
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=gopt20

Optimization
A Journal of Mathematical Programming and Operations Research

ISSN: 0233-1934 (Print) 1029-4945 (Online) Journal homepage: http://www.tandfonline.com/loi/gopt20

On robust mean-variance portfolios

Mustafa Ç. Pınar

To cite this article: Mustafa Ç. Pınar (2016) On robust mean-variance portfolios, Optimization,
65:5, 1039-1048, DOI: 10.1080/02331934.2015.1132216

To link to this article:  https://doi.org/10.1080/02331934.2015.1132216

Published online: 08 Jan 2016.

Submit your article to this journal 

Article views: 247

View related articles 

View Crossmark data

Citing articles: 6 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=gopt20
http://www.tandfonline.com/loi/gopt20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331934.2015.1132216
https://doi.org/10.1080/02331934.2015.1132216
http://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=gopt20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/02331934.2015.1132216
http://www.tandfonline.com/doi/mlt/10.1080/02331934.2015.1132216
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2015.1132216&domain=pdf&date_stamp=2016-01-08
http://crossmark.crossref.org/dialog/?doi=10.1080/02331934.2015.1132216&domain=pdf&date_stamp=2016-01-08
http://www.tandfonline.com/doi/citedby/10.1080/02331934.2015.1132216#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/02331934.2015.1132216#tabModule


OPTIMIZATION, 2016
VOL. 65, NO. 5, 1039–1048
http://dx.doi.org/10.1080/02331934.2015.1132216

On robust mean-variance portfolios

Mustafa Ç. Pınar

Department of Industrial Engineering, Bilkent University, Bilkent, Ankara, Turkey

ABSTRACT
We derive closed-form portfolio rules for robust mean–variance portfolio
optimization where the return vector is uncertain or the mean return
vector is subject to estimation errors, both uncertainties being confined
to an ellipsoidal uncertainty set. We consider different mean–variance
formulations allowing short sales, and derive closed-form optimal portfolio
rules in static and dynamic settings.
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1. Introduction

The problem of an investor seeking to minimize the variance of the return of his/her portfolio while
maintaining aminimumexpected target return is a fundamental problemof themean–variance (MV)
portfolio theory introduced byMarkowitz [1]. Alternatively, one can try tomaximize expected return
while maintaining a cap on portfolio return variance. The problem is at the root of modern finance,
and has become an integral part of the majority of textbooks in finance; see e.g. [2–4]. For a more
recent survey onMVportfolio selection the reader is referred to [5].Allowing for short positions in the
optimal portfolio and excluding other portfolio restrictions, it is a quadratic programming problem
that can be solved explicitly. In this brief paper, we extend this simple yet fundamental result to the
case where the estimation error in the mean return vector is taken into account using the ellipsoidal
robustness paradigm [6–10] and we deal with optimization problems containing second-order cone
elements. Since the true mean returns are never known exactly, one has to deal with estimated mean
returns, and the negative effect of imprecision ofmean returns on optimal portfolios has been studied
and documented in e.g. [11–13] (the effect of imprecision in variance/covariance is known to be less
pronounced). The imprecision in mean return has been addressed in portfolio optimization using
conic optimization and numerical algorithms.[9,14–20] The purpose of this paper is to investigate
analytical solutions in the absence of short sales and other portfolio restrictions such as different
rates for borrowing and lending, transaction costs and so on. The static explicit portfolio rules and
an assumption of independent returns between consecutive periods enable us to extend our results
to the case of multi-period dynamic MV portfolio policies under uncertainty in the mean returns
using the adjustable robustness criterion.[21–23]We also consider robust portfolios where the return
vector of risky assets is subject to ellipsoidal uncertainty, rather than the mean return vector being
uncertain. We give closed-form portfolio rules and investigate dynamic adjustable robust portfolio
selection in that case. The dynamic portfolio rules turn out to be myopic policies. To the best of our
knowledge, the simple closed-form portfolio rules of the present paper were not published previously
in the literature since most authors (except [18]) concentrated on the numerical solution of robust
portfolio problems by modern solvers, and did not consider the relatively simpler cases treated in
the present paper. The absence of attention to the models treated in the present paper is a gap to be
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filled since most expositions to the theory of Markowitz MV efficient portfolios begin by allowing
short sales and unlimited borrowing to lead to the most fundamental insights of the theory (see e.g.
[2,5]). It is our hope in circulating the present paper that the results given here will kindle an interest
in the portfolio optimization community to re-study basic models using the closed-form rules of the
present paper.

