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ABSTRACT

THE HIROTA DIRECT METHOD

Aslı Pekcan

M.S. in Mathematics

Supervisor: Prof. Dr. Metin Gürses

July, 2005

The search for integrability of nonlinear partial differential and difference equa-

tions includes the study on multi-soliton solutions. One of the most famous

method to construct multi-soliton solutions is the Hirota direct method. In this

thesis, we explain this method in detail and apply it to explicit examples.

Keywords: The Hirota direct method, integrable systems, solitons, exact solu-

tions.
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ÖZET

HİROTA METODU

Aslı Pekcan

Matematik, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Metin Gürses

Temmuz, 2005

İntegre edilebilir doğrusal olmayan kısmi türevli ve fark denklemlerinin bulun-

ması multi-soliton çözümler üzerindeki çalışmaları içerir. Multi-soliton çözüm

üretme metodlarından en ünlülerinden biri Hirota metodudur. Bu tezde, bu

metodu ayrıntısıyla anlatıyor ve bu metodu bazı örneklere uyguluyoruz.

Anahtar sözcükler : Hirota metodu, integre edilebilir sistemler, solitonlar, kesin

çözümler.
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Chapter 1

Introduction

A soliton is a solitary wave which preserves its well-defined shape after it col-

lides with another wave of the same kind. In the last 40 years there has been

important developments in the soliton theory. Solitons have been studied by

mathematicians, physicists and engineers for their applicability in physical appli-

cations (including plasmas, Josephson junctions, polyacetylene molecules etc.).

The first recorded observation of a solitary wave was made by J. Scott Russell

in 1834 on the Edinburgh-Glasgow channel. Russell’s experiments made him to

discover,

(i) the existence of solitary waves,

(ii) the speed ν of these waves which are given by

ν =
√

g(h + η) (1.1)

where η is the amplitude of the wave measured from the plane of the water,

h is the depth of the channel and g is the measure of gravity. He stated his

observations to the British Association in 1844 [1]. But some mathematicians

did not accept his results. In 1845, Airy wrote a formula for the speed of a wave

relating its height and amplitude and concluded that a solitary wave could not

exist in his article [2].
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CHAPTER 1. INTRODUCTION 2

In 1895, Korteweg and de Vries [3] derived an equation, the so-called KdV equa-

tion which describes shallow water waves where the existence of solitary waves

was verified mathematically.

In 1955, Fermi, Pasta and Ulam (FPU) decided to numerically solve Newton’s

equations of motion for a one-dimensional chain of identical masses attached

by nonlinear springs [4]. Their studies inspired Zabusky and Kruskal [5] and

they analyzed the KdV equation which had been arisen from the FPU problem.

They observed that the localized waves preserve their shape and momentum in

collisions. They called these waves ’solitons’.

By using the ideas of direct and inverse scattering, Gardner, Greene, Kruskal and

Miura [6] derived a method of solution for the KdV equation in 1967. In 1968,

the generalization of their results was made by Lax [7] and he introduced the

concept of a Lax pair.

In 1971, Ryogo Hirota published an article giving a new method called ’the Hi-

rota direct method’ to find the exact solution of the KdV equation for multiple

collisions of solitons [8]. In his successive articles, he dealt also with many other

nonlinear evolution equations such as the modified Korteweg-de Vries (mKdV)

[9], sine-Gordon (sG) [10], nonlinear Schrödinger (nlS) [11] and Toda lattice (Tl)

[12] equations. The first step of this method is to make suitable transformations

of nonlinear partial differential and difference equations which provide that the

equations are in quadratic form in dependent variables. This new form is called

’bilinear form’. To find such a transformation is not easy for some equations and

sometimes it requires the introduction of new dependent and sometimes even

independent variables.

As a second step we introduce a special differential operator called Hirota D-

operator which is used to write the bilinear form of the equation as a polynomial

of D-operator which we call the Hirota bilinear form. Unfortunately there is no

systematic way to construct the Hirota bilinear form for given nonlinear partial

differential and difference equations. In fact, some equations may not be written

in the Hirota bilinear form but perhaps in trilinear or multi-linear forms [13]. Here

we can conjecture that all completely integrable nonlinear partial differential and
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difference equations can be put into the Hirota bilinear form. On the other hand,

the converse is not true that is, there exist some equations which are not integrable

but have Hirota bilinear forms. We will give an example to such an equation in

this thesis.

The last step of the Hirota method is using the perturbation expansion, which

becomes finite as we will see, in the Hirota bilinear form and analyzing the coeffi-

cients of the perturbation parameter and its powers separately. At that point the

information we gained makes us to reach to multi-soliton solutions if the equation

is integrable.

The Hirota direct method has taken an important role in the study of integrable

systems. Most equations (even non-integrable ones) having Hirota bilinear form

possess automatically one- and two-soliton solutions. When we come to the three-

soliton solutions we come across a very restrictive condition. Actually this condi-

tion is not sufficient to search the integrability of an equation but it can be used

as a powerful tool for this purpose [14]. This condition was also used to produce

new integrable equations by Hietarinta in his articles, [15], [16], [17], [18].

The equations written in the Hirota bilinear form and having multi-soliton solu-

tions are called Hirota integrable. These equations are very good candidates to

be integrable. We know that another famous test for integrability is Painlevé test

which is based on whether the solutions of the equation are free from movable

critical singularities. For many years the Hirota direct method and Painlevé test

have been used together. There is no need to write the equations in their usual

nonlinear forms in order to test whether they have Painlevé property or not. We

can perform Painlevé analysis under the Hirota bilinear form [19]. The equations

that pass both tests are most probably integrable. Actually up to now, there is

no counter example to this fact.

In this thesis, in Chapter 2, we explained the Hirota direct method in detail.

We gave the necessary tools to apply this method. We introduced the Hirota D-

operator and wrote the bilinear form of nonlinear partial differential and difference

equations as polynomial of D-operator. We stated and proved the properties of

this polynomial. We explained the Hirota perturbation. Finally we gave the
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theorems and their proofs in order to find one-, two- and three-soliton solutions

of nonlinear partial differential and difference equations.

Starting from Chapter 3 to Chapter 8, we applied the Hirota direct method to the

several examples which we may separate them in two parts: the equations writ-

ten as a single Hirota bilinear equation which are the Korteweg-de Vries (KdV),

Kadomtsev-Pethviashvili (KP), extendend Kadomtsev-Pethviashvili (eKP), Toda

lattice (Tl) equations and the equations written as a pair of Hirota bilinear equa-

tions which are the modified Korteweg-de Vries (mKdV) and sine-Gordon (sG)

equations. We constructed one-, two- and three-soliton solutions of all of these

equations and additionally we gave N -soliton solutions of the KdV and mKdV

equations. We gave also lists of KdV-, mKdV- and sG-type equations.



Chapter 2

The Hirota Direct Method

In this chapter we give an introduction to the Hirota direct method. Let

F [u] = F (u, ux, ut, ...) = 0 be a nonlinear partial differential or difference equa-

tion. As the first step we transform F [u] to a quadratic form in the dependent

variables by using a transformation u = T [f(x, t, ...), g(x, t, ...)]. We call this new

form as the bilinear form of F [u]. We should note that for some equations we

may not find such a transformation. Another remark is that some integrable

equations like the Korteweg-de Vries (KdV), Kadomtsev-Pethviashvili (KP) and

Toda lattice (Tl) equations can be transformed to a single bilinear equation but

many of them like the modified Korteweg-de Vries (mKdV), sine-Gordon (sG),

and nonlinear Schrödinger (nlS) equations can only be written as combination

of bilinear equations. Now we introduce the Hirota D-operator which makes the

Hirota method very effective.

