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ABSTRACT

TOWARDS UNIFIYING MOBILITY DATASETS

Fuat Basık

Ph.D. in Computer Engineering

Advisor: Özgür Ulusoy

Co-Advisor: Buğra Gedik

Co-Advisor: Hakan Ferhatosmanoğlu

December 2019

With the proliferation of smart phones integrated with positioning systems and

the increasing penetration of Internet-of-Things (IoT) in our daily lives, mobility

data has become widely available. A vast variety of mobile services and applica-

tions either have a location-based context or produce spatio-temporal records as

a byproduct. These records contain information about both the entities that pro-

duce them, as well as the environment they were produced in. Availability of such

data supports smart services in areas including healthcare, computational social

sciences and location-based marketing. We postulate that the spatio-temporal us-

age records belonging to the same real-world entity can be matched across records

from different location-enhanced services. This is a fundamental problem in many

applications such as linking user identities for security, understanding privacy lim-

itations of location based services, or producing a unified dataset from multiple

sources for urban planning and traffic management. Such integrated datasets are

also essential for service providers to optimise their services and improve business

intelligence. As such, in this work, we explore scalable solutions to link entities

across two mobility datasets, using only their spatio-temporal information to pave

to road towards unifying mobility datasets. The first approach is rule-based link-

age, based on the concept of k-l diversity — that we developed to capture both

spatial and temporal aspects of the linkage. This model is realized by developing

a scalable linking algorithm called ST-Link, which makes use of effective spa-

tial and temporal filtering mechanisms that significantly reduce the search space

for matching users. Furthermore, ST-Link utilizes sequential scan procedures to

avoid random disk access and thus scales to large datasets. The second approach

is similarity based linkage that proposes a mobility based representation and sim-

ilarity computation for entities. An efficient matching process is then developed

to identify the final linked pairs, with an automated mechanism to decide when

to stop the linkage. We scale the process with a locality-sensitive hashing (LSH)
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based approach that significantly reduces candidate pairs for matching. To re-

alize the effectiveness and efficiency of our techniques in practice, we introduce

an algorithm called SLIM. We evaluated our work with respect to accuracy and

performance using several datasets. Experiments show that both ST-Link and

SLIM are effective in practice for performing spatio-temporal linkage and can

scale to large datasets. Moreover, the LSH-based scalability brings two to four

orders of magnitude speedup.

Keywords: Mobility Data, Data Integration, Spatio-Temporal Linkage, Scalabil-

ity.



ÖZET

MOBİL VERİ KÜMELERİNİ BİRLEŞTİRMEYE
DOĞRU
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Tez Danışmanı: Özgür Ulusoy

İkinci Tez Danışmanı: Buğra Gedik

İkinci Tez Danışmanı: Hakan Ferhatosmanoğlu
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Konumlandırma sistemleriyle entegre akıllı telefonların yaygınlaşması ve nes-

nelerin internetinin (Internet of Things - IoT) günlük hayatımızdaki etkisinin

artmasıyla birlikte, mobil veri kümeleri yaygın bir şekilde erişilebilir oldu.

Günümüzde birçok mobil servis ve uygulama, ya lokasyon bazlı bir içeriğe sahip

ya da yan ürün olarak mekan-zaman bilgisi içeren kayıtlar üretmektedir. Bu

kayıtlar, hem kendilerini üreten varlıklar veya kullanıcılar, hem de üretildikleri

çevre hakkında bilgiler içerir. Bu kayıtların kullanılabilirliği sağlık hizmetleri,

hesaplamalı sosyal bilimler ve konum tabanlı pazarlama gibi alanlarda akıllı

hizmetleri destekler.

Bu çalışma, farklı servislerin kullanımı sonucu elde edilen, gerçek dünyada

aynı varlık tarafından üretilen ve mekan-zaman bilgisi içeren kayıtların

eşleştirilebileceğini öne sürmektedir. Bu eşleştirme, güvenlik için kullanıcı kim-

liklerini bağlama, konum tabanlı hizmetlerin gizlilik sınırlamalarını anlama ve

kentsel planlama ve trafik yönetimi için birden fazla kaynaktan birleşik bir veri

kümesi oluşturma gibi birçok uygulamada temel bir zorunluluktur. Bu tür

birleştirilmiş mobil veri kümeleri, servis sağlayıcıların hizmetlerini optimize et-

meleri ve iş zekasını geliştirmeleri için de önemlidir. Dolayısıyla, bu çalışma, iki

mobil veri kümesindeki varlıkları birbirine bağlamak ve mobil veri kümelerini

birleştirmeye giden yolda bir adım daha ilerleyebilmek amacıyla, yalnızca

mekansal-zamansal bilgileri kullanarak ölçeklenebilir çözümler araştırmak için

yapılmıştır ve sonuç olarak bu eşleştirmeye iki farklı yaklaşım önermektedir.

Önerilen ilk yaklaşım, kullanım kayıtları arasındaki yakınlığın hem mekansal

hem de zamansal yönlerini kapsamak üzere geliştirilen, k - l çeşitleme kavramına

dayanan kurala dayalı eşlemedir. Bu modelin etkinliği ve ölçeklenebilirliği, eşleşen
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varlıklar için arama alanını önemli ölçüde azaltan etkili mekansal ve zamansal fil-

treleme mekanizmalarını kullanan ST-Link adlı ölçeklenebilir bir eşleme algorit-

ması geliştirilerek ölçülmektedir. Bu algoritma, mekansal ve zamansal filtreleme

adımlarına ek olarak rastgele disk erişimden kaçınan sıralı tarama prosedürlerini

kullanarak büyük veri kümelerine ölçeklenmeyi arttırır.

İkinci yaklaşım, varlıkların mekan-zaman bilgisi içeren kullanım geçmişlerinin

gösterimi ve bu gösterimler arasındaki benzerliğin tanımlanmasına bağlı, benz-

erliğe dayalı eşleştirmedir. Bu yaklaşım aynı zamanda eşleştirme işleminin ne

zaman durduracağına otomatik olarak karar veren bir durma mekanizması ve

eşleşen varlıkları tespit edebilmek için etkili bir eşleştirme sistemi geliştirmektedir.

Büyük veri kümelerine ölçeklenebilirlik, eşleştirme sisteminin işleyeceği aday

varlık çiftlerini önemli oranda azaltan yakınlığa-duyarlı-karım (Locality-Sensitive-

Hashing LSH) sayesinde yapılmaktadır. Çalışma bu modelin ve yakınlığa-duyarlı-

karım tabanlı ölçeklenebilirliğin etkinliğini ve verimliliğini ölçmek için SLIM adlı

bir algoritma da içermektedir.

Çalışma son kısmında, hem kural tabanlı, hem de benzerlik tabanlı eşleme

yaklaşımlarını çeşitli veri setleri kullanarak doğruluk ve performans açısından

inceleyen deneysel değerlendirmeyi sunmaktadır. Bu deneyler, hem ST-Link

hem de SLIM algoritmalarının, mekansal-zamansal eşleme için pratikte etkili

olduğunu ve büyük veri kümelerine ölçeklenebileceğini göstermektedir. Dahası,

yakınlığa-duyarlı-karım tabanlı ölçeklenebilirlik adımının eşleştirme işlemini 102

ila 104 kat hızlandırdığı gözlemlenmiştir.

Anahtar sözcükler : Mobil Veri Kümeleri, Data Kümelerinde Birleştirme, Mekan-

Zaman Eşleştirmeleri, Ölçeklenebilirlik.
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Chapter 1

Introduction

With the proliferation of smart phones integrated with positioning systems and

the increasing penetration of Internet-of-Things (IoT) in our daily lives, mobil-

ity data has become widely available [1]. The size of the digital footprint left

behind by entities interacting with these online services is increasing at a rapid

pace, due to the popularity of location based services, social networks and related

online services. An important portion of this footprint contains spatio-temporal

references and is a fertile resource for applications for social good and business in-

telligence [2]. Availability of such data supports smart services in areas including

healthcare [3], computational social sciences [4], and location-based marketing [5].

There are many examples of services that leave spatio-temporal footprint be-

hind. Payments made by credit cards produce spatio-temporal records containing

the time of the payment and the location of the store. Geotagging has become a

common functionality in many content sharing and social network applications.

Location sharing services such as Swarm1 and social networks help people share

their whereabouts with others. These records contain information about both

the entities that produce them, as well as the environment they were produced

in. We refer to the services that create spatio-temporal records of their usage

as Location Enhanced Services (LES) and their data as mobility data or location

1https://www.swarmapp.com

1

https://www.swarmapp.com


based dataset.

We consider two varieties of location enhanced services based on an en-

tity’s level of involvement in the production of spatio-temporal usage records.

Entities of explicit location enhanced services actively participate in sharing

their spatio-temporal information. Location-based social network services, like

Foursquare/Swarm, are well-known examples of such services, where the user ex-

plicitly checks-in to a particular point of interest at a particular time. On the

other hand, implicit location enhanced services produce spatio- temporal records

of usage as a byproduct of a different activity, whose focus is not sharing the lo-

cation. For instance, when a user makes a payment with her credit card, a record

is produced containing time of the payment and location of the store. Same ap-

plies for the cell phone calls, since originating cell tower location is known to the

service provider.

There are several studies that analyze the dataset generated by a location

enhanced service to model the mobility patterns and build applications with pos-

itive impact on the society, such as reducing traffic congestion, lowering noise/air

pollution levels, and analyzing the spread of influenza using transportation net-

works [6, 7]. Most of the studies focus on a single dataset, which provides only

a partial and biased state, failing to capture the complete patterns of mobility.

To produce a comprehensive view of mobility, one needs to integrate multiple

datasets, potentially from disparate sources. Such integration enables knowledge

extraction that cannot be obtained from a single data source, and benefits a wide

range of applications and machine learning tasks [8, 9]. A recent example is dis-

covering regional poverty by jointly using mobile and satellite data in a developing

country, where accurate demographic information is not available [10]. In another

work, urban social diversity is measured by jointly modeling the attributes from

Twitter and Foursquare [11].

Integration also helps to overcome with inaccuracy of information that is pro-

vided by a single dataset. Consider the simple query of counting the number of

entities in a certain location at a given time. While each individual dataset pro-

vides a partial answer, a more complete and accurate answer can be reached by

2



integrating the results from multiple sources which are potentially overlapping.

Therefore, spatio-temporal linkage is necessary to avoid over- or under-estimation

of population densities using multiple sources of data, e.g., signals from wifi based

positioning and mobile applications. This is essential to achieve the ambitious

goal of producing a unified mobility dataset from multiple sources.

Spatio-temporal linkage solutions are useful in several other applications, such

as user identification for security purposes, and understanding the privacy conse-

quences of releasing mobility datasets [12]. An outcome of work such as ours is to

help developing privacy advisor tools where location based activities are assessed

in terms of their user identity linkage likelihood.

Identifying the matching entities across two mobility datasets is a non-trivial

task, since some datasets are anonymized due to privacy or business concerns,

and hence unique identifiers are often missing [13]. The linkage can be considered

generic only if performed using only spatio-temporal attributes, as we target in

this work. This helps to avoid the use of personally identifying information [14]

and additional sensitive data, and simplifies the procedures to share data for so-

cial good and research purposes without having to expose personally identifying

information. Consequently, anonymity assumption not only generalizes the link-

age algorithms but also show that in addition to social good applications using

integrated mobility data, they are also important in understanding privacy in-

dications of anonymized data [12]. As such, in this work, we explore scalable

solutions to link entities across two mobility datasets, using only their spatio-

temporal information to pave the road towards unifying mobility datasets. There

are several challenges associated with such linkage across mobility datasets.

First, unlike in traditional record linkage [15, 16, 17], where it is easier to

formulate linkage based on a traditional similarity measure defined over records

(such as Minkowski distance or Jaccard similarity), in spatio-temporal linkage

similarity needs to be defined based on time, location, and the relationship be-

tween the two. For a pair of entities from two different datasets to be considered

similar, their usage history must contain records that are close both in space and

time. Equally importantly there must not be negative matches, such as records

3



that are close in time, but far in distance. We call such negative matches, alibis.

Second, once similarity scores are assigned to entity pairs, an efficient matching

process needs to identify the final linked pairs. A challenging problem is to

automate the decision to stop the linkage to avoid false positive links. In a real-

world setting, it is unlikely to have the entities from one dataset as a subset of the

other, which is a commonly made assumption. Frequently, it is not even possible

to know the intersection amount in advance. This is an important but so far

overseen issue in the literature [18, 19, 20].

Third, performing the linkage in a reasonable amount of time is crucial, con-

sidering that the mobile services have millions of entities interacting with them

everyday. Comparing each pair of entities would require quadratic number of sim-

ilarity score computations. Avoiding this exhaustive search for matching pairs

and focusing on those pairs that are likely to be matching can scale the linkage

to a large number of entities.

In this dissertation, we present two novel scalable linkage approaches, called

ST-Link and SLIM for finding the matching entities across two mobility datasets,

relying on the spatio-temporal information. In both approaches, similarity of

entity pairs is defined over aggregate similarities of records in their usage histories.

They both do not penalize the score when one entity has activity in a particular

time window but the other does not, but do penalize the existence of cross-dataset

activities that are close in time but distant in space (aka alibis [21, 13],). This is

an essential property that supports mobility linkage. In ST-Link, the similarity

of a pair of entities is defined over co-occurring records, both temporally and

spatially. However, as we will detail later not all co-occurring records contribute

fully and equally to the overall aggregation (Chapter 3). In fact, contribution of

a co-occurring record pair to the overall aggregation depends on the uniqueness

of this co-occurrence. In SLIM however, given an entity, we introduce a mobility

history representation, by distributing the recorded locations over time-location

bins (Section 4.1) and defining a novel similarity score for histories, based on a

scaled aggregation of the proximities of their matching bins (Section 4.3.1). The

proposed similarity definition provides several important properties. It awards
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the matching of close time-location bins and incorporates the frequency of the

bins in the award amount. It normalizes the similarity scores based on the size

of the histories in terms of the number of time-location bins.

Once the similarity scores are computed, the second step is to define a link-

age model or matching process to identify the matching entities. A particularly

challenging step here is to decide on rule or a similarity score threshold to stop

the linkage. To cope with this challenge ST-Link leverages a rule based approach

by introducing a novel linkage model based on k-l diversity — a concept we de-

veloped to capture both spatial and temporal diversity aspects of the linkage.

Informally, a pair of entities, one from each dataset, is called k-l diverse if they

have at least k co-occurring records (both temporally and spatially) in at least l

different locations. Furthermore, the number of alibi events of such pairs should

not exceed a predefined threshold. Based on the distribution of the all k-l values

of candidate pairs we develop an automatic detection of k and l values technique

based on best trade-off point detection. Different than ST-Link, in the SLIM the

matched entities are linked via an automated linkage thresholding (Section 4.3.3).

In this linkage model, similarity scores are used as weights to construct a bipartite

graph (Section 4.3.2) which is used for maximum sum matching. To compute the

similarity score threshold to stop the linkage, we first fit a mixture model, e.g.,

Gaussian Mixture Model (GMM), with two components over the distribution of

the edge weights selected by the maximum sum bipartite matching. One of these

components aims to model the true positive links and the other one is for false

positive links. We then formulate the expected precision, recall, and F1-score

for a given threshold, based on the fitted model and select the threshold that

provides the maximum F1-Score and use it to filter the results to produce the

linkage.

Näıve record linkage algorithms that compare every pair of records take O(n2)

time [22], where n is the number of records. However, such a computation would

not scale to large dataset sizes that are typically involved in LES. Considering

that location-based social networks get millions of updates every day, processing

of hundreds of days of data for the purpose of linkage would take impractically

long amount of time.
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In order to link entities in a reasonable time, the ST-Link algorithm uses two

filtering steps before pairwise comparisons of candidate entities are performed

to compute the final linkage. Taking advantage of the spatio-temporal structure

of the data, ST-Link first distributes entities over coarse-grained geographical

regions that we call dominating grid cells. Such grid cells contain most of the

activities of their corresponding entities. For two entities to link, they must have

a common dominating grid. Once this step is completed, the linkage is indepen-

dently performed over each dominating grid cell. During the temporal filtering

step, ST-Link uses a sliding window based scan to build candidate entity pairs,

while also pruning this list as alibis are encountered for the current candidate

pairs. It then performs a reverse scan to further prune the candidate pair set

by finding and applying alibis that were not known during the forward scan.

Finally, our complete linkage model is evaluated over candidate pairs of entities

that remain following the spatial and temporal filtering steps. Pairs of entities

that satisfy k-l diversity are linked to each other.

To address the same challenge in the similarity based approach, we employ

Locality Sensitive Hashing (LSH) [23]. To apply LSH in our context, we make

use of the dominating grid cell concept (Section 4.4) again. Given a mobility

history, we construct a list of dominating grid cells to act as signatures. We next

apply a banding technique, by dividing the signatures into b bands consisting

of r rows, where each band is hashed to a large number of buckets. The goal

is to come up with a setting such that signatures with similarity higher than a

threshold t is hashed to the same bucket at least once. We only compute the

similarity score for the mobility history pairs hashed to the same bucket. Our

experimental evaluation (Section 6) shows that this technique brings two to four

orders of magnitude speedup to linkage with a slight reduction in the recall.

The structure of the processing pipeline for both linkage models resembles two-

step approach of entity resolution techniques where blocking/indexing applied

first and then, the similar entities are compared in detail. However, the goal

here is slightly different where instead of linking the records of a dataset to each

other, we aim to link the owners of the records. Therefore, our similarity score

computation and scalability techniques are not defined over records but their
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owners.

In summary, this work makes the following contributions:

• Model. We introduce two novel spatio-temporal linkage models. The first

one is based on the concept of k-l diversity for matching. In the second

one we devise a summary representation for the mobility records of the

entities and a method to compute similarity among these summaries. The

similarity score we introduce captures the closeness in time and location,

tolerates temporal asynchrony, and penalizes the alibi records.