2. The static robust MV portfolios

Consider the problem of a MV investor operating in a market withm risky assets and a riskless asset
with period return equal to R. The risky assets have mean return r that is assumed unknown, and
variance–covariance matrix �, assumed positive definite. The investor is assumed to have an initial
wealth equal to W0. Under the supposition that the expected risky asset returns r are uncertain, we
shall confine this uncertainty into the ellipsoidal uncertainty set

Ur = {
r : ‖�1/2(r − r̂)‖2 ≤ γ

}
where γ is a positive scalar and r̂ is an estimate of mean return vector. For a target wealth T , we shall
examine the following ‘robust’ MV portfolio choice problem

min
x

1
2
xT�x

subject to
rTx +

(
W0 − eTx

)
R ≥ T ∀r ∈ Ur ,

where we use e to represent anm-vector of ones. It is well known that the above semi-infinite problem
is equivalent to the following convex optimization problem with a second-order cone constraint (see
e.g. [6,7]), referred to as RMVP1 (short for robust mean–variance problem 1):

min
x

1
2
xT�x

subject to
r̂Tx +

(
W0 − eTx

)
R − γ ‖�1/2x‖2 ≥ T .

We shall make the blanket assumption that T > W0R. Otherwise, it is optimal to invest all wealth
into the riskless asset. The problem above has been studied in different forms numerically for the
case where short sales are not allowed. However, a study of the problem with short positions allowed
is, to the best of our knowledge, still missing in the literature. The purpose of this note is to fill this
gap. In our proofs we use an ansatz inspired from [18]1 and based on assuming a non-zero optimal
point, then working out a specific formula, and figuring out the parameters of the formula.

We define the excess mean return vector estimate μ̂ = r̂ − Re and the square root of the optimal
Sharpe ratio in the market H = √

μ̂T�−1μ̂ (the slope of the capital market line).
Proposition 1: If RMVP1 satisfies the Slater condition (there exists x̂ such that r̂T x̂+(W0−eT x̂)R−
γ ‖�1/2x̂‖2 > T) and H > γ , then RMVP1 admits the unique optimal solution

x∗ =
(
T − W0R
H(H − γ )

)
�−1μ̂.

If H < γ , then there is no feasible portfolio in RMVP1 while for H = γ the optimal portfolio takes
infinite holdings in all risky assets.
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Proof: The problem is convex. We write the Lagrange function using a non-negative multiplier λ

as follows:
L(x, λ) = 1

2
xT�x + λ

(
T − μ̂Tx − W0R + γ ‖�1/2x‖2

)
.

The first-order conditions (that are necessary and sufficient under Slater constraint qualification, see
[8]) give

�x − λμ̂ + λγ
�x√
xT�x

= 0.

Let us define σ = √
xT�x and solve for x from the first-order conditions (assuming a solution

x 	= 0). This yields x∗ = σλ
σ+λγ

�−1μ̂. By definition of σ , substituting x we have the identity

σ 2 = σ 2λ2

(σ+λγ )2
H2, which implies that H2 = (σ+λγ )2

λ2
, or, equivalently by positivity of all σ , γ and H ,

H = σ+λγ
λ

. Observing that μ̂Tx∗ = σλ
σ+λγ

H2 and supposing that the constraint is binding we have
σλ

σ+λγ
H2 + W0R − γ σλ

σ+λγ
H = T . Simplifying we get σH + W0R − γ σ = T . Hence σ = T−W0R

H−γ

fromwhich we have the condition γ < H for positivity of σ . Solving for λ fromH = σ+λγ
λ

we obtain
λ = (T−W0R)

(H−γ )2
. Now, substituting σ and λ into the expression for x∗ we obtain the announced result.