2.1 The Hirota D-Operator

Definition 2.1. Let S : Cn → C be a space of differentiable functions. Then the

Hirota D-operator D : S × S → S is defined as

[Dm1
x Dm2

t ...]{f.g} = [(∂x − ∂x′)
m1(∂t − ∂t′)

m2 ...]f(x, t, ...)

× g(x′, t′, ...)|x′=x,t′=t,... (2.1)

5



CHAPTER 2. THE HIROTA DIRECT METHOD 6

where mi, i = 1, 2, ... are positive integers and x, t, ... are independent variables.

We may also define the difference analogue of Hirota D-operator by the exponen-

tial identity,

eδDz{a(z).b(z)} =eδ∂y{a(z + y).b(z − y)}|y=0

=a(z + δ)b(z − δ)
(2.2)

where δ is a parameter. In this thesis this identity is used only for the Toda lattice

(Tl) equation. By using some sort of combination of the Hirota D-operator, we

try to write the bilinear form of F [u] as a polynomial of D-operator. We call this

polynomial P (D).

Definition 2.2. We say that nonlinear partial differential and difference equa-

tions can be written in the Hirota bilinear form if they are equivalent to
m∑

α,β=1

P η
αβ(D)fαfβ = 0, η = 1, ..., r (2.3)

for some m, r and linear operators P η
αβ(D), f i’s are new dependent variables.

Now let us state and prove some propositions and corollaries on P (D).

Proposition 2.3. Let P (D) act on two differentiable functions f and g. Then

we have

P (D){f.g} = P (−D){g.f}. (2.4)

Proof. We can simply take P (D) = Dm
x . The other combinations of D-operators

follow in same manner. We can write

P (D){f.g} = Dm
x {f.g}

=
m∑

k=0

(−1)k

(
m

k

)
f(m−k)xgkx

= fmxg −mf(m−1)xgx + ... + (−1)mfgmx

(2.5)

where the subscripts of the functions f and g define the order of the partial

derivatives with respect to x. Indeed,

P (D){f.g} = fmxg −mf(m−1)xgx + ... + (−1)mfgmx

= (−1)m[fgmx −mfxg(m−1)x... + (−1)m−1mf(m−1)xgx + (−1)mfmxg]

(2.6)
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which is equal to P (−D){g.f}. Hence P (D){f.g} = P (−D){g.f}. Note that

if m is a positive even integer, interchanging the functions does not change the

value of the Hirota bilinear equation.

Corollary 2.4. Let P (D) act on two differentiable functions f and g = 1, then

we have

P (D){f.1} = P (∂)f , P (D){1.f} = P (−∂)f. (2.7)

Proposition 2.5. Let P(D) act on two exponential functions eθ1 and eθ2 where

θi = kix + ... + riz + liy + αi and ki, ..., ri, li, αi are constants for i = 1, 2. Then

we have

P (D){eθ1 .eθ2} = P (k1 − k2, ..., r1 − r2, l1 − l2)e
θ1+θ2 . (2.8)

Proof. It is enough to consider P (D) = [Dm1
x ...Dmn−1

z Dmn
y ] where mi, i =

1, 2, ..., n are positive integers and x, ..., z, y are the independent variables. When

P (D) acts on the product of the exponential functions eθ1 and eθ2 where θi =

kix + ... + riz + liy + αi, i = 1, 2, we have

P (D){eθ1 .eθ2} =[Dm1
x ...Dmn−1

z Dmn
y ]{eθ1 .eθ2}

=(l1 − l2)
mn [Dm1

x ...Dmn−1
z ]{eθ1 .eθ2}

=(r1 − r2)
mn−1(l1 − l2)

mn [Dm1
x ...Dmn−2

r ]{eθ1 .eθ2}.
(2.9)

We continue this process until we apply all the Hirota D-operators to the expo-

nential functions. Finally we have

P (D){eθ1 .eθ2} =(k1 − k2)
m1 ...(r1 − r2)

mn−1(l1 − l2)
mneθ1+θ2

=P (k1 − k2, ..., r1 − r2, l1 − l2)e
θ1+θ2 .

(2.10)

This completes the proof. From now on, for a shorter notation we shall use

P (p1 − p2) instead of P (k1 − k2, ..., r1 − r2, l1 − l2).

Corollary 2.6. If we have a system such that P (D){a.a} = 0 where a is any

non-zero constant then by proposition 2.5 we have P (0, 0, ..., 0) = 0.

Remark 2.7. If we consider P (D){f.f}, we may assume P is even since

the odd terms cancel due to the antisymmetry of the D-operator i.e. we have

Dm1
x1

Dm2
x2

...Dmk
xk
{f.f} = 0 identically satisfied if

∑k
i=1 mi = odd. For instance, as

simple examples we clearly have
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Dx{f.f} = fxf − ffx = 0,

DtD
2
x{f.f} = fxxtf − fxxft − fxtfx + fxfxt − fxtfx + fxfxt + ftfxx − ffxxt = 0.

Let us now see the results of the application of the Hirota method to the following

examples:

Example 2.1. The Kadomtsev-Petviashvili (KP) Equation

The KP equation is

(ut − 6uux + uxxx)x + 3uyy = 0. (2.11)

The bilinearizing transformation for KP is

u(x, t, y) = −2∂2
x log f. (2.12)

The bilinear form of KP is

ffxt − fxft + 3f 2
xx + ffxxxx − 4fxfxxx + 3fyyf − 3f 2

y = 0. (2.13)

The Hirota bilinear form of KP is

(DxDt + D4
x + 3D2

y){f.f} = 0. (2.14)

For some equations, the Hirota bilinearization leads to more than one equation.

As an example we can give the modified Korteweg-de Vries (mKdV) equation.

Example 2.2. The Modified KdV (MKdV) Equation

The mKdV equation is

ut + 24u2ux + uxxx = 0. (2.15)

The bilinearizing transformation for mKdV is

u(x, t) =
gxf − gfx

g2 + f 2
. (2.16)

The combination of bilinear equations of mKdV is

− (g2 + f 2)(gtf − gft + gxxxf − 3gxxfx + 3gxfxx − gfxxx)

+ 6(fgx − gfx)(ffxx − f 2
x + ggxx − g2

x) = 0. (2.17)
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The Hirota bilinear form of mKdV is the pair

{
(D3

x + Dt){g.f} = 0,

D2
x{f.f + g.g} = 0.

(2.18)

2.2 The Hirota Perturbation and the Multi-

Soliton Solutions

Here we consider the nonlinear partial differential or difference equation F [u] = 0

whose Hirota bilinear form is in the form P (D){f.f} = 0 and we give the steps

involved in finding exact solutions of F [u] = 0 by using its Hirota bilinear form.

We shall use the perturbation expansions. For this purpose, let us write f =

f0 + εf1 + ε2f2 + ... where f0 is a constant, fm, m = 1, 2, ... are functions of x, t, ...

and so on. ε is a constant called the perturbation parameter. Without loss of

generality, we take f0 = 1. So the product f.f becomes

f.f = 1.1+ε(f1.1+1.f1)+ε2(f2.1+f1.f1+1.f2)+ε3(f3.1+f2.f1+f1.f2+1.f3)+....

(2.19)

Substituting this expression into P (D){f.f} = 0 and using the linearity of the

polynomial P (D), we get

P (D){f.f} = P (D){1.1}+ εP (D){f1.1 + 1.f1}+ ε2P (D){f2.1 + f1.f1 + 1.f2}
+ ε3P (D){f3.1 + f2.f1 + f1.f2 + 1.f3}+ ... = 0.

(2.20)

To satisfy this equation we make the coefficients of εm, m = 0, 1, 2, ... to vanish.