• Algorithm. To realize the linkage models in practice we develop: i) ST-Link

algorithm that applies spatial and temporal filtering techniques to prune the

candidate entity pairs in order to scale to large datasets and also performs

mostly sequential I/O to further improve performance, ii) SLIM algorithm

for linking entities across two mobility datasets, which relies on maximum

bipartite matching over a graph formed using the similarity scores. One

of our contributions is to detect an appropriate score threshold to stop the

linkage; a crucial step for avoiding false positives.

• Scalability. To scale linkage for large datasets, we define scalability tech-

niques tailored to our linkage models. For the rule-based linkage we take

advantage of the data structure and employ spatial and temporal filtering

techniques. For the similarity based linkage we use locality-sensitive hashing

and show that it brings a significant speedup. To the best of our knowledge,

this is the first application of LSH in the context of mobility history linkage.

• Evaluation. We perform extensive experimental evaluation using four real-

world datasets. We compare ST-Link with SLIM and Swoosh [24]. We

also compare SLIM with two additional existing approaches, GM [19] and

Pois [14], and show that it has superior performance in terms of accuracy

and scalability.

The rest of this dissertation is organized as follows. Chapter 3 gives the details
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of the rule based linkage, and Chapter4 presents the similarity based linkage. In

Chapter 5, we extend the linkage to multiple datasets, discuss storage overhead

in case of uncertain spatial information and also handling dynamic changes in

data. In Chapter 6 we present our experimental evaluation and in Chapter 7 we

make an extensive literature review. Lastly, Chapter 8 concludes this work.
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Chapter 2

Preliminaries

In this section, we present preliminaries including the definition of the key con-

cepts and the notation used throughout the dissertation.

2.1 Notation and Preliminaries

Location Datasets . We define a location dataset as a collection of usage records

from a location-based service. We use I and E to denote the two location datasets

from the two services, across which the linkage will be performed. While our focus

in this work is on performing linkage across two datasets, extensions to multiple

datasets is possible via pair-wise linkage.

Entities. Entities are real-world systems or users, whose usage records are stored

in the location datasets. Throughout this work the terms user and entity will be

used interchangeably. They are represented in the datasets with their ids. An id

uniquely identifies an entity within a dataset. However, since ids are anonymized,

they can be different across different datasets and cannot be used for linkage. The

set of all entities of a location dataset is represented as UE , where the subscript

represents the dataset. Throughout this work, we use u ∈ UE and v ∈ UI to

represent two entities from the two datasets.
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Records. Records, or events, are generated as a result of entities interacting

with the location-based service. Each record is a triple {u, l, t}, where for a

record r ∈ E , r.u represents the id of the entity associated with the record. Simi-

larly, r.l and r.t represent the location and timestamp of the record, respectively.

Record locations could be in the form of a region or a point. In the ST-Link the

record location is in the form of a region. SLIM assumes that the record loca-

tions are given as points but it can be extended to datasets that contain record

locations as regions, by copying a record into multiple cells within the mobility

histories using weights. We explore this approach in our experimental evaluation.

2.2 Spatio-Temporal Linkage

With these definitions at hand, we can define the problem as follows. Given two

location datasets, I and E , the problem is to find a one-to-one mapping from a

subset of the entities in the first set to a subset of the entities in the second set.

This can be more symmetrically represented as a function that takes a pair of

entities, one from the first dataset and a second from the other, and returns a

Boolean result that either indicates a positive linkage (true) or no-linkage (false),

with the additional constraint that an entity cannot be linked to more than one

entity from the other dataset. A positive linkage indicates that the relevant

entities from the two datasets refer to the same entity in real-life.

More formally, we are looking for a linkage function M : UE × UI → {0, 1},
with the following constraint:

∃u, v s.t. M(u, v) = 1

⇒ ∀u′ 6= u, v′ 6= v,M(u′, v) =M(u, v′) = 0

Since location datasets are collected from different services, the entities would

only partially overlap. In a real world setting, the size of this overlap might not

be known in advance. Even when it is known, finding all positive linkages is often
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not possible, as some of the entities may not have enough records to establish

linkage. This means that a good linkage function should provide high precision

but the recall could be limited if the matching entities do not have enough records.

Assume there is an oracle G : UE × UI → {0, 1} that could be used as the

ground truth. This function returns a Boolean result that either indicates that

the two entities are the same (true) or they are different (false).

Precision is defined as:

P =
|{(u, v) s.t. M(u, v) = 1 ∧ G(u, v) = 1}|

|{(u, v) s.t. M(u, v) = 1}|
(2.1)

Recall is defined as:

R =
|{(u, v) s.t. M(u, v) = 1}|
|{(u, v) s.t. G(u, v) = 1}|

(2.2)
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Chapter 3

Rule Based Linkage

In this chapter we discuss the rule based linkage approach. We first give the

details of the k-l diversity concept and define the matching process under this

model. We then explain the ST-Link algorithm and describe how it implements

the k-l diversity based spatio-temporal linkage in practice. We introduce spatial

and temporal filtering steps, which help the ST-link to scale for large datasets.

Lastly, we give the final linkage step and how to automatically define k and l

values.

3.1 k-l Diversity

The core idea behind the rule based linkage model is to locate pairs of users whose

events satisfy k-l diversity. Stated informally, a pair of users is called k-l diverse

if they have at least k co-occurring events (both temporally and spatially) in at

least l different locations. Furthermore, the number of alibi events of such pairs

should not exceed a predefined threshold. In what follows we provide a number

of definitions that help us formalize the proposed k-l diversity.

Co-occurrence. Two events from different datasets are called co-occurring if

they are close in space and time. Eq. 3.1 defines the P relationship to capture
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the closeness in space. For two records i ∈ I and e ∈ E , P is defined as:

P (i, e) ≡ (i.r ∩ e.r) 6= ∅, (3.1)

where i.r and e.r are the regions of the two events. While we defined the closeness

in terms of intersection of regions, other approaches are possible, such as the

fraction of the intersection being above a threshold: |i.r∩e.r|/min(|i.r|, |e.r|) ≥ ε.

Our methods are equally applicable to such measures.

Eq. 3.2 defines the T relationship to capture the closeness of events in time:

T (i, e) ≡ |i.t− e.t| ≤ α. (3.2)

Here, we use the α parameter to restrict the matching events to be within a

window of α time units of each other. Using Eq. 3.1 and Eq. 3.2, we define the

co-occurrence function C as:

C(i, e) ≡ T (i, e) ∧ P (i, e) (3.3)

Alibi. While a definition of similarity is necessary to link events from two differ-

ent datasets, a definition of dissimilarity is also required to rule out pairs of users

as potential matches in our linkage. Such negative matches enable us to rule out

incorrect matches and also reduce the space of possible matches throughout the

linkage process. We refer to these negative matches as alibis.

By definition alibi means “A claim or piece of evidence that one was elsewhere

when an act is alleged to have taken place”. In this work we use alibi to define

events from two different datasets that happened around the same time but at

different locations, such that it is not possible for a user to move from one of

these locations to the other within the duration defined by the difference of the

timestamps of the events. To formalize this, we define a runaway function R,

which indicates whether locations of two events are close enough to be from the

same user based on their timestamps. We define R as follows:

R(i, e) ≡ d(i.r, e.r) ≤ λ · |i.t− e.t| (3.4)
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Here, λ is the maximum speed constant and d is a function that gives the shortest

distance between two regions. If the distance between the regions of two events is

less than or equal to the distance one can travel at the maximum speed, then we

cannot rule out linkage of users associated with these two events. Otherwise, and

more importantly, these two events form an alibi, which proves that they cannot

belong to the same user. Based on this, we define an alibi function, denoted by

A, as follows:

A(i, e) ≡ T (i, e) ∧ ¬P (i, e) ∧ ¬R(i, e) (3.5)

Entity linkage. The definitions we have outlined so far are on pairs of events,

and with these definitions at hand, we can now move on to definitions on pairs

of entities/users. Let u ∈ UI and v ∈ UE be two users. We use Iu to denote the

events of user u and Ev to denote the events of user v. In order to be able to

decide whether two users are the same entity or not, we need to define a matching

between their events.

Initially, let us define the set of all co-occurring events of users u and v, rep-

resented by the function F . We have:

F (u, v) = {(i, e) ∈ Iu × Ev : C(i, e)} (3.6)

F is our focus set and contains pairs of co-occurring events of the two users. How-

ever, in this set, some of the events may be involved in more than one co-occurring

pairs. We restrict the matching between the events of two users by disallowing

multiple co-occurring event pairs containing the same events. Accordingly, we

define S as the set containing all possible subsets of F satisfying this restriction.

We call each such subset an event linkage set. Formally, we have:

S(u, v) = {S ⊆ F (u, v) :

@{(i1, e1), (i2, e2)} ⊆ S s.t. i1 = i2 ∨ e1 = e2}
(3.7)

We say that the user pair (u, v) satisfy k-l diversity if there is at least one event

linkage set S ∈ S(u, v) that contains k co-occurring event pairs and at least l of

them are at different locations. However, each co-occurring event pair does not
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Figure 3.1: Sample event linkage set (solid lines) for users u and v. The co-
occurring event pairs are shown using dashed lines. Events from a given user are
shown within circles. Users a, b, c, and v are from one LES, and the users d, e,
f , and u are from the other LES.

count as 1, since there could be many other co-occurring event pairs outside of

S or even F that involve the same events. As such, we weight these co-occurring

event pairs (detailed below). Figure 3.1 shows a sample event linkage set with

weights for the co-occurring event pairs.

k co-occurring event pairs. Let S be an event linkage set in S(u, v) and let C
be a function that determines whether the co-occurring event pairs in S satisfy

the co-occurrence condition of k-l diversity. We have:

C(S) ≡
∑

(i,e)∈S

w(i, e) ≥ k (3.8)

The weight of a co-occurring event pair is defined as:

w(i, e) =|{i1.u : C(i1, e) ∧ i1 ∈ I}|−1·

|{e1.u : C(i, e1) ∧ e1 ∈ E}|−1
(3.9)
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Figure 3.2: Data processing pipeline of ST-Link.

Here, given a co-occurring event pair between two users, we check how many

possible users’ events could be matched to the these events. For instance, in

the figure, consider the solid line at the top with the weight 1/6. The event

on its left could be matched to events of 2 different users, and the event on its

right could be matched to events of 3 different users. To compute the weight of

a co-occurring pair, we multiply the inverse of these user counts, assuming the

possibility of matching from both sides are independent. As such, in the figure,

we get 1/2 · 1/3 = 1/6.

l diverse event pairs. For S ∈ S (u, v) to be l-diverse, there needs to be at least

l unique locations for the co-occurring event pairs in it. However, for a location to

be counted towards these l locations, the weights of the co-occurring event pairs

for that location must be at least 1. Let D denote the function that determines

whether the co-occurring event pairs in S satisfy the diversity condition of k-l

diversity. We have:

D(S) ≡ |{p ∈ P :
∑

(i,e)∈S s.t.

p∩ i.r∩ e.r 6=∅

w(i, e) ≥ 1}| ≥ l (3.10)

Here, one subtle issue is defining a unique location. In Eq. 3.10 we use P as

the set of all unique locations. This could simply be a grid-based division of the

space. In our experiments, we use the regions of the Voronoi diagram formed by

cell towers as our set of unique locations.

Before we can formally state the k-l diversity based linkage, we have to define

the alibi relation for user pairs. Let A denote a function that determines whether

there are more than a alibi events for a given pair of users. Intuitively, having

a single alibi is enough to decide that user u and v are not the same entity, but

when there is inaccurate information, disregarding candidate pairs with a single
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alibi event might lead to false negatives. We have:

A(u, v) ≡ |i, e ∈ Iu × Ev, s.t.A(i, e)| ≤ a (3.11)

With these definitions at hand, finally we can define the spatio-temporal link-

age function L from the original problem formulation from Chapter 2 that deter-

mines whether users u and v satisfy k-l diversity as follows:

L(u, v) ≡ ¬A(u, v) ∧ S ∈ S(u, v) s.t. (C(S) ∧ D(S)) (3.12)

Finally, the linkage function M : UE × UI → {0, 1} from the original problem

formulation from Chapter 2 can be defined to contain only matching pairs of

users based on L, such that there is no ambiguity. Formally:

M(u, v) =

1 L(u, v) ∧ ∀u′ 6= u, v′ 6= v, L(u′, v) = L(u, v′) = 0

0 otherwise
(3.13)

3.2 Example Scenario

Consider three colleagues Alice, Bob, and Carl who are working in the same

office. Assume that they all use two LES s: les1 and les2. Both services generate

spatio-temporal records only when they are used. The service provider would

like to link the profiles of users common in both services. However, Bob uses the

services only when he is at the office. On the other hand, Alice and Carl use

the services frequently while at work, at home, and during vacations. Let us also

assume that Alice and Carl live on the same block, but they take vacations at

different locations.

When records of Alice from les1 are processed against records of Carl from

les2, we will encounter co-occurrences with some amount of diversity, as they will

have matching events from work and home locations. However, we will encounter

alibi events during vacation time. In this case, alibi checks will help us rule out

the match.
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When records of Alice from les1 are processed against records of Bob from

les2, the number of co-occurrences will be high, as they are working in the same

office. Yet, diversity will be low, as Bob does not use the services outside of the

office. This also means we will not encounter any alibi events with Alice. In this

case, diversity will help us rule out the match.

In contrast to these cases, when Alice’s own usage records from les1 and les2

are processed, the resulting co-occurrences will contain high diversity since Alice

uses the services at work, home, and during vacations, and will contain no alibis.

In this example scenario, high number of co-occurrences helped us distinguish

between mere coincidences and potential candidate pairs. The alibi definition

helped us to eliminate a false link between Alice and Carl. Finally, diversity

helped us to eliminate a false link between Alice and Bob, even in the absence of

alibi events.

3.3 ST-Link

In this section, we describe how the ST-Link algorithm implements k-l diversity

based spatio-temporal linkage in practice. At a high-level, ST-Link algorithm

performs filtering to reduce the space of possible entity matches, before it performs

a more costly pairwise comparison of entities according to the formalization given

in Section 3.1. The filtering phase is divided into two steps: temporal filtering

and spatial filtering. The final phase of pairwise comparisons is called linkage.

3.3.1 Overview

Näıve algorithms for linkage repeatedly compare pairwise records, and thus take

O(n2) [22] time, where n is the number of records. Such algorithms do not

scale to large datasets. To address this issue, many linkage algorithms introduce

some form of pruning, typically based on blocking [25, 26, 27] or indexing [28, 29].
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Identifying the candidate user pairs on which the full linkage algorithm is to be run

can significantly reduce the complexity of the end-to-end algorithm. Accordingly,

ST-Link algorithm incorporates pruning strategies, which are integrated into the

spatial filtering and temporal filtering steps.

Figure 3.2 shows the pipelined processing of the ST-Link algorithm. Given two

sources of data for location-enhanced services (DS1 and DS2 in the figure), the

spatial filtering step maps users to coarse-grained geographical grid cells that we

call dominating grid cells. Such cells contain most activities of the corresponding

entities. Once this step is over, the remaining steps are independently performed

for each grid.

The temporal filtering step slides a window over the time ordered events to

build a set of candidate entity pairs. During this processing, it also prunes as

many entity pairs as possible based on alibi events. As we will detail later in

this section, a reverse window based scan is also performed to make sure that all

relevant alibis are taken into account.

Following the spatial and temporal filtering steps, the complete linkage is per-

formed over the set of candidate entity pairs. With a significantly reduced entity

pair set, the number of compared events decreases significantly as well. Given

two datasets I and E , the linkage step calculates list of all matching pairs of

entities as given in Eq. 3.13 without considering all possible entity pairs.

3.3.2 Spatial Filtering

By their nature, spatio-temporal data are distributed geographically. Spatial

filtering step takes advantage of this, by partitioning the geographical region of

the datasets into coarse-grained grid cells using quad trees [30]. Each entity is

assigned to one (an in rare cases to a few) of the grid cells, which becomes that

entity’s dominating grid. The dominating grid of an entity is the cell that contains

the most events from the entity. Entities that do not share their dominating grid

cells are not considered for linkage. The intuition behind this filtering step is
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that, if entity u from dataset E and entity v from dataset I are the same real

world entity, then they are expected to have the same dominating grid cells.

3.3.2.1 Coarse Partitioning

For quad-tree generation in the ST-Link algorithm, we continue splitting the

space until the grid cells size hits a given minimum. For our experiments, we

make sure that the area of the grid cells is at least 100 km squares. For users, the

grid cells should be big enough to cover a typical user’s mobility range around

his home and work location. If the minimum grid cell size is too small, then the

spatial filtering can incorrectly eliminate potential matches, as the dominating

grids from different datasets may end up being different. A concrete example is

a user that checks in to coffee shops and restaurants around his work location,

but uses a location-based match-making application only when he is at home.

(a) Grid cells. (b) Most popular venues.

Figure 3.3: Grids cells and top 1K venues

We also do not split grid cells that do not contain any events. As a result, not

all grid cells are the same size. Figure 3.3 shows the grid cells for two selected

areas in Turkey and the top 1K venues in those areas in terms of check-in counts,

based on Foursquare check-in data.
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3.3.2.2 Determining Dominating Grids

The determination of the dominating grid for an entity is simply done by counting

the entity’s events for different cells and picking the cell with the highest count.

A subtle issue here is about entities whose events end up being close to the border

areas of the grid cells. As a specific example, consider a user who lives in one

cell and works in another. In this case, it is quite possible that a majority of the

user’s check-ins happen in one cell and the majority of the calls in another cell.

This will result in missing some of the potential matches. To avoid this situation,

we make two adjustments:

• If an event is close to the border, then it is counted towards the sums for

the neighboring cell(s)1 as well. We use a strip around the border of the cell to

determine the notion of ‘close to the border’. The width of the strip is taken as

the 1/8th of the minimum cell’s edge width. This means that around 43% of a

grid overlaps with one or more neighboring grids. This adjustment resembles the

loose quad trees [31].