If H < γ , we have a σ < 0, which implies that no feasible portfolio exists. �
Notice that for γ = 0 we recover the classical MV portfolio,

xmv = T − W0R
H2 �−1μ̂.

Here, an interesting extension would be to disallow borrowing by introducing the constraint W0 −
eTx ≥ 0 into the model. Unfortunately, the presence of this constraint renders the analytical solution
of the KKT system in the above proof impossible since it results in a fourth-degree polynomial. One
can easily see that the result will be of the form:

x∗ = A�−1μ̂ + B�−1e,

where A and B are problem-dependent constants to be determined numerically.
As an alternative to the above model, one can start with the following robust MV model

max
x

min
r∈Ur

rTx +
(
W0 − eTx

)
R

subject to
xT�x ≤ t2

for an appropriately chosen positive real number t. This model is equivalent to

max
x

r̂Tx +
(
W0 − eTx

)
R − γ ‖�1/2x‖2

subject to
xT�x ≤ t2,

or, equivalently
max
x

μ̂Tx + W0R − γ ‖�1/2x‖2
subject to

xT�x ≤ t2.

We shall refer to the above problem as RMVP2.
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Proposition 2: If H ≥ γ then RMVP2 admits the unique optimal solution

x∗ = t
H

�−1μ̂.

If H < γ then it is optimal for an RMVP2 investor to keep all initial wealth in the riskless asset.
Proof: Writing the Lagrange function using a non-negative multiplier λ: L(x, λ) = μ̂Tx + W0R −
γ ‖�1/2x‖2 + λ(t2 − xT�x). The first-order conditions (necessary and sufficient since the problem
is convex, and Slater condition holds trivially provided that t2 > 0) yields x∗ =

(
σ

2σλ+γ

)
�−1μ̂. By

definition of σ , we have σ 2 = σ 2

(2σλ+γ )2
H2. Assuming the constraint to be active and observing that

σ = t, we solve for λ and obtain: λ = H−γ
2t , which is non-negative provided that H ≥ γ . If H < γ

then the only feasible choice for λ is zero along with a dual objective function value equal to W0R
which is attained in the primal by a riskless portfolio, i.e. x∗ = 0. �

Interestingly, we observe that the robust MV portfolio is identical to the MV portfolio obtained as
a solution to the problem

max
x

μ̂Tx + W0R

subject to

xT�x ≤ t2.

in the range 0 ≤ γ ≤ H . That is to say, the investor maximizing robust expected return under a
variance constraintmakes aMVportfolio choice when his/her confidence in the estimate of themean
is high, i.e. γ is smaller than the optimal Sharpe ratio H of the market.
Corollary 1: Let H > γ . Then

(1) choosing a maximum variance t = T−W0R
(H−γ )

the RMVP2 investor holds an optimal portfolio
identical to the RMVP1 investor with a target wealth equal to T,

(2) choosing a minimum target wealth equal to T = W0R + t(H − γ ) the RMVP1 investor holds
an optimal portfolio identical to the RMVP2 investor with a variance cap equal to t2.

In the next section, we shall see that using RMVP2 we can also solve in a very simple fashion the
multiple period version of the robust MV portfolio problem in the setting of adjustable robustness.

There is yet another MV portfolio selection model that can be treated with robust optimization
and yields an explicit portfolio rule. Consider the following problem

max
x

min
r∈Ur

rTx +
(
W0 − eTx

)
R − ρ

2
xT�x

where ρ is a positive scalar. Processing the inner min we obtain as usual the problem:

max
x

r̂Tx +
(
W0 − eTx

)
R − γ ‖�1/2x‖2 − ρ

2
xT�x

that is referred to as RMVP3.
Proposition 3: If γρ < H then RMVP3 admits the unique optimal solution

x∗ =
(
H − γρ

ρH

)
�−1μ̂.