The coefficient of ε0 is trivially zero. From the coefficient of ε1 we have

P (D){f1.1 + 1.f1} = 2P (∂)f1 = 0. (2.21)

One of the solution of this equation is the exponential function. While we are

applying the Hirota direct method we take f1 as exponential function and so
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the other fi’s will also come as exponential functions. The effectiveness of the

Hirota direct method reveals at this point. Since we will write f as a polynomial of

exponential functions when we consider s-soliton solution of an equation F [u] = 0,

fj for all j ≥ s + 1 will be zero. So hereafter while we are constructing s-soliton

solution of an equation we will assume that fj = 0 for all j ≥ s + 1.

Theorem 2.8. Let u = T [f(x, t, ..., y)] be a bilinearizing transformation of a

nonlinear partial differential or difference equation F [u] = 0, which can be written

in the Hirota bilinear form P (D){f.f} = 0. Then one-soliton solution of this

equation is

u = T [f(x, t, ..., y)] = T [1 + eθ1 ] (2.22)

where θ1 = k1x + ω1t + ... + l1y + α1 with the constants k1, ω1, ..., l1 satisfying

P (k1, ω1, ..., l1) = P (p1) = 0.

Proof. In order to construct one-soliton solution of F [u] = 0 we take f = 1+εf1

where f1 = eθ1 with θ1 = k1x + ω1t + ... + l1y + α1. Note that we have fj = 0 for

all j ≥ 2. After inserting f into the equation (2.20), we make the coefficients of

εm, m = 0, 1, 2 to vanish. The coefficient of ε0 is

P (D){1.1} = P (0, 0, ..., 0){1} (2.23)

and it vanishes trivially by corollary 2.6. The corollary 2.4 makes the coefficient

of ε1 turns out to be

P (D){1.f1 + f1.1} =P (−∂)f1 + P (∂)f1

=2P (∂)eθ1 .
(2.24)

Equating the above equation to zero and using the proposition 2.5 we obtain

P (k1, ω1, ..., l1) = P (p1) = 0. This relation is called as the dispersion relation.

Since f2 = 0, the coefficient of ε2 becomes

P (D){1.f2 + f2.1}+ P (D){f1.f1} =P (D){eθ1 .eθ1}
=P (p1 − p1)e

2θ1

(2.25)

and it is identically zero. Without loss of generality, we may set ε = 1. So

f = 1 + eθ1 and one-soliton solution of F [u] = 0 is

u = T [f(x, t, ...)] = T [1 + eθ1 ] (2.26)
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where θ1 = k1x + ω1t + ... + l1y + α1 with the constants k1, ω1, ..., l1 satisfying

P (p1) = 0.

Theorem 2.9. Let u = T [f(x, t, ..., y)] be a bilinearizing transformation of a

nonlinear partial differential or difference equation F [u] = 0, which can be written

in the Hirota bilinear form P (D){f.f} = 0. Then two-soliton solution of this

equation is

u = T [f(x, t, ..., y)] = T [1 + eθ1 + eθ2 + A(1, 2)eθ1+θ2 ] (2.27)

where θi = kix + ωit + ... + liy + αi with the constants ki, ωi, ..., li satisfying

P (ki, ωi, ..., li) = P (pi) = 0, i = 1, 2 and A(1, 2) = −P (p1 − p2)

P (p1 + p2)
.

Proof. To construct two-soliton solution of F [u] = 0 we take f = 1 + εf1 + ε2f2

where f1 = eθ1 + eθ2 for θi = kix + ωit + ... + liy + αi, i = 1, 2 and fj = 0 for

all j ≥ 3. We shall discover what f2 is in the process of the method. After

inserting f into the equation (2.20), we make the coefficients of εm, m = 0, 1, ..., 4

to vanish. The coefficient of ε0

P (D){1.1} = P (0, 0, ..., 0){1} = 0 (2.28)

gives us no information. By the coefficient of ε1 which is

P (D){1.f1 + f1.1} = 2P (∂){eθ1 + eθ2} = 0 (2.29)

we get P (pi) = 0 for i = 1, 2. From the coefficient of ε2, we have

P (D){1.f2 + f2.1}+ P (D){f1.f1} = 2P (∂)f2 + P (D){(eθ1 + eθ2).(eθ1 + eθ2)}
= 2P (∂)f2 + 2P (D){eθ1 .eθ2}
= 2P (∂)f2 + 2P (p1 − p2)e

θ1+θ2 = 0.

(2.30)

Hence f2 should be of the form f2 = A(1, 2)eθ1+θ2 . If we put f2 in the above

equation, we get A(1, 2) as

A(1, 2) = −P (p1 − p2)

P (p1 + p2)
. (2.31)
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Since f3 = 0, the coefficient of ε3 becomes

−P (D){f1.f2 + f2.f1} = A(1, 2)[P (D){(eθ1 + eθ2).eθ1+θ2}+ P (D){eθ1+θ2 .(eθ1 + eθ2)}]
= A(1, 2)[P (D){(eθ1).(eθ1+θ2)}+ P (D){(eθ2).(eθ1+θ2)}]
= A(1, 2)[P (p2)e2θ1+θ2 + P (p1)eθ1+2θ2 ]

(2.32)

which is identically zero since P (pi) = 0, i = 1, 2. The coefficient of ε4 also

vanishes trivially. Thus f = 1 + eθ1 + eθ2 + A(1, 2)eθ1+θ2 and two-soliton solution

of F [u] = 0 is

u = T [f(x, t, ...)] = T [1 + eθ1 + eθ2 + A(1, 2)eθ1+θ2 ] (2.33)

where θi = kix + ωit + ... + liy + αi with the constants ki, ωi, ..., li satisfying

P (pi) = 0, i = 1, 2 and A(1, 2) = −P (p1 − p2)

P (p1 + p2)
.

Theorem 2.10. Let u = T [f(x, t, ..., y)] be a bilinearizing transformation of a

nonlinear partial differential or difference equation F [u] = 0, which can be written

in the Hirota bilinear form P (D){f.f} = 0. Then if F [u] = 0 satisfies the three-

soliton condition (3SC) which is

∑
σi=±1

P (σ1p1+σ2p2+σ3p3)P (σ1p1−σ2p2)P (σ2p2−σ3p3)P (σ3p3−σ1p1) = 0 (2.34)

with P (pi) = 0, i = 1, 2, 3 then its three-soliton solution is

u = T [f(x, t, ..., y)]

= T [1 + eθ1 + eθ2 + eθ3 + A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 + Beθ1+θ2+θ3 ]

(2.35)

where θi = kix + ωit + ... + liy + αi, i = 1, 2, 3. Here A(i, j) = −P (pi − pj)

P (pi + pj)
for

i, j = 1, 2, 3, i < j and B = A(1, 2)A(1, 3)A(2, 3).

Proof. To construct three-soliton solution of F [u] = 0 we take f = 1 + εf1 +

ε2f2 + ε3f3 where f1 = eθ1 + eθ2 + eθ3 for θi = kix + ωit + ... + liy + αi, i = 1, 2, 3.
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Note that fj = 0 for all j ≥ 4 . Now we insert f into the the equation (2.20) and

make the coefficients of εm, m = 0, 1, 2, ..., 6 to vanish. The coefficient of ε0 is

P (D){1.1} = P (0, 0, ..., 0){1} (2.36)

and it is trivially zero. From the coefficient of ε1 which is

P (D){1.f1 + f1.1} = 2P (∂){eθ1 + eθ2 + eθ3}
= 2[P (∂)eθ1 + P (∂)eθ2 + P (∂)eθ3 ] = 0

(2.37)

we have the dispersion relation P (pi) = 0, i = 1, 2, 3. From the coefficient of ε2

we get

−2P (∂)f2 = P (D){f1.f1} (2.38)

where f1.f1 = eθ1 .eθ1 + eθ2 .eθ2 + eθ3 .eθ3 +
∑

i,j=1,2,3

i6=j

eθi+θj . Inserting this expression

into the equation (2.38) we obtain

−2P (∂)f2 = 2[P (p1 − p2)e
θ1+θ2 + P (p1 − p3)e

θ1+θ3 + P (p2 − p3)e
θ2+θ3 ]. (2.39)

Hence f2 has the form f2 = A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 . After

substituting f2 into the equation (2.39), we find A(i, j) as

A(i, j) = −P (pi − pj)

P (pi + pj)
(2.40)

for i, j = 1, 2, 3, i < j. The coefficient of ε3 gives us

−2P (∂)f3 = P (D){f1.f2 + f2.f1}
= 2P (D){f1.f2}

(2.41)

where

P (D){f1.f2} = A(1, 2)P (D){eθ1 .eθ1+θ2 + eθ2 .eθ1+θ2 + eθ3 .eθ1+θ2}
+A(1, 3)P (D){eθ1 .eθ1+θ3 + eθ2 .eθ1+θ3 + eθ3 .eθ1+θ3}
+A(2, 3)P (D){eθ1 .eθ2+θ3 + eθ2 .eθ2+θ3 + eθ3 .eθ2+θ3}.