• An entity can potentially have multiple dominating grid cells. We have found

this to be rare for users in practice.

Figure 3.3b shows the resulting grids over selected areas in Turkey, and the most

popular venues from our dataset. Red pins are showing the venues and the blue

ones are showing the ones that count towards neighboring grids.

3.3.2.3 Forming Partitioned Datasets

Once the dominating grid cells of users are determined, we create grid cell specific

datasets. For a given grid cell c, we take only the events of the entities who has

c as a dominating grid cell. These events may or may not be in the grid cell

c. Determination of the dominating grid cells of entities requires a single scan

over the time sorted events from entities. The forming of the partitioned datasets

requires a second scan.

1An event can count towards at most 3 neighbors, in case it is at the corner of the grid.
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Figure 3.4: Temporal Filtering

3.3.3 Temporal Filtering

Temporal filtering aims at creating a small set of candidate user pairs on which the

full linkage algorithm can be executed. To create this set, temporal filtering looks

for user pairs that have co-occurring events, as expressed by Eq. 3.3. Importantly,

temporal filtering also detects alibi events, based on Eq. 3.5, and prevents user

pairs that have such alibi events from taking part in the candidate pair set.

Temporal filtering is based on two main ideas. First, a temporal window is

slided over the events from two different datasets to detect user pairs with co-

occurring events. Since co-occurring events must appear within a given time

duration, the window approach captures all co-occurring events. Second, as the

window slides, alibi events are tracked to prune the candidate user pair set. How-

ever, since the number of alibis is potentially very large, alibis are only tracked

for the user pairs that are currently in the candidate set. This means that some

relevant alibis can be missed if the user pair was added into the candidate set

after an alibi event occurred. To process such alibis properly, a reverse window

scan is performed, during which no new candidate pairs are added, but only alibis

are processed. Algorithm 1 gives the pseudo-code of temporal filtering.
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3.3.3.1 Data Structures

A window of size α (see Eq. 3.2) is slided jointly over both time sorted datasets.

Figure 3.4 depicts this visually. Each time the window slides, some events from

both datasets may enter and exit the window. We utilize two types of data

structures to index the events that are currently in the window. The first type

of index we keep is called the user index, denoted by UIx, where x ∈ {I, E}. In

other words, we keep separate user indexes for the two datasets. UIx is a hash

map indexed by the user. UIx[u] keeps all the events (from dataset x) of user u

in the window. As we will see, this index is useful for quickly checking alibis.

The second type of index we keep is called the spatial index, denoted by LSx,

where x ∈ {I, E}. Again, we keep separate indexes for the two datasets. LSx

could be any spatial data structure like R-trees. LSx.query(r) gives all events

whose region intersect with region r. As we will see, this index is useful for quickly

locating co-occurring events.

In addition to these indexes, we maintain a global candidate set CS and a

global alibi set AS. For a user u (from either dataset, assuming user ids are

unique), CS[u] keeps the current set of candidate pair users for u; and AS[u]

keeps the current known alibis users for u. It is important to note that AS is not

designed to be exhaustive. For a user u, AS[u] only keeps alibi users that have

co-occurring events with u in the dataset.

3.3.3.2 Processing Window Events

The algorithm operates by reacting to events being inserted and removed from

the window as the window slides over the dataset. As a result, an outermost

while loop that advances the window until the entire dataset is processed. At

each iteration, we get a list of events inserted (N+
I and N+

E ) and removed (N−I

and N−E ) from the window. We first process the removed events, which consists of

removing them from the spatial and user indexes. We then process the inserted

events. We first process N+
I against UIE and LSE , then insert the events in N+

I
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Figure 3.5: Calculation of the candidate set.

into UII and LSI , then process N+
E against UII and LSI , and finally insert the

events in N+
E into UIE and LSE . This ensures that all the events are compared,

and no repeated comparisons are made. Figure 3.5 depicts the order of events

visually.

To compare a new event i from dataset x against the events from dataset

x̄ that are already indexed in the window (where {x, x̄} = {E , I}), we use the

indexes UIx̄ and LSx̄. First, we find events that co-occur with i by considering

events e in LSx̄.query(i.r). These are events whose regions intersect with that of

i. If the user of such an event e is not already a known alibi of the user of i (not

in AS[i.u]) and if the co-occurrence condition C(i, e) is satisfied, then the user

e.u and user i.u are added as candidate pairs of each other. Second, and after all

the co-occurrences are processed, we consider all candidate users of the event i’s

user, that is CS[i.u], for alibi processing. For each user u in this set, we check if

any of its events result in an alibi. To do this, we iterate over user u’s events with

the help of the index UIx̄. In particular, for each event e in UIx̄[u], we check if

i and e are alibis, using the condition A(i, e). If they are alibis, then we remove

u and i’s user (i.u) from each other’s candidate sets, and add them to their alibi
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sets.

This completes the description of the forward scan of the window. An impor-

tant point to note is that, during the forward window scan, we only check alibis

for user pairs that are in the set of candidate pairs. It is possible that there exists

an alibi event pair for users x and y, that appears before the first co-occurring

event pair for these users. In such a case, during the processing of the alibi events

we won’t have this pair of users in our candidate set and thus their alibi will be

missed. To fix this problem, we perform a reverse scan. During the reverse scan,

we only process alibis, as no new candidate pairs can appear. Furthermore, we

need to process alibi events for a user pair only if the events happened before the

time this pair was added into the candidate set. For brevity, we do not show this

detail in Algorithm 1. At the end of the reverse scan, the set CS contains our

final candidate user pairs, which are sent to the linkage step. Temporal filtering

is highly effective in reducing the number of pairs for which complete linkage

procedure is executed. The experimental results show the effectiveness of this

filtering.

When there is inaccurate information in the datasets, disregarding candidate

pairs due to only a single alibi event might lead to false negatives. However, the

algorithm is easily modifiable to use a threshold for alibi values. In this modified

version, we update the structure of the alibi set AS to keep the number of alibi

events of a pair as well. Now AS[u] keeps the current known alibi users of user

u with alibi event counts for each. Just like in the original algorithm, when two

events i and e are compared we first check if the number of alibi events of users i.u

and e.u exceeds the threshold. To avoid double counting, we reset the counters

before the reverse scan. Since all alibi events of current candidate pairs will be

counted in reverse scan, candidates whose count of alibi events exceed threshold

will not be included in the resulting candidate set CS.

So far we have operated on time sorted event data and our algorithms used

only sequential I/O. However, during the linkage step, when we finally decide

whether a candidate user pair can be linked, we will need the time sorted events

of the users at hand. For that purpose, during the forward scan, we also create
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a disk-based index sorted by the user id and event time. This index enables us

to quickly iterate over the events of a given user in timestamp order, which is an

operation used by the linkage step. For this purpose, we use LevelDB [32] as an

index, which is a log-structured merge-tree supporting fast insertions.

While writing the event to the disk-based index, we also include information

about the number of unique users the event has matched throughout its stay

in the forward scan window. This information is used as part of the weight

calculation (recall Eq. 3.9) in the linkage step.

3.3.3.3 Handling Time Period in Events

The temporal filtering step scans time-ordered events by sliding a window of size

α over them. This operation assumes that the time information is a point in

time. Yet, there could be scenarios where the time information is a period (e.g.,

a start time and a duration). However, frequently, these records contain only

start location of the event. For example, although Call Detail Records (CDR)

have the start time of the call and the duration, they usually contain only the

originating cell tower information. Considering mobility of the users, assuming a

fixed location during this period would lead to location ambiguity.

If we have events with time periods and accurate location information is present

during this period, we can adapt our approach to handle this. In particular, we

need to avoid false negative candidate pairs when the event contains a time period.

Since events are processed via windowing, making sure that the event with the

time period information stays in the window as long as its time period is valid

would guarantee that all co-occurrences will be processed. This requires creating

multiple events out of the original event, with time information converted into a

point in time and the correct location information attached to it. The number of

such events is bounded by the time duration divided by the window size, α.
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3.3.4 Linkage

The last step of the ST-Link algorithm is the linkage of the entities that are

determined as possible pairs as a result of spatial and temporal filtering. This

linkage is a realization of the k-l diversity based linkage model introduced in

Section 3.1. Given two entities from two datasets, the linkage step uses the

events of them to determine whether they can be linked according to Eq. 3.12.

Thanks to efficient filtering steps applied on the data beforehand, the number of

entity pairs for which this linkage computation is to be performed is significantly

reduced.

For each entity pair, their events are retrieved from the disk-based index cre-

ated as part of the forward scan during the temporal filtering. These events are

compared for detecting co-occurring events. Co-occurring events are used to com-

pute the k value, via simple accumulation of the co-occurrence weights. They are

also used to accumulate weights for the places where co-occurring events occur.

This helps us compute the l value, that is diversity. After all events of a pair

of entities are compared, we check if they satisfy the k-l diversity requirement.

Note that, it is not possible to see an alibi pair event at this step, as they are

eliminated by the temporal filtering step.

There are a number of challenges in applying the k-l-diversity based linkage.

The first is to minimize the number of queries made to the disk-based index to

decrease the I/O cost. Events from the same entity are stored in a timestamped

order within the index, which makes this access more efficient. Also, if one of

the datasets is more sparse than the other, then the linkage can be performed by

iterating over the entities of the dense datasets first, making sure their events are

loaded only once. This is akin to the classical join ordering heuristic in databases.

Another challenge is the definition of the place ids to keep track of diversity.

A place id might be a venue id for a Foursquare dataset, store id for credit card

payment records, cell tower id for Call Detail Records, or a geographic location

represented as latitude and longitude. An important difference is the area of

coverage for these places. Consider two datasets of Foursquare check-ins and
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Call Detail Records, and places based on venues. If a user visits several nearby

coffee shops and makes check-ins and calls, these will be considered as diverse

even though they are not geographically diverse. The use of cell tower coverage

areas is a more practical choice for determining places.

The last challenge is about matching events. Recall from Figure 3.1 that events

of two entities can be matched in multiple different ways, resulting in different

weights for the co-occurrences. Ideally, we want to maximize the overall total

weight of the matching, however this would be quite costly to compute, as the

problem is a variation of the bipartite graph assignment problem. As a result,

we use a greedy heuristic. We process events in a timestamped order and match

them to the co-occurring event from the other entity that provides the highest

weight. Once a match is made, event pairs are removed from the dataset so that

they are not re-used.

Different k-l value pairs may perform significantly different in terms of preci-

sion and recall, depending on the frequencies of the events in the datasets. An

ad-hoc approach is to decide the k and l values based on observation of results

from multiple experimental runs. A more robust technique we used is to detect

the best trade-off point (a.k.a elbow point) on a curve. Given the co-occurrence

and diversity distributions, we independently detect the elbow point of each, and

set the k and l values accordingly. Although there is no unambiguous solution

for detecting an elbow point, the maximum absolute second derivative is an ap-

proximation. Let A be an array of co-occurrence (or diversity) values with size

n. Second derivative, SD, of point at index i can be approximated with a central

difference as follows:

SD[i] = A[i+ 1] + A[i− 1]− 2 ∗ A[i] (3.14)

The value at index A[i], such that i has the maximum absolute SD[i] value, is

selected as the elbow point and k (or l) value is set accordingly.

Elbow detection technique is a simple yet effective technique to automate de-

cision of k and l values. In our experiments, we were able to detect values that
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give the best precision and recall, in multiple datasets, even when the frequencies

of datasets differ dramatically.
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Algorithm 1: Candidate Set Calculation

Data: SRI , SRE : Time sorted datasets of events
Result: CS: A set of candidate user pairs
CS ← ∅ ; // Candidates, CS[u] is the list of pair users of u
AS ← ∅ ; // Alibis, AS[u] is the list of alibi users of u
UIx ← ∅, x ∈ {I, E} ; // User index over window

// UIx[u]: events from x in window belonging to user u
LSx ← ∅, x ∈ {I, E} ; // Spatial index over window

// LSx.query(e.r): events from x in window intersecting event e
W ← window(SRI , SRE , α) ; // Window over the datasets

// Forward scan phase

while W.hasNext() do // While more events after window

// Get events inserted into and removed from the window

(N+
I , N

+
E , N

−
I , N

−
E )← W.next()

for x ∈ {I, E} do // In both directions

for i ∈ N−x do // For each removed event

LSx.remove(i.r, i) ; // Remove from spatial index

UIx[i.u]← UIx[i.u] \ i ; // Remove from user index

for (x, x̄) ∈ {(I, E), (E , I)} do // In both directions

for i ∈ N+
x do // For each inserted event

// Query spatially close elements

for e ∈ LSx̄.query(i.r) do
if e.u 6∈ AS[i.u] then // If users are not alibi

if C(i, e) then // If events co-occur

// Add to the candidate set

CS[i.u]← CS[i.u] ∪ {e.u}
CS[e.u]← CS[e.u] ∪ {i.u}

for u ∈ CS[i.u] do // For each candidate user

// For each event of the user in the window

for e ∈ UIx̄[u] do
if A(i, e) then // If i and e is an alibi

// Add to the alibi set

AS[i.u]← AS[i.u] ∪ {u}
AS[u]← AS[u] ∪ {i.u}
// Remove from the candidate set

CS[i.u]← CS[i.u] \ {u}
CS[u]← CS[u] \ {i.u}

LSx.insert(i.r, i) ; // Add to spatial index

UIx[i.u]← UIx[i.u] ∪ {i} ; // Add to user index
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// Reverse scan phase

W ← reverse window(SRI , SRE , α) ; // Reverse sliding window

while W.hasNext() do // While more events after window

(N+
I , N

+
E , N

−
I , N

−
E )← W.next()

for x ∈ {I, E} do // In both directions

for i ∈ N−x do // For each removed event

UIx[i.u]← UIx[i.u] \ i ; // Remove from user index

for (x, x̄) ∈ {(I, E), (E , I)} do // In both directions

for i ∈ N+
x do // For each inserted event

for u ∈ CS[i.u] do // For each candidate user

if A(i, e) then // If i and e is an alibi

// Add to the alibi set

AS[i.u]← AS[i.u] ∪ {u}
AS[u]← AS[u] ∪ {i.u}
// Remove from the candidate set

CS[i.u]← CS[i.u] \ {u}
CS[u]← CS[u] \ {i.u}

UIx[i.u]← UIx[i.u] ∪ {i} ; // Add to user index

return CS ; // Return the candidate set
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Chapter 4

Similarity Based Linkage

In this chapter, we present our similarity based linkage approach for mobility

datasets. We first give the definition of mobility histories followed by a high level

solution overview. We then define the similarity score computation of mobility

histories and how to detect similarity score threshold to stop the linkage auto-

matically. Based on the definition of similarity of mobility histories, we introduce

how to employ locality sensitive hashing to reduce the number of pairs of mobility

histories to compute. We conclude this chapter with an illustrative example and

running time analysis of the linkage process.

4.1 Mobility Histories

We organize the records in a location dataset into mobility histories. Given

an entity in a location dataset, its mobility history consists of an aggregated

collection of its records from the dataset. Due to the aggregation, the mobility

history of an entity is not as low-level as a trajectory, but instead more sparse in

both the temporal and the spatial domains.

The location and time information contained in the records from the two loca-

tion datasets can naturally be at different levels of granularity. Depending on the
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use case, different applications might require different levels of granularity as well.

Consider a navigation service requiring much higher location granularity than a

facility recommendation application. Therefore, representation of the mobility

history should be generic enough to capture the differences in spatio-temporal

heterogeneity of the datasets to be linked. To address this need, we propose a

hierarchical representation for mobility histories, as illustrated in Fig. 4.1. This

representation distributes the records over time-location bins.

In the temporal domain, the data is split into time windows which are hierar-

chically organized as a tree to enable efficient computation of aggregate statistics.

The leaves of this tree hold a set of spatial cell ids. A cell id is present at a leaf

node if the entity has at least one record whose spatial location is in that cell and

the record timestamp is in the temporal range of the window. Each non-leaf node

keeps the occurrence counts of the cell ids in its sub-tree. The space complexity

of this tree is similar to a segment tree, O(|E|+ |I|). As we will detail in Sec. 4.4,

the information kept in the non-leaf nodes is used for scalable linkage. This extra

storage could be avoided with the cost of a linear scan of data when scaling the

linkage. The cells are part of spatial partitioning of locations. For this, we use

S21, which divides the Earth’s surface into 31 levels of hierarchical cells, where,

at the smallest granularity, the leaf cells cover 1cm2.

We deliberately form the mobility history tree via hierarchical temporal par-

titioning, and not via hierarchical spatial partitioning. This is because spatial

partitioning is not effective in detecting negative linkage (alibi [21]). Recall,

given two locations in the same temporal window, if it is not possible for an

entity to move from one of these locations to the other within the width of the

window, then these two records are considered as a negative link, i.e., alibi. To

calculate the similarity score of an entity pair, we compare their records to those

that are in close temporal proximity. Record pairs that are close in both time

and space are awarded, whereas record pairs that are close in time but distant in

space are penalized. Hence, we favor fast retrieval of records based on temporal

information over based on spatial information.

1http://s2geometry.io/

33

http://s2geometry.io/


[ , )t0 t1 ...

...
[ , )t0 t2

[ , )tn−2 tn[ , )t2 t4

[ , )t1 t2 [ , )t2 t3 [ , )tn−2 tn−1 [ , )tn−1 tn

...

...

[ , )t0 tn/2 [ , )tn/2 tn

[ , ]t0 tn

[ , )t3 t4

Legend

Set of Grid
Cell Ids

Cellid to
Count

Mapping

Figure 4.1: Mobility history representation

Both the temporal window size used for the leaf nodes and the S2 level (spatial

granularity) used for the cells are configurable. As detailed later, we auto-tune the

spatial granularity for a given temporal window size using the trade-off between

accuracy and performance of the linkage.

