The results of the 
classifications by GAMIC versus the decision maker 
are given in Table 2. 

In order to compare with the AHP technique, the 
decision maker was asked to pairwise compare the 
four criteria. In the fourth attempt the decision maker 
was able to obtain a consistent matrix. The weights 
obtained by the AHP technique are as follows: Wl = 
0.358, w2 = 0.137, w3 = 0.246, w4 = 0.066, w5 = 
0.041, W 6 = 0.018, w7 = 0.008, w8 = 0.057, w 9 = 

0.043, wl0 = 0.025 and the cut-off points are xnB = 
0.33, xBc = 0.15. All 115 items were then classified 
according to the weights learned by the AHP tech- 
nique. The results of the classifications by AHP ver- 
sus the decision maker are given in Table 2. The deci- 
sion maker did not agree with the classification of 15 
items. As a result we conclude that the genetic algo- 
rithm method proposed here performed much better 
than the AHP technique in our test set. 

The GAMIC program is coded in the LISP lan- 
guage. The program took 70 seconds and 151 seconds 
of CPU time for stationary and explosives inventory 
examples, respectively, on a SunSparc 20/61 worksta- 
tion. 
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Table 2 
Comparison of classifications made by the GAMIC and AHP with 
respect to decision maker, on the explosives inventory. Entry in the 
i-th row and j-th column represents the number of classifications 
made by decision maker as class i and by the corresponding 
algorithm as class j 

Decision 

maker 

GAMIC AHP 

A B C A B C 

A 26 26 0 0 22 4 0 
B 24 1 23 0 1 18 5 
C 65 0 4 61 0 5 60 

Total 115 27 27 61 23 27 65 

6. Conclusion 

We presented a new approach using genetic algo- 
rithms to multi-criteria classification. This approach is 
based on learning a weight vector of absolute weights 
of each criteria along with a set of cut-off points. In 
order to apply a genetic algorithm to the weight learn- 
ing problem, we proposed a new crossover operator 
that guarantees the generation of offsprings that are 
valid representations of weight vectors. 

The approach, implemented in a program called 
GAMIC, is applicable to any multi-criteria classifica- 
tion problem with any number of classes, provided 
that it is possible to reduce the problem to learning a 
weight vector along with the cut-off points between 
classes. We have compared our approach with the clas- 
sical AHP technique on two sample inventory clas- 
sification tasks. The classifications made by GAMIC 
were much closer to the classification made by the de- 
cision maker than the one obtained by the AHP tech- 
nique. We have seen that decision makers are more 
comfortable in classifying inventory items than com- 
paring two criteria on a scale of 1 to 9. Therefore, the 
decision makers' decisions about individual classifi- 
cations of items are more reliable. The main advan- 
tage of the approach employed in GAMIC over the 
AHP technique is its more reliable input. We believe 
that the approach presented here is applicable to other 
classification problems as well. 
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