(2.42)

Hence

− P (∂)f3 = eθ1+θ2+θ3 [A(1, 2)P (p3 − p1 − p2) + A(1, 3)P (p2 − p1 − p3)

+ A(2, 3)P (p1 − p2 − p3)]. (2.43)
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Note that f3 should have the form f3 = Beθ1+θ2+θ3 . We determine B from the

above equation as

B = −A(1, 2)P (p3 − p1 − p2) + A(1, 3)P (p2 − p1 − p3) + A(2, 3)P (p1 − p2 − p3)
P (p1 + p2 + p3)

.

(2.44)

Since f4 = 0, the coefficient of ε4 becomes

P (D){f1.f3 + f3.f1 + f2.f2} = 2P (D){f1.f3}+ P (D){f2.f2} = 0 (2.45)

where P (D){f1.f3} and P (D){f2.f2} are simplified as

P (D){f1.f3} = B[P (p2+p3)e
2θ1+θ2+θ3+P (p1+p3)e

θ1+2θ2+θ3+P (p1+p2)e
θ1+θ2+2θ3 ],

(2.46)

P (D){f2.f2} = 2[A(1, 2)A(1, 3)P (p2 − p3)e
2θ1+θ2+θ3

+ A(1, 2)A(2, 3)P (p1 − p3)e
θ1+2θ2+θ3

+ A(1, 3)A(2, 3)P (p1 − p2)e
θ1+θ2+2θ3 ]. (2.47)

Hence when we use these in the equation (2.45) we get

e2θ1+θ2+θ3 [BP (p2 + p3) + A(1, 2)A(1, 3)P (p2 − p3)]

+ eθ1+2θ2+θ3 [BP (p1 + p3) + A(1, 2)A(2, 3)P (p1 − p3)]

+ eθ1+θ2+2θ3 [BP (p1 + p2) + A(1, 3)A(2, 3)P (p1 − p2)] = 0. (2.48)

To satisfy the above equation, the coefficients of the exponential terms should

vanish. So we find that

B = A(1, 2)A(1, 3)A(2, 3). (2.49)

Remember that when we are analyzing the coefficient of ε3, we have found another

expression for the coefficient B. To be consistent these expressions for B should

be equivalent i.e.

B =− A(1, 2)P (p3 − p1 − p2) + A(1, 3)P (p2 − p1 − p3) + A(2, 3)P (p1 − p2 − p3)

P (p1 + p2 + p3)

=A(1, 2)A(1, 3)A(2, 3).

(2.50)
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When we insert the formulas for A(1, 2), A(1, 3) and A(2, 3) in that equation, we

obtain a relation that is

P (p1 − p2)P (p1 + p3)P (p1 + p2)P (p3 − p1 − p2)

+ P (p1 − p3)P (p1 + p2)P (p2 + p3)P (p2 − p1 − p3)

+ P (p2 − p3)P (p1 + p2)P (p1 + p3)P (p1 − p2 − p3)

= P (p1 − p2)P (p1 − p3)P (p2 − p3)P (p1 + p2 + p3). (2.51)

By writing the above equation in a more appropriate form we can conclude that to

have three-soliton solution, nonlinear partial differential and difference equations

which have the Hirota bilinear form P (D){f.f} = 0 should satisfy the condition

which we call the three-soliton condition (3SC):

∑
σi=±1

P (σ1p1+σ2p2+σ3p3)P (σ1p1−σ2p2)P (σ2p2−σ3p3)P (σ3p3−σ1p1) = 0 (2.52)

with the dispersion relation P (pi) = 0, i = 1, 2, 3. An equation F [u] = 0 satisfying

(3SC) possesses three-soliton solution given by

u = T [(1+eθ1 +eθ2 +eθ3 +A(1, 2)eθ1+θ2 +A(1, 3)eθ1+θ3 +A(2, 3)eθ2+θ3 +Beθ1+θ2+θ3)]

(2.53)

where θi = kix + ωit + ... + liy + αi, i = 1, 2, 3. Here A(i, j) = −P (pi − pj)

P (pi + pj)
for

i, j = 1, 2, 3, i < j and B = A(1, 2)A(1, 3)A(2, 3).



Chapter 3

The Korteweg-de Vries (KdV)

Equation

In this chapter we see the application of the Hirota direct method to the Korteweg

de Vries (KdV) equation which is the first nonlinear partial differential equation

shown to be integrable by Kruskal et al [6]. It is also the first equation studied

by Hirota [8]. We construct one-, two-, three- and N-soliton solutions of KdV.

Finally we will give a list of KdV-type equations. KdV is given by

ut − 6uux + uxxx = 0. (3.1)

Step 1. Bilinearization: We use the transformation u(x, t) = −2∂2
x log f to

bilinearize KdV. So the bilinear form of KdV is

ffxt − fxft + ffxxxx − 4fxfxxx + 3f 2
xx = 0. (3.2)

Step 2. Transformation to the Hirota bilinear form: By using the Hirota-D

operator we try to write the bilinear form of KdV in the Hirota bilinear form.

Let us consider DtDx applied on the product f.f ,

DtDx{f.f} =

(
∂

∂t
− ∂

∂t′

)(
∂

∂x
− ∂

∂x′

)
{f(x, t).f(x′, t′)}|x′=x,t′=t

=fxtf + ffxt − ftfx − fxft

=2(ffxt − fxft).

(3.3)

16
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Note that these terms are the first two terms of the equation (3.2) multiplied by

two. Now consider D4
x.

D4
x{f.f} =

(
∂

∂x
− ∂

∂x′

)4

{f(x, t).f(x′, t′)}|x′=x,t′=t

=fxxxxf − 4fxxxfx + 6fxxfxx − 4fxfxxx + ffxxxx

=2(ffxxx − 4fxxxfx + 3f 2
xx).

(3.4)

Note that these terms are the last three terms of the equation (3.2) multiplied by

two. Hence we can write the equation (3.2) in the Hirota bilinear form

P (D){f.f} = (DxDt + D4
x){f.f} = 0. (3.5)

Step 3. Application of the Hirota perturbation: Insert f = 1 + εf1 + ε2f2 + ...

into the equation (3.5) so we have

P (D){f.f} = P (D){1.1}+ εP (D){f1.1 + 1.f1}+ ε2P (D){f2.1 + f1.f1 + 1.f2}
+ ε3P (D){f3.1 + f2.f1 + f1.f2 + 1.f3}+ ... = 0. (3.6)

3.1 One-Soliton Solution of KdV

To construct one-soliton solution of KdV as we discussed in Chapter 2, we take

f = 1+εf1 where f1 = eθ1 and θ1 = k1x+ω1t+α1. Note that fj = 0 for all j ≥ 2.