Figure 4.1 shows an example mobility history of an entity. Each leaf keeps a set

of locations, represented with cell ids. Each non-leaf node keeps the information

on how many times a cell id has occurred at the leaf level in its sub-tree.

4.2 Overview of the Linkage Process

The linkage is performed in three steps. First, a Locality-Sensitive Hashing (LSH)

based filtering step reduces the number of entity pairs that needs to be considered

for linkage. It is an optional step that significantly improves scalability, yet has
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minimal adverse effects on the precision and recall of the linkage.

The second step involves computing the pairwise similarity scores of entities

from the two datasets. The similarity scores are computed based on a formula

that determines how similar the mobility histories are. The computed similarities

are used as weights to construct a bipartite graph of the entities from the two

datasets.

The final step is to apply a maximum sum bipartite matching, where the

matched entities are considered as linked.

4.2.1 Mobility History Similarity

The similarity score we use for comparing the mobility histories is inspired by the

information retrieval literature, but has unique aspects taking advantage of the

spatio-temporal nature of our domain.

In document matching, term weighting, cosine similarity, and tf-idf, as well as

ranking techniques from the search domain, BM25 in particular, are adapted for

inter-document similarity scores [33]. Inspired by these, we study the matching

of mobility histories with an analogy by treating the lowest level of the mobility

histories as documents where the spatial cell / time window pairs correspond to

terms. We refer to these pairs as time-location bins. Two location-based services

are typically not synchronously used and thus time-location bins that are spatially

close should contribute positively towards the similarity score. Therefore, we first

define a proximity function to evaluate closeness of cells within the same time

window. This proximity is a decreasing function of the geographical distance

between the locations of the cells. The outcome becomes negative when it is not

possible for an entity to move from one of these locations to the other within the

width of the time window. These cell pairs are alibis [21] — a concept unique to

our domain.

The final step of calculating the similarity score of two mobility histories is to
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sum the aforementioned proximities for all temporal windows. During this sum,

similar to document similarity scores, we award the uniqueness of the matching

time-location bins using an inverse time-location bin frequency term. Further-

more, the scores are inversely proportional with the ratio of the length of a mo-

bility history to the average length of all histories from the same service. Finally,

when calculating proximities, a cell is used only once. Thus, a matching algo-

rithm is used to pair the cells from the same time window across two datasets. In

particular, this algorithm takes two sets of cells and constructs a set of mutually

nearest neighbor cell pairs. Once a cell is used to construct a pair, it is not used

for further mutually nearest neighbor calculations to make sure that every cell is

used exactly once.

4.2.2 Bipartite Matching

After the similarity scores are calculated, we construct a weighted bipartite graph

and perform maximum sum bipartite matching where two ends of the selected

edges are considered as matches. Once the matches are found, they are output

as linkage only if their scores are above a threshold. We call this threshold the

linkage stop similarity threshold. Based on our observation from test datasets,

the score distribution often follows a binary Gaussian mixture distribution. As

such, we decide on this cut point by matching a Gaussian Mixture Model (GMM)

on the scores and finding the point that maximizes the F1-Score, assuming that

the two Gaussians represent the false and true linkages, respectively.

4.2.3 Reducing the Number of Pairs

Considering that the mobile services have millions of entities interacting with

them everyday, processing hundreds of days of data for matching would take

impractically long time. In order to match entities in a reasonable time, we

present a locality-sensitive hashing (LSH) based mechanism for mobility histories,

which only calculates the similarity score of the mobility history pairs that fall
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into the same hash bucket. The similarity score we use for the LSH is not the

same score we have outlined for mobility histories, but is a simpler, cruder score

that lends itself to LSH. As such, the LSH step slightly reduces the recall, but

brings several orders of magnitude speedup in linkage.

4.3 Mobility History Linkage

In this section we describe the computation of similarity scores of mobility history

pairs and the maximum weight bipartite matching for linkage. Since the set of

entities present in the two location datasets are not necessarily identical and the

amount of intersection between them is not known in advance, we also discuss

how to find an appropriate score threshold to limit the number of entities linked.

4.3.1 Mobility History Similarity Score

The similarity score of a pair of mobility histories should capture closeness in

time and location. This score should not require a consistent matching of time-

location bins across two histories. This is because the mobility histories are not

synchronous, i.e., a record is not necessarily present for the same timestamp

in both of the datasets. Therefore, the similarity score needs to aggregate the

proximities of the time-location bins, different from the traditional techniques

where similarity measures are defined over records, like Minkowski distance or

Jaccard similarity. We define a number of desired properties for the similarity

score:

1) Award the matching of close time-location bins. While the similarity score

contribution of exactly matching time-location bins is obvious, one should also

consider bins that are from the same temporal window but are from different yet

spatially close cells. Such time-location bins are deemed close and they should

contribute to the similarity score relative to their closeness.
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2) Tolerate temporal asynchrony, that is, do not penalize the similarity when

one entity has records in a particular time window but the another does not.

This case is common when the location datasets are obtained from asynchronous

services. While spatio-temporally close usage should contribute to the similarity,

lack of it for a particular time window should not penalize the score.

3) Penalize the matching of alibi time-location bins. Time-location bins that

are from the same time window but whose cells are so distant in space that it is

not possible for an entity to move between these cells within the time window are

considered as alibi bins. They should be considered as counter evidence in terms

of linking the entities and penalized in the similarity score.

4) Award infrequent cells in matching time-location bins. While summing up

the proximities of the matched time-location bins, the uniqueness of the cells

should be awarded as they are stronger indicators of similarity than cells that are

seen frequently.

5) Normalize the similarity score contributions based on the size of the mobility

histories in terms of the number of time-location bins. If not handled properly,

the skew in the number of time-location bins would result in the mobility histories

with too many bins to dominate the similarity scores over the shorter ones.

In what follows, we first define the proximity of time-location bins and then

present our algorithm for aggregating these to compute the final score.

4.3.1.1 Proximity of Time-Location Bins

One of the desired properties of the time-location bin proximity was tolerating

temporal asynchrony. Therefore, we consider only the temporally close time-

location bins in our proximity computation.

If two time-location bins are associated with the same temporal window, one

could say that they are temporally close. Let T be a binary function that takes

the value of 1 if the two given time-location bins satisfy this property and 0
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otherwise. Let e = {w, c} and i = {w, c} be two time-location bins where e.w

and i.w are two temporal windows and e.c and i.c are two spatial grid cells. We

define T formally as T (e, i) = [e.w = i.w].

We define the spatial proximity of a pair of time-location bins as an inverse

function of the geographical distance of their locations. However, we use an upper

bound on the geographical distance to capture the concept of alibis. This upper

bound, referred to as the runaway distance, is defined as the maximum distance

an entity can travel within the given temporal window. It is represented as R and

calculated by multiplying the width of the temporal window with the maximum

speed, α, at which an entity can travel. Let w be a temporal window and |w| be

the width of it, then R = |w| · α. We define the proximity function P formally

as follows:

P(e, i) = T (e, i) · log2 (2−min(d(e.c, i.c)/R, 2)) (4.1)

where d is a function that calculates the minimum geographical distance between

two grid cells.

When a given pair of time-location bins are not from the same temporal win-

dow, the outcome of this function becomes 0. When they are from the same

temporal window and the same spatial grid cell, the outcome becomes 1 — the

highest value it can take. As the distance increases up to the runaway R, the

value goes down to 0 with an increasing slope. If the distance is more than R,

the outcome becomes negative, reaching −∞ as the distance reaches two times

the runaway distance. This is a simple yet effective technique to capture the alibi

record pairs. In a real-world setting, the data might have inaccurate information

regarding the location of an entity. Therefore, while the decrease to negative

values is steep, it is still a continuous function that allows a small number of alibi

record pairs whose distance from each other is slightly larger than the runaway

distance.

The proximity function P is designed so that our similarity score satisfies the

first three of the required properties we have outlined earlier, namely: awarding

the matching of close time-location bins, tolerating temporal asynchrony, and

penalizing the alibis.
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4.3.1.2 Aggregation of Proximities

The similarity score computation is performed over the time-location bins at the

leaves of the mobility histories. For entity u ∈ UE (and v ∈ UI), we represent

the set of time-locations bins as Hu (and Hv), where e ∈ Hu = {c, w} (and

i ∈ Hv = {c, w}) represents a time-location bin with the time window w and the

grid cell c. Recall that in a mobility history, a set of grid cells are kept for each

time window. These are the grid cells that contain at least one record for the

entity, during the given time window.

Given a pair of mobility histories, the computation starts with constructing

pairs of time-location bins whose proximity will be computed and included in the

aggregation. At one extreme, one could perform a Cartesian product over the

mobility histories and include all resulting pairs in the aggregation. However,

this would be over-counting, as a time-location bin will end up participating in

multiple pairs. At another extreme, one could use pairs that have the exact same

time-location bins. Obviously, this would violate the first desired property by

ignoring the close ones. Therefore, we first introduce a pairing function N (u, v),

which computes the set of time-location bin pairs to be included in the aggregation

for a pair (u, v) of mobility histories.

We restrict ourselves to time-location bin pairs from corresponding time win-

dows, as this guarantees that the pairs satisfy the temporal proximity, T . As

such, we have N (u, v) =
⋃

wNw(u, v). Given a time window w, we compute

Nw(u, v) by first selecting the time-location bin pair (e, i) with e.w = i.w = w

that has the smallest geographical distance d(e.c, i.c). This pair also satisfies the

property that the time-location bins are mutually nearest neighbors. Once this

pair is added into Nw(u, v), pairs containing any one of the selected time-location

bins, that is e or i, are removed from the remaining set of candidate pairs. The

addition of the mutually nearest neighbor pair into Nw(u, v) and the filtering of

the candidate pairs continue iteratively until there are no time-location bins left

in the smaller mobility history.

Once the set of time-location bin pairs to include in the aggregation are found,
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we define the similarity score function of two mobility histories for the entities

u ∈ UE and v ∈ UI , as follows:

S(u, v) =
∑

{e,i}∈N (u,v)

P(e, i) min (idf(e,E),idf(i,I))
L(u,E)L(v,I)

where: L(u, E) = (1− b) + b |Hu|∑
u′∈UE

|Hu′ |/|UE |
(4.2)

The similarity function, S, has three main components. The first component is

the proximity P , as defined in Eq. 4.1. For the time-location bin pairs identified

by the pairing function N , we sum up the proximities. The other two compo-

nents deal with the scaling of the proximity value, in order to i) normalize the

differences in the mobility history sizes in terms of the bin counts, and ii) award

infrequent cells in the matching. These two properties implement the last two

desired properties from Sec. 4.3.1.

When one of the histories has more time-location bins, compared to the average

size of other histories from the same location dataset, it is more likely for it to have

matching records. This would cause the histories with the most number of bins

being highly similar with all other histories from the opposite dataset. Therefore,

we introduce a normalization function L, for both histories, which makes the

contribution of each bin pair to the similarity score inversely proportional with

the relative sizes of the histories. The relative size of a mobility history is defined

as the ratio of the number of time-location bins it contains over the average

number of time-location bins from the same dataset.

In order to tune the impact of the mobility history size in terms of time-location

bins, we add a parameter b, which takes a value between 0 and 1. At one extreme,

b = 0, the denominator becomes 1, i.e., the history lengths are ignored. At the

other end, b = 1, the denominator becomes the product of the relative history

sizes. We have borrowed this technique from BM25 [34] — a ranking function

used in document retrieval, which uses this technique to avoid bias towards long

documents.

The final component of the similarity score function is the idf multiplier. This
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component is analogous to inverse document frequency from the document clus-

tering domain. The idea behind it is to award uniqueness of a pair of time-location

bins. If an entity is in an infrequent time-location bin, i.e., the number of other en-

tities from the same dataset in the same time-location bin is low, the contribution

of this bin to the similarity score should be higher. Likewise, if a time-location

bin is highly common among entities of one dataset, the contribution should be

lower. As the frequency of time-location bins might differ across datasets, we

take the idf score that makes the lowest contribution. idf of a time-location bin

equals to the logarithm of the ratio of the number of mobility histories to the

number of mobility histories that contain the given time location bin. Formally,

given a time location bin, e ∈ Hu, for the entity u ∈ UE , we calculate idf(e, E) as

follows:

idf(e, E) = log (|UE |/|{u ∈ UE | e ∈ Hu}|) (4.3)

4.3.2 Mobility History Linkage via SLIM

To effectively realize the linkage of mobility histories using our similarity score, we

have designed the SLIM algorithm, which is shown in Algorithm 2. SLIM starts

by creating the mobility histories from the two given location datasets. It then

finds the mutually nearest neighbour pairs for each corresponding time window.

The similarity score is computed by aggregating the weighted proximities for

these pairs, as it was outlined in Eq. 4.2.

The SLIM algorithm takes an additional step at increasing the effectiveness

of alibi detection. In a given time window, while the distance between mutually

nearest pairs may not be greater than the runaway distance, it might be possible

for the mutually furthest pairs to have this property. To capture alibi time-

location pairs better, we also compute the set of mutually furthest pairs, and

add their proximity to similarity score as well, if an alibi is detected. The FN

(mutually furthest neighbor) function in the algorithm acts similar to the MN

(mutually nearest neighbor) function, but it chooses the pairs with the furthest

2We overload the notation such that S takes the bin pairs as input.
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Algorithm 2: SLIM: Scalable Linkage of Mobility Histories

Data: E , I: Location datasets to be linked
Result: L: Linked pairs of entities
HE ← CreateHistories(E) ; // Histories from first dataset

HI ← CreateHistories(I) ; // Histories from second dataset

E ← {} ; // Initialize edges

V ← {} ; // Initialize vertices

for Hu ∈ HE do // For each history in first history set

WHu ← Hu.getAllWindows() ; // Get all windows of Hu

for Hv ∈ LSHFilterPairs(u) do // For a candidate history

S ← 0 ; // Initialize similarity score

WHv ← Hv.getAllWindows() ; // Get all windows of Hv

for w ∈ WHu ∩WHv do // For a common window

N ←MN(u, v;w) ; // Mutually nearest pairs

S ← S + S(N ) ; // Update similarity (see Eq. 4.22)

N ′ ← FN(u, v;w) ; // Mutually furthest pairs

for (e, i) ∈ N ′ do // For each mutually furthest pair

D ← S({(e, i)}) ; // Delta similarity

if D < 0 then // If an alibi is detected

S ← S +D ; // Update similarity

if S > 0 then // If score is positive

V ← V ∪ {u, v} ; // Add to vertex set

E ← E ∪ {(u, v;S)} ; // Add to weighted edge set

L ← LinkPairs(G(E, V )) ; // Find linked entities

return L ; // Return linked entity pairs

distance, instead of the closest. To avoid double counting, we only consider these

pairs if they are alibis.

Once the similarity scores are computed for the mobility history pairs, they

are used to construct a weighted bipartite graph. If the score is negative, no

edges are added to the graph. Next, we describe how to perform maximum sum

bipartite matching and decide a stop point for the linkage.
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4.3.3 Maximum Weighted Bipartite Matching

The SLIM algorithm computes a weighted bipartite graph G(E, V ), where V =

UE ∩ UI and E is the set of edges between them. This bipartite graph is used to

find a maximum weighted matching where the two ends of the selected edges are

considered linked. To avoid ambiguity in the results, the selected edges should

not share a vertex. Since the matching is performed on a bipartite graph, there

is no edge between two entities from the same dataset.

This matching problem is one of the fundamental combinatorial optimization

problems known as assignment problem. There are many solutions to this prob-

lem, one of which is the Hungarian Algorithm [35]. This algorithm provides an

optimal solution in polynomial time, with a worst-case complexity ofO(n3), where

n = max(|UE |, |UI |). There are also many approximation algorithms available in

the literature [36]. In this work, instead of putting our effort on a new matching

algorithm, we use a simple greedy heuristic, which links the pair with the highest

similarity at each step. We focus on the problem of finding a stopping condition

for the linkage as part of the bipartite matching process. This is because our ex-

perimentation has shown that the stopping condition has a pronounced impact on

precision and recall, yet the use of a heuristic vs. exact solution for the bipartite

matching does not make a noticeable impact on accuracy.

Maximum weighted matching algorithms, including the Hungarian algorithm,

are designed to find a full matching. In other words, all entities from the smaller

set of entities will be linked to an entity from the larger set. However, in a real-

world setting for linking mobility histories, it is unlikely to have the entities from

one dataset to be a subset of the other. Frequently, it is not even possible to know

the intersection amount in advance. This is an important but so far an overseen

issue in the related literature [14, 19]. Therefore, we implement a mechanism to

decide an appropriate threshold score to stop the linkage, to avoid false positive

links when the sets of entities from two location datasets are not identical.

After performing a full matching over the bipartite graph, there are two sets of

selected edges. The first set is the true positive links, which contains the selected
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edges whose entities at the two ends refer to the same entity in real life. The

second set is the false positive links, which contains the rest of the selected edges.

The purpose of defining a score threshold for stopping the linkage is increasing

the precision, by ruling out some of the selected edges from the result set. Ideally,

this should be done without harming the recall, by extracting edges only from

the false positive set. However, this is a challenging task when ground truth or

training data does not exist.

A good similarity score should allow to group true positive links and false pos-

itive links in two clusters. Moreover, these two clusters should be distinguishable

from each other. With the assumption that our similarity score satisfies these

properties, to determine the stop threshold, we first fit a 1-dimensional Gaussian

Mixture Model (GMM) with two components over the distribution of the selected

edge weights [37]. We assume that the two components have independent Gaus-

sian distribution of weights and the component with the larger mean models the

true positive links (the other modelling the false positive links). Let us call the

component with the smaller mean m1 and the component with the larger mean

m2. Assume that there is already a similarity score threshold s. The cumulative

distribution functions of the components m1 and m2 are used to compute: i) the

area under the curve of m1 and to the right of y = s line, which gives the rate

of false positives, and ii) the area under the curve of m2 and and to the right

of y = s line, which gives the rate of true positives. Using these two rates, we

calculate the expected precision as shown in Eq. 2.1.