If γρ > H then it is optimal for an RMVP3 investor to keep all initial wealth in the riskless asset.
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Proof: The function is strictly concave. Thefirst-order necessary and sufficient conditions (assuming
a solution x 	= 0) yield the candidate solution:

x =
(

σ

γ + σρ

)
�−1μ̂.

Going through the usual steps, we haveH2 = (γ + σρ)2. Developing the right-hand side, we obtain
a quadratic equation ρ2σ 2 + 2γρσ + γ 2 −H2 = 0 with the positive root σ+ = H−γρ

ρ2 provided that
γρ < H . Then, the result follows by simple algebra. �

One can, in the style of Corollary 1, identify parameter choices that ensure passage from the
previous problems RMVP1 and RMVP2 to RMVP3 and vice versa. This is left as an exercise.

3. The dynamic robust MV portfolios

In this section, we shall obtain a solution to the multi-period portfolio selection problem in the
case RMVP2 using the framework of adjustable robust optimization for the setting given as follows.
For simplicity of exposition, let us develop the result for a two-period problem. There are two time
points n = 0, 1 at which the portfolio choice is made, the end of the time horizon n = 2 (in general
n = N) is the moment where the final realized portfolio value, sayW2 (WN ) is revealed. Them risky
assets have independent uncertain mean returns in each time period, i.e. the mean return vector r1 is
uncertain around the estimate r̂1 with positive definite variance–covariance matrix �1, and similar
statements hold for mean vector r2 with estimate r̂2 and positive definite variance–covariance matrix
�2. For simplicity, the riskless asset is assumed to have invariant per period return R ≥ 1. In case
the riskless rates of return differ between periods, we shall assume that they are known a priori, a
standard assumption.We confine themean return r1 of the first period to take values in the ellipsoidal
ambiguity set around r̂1: U1

r = {r1| ‖�−1/2
1 (r1 − r̂1)‖2 ≤ γ1}, and the mean return r2 of the second

period to take values in the ellipsoidal ambiguity set around r̂2: U2
r = {r2| ‖�−1/2

2 (r2 − r̂2)‖2 ≤ γ2}.
The adjustable robustness framework we propose consists inmaking the dynamic portfolio choice

according to the solution of the following problem:

V2 = max
x2∈X2

min
r2∈U2

r

rT2 x2 +
(
W1 − eTx2

)
R (1)

and
V1 = max

x1∈X1
min
r1∈U1

r

V2, (2)

where X1 = {x ∈ R
m|xT�1x ≤ t21 } and X2 = {x ∈ R

m|xT�2x ≤ t22 } for positive constants t1 and t2.
We useW1 to represent the portfolio value at the end of period 1, i.e. at time point n = 1 where the
investor is about to make the second-period portfolio decision. Obviously, for an observer at time
point n = 0, both W1 and W2 are uncertain quantities. However, the observer at time n = 1 will
have already observed W1; therefore, at the moment of making the choice for x2 (i.e. beginning of
stage 2) W1 is no longer uncertain. We shall exploit this observation in solving the problem. The
resulting optimal portfolio policy is therefore non-anticipative. It is usually not expected to solve the
adjustable robust dynamic portfolio problems analytically. However, as we shall see, the case studied
here constitutes an exception, due to the assumption of independence of returns between consecutive
periods.