We insert f into the equation (3.6) and make the coefficients of εm, m = 0, 1, 2

to vanish. The coefficient of ε0 is P (D){1.1} = 0 since P (0, 0){1} = 0. By the

coefficient of ε1

P (D){1.f1 + f1.1} =P (∂)eθ1 + P (−∂)eθ1

=2P (p1)e
θ1 = 0

(3.7)

we have the dispersion relation P (p1) = 0 which implies ω1 = −k1
3. The coeffi-

cient of ε2 vanishes trivially since

P (D){f1.f1} = P (D){eθ1 .eθ1}
= P (p1 − p1)e

2θ1 = 0.
(3.8)

Finally without loss of generality we may set ε = 1 so f = 1+ eθ1 and one-soliton

solution of KdV is
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u(x, t) = − k2
1

2cosh2( θ1

2
)

(3.9)

where θ1 = k1x− k3
1t + α1.

3.2 Two-Soliton Solution of KdV

In order to construct two-soliton solution of KdV we take f = 1 + εf1 + ε2f2

where f1 = eθ1 + eθ2 with θi = kix + ωit + αi for i = 1, 2. We shall determine f2

later. Note that fj = 0 for all j ≥ 3. Now we insert f into the equation (3.6) and

make the coefficients of εm, m = 0, 1, ..., 4 to vanish. The coefficient of ε0 is

P (D){1.1} = P (0, 0){1} = 0. (3.10)

From the coefficient of ε1 we have

P (D){1.f1 + f1.1} =2P (∂){eθ1 + eθ2}
=2[P (∂)eθ1 + P (∂)eθ2 ] = 0

(3.11)

which implies P (pi) = k4
i + kiωi = 0 i.e. ωi = −k3

i for i = 1, 2. The coefficient of

ε2 becomes

P (D){1.f2 + f2.1}+ P (D){f1.f1} =2P (∂)f2 + P (D){(eθ1 + eθ2).(eθ1 + eθ2)}
=2[P (∂)f2 + P (D){eθ1 .eθ2}]
=2[P (∂)f2 + P (p1 − p2)e

θ1+θ2 ] = 0.

(3.12)

This makes f2 to have the form f2 = A(1, 2)eθ1+θ2 . If we put f2 in the above

equation we obtain A(1, 2) as

A(1, 2) = −P (p1 − p2)

P (p1 + p2)
=

(k1 − k2)
2

(k1 + k2)2
. (3.13)

Since f3 = 0, the coefficient of ε3 turns out to be

P (D){f1.f2 + f2.f1} =2A(1, 2)[P (D){(eθ1).(eθ1+θ2)}+ P (D){(eθ2).(eθ1+θ2)}]
=2A(1, 2)[P (p2)e

2θ1+θ2 + P (p1)e
θ1+2θ2 ]

(3.14)
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and this is already zero since P (pi) = 0, i = 1, 2. The coefficient of ε4 also

vanishes trivially. At last we may set ε = 1, thus f = 1 + eθ1 + eθ2 + A(1, 2)eθ1+θ2

and two-soliton solution of KdV is

u(x, t) = −2
{k2

1e
θ1 + k2

2e
θ2 + A(1, 2)(k2

2e
θ1 + k2

1e
θ2)eθ1+θ2 + 2(k1 − k2)

2eθ1+θ2}
(1 + eθ1 + eθ2 + A(1, 2)eθ1+θ2)2

,

(3.15)

where θi = kix− k3
i + αi, i = 1, 2 and A(1, 2) =

(k1 − k2)
2

(k1 + k2)2
.

3.3 Three-Soliton Solution of KdV

Here we take, f = 1 + εf1 + ε2f2 + ε3f3 where f1 = eθ1 + eθ2 + eθ3 and θi =

kix + ωit + αi for i = 1, 2, 3. Note that fj = 0 for all j ≥ 4. We insert f into the

equation (3.6) and make the coefficients of εm for m = 0, 1, ..., 6 to vanish. The

coefficient of ε0 is identically zero. By the coefficient of ε1 we have

P (D){1.f1 + f1.1} = 2P (∂){eθ1 + eθ2 + eθ3} = 0 (3.16)

and this gives P (pi) = 0 implying ωi = −k3
i for i = 1, 2, 3. From the coefficient

of ε2 we get the relation

−P (∂)f2 = [(k1 − k2)(ω1 − ω2) + (k1 − k2)
4]eθ1+θ2

+[(k1 − k3)(ω1 − ω3) + (k1 − k3)
4]eθ1+θ3

+[(k2 − k3)(ω2 − ω3) + (k2 − k3)
4]eθ2+θ3 .

(3.17)

We see that f2 should be of the form f2 = A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 +

A(2, 3)eθ2+θ3 . By inserting this form into the equation (3.17) we obtain A(i, j) as

A(i, j) = −P (pi − pj)

P (pi + pj)
=

(ki − kj)
2

(ki + kj)2
(3.18)

for i, j = 1, 2, 3, i < j. The coefficient of ε3 becomes

− P (∂){f3} = eθ1+θ2+θ3{A(1, 2)P (p3 − p2 − p1) + A(1, 3)P (p2 − p1 − p3)

+ A(2, 3)P (p1 − p2 − p3)}. (3.19)
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Hence f3 should be of the form f3 = Beθ1+θ2+θ3 . So the equation (3.19) gives

B = −A(1, 2)P (p3 − p1 − p2) + A(1, 3)P (p2 − p1 − p3) + A(2, 3)P (p1 − p2 − p3)
P (p1 + p2 + p3)

.

(3.20)

If we make all the simplifications by using ωi = −k3
i for i = 1, 2, 3 we see that the

above expression is equivalent to B = A(1, 2)A(1, 3)A(2, 3). Since f4 = 0 from

the coefficient of ε4 we have

P (D){f1.f3 + f3.f1 + f2.f2} = 0. (3.21)

After some calculations the equation (3.21) turns out to be

e2θ1+θ2+θ3 [BP (p2 + p3) + A(1, 2)A(1, 3)P (p2 − p3)]

+ eθ1+2θ2+θ3 [BP (p1 + p3) + A(1, 2)A(2, 3)P (p1 − p3)]

+ eθ1+θ2+2θ3 [BP (p1 + p2) + A(1, 3)A(2, 3)P (p1 − p2)] = 0. (3.22)

This is satisfied by B = A(1, 2)A(1, 3)A(2, 3). Finally the coefficients of ε5 and

ε6 also vanish automatically. We may also set ε = 1, therefore f = 1 + eθ1 +

eθ2 +eθ3 +A(1, 2)eθ1+θ2 +A(1, 3)eθ1+θ3 +A(2, 3)eθ2+θ3 +Beθ1+θ2+θ3 so three-soliton

solution of KdV is

u(x, t) = −2
L(x, t)

M(x, t)
(3.23)

where

L(x, t) = eθ1+θ2 [2(k1 − k2)2 + 2(k1 − k2)2A(1, 3)A(2, 3)e2θ3 + A(1, 2)k2
1e

θ2 + A(1, 2)k2
2e

θ1 ]

+ eθ1+θ3 [2(k1 − k3)2 + 2(k1 − k3)2A(1, 2)A(2, 3)e2θ2 + A(1, 3)k2
1e

θ3 + A(1, 3)k2
3e

θ1 ]

+ eθ2+θ3 [2(k2 − k3)2 + 2(k2 − k3)2A(1, 2)A(1, 3)e2θ1 + A(2, 3)k2
2e

θ3 + A(2, 3)k2
3e

θ2 ]

+ k2
1e

θ1 + k2
2e

θ2 + k2
3e

θ3 + Beθ1+θ2+θ3 [A(1, 2)k2
3e

θ1+θ2 + A(1, 3)k2
2e

θ1+θ3 + A(2, 3)k2
1e

θ2+θ3 ]

+ eθ1+θ2+θ3 [A(1, 2)(k2
1 + k2

2 + k2
3 + 2k1k2 − 2k1k3 − 2k2k3)

+ A(1, 3)(k2
1 + k2

2 + k2
3 + 2k1k3 − 2k1k2 − 2k2k3)

+ A(2, 3)(k2
1 + k2

2 + k2
3 + 2k2k3 − 2k1k2 − 2k1k3)

+ B(k2
1 + k2

2 + k2
3 + 2k1k2 + 2k1k3 + 2k2k3)]

(3.24)
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and

M(x, t) = [1 + eθ1 + eθ2 + eθ3 + A(1, 2)eθ1+θ2

+ A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 + Beθ1+θ2+θ3 ]2 (3.25)

for θi = kix − k3
i t + αi, A(i, j) =

(ki − kj)
2

(ki + kj)2
, i, j = 1, 2, 3, i < j and B =

A(1, 2)A(1, 3)A(2, 3).