Using precision and recall, one could calculate a combined F1-score as F1(s) =

2P (s)R(s)/(P (s) + R(s)). Note that all these scores are dependent on the score

threshold s. Let c1 ad c2 denote the weights of the GMM components m1 and

m2, respectively. We have R(s) = c2(1−Fm2(s)) and P (s) = R(s)/(R(s)+c1(1−
Fm1(s))), where F represents the cumulative distribution function. Finally, we

have s∗ = argminsF1(s) as the linkage stop score threshold to use.

We only include the links whose edges are higher than the threshold in the

result. Figure 4.2 shows an example of GMM fitting on sample similarity scores.
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Figure 4.2: Sample GMM fit for similarity scores

The x-axis shows the scores and the y-axis shows the number of links in a particu-

lar score bin. The two lines show the components of the GMM. The green bars in

the histogram show the number of true positive links and the blue bars show the

number of false positive links (obtained from the ground truth and shown for il-

lustrative purposes). Vertical red line is the detected linkage stop similarity score

threshold value. For the detection of the threshold, we have also experimented

with different techniques, namely 2-means clustering and the Otsu method [38].

Our experimentation showed that the proposed GMM-based technique performs

better than these alternatives in providing a good balance of precision and recall.

4.3.4 Parameter Tuning

One subtle issue is identifying width of the temporal window, and the spatial

level of detail to use. Existing work either define them using previously labeled
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data [19] or use preset values identified via human intuition [14]. Here, we take a

step forward to automatically tune the spatial level for a given temporal window

width, in the absence of previously labeled data.

The trade-off when deciding the spatial level is between accuracy and perfor-

mance. When the spatial domain is coarsely partitioned, the record locations

become indistinguishable. At one extreme, the entire globe is a single grid cell

and all events are on the Earth. On the other hand, increasing the spatial detail,

hence creating finer grained partitions of space, increases the size of the mobility

histories. Linking larger histories takes more processing time. At another ex-

treme, similarity score computation of a pair of histories with a single window

and with maximum spatial detail leads to pairwise comparisons of all records.

On the other hand, increasing the spatial detail does not always improve the

accuracy of the linkage. Our observations based on experiments with multiple

datasets show that, after a certain level of detail, increasing the spatial detail

neither improves nor worsens the accuracy of the linkage.

To find out the best spatial grid level that balances the aforementioned trade-

off, we perform a test on distinguishing entities from the same dataset. When

the level of detail is too low, similarity scores of all pairs would be close to each

other. In this case, the similarity score of entity pairs u and v will be close to

the similarity score of u and u (self-similarity). Using higher details of spatial

information would decrease this ratio, indicating an entity is more similar to

itself than any other entity. Making use of this observation, we first select a

subset of entities from the dataset and form a set of pair of entities by crossing

them with the rest of the entities. Next, for changing spatial level of detail,

we compute the average of the aforementioned ratio (pair similarity over self-

similarity) for all pairs. Once we have the average values for each spatial detail,

we perform a best trade-off point detection algorithm (aka. elbow point detection)

as implemented in [39]. Repeating this procedure independently for two datasets

to be linked, we use the higher knee point as the spatial detail level of the linkage.

In our experimental evaluation we show that this technique is able to detect most

accurate spatial detail level that does not add overhead in the performance, for

a given temporal window.
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4.4 Locality Sensitive Hashing for Scalability

Comparing each entity pair would requireO(N ·M) similarity score computations,

where N = |UE | and M = |UI |. Considering large number of entities and even

larger collection of records being produced, Locality-Sensitive Hashing (LSH) [23]

can be utilized to focus on pairs that are likely to be similar.

LSH is based on a family of hash functions H, mapping similar items to the

same hash code with higher probability than dissimilar items. One of the most

popular of these families is min-hash [40]. An application of LSH with min-hash

for document matching works in three steps. First, each document is represented

as a set of k-shingles : set of characters (or words) of length k. The similarity

between documents is defined as the Jaccard similarity of this set of shingles.

Second, these sets are converted to short signatures using min-hashing. This

procedure is defined as follows: Pick a random permutation of the ground universe

of the shingles, and for each document append the smallest shingle rank in the

document to its signature. The length of the signature is defined by the number

of times this procedure is repeated. The probability that the min-hash function

produces the same value for two sets is equal to the Jaccard similarity of them [41].

This property guarantees that the similarity of sets is preserved in similarity of

signatures. In the final step, these signatures are hashed to a large number of

buckets multiple times using a technique known as banding. In the banding step,

signatures are divided into b bands consisting of r rows (signature size equals to

b ·r). Then, the same hash function is used to hash all bands, but for each band a

separate bucket array is kept. This prevents identical bands in different parts of

the two signatures to cause them to be hashed into the same bucket. Intuitively,

the more similar the signatures are the more likely that they have at least one

identical band [41]. If two documents are hashed to the same bucket for at least

one band, they are considered as candidate pairs and further processing is applied

to them.
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Figure 4.3: Locality-sensitive hashing of mobility histories

4.4.1 LSH for Mobility Histories

In a real-world setting, location datasets are generally asynchronous and sparse.

Under such conditions, representing the mobility histories as sets of k-shingles

of records and expecting identical bands when applying the banding technique

would be overly strict. On the other hand, for two entities to link it is expected

that most of their records are generated in the same spatial grid cell. Such cells

are known as dominating grid cells [21], which contain most event records of

the owner entity and are determined by simply counting the entity’s records for

different cells and picking the cell with the highest count. While one dominating

grid cell could be found using the entire dataset, it is also possible to specify

a start and end time to form a query, and find the dominating grid cell for a

particular time window defined by this query.

Given a mobility history, we construct a list of dominating grid cells to act

as signatures. This construction is done by querying each mobility history for

non-overlapping time windows to find the corresponding dominating grid cells,
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and adding the resulting cells to the end of the signature. We make sure that

the queries span the same time period with the data, and order of the queries

is the same across mobility histories. If a mobility history does not contain any

record for a query time window, a unique placeholder is added to the signature

to make sure signatures have the same structure. In other words, the dominating

grid cells obtained from the same index of different signatures are results of the

same query. Later, when applying hashing, these placeholders are omitted.

In summary, each mobility history is converted into a signature consisting of a

sequence of dominating grid cells. The similarity t across two signatures is defined

as the number of matching dominating grid cells, divided by the signature size.

The signature size is determined by the query window size. Query window size,

which is a parameter of our LSH procedure, is a multiple of the leaf-level window

size. The appropriate level of the mobility history tree is used to quickly locate

the dominating grid cells.

With the mobility history signatures at hand, we next apply the banding

technique, like in the case of document matching. Recall, in the banding technique

the signatures are divided into b bands consisting of r rows, and each band is

hashed to a large number of buckets. The goal here is to come up with a setting

such that signatures with similarity higher than a predefined threshold t to be

hashed to the same bucket at least once.

Given two signatures of similarity t, the probability of these signatures having

at least one identical band is 1 − (1 − tr)b. Regardless of the constants b and r,

this function has an S-Curve shape and the threshold t is the point where the

rise is the steepest. Consequently, it is possible to approximate the threshold t

as (1
b
)
1
r [41].

It is possible to calculate the number of bands, b, to reach a particular thresh-

old, t. Let s be the signature size and t be the similarity threshold for becoming a

candidate pair, the number of bands, b is calculated as follows. Given t = (1/b)1/r

and r = s/b, we have t = (1/b)b/s. Solving for b gives:

b = eW(−s ln t) (4.4)
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where W is the Lambert W function, which is the inverse of the function f(x) =

x ex [42]. The parameters to the LSH procedure for mobility histories are: i) the

similarity threshold t, ii) the query time window size for determining dominating

grid cells, and iii) the spatial level of the dominating grid cells. We explore the

setting of these parameters as part of the experimental evaluation.

Since the similarity between the signatures is Jaccard similarity and the band-

ing technique applied as it is in the LSH with MinHash [41], the probabilistic

guarantees that are provided by LSH are preserved. The only difference between

the introduced LSH and the previous application is instead of forming the sig-

natures from documents using random permutation of k-shingles we generate

them querying mobility histories multiple times. The relationship between the

similarity of mobility histories and the similarity of signatures is intuitive.

4.4.2 Illustrative Example

Given a collection of records of entities, they are first converted into mobility

histories. Leaf levels of two mobility histories for the entities u and v , are shown

in the figure 4.3 (Hu, Hv). In this representation each history consists of 12

time windows. For demonstration purposes, we assume that entities visit only

two spatial grid cells, represented with square and circle. Note that there are no

duplicate time-location bins.

While it is not shown in the figure, before performing the linkage of two

datasets we first link each dataset to itself to identify an ideal spatial level of

detail that balances the tradeoff between performance and accuracy as explained

in section 4.3.4. Since this self linkage uses the labeled data, it is possible to find

the lowest level of spatial detail that helps to better distinguish between an en-

tity’s self similarity with it’s similarity to other entities. Intuitively and as it will

be demonstrated in our experiments, after a certain level, increasing the detail

further would not effect the ratio of pair similarity over self similarity but would

harm the performance.

51



Once the spatial level of detail is identified, we next apply LSH. Given two

mobility histories, we first query the mobility histories four times for finding the

dominating grid cells. Each query has a window size of three time units and is

shown in different colors. The resulting signatures are of length 4, For the first

query (red rectangle), entity u visited the grid-cell circle 3 times and it visited the

grid cell square 2 times. Therefore, the dominating grid cell for entity u during

the first query time window is grid-cell circle. This procedure is repeated for all

queries and entities. The third index of the signature for entity v has the mark ∗
because it has no records during the third query’s time window (green rectangle).

Once the signatures are ready, we apply the banding technique using two bands.

For the first band, since the signatures are identical, the entities are hashed to

the same bucket. In this example setting, the threshold for becoming a candidate

pair is t = 0.5
1
2 ≈ 0.7 and the similarity of signatures is 0.75.

Since the entities u and v are candidate pairs, in the next step we compute

the similarity score of this pair. In the first time window, upper most cell, entity

u has visited two distinct grid cells, circle and square, and entity v visited circle

grid cell only. The pairing function N will take these two sets of locations and

will compute the set of record pairs to be included in the aggregation. In this ex-

ample this function will pair circles, as the distance between them are minimum

(i.e. mutually nearest neighbours). The contribution of this pair to the similarity

score will be computed according to equation 4.2 that takes proximity of the grid

cells, their popularity and length of mobility histories into account. Lastly, the

algorithm would check if there is an alibi pair of events in the given set. This

time, we use N ′ as the pairing function and it will pair square and circle grid cells

as they are mutually furthest neighbours of these two sets of records. Depending

on the geographical proximity of these two cells, this pair might have a negative

contribution to the aggregation (alibi). This procedure will be repeated indepen-

dently for each temporal window and computed scores for each time window will

be summed. Once the computation is finished the resulting score is be used to

set weight of the edge between entities u and v in the final bipartite graph.

Last step of our algorithm is to perform the maximum weighted bipartite

matching and assume select edges as our links. Once these edges are identified,
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to avoid false positive pairs, we fit a 1-dimensional GMM with two components

over the weights of these edges and determine the stop threshold. We report

only the edges that has higher weight than this determined stop threshold. In

our experimental setting, LSH brings two to four orders of magnitude speedup to

linkage with a slight reduction in the recall. To the best of our knowledge, this

is the first locality-sensitive hashing based approach for mobility history linkage.

Moreover, similarity score definition and stop threshold determination algorithms

are proven to be accurate as they reach more than 0.9 F1−score in all settings.

Complexity Analysis. The generation of mobility histories takes O(N + M)

time. where N = |UE | and M = |UI |. Since we form the mobility histories in the

form of a tree, cost of generation of the LSH signatures is reduced to linear time

with signature size instead of linear time number of records. The banding step of

the LSH has the worst case time complexity of O(N +M). This is the case when

each record itself is an entry in the signature. After LSH is completed, the linkage

takes O(N ·M) time if all records are in the same temporal window and from

distinct spatial cells and LSH cannot reduce any entity pairs. In the last step,

we use a simple greedy heuristic that sorts |UE | · |UI | links by their weights and

has O(|UE | · |UI | · log|UE |·|UI |) time complexity. While the worst-case complexity

of linkage is quadratic, our experimental evaluation shows that running time of

SLIM algorithm is linear with the data size.
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Chapter 5

Beyond Linkage: Extensions

In this section, we extend our solutions to handle spatial uncertainties and dy-

namic changes in data. Moreover, we discuss how to perform linkage when there

are more than two datasets to merge.

5.1 Handling Spatial Uncertainties

In a real world setting, the location information contained in records might be in

the form of a region, or uncertain. This might be a result of imperfect data col-

lection or data including a reference to a region instead of entity’s exact location.

For the proposed rule based approach the location information contained in

records are in the form of regions by default. Yet, it can handle the point locations

by looking at the distance between two points being below a maximum distance

threshold, instead of looking for region intersection. On the other hand, for the

similarity based approach, if a record includes a reference to a region instead of a

point, it could be copied to multiple time-location bins of the mobility history, as

such the union of locations of these bins covers at least the record region. At one

extreme, using too many of too small grid cells, one could cover the exact region

but would create many time-location bins. The storage overhead caused by this
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Figure 5.1: Handling Spatial Uncertainty

copying could be reduced by decreasing spatial level of detail of grid cells, with a

sacrifice on location accuracy. At another extreme, all regions are on the Earth,

a single time-location bin could cover the input region without introducing any

storage overhead. Figure 5.1b and c illustrate this approach. In the first one,

the region, red rectangle, is represented by union of 73 smaller grid cells and the

area covered by this union almost as the same as the region of the initial cell.

This coverage requires copying the record 73 times but the spatial information

is as accurate as spatial information given in the record. In the latter, we use

larger grid cells to represent the same region, using only 4 of them, but the area

covered by the union is almost twice of that of input region. In this case storage

overhead is decreased 24 times, by sacrificing spatial accuracy by covering 2 times

of the input area. To better illustrate the trade-off between area overhead and

storage overhead, we repeat the same test for 250, 000 records those have location

information in the form of rectangles. For each rectangle, we limit number of cells

to be used to cover the region and compute average number of cells to represent
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a given region (storage overhead), and ratio of sum of areas of those cells to

the area of the input region (area overhead). Figure 5.1a shows this experiment

where x-axis is the maximum number of cells and left y-axis is area overhead

and right y-axis is storage overhead. Dotted red line belongs to right y-axis and

solid blue line belongs to the left y-axis. In this figure, we observe, it is possible

to cover a region only with 12% extra area coverage if the data is replicated to

15 other cells. Moreover, in our dataset copying a record to more than 16 cells

does not contribute to spatial accuracy. As this experiment illustrates, in a real

world setting where location information of records are in the form of regions,

the record should be copied to multiple cells when forming the mobility histories.

The overhead caused by this process could be limited with a small sacrifice from

the spatial accuracy.

5.2 Dynamic Changes in Data

Dynamic changes in data, e.g., in the form of event record appends, are common

in mobility datasets. Our solutions can address such dynamic changes by avoid-

ing performing the complete pipeline of the linkage. In the current structure,

both counting the co-occurring events for k-l diversity and the similarity score

computation are cumulative. Therefore, the arrival of an update will only trigger

updating the k-l diversity and similarity scores.

In the rule based linkage, when a new record arrives, one should update the

k-l diversity scores of all candidate entity pairs, whose one end is the record

owner. There might be three effects of this update based on the initial state of

the k-l diversity scores. First, if the record owner is not matched with any other

entity in the previous computation (i.e. does not have a pair entity that satisfy

k-l diversity) this update might introduce a new match. Second, if the record

owner already has a matching entity but incoming record creates ambiguity in

the linkage (i.e. there are more than one pairs of the owner entity those satisfy

k-l diversity) the previously matched pair should be withdrawn from the result.

Lastly, if the record owner already has a matching entity but the incoming record
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does not create ambiguity, only k-l diversity scores should be updated.

One could optimize the handling of incremental updates for the rule based

approach in two different ways. First, instead of applying updates for each record,

it is possible to group the arriving records by the owner entity and apply them in

batches. This will decrease the number of event retrievals from disk and number

of updates required to process all new records. Second, since the contribution of

each co-occurring record pair to k-l diversity scores is limited, instead of checking

for all candidate pairs, one could avoid candidates those are unlikely to create a

new link or ambiguity.

Similarly, in the similarity based approach, a new record should only effect the

similarity scores of the record owner and the entities that are considered similar

to it by the locality sensitive hashing. One subtle issue here is that, instead of

updating the scores with every new record, one should update the scores for every

mini-batch of records. These mini-batches should contain records from a certain

time-window that has the same temporal width as the time window of mobility

histories. Hence, it would be possible to apply time-location bin aggregation and

decrease number of updates.

Unlike the rule based approach, the effect of dynamic changes in data on linkage

might not be limited to only updated similarity scores. This is because maximum

weight bipartite matching used in the final linkage is limited to create one to one

links and one updated score might effect multiple decisions. Yet, performing

final linkage periodically (i.e,. after a certain period of time or certain number of

updates) is sufficient enough to keep the linkage up-to-date.

5.3 Extending Linkage to Multiple Datasets

The linkage process is much more complex when there are more than 2 datasets

to unify. While this problem is orthogonal to ours and out of scope of this work,

we still take an initial step forward with the following discussion.

57



Fundamental requirement of extending linkage to multiple datasets is making

the similarity score computation, matching, and merging steps independent from

the number of datasets. Therefore, it would be fair to assume that there are

black box link and merge functions to be used to unify datasets. In our specific

case these black-box link and merge functions have two inputs, datasets to be

linked, and outputs a single unified dataset in which records of the linked entities

are grouped together. The link function is the complete process explained in this

paper and merge function is simply the union of the datasets.

One approach of multi dataset linkage is via separate pairwise matching of the

datasets. But, this approach would result in poor scalability and would be lack

of transitivity of decisions and thus require resolving discrepancies [43]. In such

an approach linking k datasets would take k×(k−1)
2

separate pairwise linkages [44].