We solve the problem backwards, i.e. starting from stage 2. At the beginning of stage 2, the end-
of-stage 1 wealth W1 is a known quantity that the investor is aiming to distribute optimally among
them + 1 assets. Therefore, the following problem is solved:

max
x2∈X2

r̂T2 x2 +
(
W1 − eTx2

)
R − γ2‖�1/2

2 x2‖2. (3)
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By Proposition 2, the solution x∗
2 is given by

x∗
2 = t2

H2
�−1

2 μ̂2 (4)

where H2 = μ̂T
2 �−1

2 μ̂2 and μ̂2 = r̂2 − Re, provided that H2 ≥ γ2. This solution results in the
expression V2 = κ2 + RW1, where κ2 = t2(H2 − γ2) is defined for simplifying the notation. Now,
let us return to stage 1 (i.e. beginning of period 1, n = 0) with this solution. We have to address the
problemof computingV1 whereV1 = maxx1∈X1 minr1∈U1

r
κ2+RW1 withW1 = xT1 r1+[W0−eTx1]R.

Hence we need to solve the problem maxx1∈X1 κ2 + R(μ̂T
1 x1 + W0R − γ1‖�1/2x1‖2). One proceeds

exactly as in the proof of Proposition 2 and obtains the unique optimal portfolio: x∗
1 = t1

H1
�−1

1 μ̂1,
provided thatH1 ≥ γ1. The aboveprocess canbe easily generalized for arbitrary integer numberN > 2
of periods. Hence, we can assert the following result. The sets X3, . . . ,XN are defined analogously to
X1,X2 with positive t3, . . . , tN .
Proposition 4: The adjustable robust dynamic portfolio policy of an RMVP2 investor with uncer-
tainty parameters γn, n = 1, . . . ,N and initial wealth W0, defined as the solution to the following
problem:

VN = max
xN∈XN

min
rN∈UN

r

rTNx +
(
WN−1 − eTxN

)
R (5)

VN−1 = max
xN−1∈XN−1

min
rN−1∈UN−1

r

VN (6)

...

V1 = max
x1∈X1

min
r1∈U1

r

V2, (7)

is given by
x∗
n = tn

Hn
�−1

n μ̂n, n = 1, . . . ,N , (8)

where μ̂n = r̂n − Re, provided that γn ≤ Hn for all n = 1, . . . ,N. The values Vn, n = 1, . . . ,N are
given by Vn = ∑N

�=n R
N−�κ� + RN−n+1Wn−1, where κn = tn(Hn − γn).

It is a simple exercise to see that even with the interest rate changing from period to period, i.e.
with Rn, n = 1, . . . ,N , the optimal policy of Proposition 4 continues to hold unchanged. Notice that
the optimal dynamic policy of Proposition 4 is a very simplemyopic policy as it completely disregards
the fact that the investor will have an opportunity to re-invest in subsequent periods; see [24] for a
discussion of multi-period portfolio policies and [25] for a multi-period MV optimal policy based
on dynamic programming. As a final remark, we note that with neither RMVP1 nor RMVP3 we
were able to obtain an explicit adjustably robust policy as in Proposition 4. RMVP1 seems to give
an intractable problem, whereas RMVP3 does not yield a finite policy (i.e. it leads to unbounded
portfolio policies; c.f., end of the next section).

4. The Ben-Tal and Nemirovski robust portfolios

In a seminal paper [6] where they introduced ellipsoidal uncertainty sets and robust optimization
concepts, Ben-Tal and Nemirovski studied a simple portfolio selection example which presents a
departure from theMV portfolio model. They treated the return vector of risky assets as an uncertain
quantity and confined it to an ellipsoidal set, instead of treating themean return vector as an uncertain
entity as we have done in the previous sections. We are dealing with m risky assets. The return of
risky assets, an uncertain quantity, is denoted r. The investor is assumed to have an initial wealth



OPTIMIZATION 1045

equal to W0. Under the supposition that the risky asset returns r are confined into the ellipsoidal
uncertainty set

Ur = {r : ‖�1/2(r − r̂)‖2 ≤ ε}
where � is a symmetric positive definite matrix (hence, it has a square root; � can be taken as
the estimate of the variance–covariance matrix if historical data are available), ε is a positive scalar
representing the uncertainty radius and r̂ is some estimate of return vector (referred to as the nominal
return in [6]). The resulting robust model is as follows (BTNRP):

max
x

r̂Tx − ε‖�1/2x‖2

subject to
eTx = W0.