3.4 N-Soliton Solution of KdV

The bilinear form of KdV is

ffxt − fxft + ffxxxx − 4fxfxxx + 3f 2
xx = 0. (3.26)

For N-soliton solution of KdV, we claim that f(x, t) takes the form

f(x, t) = 1 +
N∑

m=1

∑

NCm

A(i1, ..., im) exp(θi1 + ... + θim) (3.27)

where

A(i1, ..., im) =

(m)∏

l<j

A(l, j) , A(l, j) =
(kl − kj)

2

(kl + kj)2
. (3.28)

Here NCm indicates the summation over all possible combinations of m elements

from N and (m) indicates the product of all possible combinations of the m

elements with (l < j). Note that A(im) = 1 for m = 1, 2, ..., N . To prove our

claim we substitute the expression for f(x, t) into (3.26) and see whether it is

satisfied. Substitution of f(x, t) gives us some exponential terms. To satisfy

the bilinear form of KdV the coefficients of the exponential terms should vanish.

From these coefficients we get the relation
m∑

r=0

∑

mCr

A(i1, ..., ir)A(ir+1, ..., im)g(i1, ..., ir; ir+1, ..., im), m = 1, 2, ..., N, (3.29)

where

g(i1, ..., ir; ir+1, ..., im) = (−ki1 − ...− kir + kir+1 + ... + kim)

× [(−ki1 − ...− kir + kir+1 + ... + kim)3

− (−k3
i1 − ...− k3

ir + k3
ir+1

+ ... + k3
im)]. (3.30)
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For fixed m the equation (3.29) becomes

D(k1, ..., km) =
∑

σ1,...,σm=±1

b(σ1k1, ..., σmkm)g(σ1k1, ..., σmkm) = 0, (3.31)

where

b(σ1k1, ..., σmkm) =

(m)∏

l<j

(σlkl − σjkj)
2, (3.32)

and

g(σ1k1, ..., σmkm) = (σ1k1 + ... + σmkm)× [(σ1k1 + ... + σmkm)3

− ((σ1k1)
3 + ... + (σmkm)3)]. (3.33)

We will prove this identity by induction. Before that we state the following

properties of D(k1, ..., km) [8],

(i) D is a symmetric, homogeneous polynomial,

(ii) D is an even function of k1, ..., km,

(iii) If kl = kj we have

D(k1, ..., km) = 2(2kl)2D(k1, ..., kl−1, kl+1, ..., kj−1, kj+1, ..., kn)
m∏

s=1

′
(k2

l − k2
s)

2.

Here the prime indicates that the product does not include s = l and s = j. For

m = 1, the identity clearly holds since

D(k1) = (σ1k1)
2(σ1k1)[(σ1k1)

3 − (σ1k
3
1)] = 0. (3.34)

To understand the behavior of D, let us look also for m = 2. We have

D(k1, k2) =
∑

σ1,σ2=±1

(σ1k1 − σ2k2)
2(σ1k1 + σ2k2)[(σ1k1 + σ2k2)

3 − (σ1k
3
1 + σ2k

3
2)].

(3.35)

Hence

D(k1, k2) = (k1−k2)
2(k1+k2)[3k

2
1k2+3k1k

2
2]+(k1+k2)

2(k1−k2)[−3k2
1k2+3k1k

2
2]

+(k1−k2)
2(−k1−k2)[−3k2

1k2−3k1k
2
2]+(k1+k2)

2(−k1+k2)[3k
2
1k2−3k1k

2
2] = 0.

(3.36)
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Now assume that the identity holds for m − 2. By using the properties of

D(k1, ..., km) we see that it can be factored by
∏(m)

l<j (k
2
l − k2

j )
2 whose degree

is 2m(m−1). But the equation (3.31) shows that the degree of D is m(m−1)+4

which is smaller than 2m(m− 1) for m > 2. Since this is impossible, the identity

should hold for m. This completes the proof.

3.5 The KdV-type Equations

Here we will give a list of equations which can be written in the Hirota bilin-

ear form P (D){f.f} = 0 [20]. These equations are called the KdV-type equa-

tions. This list also includes their bilinearizing transformations and Hirota bilin-

ear forms.

(1) Lax fifth-order KdV equation

ut + 10(u3 +
1

2
u2

x + uuxx)x + uxxxxx = 0, (3.37)

u = 2∂2
x log f, (3.38)

[Dx(Dt + D5
x)−

5

3
Ds(Ds + D3

x)]{f.f} = 0, (3.39)

where f also satisfies the bilinear equation

Dx(Ds + D3
x){f.f} = 0, (3.40)

involving an auxiliary variable s.

(2) Sawada-Kotera equation

ut + 15(u3 + uuxx) + uxxxxx = 0, (3.41)

u = 2∂2
x log f, (3.42)

Dx(Dt + D5
x){f.f} = 0. (3.43)
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(3) Boussinesq equation

utt − uxx − 3(u2)xx − uxxxx = 0, (3.44)

u = 2∂2
x log f, (3.45)

(D2
t −D2

x −D4
x){f.f} = 0. (3.46)

(4) Model equations for shallow water waves

(i) ut − uxx − 4uut + 2ux

∫ ∞

x

uxdx′ + ux = 0, (3.47)

u = 2∂2
x log f, (3.48)

[Dx(Dt −DtD
2
x + Dx) +

1

3
Dt(Ds + D3

x)]{f.f} = 0, (3.49)

where f also satisfies the bilinear equation

Dx(Ds + D3
x){f.f} = 0, (3.50)

involving an auxiliary variable s.

(ii) ut − uxxt − 3uut + 3ux

∫ ∞

x

utdx′ + ux = 0, (3.51)

u = 2∂2
x log f, (3.52)

Dx(Dt −DtD
2
x + Dx){f.f} = 0. (3.53)

There are also the Kadomtsev-Petviashvili (KP) and Toda lattice (Tl) equations

in this list but we will analyze them separately in the following chapters.



Chapter 4

The Kadomtsev-Petviashvili

(KP) Equation

In this chapter, we apply the Hirota method to the Kadomtsev-Petviashvili (KP)

equation, which is a KdV-type equation, in order to find one-, two- and three-

soliton solutions of it. We also consider the extended Kadomtsev-Petviashvili

(eKP) equation which is constructed by adding some terms to the KP equa-

tion. The eKP equation shows the applicability of Hirota’s method to the non-

integrable partial differential equations. KP is given by

(ut − 6uux + uxxx)x + 3uyy = 0. (4.1)

Step 1. Bilinearization: We use the transformation u(x, t, y) = −2∂2
x log f to

bilinearize the KP equation. The bilinear form of KP is

ffxt − fxft + ffxxxx − 4fxfxxx + 3f 2
xx + 3fyyf − 3f 2

y = 0. (4.2)

Step 2. Transformation to the Hirota bilinear form: The Hirota bilinear form of

KP is

P (D){f.f} = (DtDx + D4
x + 3D2

y){f.f} = 0. (4.3)

Step 3. Application of the Hirota perturbation: We insert f = 1+ εf1 + ε2f2 + ...