On the other hand, existing research shows that if the aforementioned link and

merge functions satisfy certain properties, linkage of all dataset pairs could be

avoided [24] without sacrificing accuracy of the linkage. These properties are

idempotence, commutativity, associativity and representativity (ICAR) and they

should be satisfied in the record level and the dataset level. In this case, it is

possible to find an order to link the datasets (or create a join tree) that would give

the same accuracy with the brute force linkage and the time complexity would

be linear with the number of datasets. In the database literature, this is akin

to well known join ordering optimization techniques. Since the entities those are

not linked with any other entity would still be a part of final dataset, full outer

join optimization algorithms would be necessary to decide on the order.

One subtle issue here is to identify selectivity ( i.e. the ratio of intersecting

entities to all entities of the given two datasets) of dataset pairs. Here, an esti-

mate of the selectivity would be enough to rank dataset pairs. Intuitively, two

mobility datasets that have higher number of common entities should have higher

spatio-temporal overlap of records. Since the idea behind the LSH is exploiting

the same property of the datasets, applying LSH to all datasets and using the

ratio of number of candidate pairs to number of all pairs of entities as the es-

timated intersection ratio of given two datasets would give be an indicator of

high intersection. With link and merge functions satisfying ICAR properties and
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estimated selectivity between datasets, any join ordering optimization algorithm

(i.e. Greedy Operator Ordering [45]) would create a join ordering that completes

the process in optimum running time.

However, in the existence of negative evidences (i.e. alibi) representativity

cannot be satisfied. Moreover, since in every pairwise linkage would create a one

to one linkage of entities, associativity cannot be guaranteed as well. Therefore,

leveraging aforementioned process with described link and merge functions is

scalable but cannot guarantee the completeness of the result. We believe this is

an important problem and leave it as future work.
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Chapter 6

Experimental Evaluation

In this chapter we present our experimental evaluation. In the first section we

present an evaluation of the proposed k-l diversity based linkage method and

the ST-Link algorithm. It contains two sets of experiments. In the first set of

experiments in the section, we measure the performance and the scalability of

the ST-Link algorithm. By increasing the size of the input data, we test the

change in the running time, the number of event comparisons, and the number of

candidate user pairs, for different window sizes. In the second set of experiments,

we analyze the quality of the k-l diversity based linkage. To measure quality,

we use two metrics. The first is the precision, which measures the fraction of

correctly linked pairs in the list of user pairs produced by ST-Link. The second

is the number of true positives, which is the number of user pairs correctly linked

by the ST-Link algorithm.

In the second section, we present an evaluation of similarity based approach

and SLIM algorithm. This evaluation also includes two sets of experiments. In

the first set of experiments, we measure the quality of the linkage and the SLIM

algorithm’s robustness under changing spatio-temporal levels, record densities,

and the entity intersection ratio across the two datasets. To test the quality,

we use two measures: precision and recall. Moreover, to better understand the

behaviour of SLIM when the aforementioned variables are changing, we also
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present the alibi counts and the number of pairwise record comparisons. In the

second set, we measure the scalability achieved via LSH and its effect on the

quality. We measure the number of pairwise entity comparisons and the F1-

Score of the resulting linkage, by varying the parameters of the LSH procedure

for mobility histories, i.e., the similarity threshold t, the query time window size,

and the spatial level of the dominating grid cells.

In the third section, we compare ST-Link and SLIM with the state-of-art.

First, we compare ST-Link with SERF – Stanford Entity Resolution Framework

that implements the R-Swoosh [24] algorithm. Next, we compare ST-Link and

SLIM with two existing approaches, namely, Pois [14], and GM [19] in terms of the

F1-Score, Hit Precision @40, and the number of pairwise record comparisons. We

incorporate a new measure, Hit Precision @40, because it is the original measure

used by the authors of GM.

6.1 Evaluation of Rule Based Linkage

In this section, we present an evaluation of the proposed k-l diversity based linkage

method and the ST-Link algorithm. We implemented the ST-Link algorithm

using Java 1.7. All experiments were executed on a Linux server with 2 Intel

Xeon E5520 2.27GHz CPUs and 64GB of RAM.

We present two sets of experiments. In the first set of experiments, we measure

the performance and the scalability of the ST-Link algorithm. By increasing the

size of the input data, we test the change in the running time, number of event

comparisons, and the number of candidate user pairs, for different window sizes.

In the second set of experiments, we analyze the quality of the k-l diversity based

linkage. To measure quality, we use two metrics. The first is the precision, which

measures the fraction of correctly linked pairs in the list of user pairs produced

by ST-Link. The second is the number of true positives, which is the number of

user pairs correctly linked by the ST-Link algorithm.
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6.1.1 Datasets Used

For the performance, scalability, and accuracy evaluations we used three datasets.

The first is a Foursquare dataset of check-ins. The second is anonymized call

detail records in a telecommunication provider. For privacy concerns, we did not

perform any linkage across these two datasets. As a result, we were not able to

compute accuracy results when using these two datasets. However, they are used

for the evaluation of running time performance. To evaluate accuracy, linkage is

performed between a third dataset belonging to a hypothetical LES and the call

dataset. This dataset was synthetically derived to protect privacy, from the call

dataset by (i) picking a predefined fraction f of the callers at random as active

users of the second LES, (ii) generating usage records for the selected users by

assuming that they generate such a record with probability p, within a 15 minute

time window of a call, inside a location within the same cell tower of the call.

We change the parameters p and f to experiment with different scenarios. Lower

values for p result in a sparser usage record dataset for the second LES. We call

the parameter p, the check-in probability. As not all users have the same check-in

probability in practice, we pick the value of the check-in probability for a given

user from a Gaussian distribution with mean p. We call the parameter f , the

usage ratio.

Datasets ⇒ Foursquare Call

# of activities 1,903,674 1,890,107,057
# of venues/cell towers 300,685 109,780

# of users 284,856 3,357,069

Table 6.1: Dataset statistics (ST-Link experiments)

The Foursquare dataset consists of check-ins that were shared publicly on

Twitter, collected via the Twitter streaming API1 and the Foursquare API2.

This dataset spans 40 days and only contains check-ins from Country X. Each

row contains the acting user’s Foursquare id, venue id, geographical location

(lat/lon) of the venue, and the time of the check-in. The call dataset spans the

1www.dev.twitter.com
2www.developer.foursquare.com
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dataset size.

Figure 6.3: Performance Results

same 40 days in Country X. Each row contains an anonymized id, time of the call,

and geographical location (lat/lon) of the handling cell tower. The anonymized id

is the same across all usage of the same user. Table 6.1 shows the statistics about

both the Foursquare and the call datasets. For the runtime performance and

filtering effectiveness experiments, we used the two real datasets. However, since

it is not possible to verify the accuracy of the results using these two datasets,

we used the synthetic dataset which is derived from the anonymous call data for

the evaluation of ST-Link ’s accuracy.

6.1.2 Running Time Performance

We observe the running time, the number of candidate pairs, and the number

of event comparisons as a function of the dataset size. The dataset size is in-

creased by increasing the number of days of data included in the linkage analysis.

Furthermore, for these experiments we also change the window size. Recall that

the window size is used during the temporal filtering step to locate co-occurring

events.

Figure 6.6 presents our running time related results. In all the figures, the

x-axis represents the dataset size in days and the y-axis represents a performance
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Figure 6.6: Performance Results

metric. Different series represent varying window sizes.

One of the main challenges is the scalability of the linkage solution. Processing

many days of data should complete in reasonable amount of time for the resulting

analysis to be valuable. Figure 6.1 plots the running time as a function of the

dataset size. We make two observations from the figure. First, the running time

of ST-Link is linear in the dataset size. For 5 days of data, the running time

is around 1 hour and for 40 days of data it is around 7 hours, all for 30 minute

windows. Second, the running time increases with increasing window size, yet

the running time is linear in the dataset size for all window sizes.

Figure 6.2 plots the number of event-to-event comparisons as a function of

the dataset size. In our experimental evaluation, every time we compare two

location based events for either co-location or alibi check, the number of event

comparisons is increased by one. We observe that up to 15 days of data, the

number of comparisons grows at an increasing rate. Yet, after 15 days the rate

starts to go down and eventually the growth of the number of operations happens

at a relatively low fixed rate. This can be explained by the alibi checks performed

by ST-Link. Recall that when a user pair is marked as an alibi, their records are

not compared with each other anymore. Also, if two users are marked as a

candidate pair, their future records are only compared to see if they are an alibi
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or not. Considering this, we can say that within 15 days most of the candidate

pairs and alibi pairs are identified. As an important difference from the running

time experiment, the gaps between the series corresponding to the three window

sizes are considerably larger. This is because larger windows require more event

to event comparisons. Since event comparisons are not necessarily the only cost of

the algorithm (there is I/O, window processing, window index maintenance, etc.),

the running time experiment has narrower gaps between the running times for

different window sizes. The impact of these extra costs can be seen in Figure 6.1

as well; although the number of comparisons stabilize after 15 days, the linear

increase in the runtime continues.

Figure 6.4 plots the number of candidate user pairs as a function of the dataset

size. Just like for the number of comparisons experiment, up to 15 days, the

number of candidate pairs grows with an increasing rate and after 15 days the

rate starts to decrease and eventually stabilizes at a low value. For the case of

candidate pairs, the eventual rate of increase is very low, suggesting that observing

additional data brings diminishing returns in terms of being able to find new

candidate pairs. However, this does not imply that we are unable to perform

additional linkages, because the number of linked pairs within the candidate set

can still grow (we will observe such growth in the quality experiments).

Figure 6.5 shows the number of candidate user pairs after each filtering step. It

illustrates the effectiveness of the spatial and temporal filtering steps of ST-Link.

If no filtering was applied on the data, every user pair from the two datasets

would have constituted a candidate user pair. By applying only spatial filtering,

the number of candidate user pairs decreases by 43 times compared to the no

filtering case. It is possible to say that spatial filtering is an effective step. In-

tuitively, if data was spread over a wider geographical area, this step would be

have been even more effective (our datasets are limited to the geographic area of

Country X). After applying temporal filtering, the candidate user set decreases

by an additional 1, 836 times after spatial filtering. Cumulatively, the number

of candidate user pairs without any filtering is 78, 948 times of the number of

pruned candidate user pairs, which gets close to 5 orders of magnitude reduction

in the number of pairs.
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Figure 6.7: Precision as a function of
check-in probability.
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Figure 6.8: Number of true positives as
a function of check-in probability.

6.1.3 Quality of Linkage

We observe the precision and the number of true positives as a function of the

usage ratio, check-in probability, and window size. We also observe the precision

and recall values for a variation of the ST-Link algorithm that does not use

weights, thus trades off precision for better recall.

6.1.3.1 Impact of Check-in Probability

Figures 6.7 and 6.8 plot the precision and number of true positives, respectively,

for the results produced by the ST-Link algorithm as a function of the mean

check-in probability. Different series in the figure represent different k-l settings.

We set k ≥ l, as the co-occurrence counts has to be greater than the diversity

counts. For these experiments the usage ratio is set to 50%, which means only

half of the call users are performing check-ins.

Figure 6.7 shows that precision is very close to 1 for all k-l settings but for 1-1.

We see that using 1-1 diversity results in very poor precision for low values of the

check-in probability. As the check-in probability increases, then the precision of 1-

1 diversity increases as well, but never reaches 1. The increase is understandable,

as more events on the check-in side will help rule out incorrect candidate pairs
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Figure 6.10: Number of true positives
as a function of usage ratio.

via alibis. Surprisingly, the precision for higher k-l values are all close to 1. This

is due the impact of alibi detection, and strong weight constraint. As we will see

shortly, not using weights trades off precision for better recall. Even if two users

have events that are only 2-2 diverse, they can be correctly linked if they have

no alibis.

Figure 6.8 shows that the number of true positives in the linkage increases

with the increasing check-in probability. This is expected, as more events help in

increasing the co-occurrence and diversity counts. We also observe that higher

k-l values result in reduced number of linkages. Given that 2-2 diversity has very

good precision, and has the second highest true positive count (after 1-1 diversity,

which has unacceptable precision), it can be considered a good setting for getting

the best out of the linkage. We see that for a check-in probability as low as 0.01,

it can match many hundreds of users, and for probability 0.1, it can match up to

10 thousand users. As we will see shortly, these numbers can be further increased

by trading off some accuracy.

6.1.3.2 Impact of Usage Ratio

Figures 6.9 and 6.10 plot the precision and the number of true positives, re-

spectively, for the results produced by the ST-Link algorithm as a function of
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Precision Recall
2-2 0.19 0.31
3-2 0.36 0.32
3-3 0.89 0.61
4-3 0.93 0.47
4-4 0.99 0.58
5-4 0.99 0.47
5-5 0.99 0.50

Figure 6.11: Precision and recall using
unweighted linkage
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Figure 6.12: Precision as a function of
window size.

the usage ratio. Different series in the figure represent different k-l settings, as

before. For these experiments check-in probability is taken as 0.01.

Figure 6.10 shows that the precision of all k-l settings is close to 1 throughout

the entire range of the usage ratio, except for 1-1. The 2-2 setting has precision

values that are slightly lower than 1, but not lower than 0.95. Figure 6.8 shows the

true positive counts for the same settings. As we can see clearly from the figure,

increased usage ratio results in increased number of successful linkages. Again,

this could be attributed to increasing weights for co-occurrence and diversity, as

well as increased effectiveness of alibi detection.

Interestingly, even when only 1 percent of the call users are synthetically set to

making check-ins, and when the check-in probability around a call is set as low as

1 in 100, one can still match some users (around 10). This could also be looked at

from a privacy standpoint. In other words, being able to perform spatio-temporal

linkage across two datasets successfully even for only 10 users may be considered a

privacy breach. We plan to investigate the privacy protection mechanisms against

this kind of linkage in our future work.
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6.1.3.3 Unweighted Linkage

The results so far have demonstrated high precision, but the number of users one

could match is relatively low compared to the number of total users. In order

to show the trade-off between precision and accuracy, we have also performed

experiments where the linkage model is slightly modified to use weights that are

equal to 1. That is, we count each event co-occurrence between two users as

1, without considering other possible co-occurrences these events may have with

events of other users. In other words, the weight function from Eq. 3.9 is taken as

1. As it was discussed before, there are two different approaches for deciding the

values of the k-l parameters. The first one is deciding after multiple experimental

runs, and the second one is by detecting the elbow point of distributions of co-

occurrence and diversity values.

In this experiment we applied both to show the effectiveness of the elbow point

detection technique as well. According to maximum absolute second derivative

test results, the values of k-l parameters based on elbow detection are 3-3.

Table 6.11 shows the precision and recall results for the unweighted linkage.

The recall values here represent the fraction of users from the check-in dataset

that were successfully linked. It is important to note that we only considered

users that have enough number of events. Users are said to have enough number

of events only when they have at least l diverse events, for each k-l setting. The

table shows an interesting result: With unweighted linkage we see a clear trade-

off, where with increasing k-l values the precision improves, but the recall drops.

With the 3-3 setting, we get a precision of 0.89 and can link 61% of the users that

have enough number of events. Considering all users from the check-in dataset

this value is 23 %. Recall that 3-3 setting was identified using the elbow points.

Increasing the diversity setting to 5-5, one gets almost perfect accuracy (0.99),

but the recall drops to 50% of the users. When absolute accuracy is not required,

such as for machine learning to extract overall patterns, the unweighted linkage

model could be more effective in practice.
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Figure 6.14: k-l values distribution

Runtime (m) Precision Recall Cand. Count
1 30 0.78 0.68 1,998,491
2 34 0.75 0.74 2,651,746
4 39 0.71 0.82 3,511,090
8 45 0.68 0.88 4,446,937

16 58 0.65 0.91 5,311,043
∞ 122 0.62 0.99 6,765,345

Figure 6.15: Alibi threshold experiment results.

6.1.3.4 Impact of Alibi

Alibis are used to improve both the running time performance and the accuracy.

For these experiments the check-in probability is taken as 0.5 and the usage ratio

is taken as 50%. Only one grid is considered, which contains 15,268 users and

1,956,734 events in total. As it was discussed before, a threshold value on the

number of alibi events can be used before disregarding a candidate pair. In this

experiment we evaluate the impact of alibi in terms of performance and accuracy

as a function of the alibi threshold.

Performance. Table 6.15 shows the running time, precision, recall, and the

number of candidate pairs for the alibi threshold experiment. When the threshold

is set to ∞, effectively disabling alibi detection, we observed that the algorithm
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took 122 minutes to complete. At the end of the temporal filtering step, there

were 6,765,345 possible pairs. On the other hand, when alibi is used and the

threshold is set to 1, the running time decreased down to 30 minutes and the

number of possible pairs were 1,998,491. Almost 70 % of the possible pairs were

pruned with the help of alibi detection and further processing is avoided. When

larger threshold values are used, we observe slight increase in the running time.

For the threshold values of 2 and 16, the processing time is 34 and 58 minutes,

respectively.

Accuracy. Precision of the k-l diversity based linkage can be increased by setting

sufficiently large k and l values. Larger k and l values decrease the probability of

different users satisfying the linkage requirements. However when at least one of

the datasets is sparse, setting larger k and l values will result in low recall, as many

true positive pairs will be missed. In such datasets, alibi definition prevents many

false positive pairs that satisfy the co-occurrence and diversity requirements. Our

experiments showed that when alibi is not used (threshold value ∞), 99% recall

can be reached, yet with 62% precision. In contrast, setting alibi threshold to

1, increases the precision to 78%, with recall decreased to 68%. The reason

behind this decrease has to do with the lack of precise location information in

our datasets. For example, when two temporally close events of a user are from

two neighboring cell towers, their locations end up being the centers of the cell

towers, as the location information is not sufficiently fine grained. This results

in incorrectly identifying a pair of events as alibis, as the distance between the

event locations is relatively high when considering their close timestamps. This

is when the alibi threshold becomes crucial. We observe that the recall increases

to 0.74% when alibi threshold set to 2. Increasing threshold further increases

the recall values with a cost of sacrificed precision. For alibi threshold 4 recall is

0.82% and precision is 71%.