The above model is not exactly identical to the Ben-Tal and Nemirovski model in that they do not
allow short sales, thus have non-negativity restrictions, and work with a diagonal� in their example.
We have left out the riskless asset in the above model intentionally since its presence leads to extreme
optimal portfolios as we shall see below.

We define the following quantities that are useful:

A = r̂T�−1r̂, B = eT�−1r̂, C = eT�−1e, 
 = B2 − AC + Cε2.

Proposition 5: If the uncertainty radius ε satisfies: ε >
√
A − B2

C then the BTNRP investor makes
the optimal portfolio choice:

x∗ = W0√



�−1

(
r̂ − B − √




C
e

)
.

If ε ≤
√
A − B2

C then BTNRP is unbounded.
Proof: The problem is convex. Forming the Lagrange function using an unrestricted multiplier λ:

L(x, λ) = r̂Tx − ε‖�1/2x‖2 + λ
(
W0 − eTx

)
,

we obtain:
x∗ = σ

ε
�−1(r̂ − λe),

where we assume a non-null optimal solution and defined as usual σ = √
xT�x. Using the previous

definition of σ , we obtain the quadratic equation: Cλ2 − 2Bλ + A − ε2 = 0 with the roots B±√



C ,

which imposes the condition ε >
√
A − B2

C to ensure positivity of 
 (notice that A− B2/C > 0 since
we have AC − B2 > 0 by Cauchy–Schwarz inequality and C > 0 by positive definiteness of �). From
the constraint equation, we have σ = W0ε

B−λC . Since we need σ > 0 we require B − λC > 0, which
imposes the choice of the root with the negative sign in front of

√

. Thus, we have λ∗ = B−√



C

and, after evident simplification we obtain σ = W0ε√


. Substituting these quantities into the candidate

solution, we arrive at the announced result. If ε ≤
√
A − B2

C then we have an infeasible Lagrange dual
problem, which implies that the primal is unbounded (since the primal is trivially feasible). �

When we include the riskless asset we are dealing with the problem BTNRP2:

max
x

μ̂Tx − ε‖�1/2x‖2 + W0R
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where μ̂ = r̂ − Re. The Lagrange dual of the above problem is equivalent to the feasibility problem
z = −�−1/2μ̂, ‖z‖2 ≤ ε. I.e. by the conic duality theorem, the primal problem is solvable if
‖�−1/2μ̂‖2 < ε in which case the primal optimal solution is the origin. If ‖�−1/2μ̂‖2 > ε then the
primal is unbounded since it is trivially feasible. In fact, when solving adjustable robust dynamic
version of RMVP3 backwards, one immediately encounters a problem of the type BTNRP2, and the
process stalls.

5. The adjustable robust dynamic Ben-Tal–Nemirovski portfolios

Let us now consider the portfolio selection problem of the previous section in multiple periods.
For ease of exposition, it suffices to examine the case of two periods. As previously, we have two
time points n = 0, 1 at which the portfolio choice is made, the end of the time horizon n = 2 (in
general n = N) is the moment where the final realized portfolio value, sayW2 (WN ) is revealed. The
m risky assets have independent uncertain returns in each time period, i.e. the return vector r1 is
uncertain around the nominal value r̂1 with positive definite (variance–covariance) matrix �1, and
similar statements hold for mean vector r2 with nominal return r̂2 and positive definite (variance–
covariance) matrix �2. We confine the return r1 of the first period to take values in the ellipsoidal
ambiguity set around r̂1: U1

r = {r1| ‖�−1/2
1 (r1 − r̂1)‖2 ≤ ε1}, and the return r2 of the second period

to take values in the ellipsoidal ambiguity set around r̂2: U2
r = {r2| ‖�−1/2

2 (r2 − r̂2)‖2 ≤ ε2}. The
adjustable robustness framework now consists in making the dynamic portfolio choice according to
the solution of the following problem:

V2 = max
x2∈X2

min
r2∈U2

r

rT2 x2 (9)

and
V1 = max

x1∈X1
min
r1∈U1

r

V2, (10)

whereX1 = {x ∈ R
m|eTx1 = W0} andX2 = {x ∈ R

m|eTx2 = W1}where we useW1 to represent the
portfolio value at the end of period 1, i.e. at time point n = 1 where the investor is about to make the
second-period portfolio decision. Let us solve the problem backwards again. To compute V2 using
Proposition 5, we have the solution x∗

2 = W1√

2

�−1
2

(
r̂2 − B2−√


2
C2

e
)
where A2 = r̂T2 �−1

2 r̂2, B2 =

eT�−1
2 r̂2, C2 = eT�−1

2 e, 
2 = B22 −A2C2 +C2ε
2
2 provided that ε2 >

√
A2 − B22

C2
. After some simple

algebra, we compute V2 to be V2 = W1(
κ2−ε2φ2√


2
) where

κ2 = A2 − B22
C2

+ B2
√


2

C2
, φ2 =

√
A2 − B22

C2
+ 
2

C2
.

Since W1 = rT1 x1 we have the problem V1 = maxx1∈X1 minr1∈U1
r
(
κ2−ε2φ2√


2
)rT1 x1, which is exactly:

V1 = maxx1∈X1 (
κ2−ε2φ2√


2
)(r̂T1 x1 − ε1‖�1/2

1 x1‖2). The above problem is convex provided that the
constant κ2−ε2φ2√


2
is positive, which is equivalent to ask that ε2 < κ2

φ2
. Assuming this condition fulfilled,

we solve for x1 using Proposition 5, andwe obtain x∗
1 = W0√


1
�−1

1

(
r̂1 − B1−√


1
C1

e
)
(which is identical

to x∗
2 after the necessary changes) provided that ε1 >

√
A1 − B21

C1
and A1,B1,C1 and 
1 are defined

analogously.
When the above solution process is extended to N > 2 periods with the required definitions of r̂n,

positive definite �n, sets Un
r , and positive εn, we have the following result.
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Proposition 6: Theadjustable robust dynamic portfolio policy of anBTNRP investorwithuncertainty
radii εn, n = 1, . . . ,N and initial wealth W0, defined as the solution to the following problem:

VN = max
xN∈XN

min
rN∈UN

r

rTNx (11)

VN−1 = max
xN−1∈XN−1

min
rN−1∈UN−1

r

VN

...

V1 = max
x1∈X1

min
r1∈U1

r

V2, (12)

is given by

x∗
n = Wn−1√


n
�−1

n

(
r̂n − Bn − √


n

Cn
e
)
, n = 1, . . . ,N , (13)

where
An = r̂Tn �−1

n r̂n, Bn = eT�−1
n r̂n, Cn = eT�−1

n e, 
n = B2n − AnCn + Cnε
2
n

provided that εn >
√
An − B2n

Cn
for all n = 1, . . . ,N and εn < κn

φn
for n = 2, . . . ,N with

κn = An − B2n
Cn

+ Bn
√


n

Cn
, φ2 =

√
An − B2n

Cn
+ 
n

Cn
.

The values Vn, n = 1, . . . ,N are given by Vn = Wn−1
∏N

�=n
κ�−ε�φ�√


�
.

Hence, the BTNRP investor’s dynamic adjustable robust portfolio policy is also a myopic policy.

6. Conclusions

We presented closed-form portfolio rules for robust MV portfolio optimization problems where
short sales (and/or borrowing) restrictions are not taken into account. Without such restrictions,
we were able to solve the resulting conic optimization problems analytically, and to extend the
rules to dynamic portfolio choice under the adjustable robustness approach using an independence
assumption of returns between consecutive periods, where closed-form portfolio rules are rare (with
the exception of e.g. [14]).

Note

1. Garlappi et al. [18] treat the problem RMVP3 that we address further below without a riskless asset. Their
solution requires the numerical solution of a quartic polynomial.
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