25
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into the equation (4.3) so we have

P (D){f.f} = P (D){1.1}+ εP (D){f1.1 + 1.f1}+ ε2P (D){f2.1 + f1.f1 + 1.f2}
+ ε3P (D){f3.1 + f2.f1 + f1.f2 + 1.f3}+ ... = 0. (4.4)

4.1 One-Soliton Solution of KP

To construct one-soliton solution of KP we take f = 1 + εf1 where f1 = eθ1 and

θ1 = k1x + ω1t + l1y + α1. Note that fj = 0 for all j ≥ 2. We insert f into the

equation (4.4) and make the coefficients of the εm, m = 0, 1, 2 to vanish. Here let

us only consider ε1 since the others vanish trivially. By the coefficient of ε1

P (D){1.f1 + f1.1} = 2P (∂)eθ1 = 0 (4.5)

we have P (p1) = 0 which implies ω1 = −k4
1 + 3l21

k1

. Without loss of generality we

may set ε = 1 so f = 1 + eθ1 and one-soliton solution of KP is

u(x, t, y) = − k2
1

2cosh2( θ1

2
)

(4.6)

where θ1 = k1x− (
k4

1 + 3l21
k1

)t + l1y + α1.

4.2 Two-Soliton Solution of KP

In order to construct two-soliton solution of KP we take f = 1+ εf1 + ε2f2 where

f1 = eθ1 + eθ2 with θi = kix + ωit + liy + αi for i = 1, 2. Note that fj = 0 for

all j ≥ 3. We insert f into the equation (4.4) and make the coefficients of εm,

m = 0, 1, ..., 4 to vanish. We shall only examine the nontrivial ones which are the

coefficients of ε1 and ε2. From the coefficient of ε1

P (D){1.f1 + f1.1} = 2P (∂){eθ1 + eθ2} = 0 (4.7)
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we get P (pi) = k4
i +kiωi +3l2i = 0 which implies ωi = −k4

i + 3l2i
ki

for i = 1, 2. The

coefficient of ε2 is

P (D){1.f2 + f2.1}+ P (D){f1.f1} =2P (∂)f2 + P (D){eθ1 .eθ2 + eθ2 .eθ1}
=2P (∂)f2 + 2P (p1 − p2)e

θ1+θ2 = 0.
(4.8)

Hence we obtain

P (∂)f2 = −P (p1 − p2)e
θ1+θ2 (4.9)

which makes f2 to have the form f2 = A(1, 2)eθ1+θ2 . If we put f2 in the above

equation and use k4
i + kiωi + 3l2i = 0 for i = 1, 2, we obtain A(1, 2) as

A(1, 2) = −P (p1 − p2)

P (p1 + p2)
=

k1ω2 + k2ω1 + 4k3
1k2 − 6k2

1k
2
2 + 4k1k

3
2 + 6l1l2

k1ω2 + k2ω1 + 4k3
1k2 + 6k2

1k
2
2 + 4k1k3

2 + 6l1l2
. (4.10)

We may set ε = 1, thus f = 1 + eθ1 + eθ2 + A(1, 2)eθ1+θ2 and two-soliton solution

of KP is

u =
−2{k2

1e
θ1 + k2

2e
θ2 + [(k1 − k2)2 + A(1, 2)((k1 + k2)2 + k2

1e
θ2 + k2

2e
θ1)]eθ1+θ2}

(1 + eθ1 + eθ2 + A(1, 2)eθ1+θ2)2
(4.11)

where θi = kix− k4
i + 3l2i

ki

t + liy + αi, i = 1, 2 and A(1, 2) is as given in (4.10).

4.3 Three-Soliton Solution of KP

Now in a similar way we construct three-soliton solution of KP. We take f =

1 + εf1 + ε2f2 + ε3f3 where f1 = eθ1 + eθ2 + eθ3 with θi = kix + ωit + liy + αi

for i = 1, 2, 3 and insert it into (4.4). Note that fj = 0 for all j ≥ 4. Here

let us consider only the coefficients of εm, m = 1, 2, 3, 4, since others vanish

automatically. From the coefficient of ε1

P (D){1.f1 + f1.1} = 2P (∂){eθ1 + eθ2 + eθ3} = 0 (4.12)
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we obtain P (pi) = 0 which implies ωi = −k4
i + 3l2i

ki

for i = 1, 2, 3. By the

coefficient of ε2 we have

−P (∂)f2 = [(k1 − k2)
4 + (k1 − k2)(ω1 − ω2) + 3(l1 − l2)

2]eθ1+θ2

+[(k1 − k3)
4 + (k1 − k3)(ω1 − ω3) + 3(l1 − l3)

2]eθ1+θ3

+[(k2 − k3)
4 + (k2 − k3)(ω2 − ω3) + 3(l2 − l3)

2]eθ2+θ3 .

(4.13)

We see that f2 should be of the form f2 = A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 +

A(2, 3)eθ2+θ3 . We put f2 into the equation (4.13) and use k4
i + kiωi + 3l2i = 0

for i = 1, 2, 3 we get A(i, j) where i, j = 1, 2, 3, i < j as

A(i, j) = −P (pi − pj)

P (pi + pj)
=

kiωj + kjωi + 4k3
i kj − 6k2

i k
2
j + 4kik

3
j + 6lilj

kiωj + kjωi + 4k3
i kj + 6k2

i k
2
j + 4kik3

j + 6lilj
. (4.14)

From the coefficient of ε3 we get

P (∂){f3} = −[A(1, 2)P (p3 − p2 − p1) + A(1, 3)P (p2 − p1 − p3)

+ A(2, 3)P (p1 − p2 − p3)]e
θ1+θ2+θ3 . (4.15)

Hence f3 is in the form f3 = Beθ1+θ2+θ3 . If we insert f3 into the above equation

we find that

B = −A(1, 2)P (p3 − p1 − p2) + A(1, 3)P (p2 − p1 − p3) + A(2, 3)P (p1 − p2 − p3)
P (p1 + p2 + p3)

.

(4.16)

Since f4 = 0 the coefficient of ε4 gives us

e2θ1+θ2+θ3 [BP (p2 + p3) + A(1, 2)A(1, 3)P (p2 − p3)]

+ eθ1+2θ2+θ3 [BP (p1 + p3) + A(1, 2)A(2, 3)P (p1 − p3)]

+ eθ1+θ2+2θ3 [BP (p1 + p2) + A(1, 3)A(2, 3)P (p1 − p2)] = 0 (4.17)

which is satisfied when

B = A(1, 2)A(1, 3)A(2, 3). (4.18)

The consistency is not destroyed since after some calculations we see that the

equations (4.16) and (4.18) are equal to each other. We may set ε = 1, hence
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f = 1 + eθ1 + eθ2 + eθ3 + A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 + Beθ1+θ2+θ3

and three-soliton solution of KP is

u(x, t, y) = −2
L(x, t, y)

M(x, t, y)
(4.19)

where

L(x, t, y) = k2
1e

θ1 + k2
2e

θ2 + k2
3e

θ3 + e2θ1+θ2+θ3 [A(1, 2)A(1, 3)(k2 − k3)2 + B(k2 + k3)2]

+ eθ1+θ2+2θ3 [A(1, 3)A(2, 3)(k1 − k2)2 + B(k1 + k2)2]

+ eθ1+2θ2+θ3 [A(1, 2)A(2, 3)(k1 − k3)2 + B(k1 + k3)2]

+ eθ1+θ2 [(k1 − k2)2 + A(1, 2)(k2
1e

θ2 + k2
2e

θ1 + (k1 + k2)2)]

+ eθ1+θ3 [(k1 − k3)2 + A(1, 3)(k2
1e

θ3 + k2
3e

θ1 + (k1 + k3)2)]