6.1.3.5 Window Size

Figures 6.12 and 6.13 plot the precision and the number of true positives, respec-

tively, as a function of the window size. Different series in the figure represent

71



different k-l settings, as before. For these experiments the check-in probability is

taken as 0.01 and the usage ratio is taken as 50%. Window sizes start from 15

minutes and increases up to 75 minutes in increments of 15 minutes.

Figure 6.12 shows that the precision stays at 1 is not effected by the window

size except for lines corresponding to lower k-l values. In particular 2-2 and

3-2 are impacted negatively from larger window sizes. 1-1 is not shown in this

experiment, as it already has a very low precision. Note that the window size does

not impact only the size the temporal window we slide over the events, but also

the definition of co-occurrence (recall the α parameter from Eq. 3.2). Increasing

the window size makes it possible to match potentially unrelated events from

different real-world users and the results reflect that. However, due to the alibi

processing, the negative impact of increasing window size on the precision is

milder that it would otherwise be.

Figure 6.13 shows that the number of true positives drops with increasing

window sizes. Again this can be attributed to the increasing number of unrelated

event matches due to the larger window. Recall that if the same user is matched to

more than one user from the other dataset, we remove such users from the linkage

results. The increased window size results in ambiguity in the results. Assuming

users x and y are linked for a given window size, increasing the window size does

not change the fact that x and y are matched, but it may result in additional

matches, such as between user x and some other user z, and thus eliminating the

correct linkage between x and y from the results.

6.1.3.6 k-l value Distribution

Figure 6.14 shows the k-l value distribution of user pairs after spatial and tem-

poral linkage. The usage ratio is taken as 50% and the check-in probability is

0.01 for this experiment. For a given pair in the results, we find the highest k-l

diversity values it supports and maintain these counts. In the figure, the areas of

the circles are proportional to number of pairs with the given k-l diversity. Since

the number of pairs for k-l lower than 2-2 is too high (and precision very low as
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we have seen earlier), we do not present them in the results. As expected, the

number of linked pairs is decreasing as the k-l values are increasing. It is inter-

esting to note that for extreme values such as 11-7 diversity, it is still possible to

find user pairs. We also observe that increasing diversity has a higher filtering

power than increasing occurrence.

6.2 Evaluation of Similarity Based Linkage

In this section, we give a detailed evaluation of the proposed solution, SLIM and

compare it with state-of-the-art. We implemented SLIM using Java 1.8. All

experiments were executed on a Linux server with 2 Intel Xeon E5520 2.27GHz

CPUs and 64GB of RAM. Evaluation includes two sets of experiments. In the

first set of experiments, we measure the quality of the linkage and the SLIM

algorithm’s robustness under changing spatio-temporal levels, record densities,

and the entity intersection ratio across the two datasets. To test the quality,

we use two measures: precision and recall. Moreover, to better understand the

behaviour of SLIM when the aforementioned variables are changing, we also

present alibi counts and the number of pairwise record comparisons.

In the second set, we measure the scalability achieved via LSH and its effect on

the quality. We measure the number of pairwise entity comparisons and the F1-

Score of the resulting linkage, by varying the parameters of the LSH procedure

for mobility histories, i.e., the similarity threshold t, the query time window size,

and the spatial level of the dominating grid cells.

6.2.1 Datasets

We use real-world datasets for two major linkage experiments. The first set of

linkage experiments is performed using the Cab dataset which contains mobility

traces of approximately 530 taxis collected over 24 days (from 2008-05-17 to

2008-06-10) in the San Francisco Bay Area. It has 11, 073, 781 records in total.
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The second set of experiments is performed on linking Social Media data, which

contain records from Foursquare and Twitter shared publicly on Twitter. This

Social Media (SM ) dataset contains around 5 million records: 2, 266, 608 records

from 197, 474 Twitter users and 2, 987, 747 records from 276, 796 Foursquare users.

The dataset spans 26 days from 2017-10-03 to 2017-10-29 and location information

is distributed over the globe. We give these details also in Table 6.2

Datasets ⇒ Foursquare Twitter Taxi

# of entities 276,796 197,474 530
# of events 2,987,747 2,266,608 11,073,781

# of days 26 26 24

Table 6.2: Dataset statistics (SLIM Experiments)

For maintaining privacy, we generated a unique identifier for each user, and

removed all personally identifying information. 3 As the SM dataset has one-to-

one correspondence in many records (i.e., a check-in is also shared in Twitter as a

tweet), we increase the complexity of the linkage by using Twitter and Foursquare

as base sources and sampling them.

To control the experimental setup, we use two parameters during this sam-

pling: entity intersection ratio and record inclusion probability. The intersection

ratio is used to control the ratio of the entities common in both datasets. This

is incorporated in subset generation as follows. We first randomly split all enti-

ties into two disjoint datasets of equal number of entities. One of these sets is

used as the pivot dataset. For a given intersection ratio, we randomly select the

corresponding number of entities from the pivot dataset and replace the same

number of randomly selected entities from the second dataset with these. Once

the entities are finalized, we also downsample the records from the datasets. This

is to address the common case in real life that two location-based services are

not always used synchronously in practice and different services might have dif-

ferent usage frequencies. A record of an entity is included in a dataset with the

record inclusion probability. Higher probability implies denser datasets. With

this approach, we have datasets with different record densities and with different

3The data collection and use for this study received approval from Bilkent University’s ethics
board.
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amounts of entity overlap. After this step, we link samples from Twitter dataset

with samples from Foursquare dataset (referred as SM together). The same ap-

plies to Cab dataset. We sample the data with different entity intersection ratio

and record inclusion probability values and link those sampled datasets to each

other.

The default values for the entity intersection ratio and the record inclusion

probability are both equal to 0.5. The spatial detail at the mobility history

leaves are controlled using the cell levels of S2. A higher level indicates more

spatial detail.The default value for the spatial level is 12, and the default temporal

window width is 15 minutes. To avoid the adverse effect of entities with too small

number of records after downsampling, we ignore an entity if it does not have

more than 5 records. The default value of the parameter b from Equation 4.2

is 0.5. To identify the alibi threshold, we set the maximum movement speed of

an entity to 2 km/minute and multiply this constant with the temporal window

width.

6.2.2 Accuracy

In this section, we first study precision and recall as a composite function of the

spatio-temporal level. We also look at the number of alibi entity pairs and the

number of pairwise record comparisons to better understand SLIM’s behavior.

Next, we study F1-Score and running time as a function of the record inclusion

probability.

6.2.2.1 Effect of the Spatio-Temporal Level

Figures 6.20 and 6.25 plot precision, recall, alibi pairs and number of record com-

parisons as a function of the spatio-temporal level for the Cab and SM datasets,

respectively. In all figures, the x-axis shows the spatial detail, the y-axis shows

the width of the window in minutes, and the z-axis shows the measure.
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Figure 6.16: Precision
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Figure 6.17: Recall
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Figure 6.18: # of alibi pairs
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Figure 6.19: # of event comparisons

Figure 6.20: Effect of the spatio-temporal level – Cab

Figures 6.16 and 6.17 show precision and recall for the Cab dataset. We observe

that both measures increase with spatial detail. This is because when the spatial

detail increases, the distance calculation becomes more accurate.

After spatial level 12, F1-Score becomes greater than 0.95. However, for win-

dow width, after 90 minutes, while recall remains high, precision decreases dra-

matically. For spatial detail 20, when the window size is 15 minutes, perfect

precision is reached, while for window size 360 minutes the precision is 0.56. The

decrease in precision is steeper for spatial detail 20 than spatial detail 16, but for
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Figure 6.21: Precision
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Figure 6.22: Recall
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Figure 6.23: # of alibi pairs
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Figure 6.24: # of event comparisons

Figure 6.25: Effect of the spatio-temporal level – SM

the same data point recall is higher for spatial detail 20 than 16. The reason be-

hind this is that, since the records in the same time-location bins are aggregated,

using large time-windows makes it harder to distinguish entities from each other.

When the level of detail is low, both spatially and temporally, variance of entity

pair scores is decreasing. To observe this behaviour better, figure 6.26 shows de-

tected stop threshold values (red lines), fit GMM models (blue and green curves),

and distribution of true positive and false positive links for spatial detail values

4, 8, 12, and 16 as a function of similarity scores for window width 90 minutes.

We observe that with increasing spatial detail, grouping true positive links (green

bars) and false positive links (blue bars) in two clusters becomes more accurate
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Figure 6.26: Similarity score histograms

and a tighter stop threshold value could be identified. By looking at the distances

between two components of GMM one could say that stop threshold identification

has subpar accuracy for spatial detail values lower than 12. One could observe

this subpar accuracy by looking at the differences between precision behaviours

of Figures 6.16 and 6.21. For low spatial detail (i.e., ≤ 10) and high temporal

window width (i.e., ≥ 60 minutes), precision is favored over recall for the Cab

dataset but vice-versa for SM.

While spatial level values higher than 12 have similar precision and recall,

we observe that increasing spatial detail also increases the number of record

comparisons. This is expected, as we discussed in Section 4.3.4 how to use the

trade-off between accuracy and performance to detect the best spatial detail for

a given temporal window. When the window size is 15 minutes, the spatial detail

detected by the parameter tuning algorithm is 12. Figure 6.19 shows that for the

same window width, increasing spatial detail from 12 to 20 increases the number
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Figure 6.27: F1-Score – Cab
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Figure 6.28: Runtime – Cab

of pairwise record comparisons by 1.14 times, yet the accuracy stays the same.

The gap widens for longer temporal windows. The same figure shows 3.15×
increase in the number of record comparisons when the window size is increased

from 15 to 360 minutes, for spatial detail 12. Yet, the increase is 22× for spatial

detail 20.

Figure 6.25 shows the same experiment for the SM dataset. Most of the

previous observations hold for this dataset as well. There are two additional

observations. First, in the Cab dataset the best recall value is reached when

5-minute windows are used. This is a result of the spatio-temporal density of

the Cab dataset, as alibi detection becomes more efficient for narrow windows,

resulting in better recall. On the other hand, in the SM dataset, the best recall

is reached for 15-minute windows. This is expected, because at one extreme

very small temporal windows require services to be used synchronously to collect

evidence for linkage. Another observation is that, as SM dataset has lower spatio-

temporal skew, to detect alibis one needs to use larger temporal windows.

6.2.2.2 Sensitivity to the Workload Parameters

In this experiment, we link the pivot datasets (with record inclusion probability

of 0.5) of each source with the datasets generated using different entity intersec-

tion ratios and record inclusion probabilities. Figure 6.31 plots the F1-Score and
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Figure 6.29: F1-Score – SM
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Figure 6.30: Runtime – SM

Figure 6.31: F1-Score and Runtime as a function of the inclusion probability (for
different entity intersection ratios)

running time in seconds as a function of record inclusion probability for the Cab

and SM datasets, respectively. Different series represent different entity intersec-

tion ratios. The Cab dataset has 265 entities and the SM dataset has around

30, 000 entities. The average number of records for an entity is ranging from

2, 100 to 18, 900 for the Cab dataset and from 10 to 20 for the SM dataset. With

this structure, this experiment also helps us to illustrate scalability of the linkage

with increasing number of records. Figure 6.27 shows the results for the Cab

dataset. We observe that all F1-Score values are close to 1, even when average

number of records are as low as 2, 100 (inclusion probability 0.1). Moreover, from

Figure 6.28, we observe that the running time is sub-linear with average number

of records, which is a result of aggregation on mobility histories. These results

validate robustness of SLIM, as F1-Score is not effected by the increasing number

of records and the system scales linearly.

Figures 6.29 and 6.30 show the results of the same experiment for the SM

dataset. Different than the Cab dataset, the effect of the record inclusion proba-

bility on the F1-Score is more pronounced here. For the entity intersection ratio

value of 0.5, the average number of records is 10, F1-Score is 0.75. When the av-

erage number of records is doubled, we get 0.98 as the F1-Score. This is because

the average number of records per entity is already low in the SM dataset and

downsampling it to even lower values decreases the number of records that can
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serve as evidence for linkage. However, we observe that SLIM is able to perform

high-accuracy linkage when the average number of records per entity is at least

15. Independent of the entity intersection ratio, after 15 records per entity, the

F1-Score of SLIM is greater than 0.9. Similar to Cab dataset, running time of

SLIM is linear with the input size for SM dataset.

6.2.3 Scalability

In this set of experiments, we study the effect of the LSH on the quality and the

scalability of the linkage. The quality is measured using the F1-Score relative

to that of the brute force linkage. Let F1-Score where LSH is applied be F1-

Scorelsh and without it F1-Scorebf . Then, relative F1-Score equals F1-Scorelsh

/ F1-Scorebf . To measure the speed-up, we compute the ratio of the number of

pairwise record comparisons without LSH to that of with LSH. Let the number

of pairwise record comparisons with LSH be Clsh and without it be Cbf . Then,

the relative speed up equals Cbf / Clsh. We split this set of experiments into two

subsets. In the first subset, we study the effect of the spatio-temporal level of the

dominating cell calculation algorithm. In the second subset, we study the effect

of the LSH parameters, namely similarity threshold t and the number of buckets.

6.2.3.1 Effect of the Spatio-Temporal Level

Figure 6.36 shows the relative F1-Score and the speed-up as a composite function

of the spatial level and the temporal step size. Recall that we construct a set

of dominating cells to act as signatures. This construction is done by querying

each mobility history for non-overlapping time windows. The size of each grid

cell is defined by the spatial level. The temporal step size represents the number

of time windows the query spans. Note that these parameters are different than

the spatial level and the window width that is used for the similarity score com-

putation. The LSH similarity threshold t is set to 0.6 and the number of buckets

is set to 4096.
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Figure 6.32: F1-Score – Cab
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Figure 6.33: Speed-up – Cab
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Figure 6.34: F1-Score – SM
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Figure 6.35: Speed-up – SM

Figure 6.36: LSH accuracy and speed-up as a function of the spatial level and
temporal step size

Figures 6.32 and 6.33 show the relative F1-Score and speed-up, respectively, for

the Cab dataset. Figure 6.32 shows that the F1-Score achieved with and without

LSH are almost the same when the spatial level is lower than 12. Similarly,

we do not observe any speed-up for these data points. The reason is that the

Cab dataset is spatially too dense and consequently dominating grid cells of all

entities end up being the same when the spatial detail is low. However, when

the spatial detail is increased, we observe that LSH brings 2 orders of magnitude

speed-up by preserving 98% of the F1-Score. For the spatial detail value of 16

and temporal step size of 48 (this means each dominating grid cell query spans
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Figure 6.37: Speed-up – Cab
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Figure 6.38: Speed-up – SM

Figure 6.39: Speed-up as a function of the bucket size

12 hours) the speed up reaches 202×. The maximum speed-up achieved for this

dataset is 332×, preserving 86% of the F1-Score.

Figures 6.34 and 6.35 present the same experiment for the SM dataset. While

we observe similar behaviour for the data points with low spatial detail, we also

observe that the increase in the speed-up starts earlier and is steeper when the

spatial detail is increased. This is because the SM dataset has lower geographic

and temporal skew. If we observe the same data point as we did with the Cab

dataset, we observe more pronounced speed-ups: For the spatial detail value of 16

and temporal step size of 48, LSH brings 1177× speed-up preserving 91% of the

F1-Score. Next, we show that the maximum reachable speed-up is much higher

when the number of buckets is increased.

6.2.3.2 Effect of the LSH Parameters

Figure 6.39 plots the speed-up as a function of the number of hash buckets. Differ-

ent series represent different LSH similarity thresholds. We set the spatial detail

and temporal step size of the signature calculation to 16 and 48, respectively.

Intuitively, F1-Score is not effected by the number of buckets. This is because

if two entities have at least one identical band in their signatures, they are hashed
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Figure 6.42: Comparison with existing work (Sub-figures a and b are sharing
their legends

to the same bucket independent from the number of buckets. Yet, increased num-

ber of buckets increases the speed up as probability of hash collision decreases.

Similarly, the LSH similarity threshold affects the relative F1-Score, as for smaller

values of it the relative number of bands is increasing. Consequently, probabil-

ity of becoming a candidate pair increases. Similarly, setting a large threshold

requires signatures to be more similar in order to be hashed to the same bucket.

At one extreme, threshold equals to 1 implies only a single band will be used and

two signatures will be hashed to the same bucket only if they are identical.

We observe the increase in speed-up for the Cab dataset and the SM dataset in

Figures 6.37 and 6.38, respectively. When the number of buckets is set to 218 and

the similarity threshold is set to 0.6, the speed-up becomes 380× with a relative

F1-Score of 0.98 for the Cab dataset and 11, 742× with a relative F1-Score of 0.91

for the SM dataset. Since the number of entities in the SM dataset is much larger

compared to the Cab dataset, we observe a significant difference in speed-up.

6.3 Comparison with Existing Work

In this section we first compare ST-Link with Stanford Entity Resolution Frame-

work (SERF). SERF implements the R-Swoosh [24] algorithm. Next, we compare
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2100 6300 10500 14700 18900
Avg Number of Records (vs 10750)

107

108

109

1010

R
e
c
o
r
d
 
C
o
m
p
a
r
i
s
o
n
s
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Figure 6.45: Comparison with existing work (Sub-figures c and d are sharing their
legends)

SLIM and ST-Link algorithms with each other and with another approach named

GM. GM works by learning mobility models from entity records using Gaussian

Mixtures and Markov-based models [19].

6.3.1 St-Link vs Serf

In addition to evaluating ST-Link under different settings, we also attempted

to integrate our linkage model with the Stanford Entity Resolution Framework

(SERF). SERF implements the R-Swoosh [24] algorithm. For this integration,

users are arranged as entities and their events are considered as attributes. Given

two entities, if they have enough number of co-occurring attributes satisfying the

k-l diversity model, they are marked as a match.

Starting with pairwise comparison of entities, R-Swoosh algorithm gradually

decreases the number of entities by merging the matching records, and deleting

the dominated ones. While this is an effective method to decrease the number

of comparisons on match heavy datasets, for datasets that contain few matching

entities, the run-time is still O(N2). Merging of two records is valid only when

there is merge associativity between records. Given three records, r1, r2, and r3,
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comparisons of 〈r1, 〈r2, r3〉〉 and 〈〈r1, r2〉, r3〉 may result in different linkage deci-

sions [46]. To alleviate this problem, the SERF framework also implements the

Koosh algorithm [46]. Different than the R-Swoosh algorithm, when the Koosh

algorithm finds a matching pair of entities, it does not merge them immediately,

unless confidence is above a threshold. However, defining the confidence to use

our spatio-temporal linkage model in SERF is not straightforward and requires

further research, which we leave as future work.

Applying Koosh algorithm without using merges is almost brute force and

using a small subset our dataset (15,268 users, 1,956,734 events, in total), SERF

takes more than 50 hours of processing time in the same setting. In comparison,

our algorithm finds the matching users in the same dataset in 30 minutes.

6.3.2 SLIM vs ST-Link vs GM

We compare SLIM and ST-Link with GM4, which works by learning mobility

models from entity records using Gaussian Mixtures and Markov-based mod-

els [19]. These models are later used for estimating the missing locations of users,

and also setting weights to spatio-temporally close record pairs. While we only

check records those are in the same temporal window, they also award pair of

records those are from different temporal windows.

In this work, we do not compare our approach with other existing approaches

because in its paper GM outperforms eight other existing approaches, excluding

ST-Link and SLIM.

Hit Precision @k is used to measure the quality of ranking algorithms. It is

calculated independently for all entities via the formula 1−max((rank/k), 1) and

averaged. The rank is the order of the true link in the list of all entities from

the opposite dataset, sorted in decreasing order of their similarity score. Fig-

ures 6.40 and 6.41 show the Hit Precision @40 and F1-Score for three algorithms

as a function of the average number of records. Since GM does not implement

4We used the code from the authors: https://tinyurl.com/yagfaz5n
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any mechanisms to scale to a large number of records, to include it in our results,

we took a 1 week subset of the data. The pivot dataset has 265 taxis with 675

records on average. We sampled 5 other datasets, with changing number of av-

erage number of records, ranging from 20 to 660. These datasets have 265 taxis,

133 of which are common with the pivot. With this setting the best achievable

hit precision is 0.5.

From these two figures, we observe that hit precision values for GM algorithm

is increasing as the average number of records increases. ST-Link reaches its

maximum hit precision with as small as 20 records. SLIM outperforms GM in all

data points, and reaches its best hit precision when the average number of records

is 165. While all three algorithms are able to provide perfect hit precision @40,

their performance in terms of F1-Score differs dramatically. When the average

number of records is 20, SLIM reaches an F1-Score of 0.3, while the other two

alternatives stay around 0.05. Since GM does not link entities with a single entity

from the opposite dataset, we apply our linkage and stop threshold algorithm over

their similarity scores. While ST-Link is able to rank true positive pairs at the

top (we could conclude this from perfect hit precision), it is not always able to

detect correct k and l values and resolve ambiguity. When the number of average

records per entity increases to 660, we observe that SLIM still performs the best

in terms of the F1-Score with 0.92. For the same data point, ST-Link and GM

has F1-Scores of 0.87 and 0.73, respectively.

Since GM does not scale to larger datasets and ST-Link is the best com-

petitor in terms of accuracy, we rule out GM in the further experiments. Fig-

ures 6.43 and 6.44 show F1-Score and number of pairwise record comparisons

for different record densities, respectively. Green bars correspond to the SLIM

algorithm, the red bars to the ST-Link algorithm. To improve the detail of the

comparison, we use two different intersection amount ratios for each data point,

0.3 and 0.7. Bars with single hatches show the results for intersection amount

ratio 0.3 and bars with double hatches show that of 0.7. We observe that SLIM

outperforms ST-Link in terms of F1-Score in all data points except one and accu-

racy of ST-Link algorithm decreases when average number of records per entity

increases. This is because SLIM is more robust to alibi record pairs than ST-Link,
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even when alibi threshold mechanism of ST-Link is used. In this experiment, we

set alibi threshold count to 3 for ST-Link. While larger alibi threshold values

might give better accuracy for ST-Link as it is shown in their paper, increasing

this threshold also increases the number of pairwise record comparisons.

Figure 6.44 shows that SLIM already makes three orders of magnitude less

pairwise record comparisons than ST-Link. This is because our LSH-based scal-

ability technique is more effective and ST-Link does not scale well in spatially

dense areas.

6.4 Summary

In the experimental study, we first evaluated various aspects of the k-l diversity

based linkage model and the ST-Link algorithm. We studied the scalability of

the algorithm and showed that it scales linearly with the dataset size. We studied

the effectiveness of the linkage and showed that high precision can be achieved.

Using the unweighted version of our model, some of that precision can be traded

off in order to achieve better recall values as well.

We also added the alibi threshold experiment to better observe the behaviour

of the system. This threshold value is the number of alibi events can be tolerated

before disregarding an entity pair. Our experiments showed that, setting a large

threshold, t, increases the run-time of the algorithm, since there are possibly

more candidate pairs. On the other hand, larger thresholds might also increase

the recall. This is because, when there is inaccurate information in the data,

disregarding an entity pair with a single alibi might harm the accuracy of the

linkage.

We then evaluated similarity-based linkage and SLIM algorithm in terms of

the quality of linkage, robustness under changing spatio-temporal levels, record

inclusion probability and entity intersection ratios of two mobility datasets. We
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observe that SLIM is robust to spatio-temporal level of the input data and to dif-

ferent values of workload parameters. One interesting finding is while increasing

the level of detail after a certain point does not contribute to the precision and

recall, it harms the scalability of the system as it increases the number of record

comparisons. This is expected, as the aggregation performed on a per-window

basis is critical in terms of scalability.

Moreover, we also measured the scalability of this approach by comparing the

number of pairwise entity comparisons and the F1-Score of the resulting linkage,

by varying the parameters of the LSH procedure for mobility histories, i.e., the

similarity threshold t, the query time window size, and the spatial level of the

dominating grid cells. Depending on the values select for LSH parameters we

observe it could provide 380× speed-up with a relative F1-Score of 0.98 for the

Cab dataset and 11, 742× with a relative F1-Score of 0.91 for the SM dataset.

Since the number of entities in the SM dataset is much larger compared to the

Cab dataset, we observe a significant difference in speed-up.

Lastly, we compared our proposed approaches, ST-Link and SLIM with each

other and with one existing work in the literature, GM [19]. We did not compare

our approach with other existing approaches because in its paper GM outper-

forms eight other existing approaches. Our experiments show that GM does not

scale to larger datasets and ST-Link and SLIM are the best competitors, com-

parable to each other, in terms of accuracy. We observe both approaches could

perform highly accurate linkage while SLIM proving even more accurate linkage

by performing three orders of magnitude less pair-wise comparisons.
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Chapter 7

Literature Review

In this chapter we give a literature review. The most relevant problem to our

work in the literature is user identity linkage. In addition to user identity linkage,

there are six lines of related work; namely record linkage, temporal record linkage

and entity evolution, spatial record linkage and spatial joins, trajectory join, user

identification and trajectory de-anonymization.

Record Linkage. One of the earliest appearances of the term record linkage is by

Newcombe et al. [25, 47]. In the literature, it is also referred to as entity resolution

(ER), deduplication, object identification, and reference reconciliation. Several

surveys exist on the topic [15, 16, 17]. Most of the work in this area focus on a

single type of databases and define the linked records with respect to a similarity

metric. The input to such a record linkage algorithm is a set of records and the

output from it is a clustering of records. In contrast, our problem involves link-

ing users from two datasets, where each user can have multiple spatio-temporal

records. While many work on record linkage focus on accuracy [48, 49, 14] and

a few on scalability [50], our work must consider both. In our case, successful

linkage does not rely solely on the similarity of records and as such our proposed

solutions search multiple diverse matches, aka k-l diversity, and also makes sure

that there are no negative matches, aka alibis. To the best of our knowledge, this

is a novel approach for record linkage, specifically targeted at spatio-temporal
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datasets.

Temporal Record Linkage and Entity Evolution. Temporal record link-

age differs from traditional record linkage in that it takes entity evolution into

account (e.g., a person can change her phone number). The time decay model

captures the probability of an entity changing its attribute value within a given

time interval [51]. The mutation model learns the probability of an attribute

value re-appearing over time [52]. The transition model learns the probability of

complex value transitions over time [53]. Furthermore, declarative rules can be

used to link records temporally [54]. Transition model can also capture complex

declarative rules. Temporal record linkage algorithms are able to capture the en-

tity evolution and determine if an entity has changed the value of one or more of

its attributes. Our problem has some resemblance to entity evolution, since the

location attributes of the users change over time. However, this change can be

better described as entity mobility, rather than entity evolution. Application of

aforementioned models to spatio-temporal datasets might be effective in predict-

ing a user’s next stop or calculating the probability of whether a user will return

back to a given location. Yet, they would fell short of linking spatio-temporal

records of users.

Spatial Record Linkage and Spatial Joins. Many join and self-join algo-

rithms are proposed in the literature for spatial data [55]. Sehgal et al. [56]

proposes a method to link the spatial records by integrating spatial and non-

spatial (e.g. location name) features. However, spatial record linkage and spatial

join algorithms are not extensible to spatio-temporal data as they are based on

intersection of minimum bounding boxes, one-sided nearest join, or string simi-

larity. Spatio-temporal joins are more complex with constrains on both spatial

and temporal domains [57]. Yet our problem involves more than spatio-temporal

records, it involves matching spatio-temporal record series from two datasets.

Trajectory Join. Bakalov et al. [58] define the trajectory joins as the iden-

tification of all pairs of similar trajectories given two datasets. They represent

an object trajectory as a sequence of symbols. Based on the symbol similarity,

they prune the pairwise trajectory comparisons. Effective evaluation of symbol

similarity is supported by a tree-like index scheme. In [57], the authors extend
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the problem to continuous queries over streaming spatio-temporal trajectories.

An important difference between trajectory join algorithms and our work is that

trajectory similarity is not necessarily an indication of a linkage and vice verse. If

one of the datasets is denser than the other, trajectories would be dissimilar, yet

we still can have matching user pairs based on k-l linkage. However, some index-

ing structures of trajectory join algorithms are closely related to our approach.

There are multiple indexing schemes for spatio-temporal data. In [59, 60, 61, 62]

various grid based structures are used for indexing. Our spatial filtering approach

is similar in its use of a grid-based index, but instead of associating objects with

grid cells, we associate users with grid cells based on the frequency of their events

residing in these cells. There are also tree-like spatio-temporal indexing struc-

tures, surveyed in [63]. A common theme of these works is the reduction of the

update cost, which is not a concern in our work.

User Identification. Our work has commonalities with the work done in the

area of user identification. For instance, de Montjoye et al. [1] has shown that,

given a spatio- temporal dataset of call detail records, one can uniquely identify

the 95 % of the population by using 4 randomly selected spatio-temporal points.

Similar to our discussion, the authors mention that spatio-temporal points do not

contribute to information gain equally. In our work, we cover this by introducing

a weight function. Unlike our work, [1] does not consider the linkage problem,

that is matching users from two spatio-temporal record sets. instead, they study

how users can be uniquely identified within a single dataset using a small subset of

their records. Another related work is [64], in which authors show that using the

credit card metadata, they can identify unique users and group the transactions

with respect to users. In addition to spatio-temporal reference data, they use the

transaction price and gender as auxiliary information. Another related work is

from Rossi et al. [65], in which user identification techniques for GPS mobility

data is presented. They use a classification based algorithm rather than pairwise

comparison of records. Importantly, our algorithm does not use any auxiliary

information but only spatio-temporal data, and it aims to match entities across

datasets. Our goal is not the identification of the users in a single dataset but

matching them across datasets.

User Identity Linkage. Many of the attempts in user identity linkage (aka
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user reconciliation, account linkage as surveyed in [66]) utilize additional infor-

mation such as the network graph [67, 68, 69], user profile information (such as

usernames or photos) [70, 71, 72], semantic information related to locations [73],

or a combination of these [74, 75]. They mainly differ by the information used to

perform the linkage or by the definition of similarity measures among entities. A

small number of these work also discuss the scalability challenges [18, 76]. How-

ever, in many cases, only the spatio-temporal information is present in mobility

data, and many of the other identifiers are likely to be anonymized. Use of only

spatio-temporal information also fits better with purpose restriction and mini-

mal data collection with consent. Therefore, we focus on linkage using only the

spatio-temporal information.

An important challenge when only spatio-temporal information is utilized is to

define similarity measures of entities and records (surveyed in[77, 78]). Some work

express this similarity based on densities of location histories of entities [79, 80].

They work either by matching user histograms [80], or using the frequencies of vis-

its to specific locations during specific times [81]. Statistical learning approaches

are also used to relate social media datasets with Call Detail Records [82, 83].

However, these algorithms depend on discriminative patterns of entities, which is

not likely to be present in many datasets, such as the Cab dataset we use in this

work.

There have been studies to define the similarity among entities using the co-

occurrences of their records [18, 76, 14, 19]. These are the most similar group of

work to ours. ST-Link and SLIM are shown to outperform existing work in terms

of accuracy and scalability. Among these algorithms, some model the user mobil-

ity to handle data sparsity issues and also to compute a similarity score [19, 14].

For example, in [14], it is assumed that the number of visits of each user to a

location during a time period follows Poisson distribution and records on each

service are independent from each other following Bernoulli distribution. There

are two limitations compared to our work. First, these work do not address scala-

bility. Among the contributions we make is to utilize locality-sensitive hashing to

perform linkage in a scalable fashion and also use spatial and temporal filtering

steps to decrease the number of candidate pairs. Second, the related work assume
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that the entities from one of the datasets is a subset of the other. In our work,

we address the problem of linkage stop condition, thus avoiding this assumption.

Cao et al. [18] use co-occurrences of the records to measure similarity among

entities. The strength of the co-occurrences is defined inversely proportional

with the frequency of locations. A multi-resolution filtering step is developed

for scalability. Different from our approach, the data is pre-processed to add

semantic information to locations. They use time to transform each trajectory

to a set of stay points, i.e., the location points that the user stay for a while.

Unlike ours, they do not define a concept of dissimilarity, called alibi in our work.

Furthermore, they do not automatically determine a similarity threshold to stop

linkage, called rejection in their case, and set it manually.

Finally, the related work we have discussed on mobility history linkage, in-

cluding our own work, is different than trajectory similarity-based approaches.

Trajectory similarity is measured using subsequence similarity metrics such as the

length of the longest common subsequence, Frechet distance, dynamic time warp-

ing, and edit distance [84]. There are also trajectory distinguishing techniques

that include trajectory specific information like speed, acceleration, and direction

of movement [85]. As opposed to our work, these approaches fell short in address-

ing asynchrony of the datasets and capturing alibi event pairs. Our approach is

more generic as it depends on less features when computing the similarity scores.
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Chapter 8

Conclusion

In this work, we studied matching the spatio-temporal usage records belonging

to the same real-world entity across records from different location-enhanced ser-

vices. This is a fundamental step towards unifying mobility datasets.

The first approach we developed is rule-based linkage, based on the concept

of k-l diversity. By introducing the k-l–diversity model, a novel concept that

captures both spatial and temporal diversity aspects of the linkage, we study the

challenge of defining proximity between usage records of entities from different

datasets. As part of this model, we introduced the concept of an alibi, which effec-

tively filters out negative matches and significantly improves the linkage quality.

To realize the k-l–diversity model, we developed the scalable ST-Link algo-

rithm that makes use of effective filtering steps. Taking advantage of the spatial

nature of the data, users are associated with dominating grids — grids that

contain most activities of their entities. This enables processing each grid inde-

pendently, improving scalability. Taking advantage of the temporal nature of the

data, we slide a window over both datasets jointly and maintain set of candidate

users that have co-occurring events but no alibis. The set of candidate entities

are pruned as the window is slided.

Next we developed another model, which we call similarity-based linkage. For
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this, we first developed a summary representation of mobility records of the enti-

ties and a novel way to compute a similarity score among these summaries. This

score captures the closeness in time and location of the records, while not pe-

nalizing temporal asynchrony. Moreover, it captures the concept of alibi as well,

which greatly improves both efficiency and accuracy.

We applied a bipartite matching process to identify the final linked entity pairs,

using a stop similarity threshold for the linkage. This threshold is determined

by fitting a mixture model over similarity scores to minimize the expected F1-

Score metric. We also addressed the scalability challenge and employed a locality-

sensitive hashing (LSH) approach for mobility histories, which avoids unnecessary

pairwise comparisons. To realize effectiveness of the techniques in practice, we

implemented an algorithm called SLIM.

Our experimental evaluation, conducted with several data sets showed that

the running time of the ST-Link algorithm scales linearly with the dataset size.

Moreover, precision of the linkage results is practically 1 for most k-l settings.

Likewise, SLIM outperforms two existing approaches, including ST-Link in terms

of accuracy and scalability. Moreover, LSH brings two to four orders of magnitude

speed-up to the linkage in our experimental settings.

As most data science tasks require large amount of data for accurate training

with higher confidence, scientists need to combine data from multiple sources to

produce accurate aggregate patterns. The goal of this work is to gather mobility

data from multiple sources and merge them into a single one. This unification

enables data scientists to obtain information that they cannot derive by mining

only one set of usage records. Yet, there are still many questions to be answered

in the way towards unifying mobility datasets. For example, merging the usage

histories of the linked entities in a way that it satisfies ICAR properties and

development of a generic and distributed linkage framework are left as the future

work.
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