+ eθ2+θ3 [(k2 − k3)2 + A(2, 3)(k2
2e

θ3 + k2
3e

θ2 + (k2 + k3)2)]

+ eθ1+θ2+θ3 [A(1, 2)(k2
1 + k2

2 + k2
3 + 2k1k2 − 2k1k3 − 2k2k3)

+ A(1, 3)(k2
1 + k2

2 + k2
3 + 2k1k3 − 2k1k2 − 2k2k3)

+ A(2, 3)(k2
1 + k2

2 + k2
3 + 2k2k3 − 2k1k2 − 2k1k3)

+ B(k2
1 + k2

2 + k2
3 + 2k1k2 + 2k1k3 + 2k2k3)]

+ Beθ1+θ2+θ3 [A(1, 2)k2
3e

θ1+θ2 + A(1, 3)k2
2e

θ1+θ3 + A(2, 3)k2
1e

θ2+θ3 ]

(4.20)

and

M(x, t, y) = [1 + eθ1 + eθ2 + eθ3 + A(1, 2)eθ1+θ2

+ A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 + Beθ1+θ2+θ3 ]2 (4.21)

for θi = kix − k4
i + 3l2i

ki

t + liy + αi, i = 1, 2, 3, A(i, j), i, j = 1, 2, 3, i < j as in

(4.14) and B = A(1, 2)A(1, 3)A(2, 3).

4.4 The Extended Kadomtsev-Petviashvili (EKP)

Equation (A non-integrable case)

Theorem 4.1. The extended Kadomtsev-Pethviashvili (eKP) equation is

(ut − 6uux + uxxx)x + 3uyy + γutt + βuty = 0 (4.22)
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which is constructed by adding two terms γutt and βuty to the KP equation where

γ and β are non-zero constants, is integrable (transformable to the KP equation)

if the relation γ = β2/12 holds. Otherwise it is not integrable.

Proof. We know that for a nonlinear partial differential equation, satisfying

the three-soliton condition given in (2.34) is not sufficient but necessary to be

integrable. As we will see while we are searching for three-soliton solution of

eKP, it should satisfy the condition γ = β2/12. Indeed eKP is equivalent to KP

under this condition since by the transformation

ũ =u,

t̃ =t + ay,

x̃ =x,

ỹ =y,

(4.23)

where a = −β

6
=

√
γ

3
we reach to KP, which is an integrable equation. Now we

will apply the Hirota direct method to eKP.

Step 1. Bilinearization: We use the bilinearizing transformation u(x, t, y) =

−2∂2
x log f so the bilinear form of eKP is

ftxf − ftfx + fxxxxf − 4fxfxxx + 3f 2
xx + 3fyyf − 3f 2

y +

γfftt − γf 2
t + βftyf − βftfy = 0. (4.24)

Step 2. Transformation to the Hirota bilinear form: The Hirota bilinear form of

eKP is

P (D){f.f} = (DtDx + D4
x + 3D2

y + γD2
t + βDtDy){f.f} = 0. (4.25)

Step 3. Application of the Hirota perturbation: Insert f = 1 + εf1 + ε2f2 + ...

into the equation (4.25) so we have

P (D){f.f} = P (D){1.1}+ εP (D){f1.1 + 1.f1}+ ε2P (D){f2.1 + f1.f1 + 1.f2}
+ ε3P (D){f3.1 + f2.f1 + f1.f2 + 1.f3}+ ... = 0. (4.26)
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4.4.1 One-Soliton Solution of EKP

To construct one-soliton solution of eKP, we take f = 1+εf1 where f1 = eθ1 with

θ1 = k1x + ω1t + l1y + α1 and insert f into the equation (4.26). Note that fj = 0

for all j ≥ 2. Now let us consider only the coefficient of ε1 since the others are

trivially zero. From the coefficient of ε1

P (D){1.f1 + f1.1} = 2P (∂)eθ1 = 0 (4.27)

we have P (p1) = k4
1 + k1ω1 + 3l21 + γω2

1 + βω1l1 = 0. We may set ε = 1 so

f = 1 + eθ1 . Thus one-soliton solution of eKP is

u(x, t, y) = − k2
1

2cosh2( θ1

2
)

(4.28)

where θ1 = k1x + ω1t + l1y + α1 with the constants k1, ω1 and l1 satisfying

k4
1 + k1ω1 + 3l21 + γω2

1 + βω1l1 = 0.

4.4.2 Two-Soliton Solution of EKP

In order to construct two-soliton solution of eKP we take f = 1+εf1+ε2f2 where

f1 = eθ1 + eθ2 for θi = kix + ωit + liy + αi, i = 1, 2 and fj = 0 for all j ≥ 3. The

function f2 shall be determined later. We insert f into (4.26) and analyze only

the coefficients of εm, m = 1, 2 since the others vanish automatically. From the

coefficient of ε1, we have

P (D){1.f1 + f1.1} = P (∂){eθ1 + eθ2} = 0 (4.29)

which implies P (pi) = kiωi + k4
i + 3l2i + γω2

i + βωili = 0 for i = 1, 2. From the

coefficient of ε2 we get

P (∂)f2 + P (D){eθ1 .eθ2} = P (∂)f2 + P (p1 − p2)e
θ1+θ2 = 0. (4.30)

Hence f2 should have the form f2 = A(1, 2)eθ1+θ2 . By substituting f2 into (4.30),

we obtain A(1, 2) as

A(1, 2) =
β(ω1l2 + ω2l1) + 2γω1ω2 + k1(ω2 + 4k3

2) + k2(ω1 + 4k3
1)− 6k2

1k
2
2 + 6l1l2

β(ω1l2 + ω2l1) + 2γω1ω2 + k1(ω2 + 4k3
2) + k2(ω1 + 4k3

1) + 6k2
1k

2
2 + 6l1l2

.

(4.31)
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Finally, we may set ε = 1 so f = 1 + eθ1 + eθ2 + A(1, 2)eθ1+θ2 and two-soliton

solution of eKP is

u =
−2{k2

1e
θ1 + k2

2e
θ2 + [(k1 − k2)

2 + A(1, 2)((k1 + k2)
2 + k2

1e
θ2 + k2

2e
θ1)]eθ1+θ2}

(1 + eθ1 + eθ2 + A(1, 2)eθ1+θ2)2

(4.32)

where θi = kix+ωit+ liy +αi satisfying kiωi + k4
i +3l2i + γω2

i +βωili = 0 i = 1, 2

and A(1, 2) is as given in (4.31).

4.4.3 Three-Soliton-like Solution of EKP

Trying to construct three-soliton solution of eKP we take f = 1+εf1+ε2f2+ε3f3

where f1 = eθ1 + eθ2 + eθ3 with θi = kix + ωit + liy + αi for i = 1, 2, 3 and insert

it into (4.26). Note that fj = 0 for all j ≥ 4. Now we will only consider the

coefficients of εm, m = 1, 2, 3, 4. By the coefficient of ε1

P (D){1.f1 + f1.1} = 2P (∂){eθ1 + eθ2 + eθ3} = 0 (4.33)

we have

P (pi) = kiωi + k4
i + 3l2i + γω2

i + βωili = 0 (4.34)

for i = 1, 2, 3. From the coefficient of ε2 we get

− P (∂)f2 =

(3)∑
i<j

[(ki − kj)(ωi − ωj) + (ki − kj)
4 + 3(li − lj)

2

+ γ(ωi − ωj)
2 + β(ωi − ωj)(li − lj)e

θi+θj ] (4.35)

where (3) indicates the summation of all possible combinations of the three

elements with (i < j). Thus f2 should be in the form f2 = A(1, 2)eθ1+θ2 +

A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 to satisfy the equation. We insert f2 into the equa-

tion (4.35) and use kiωi + k4
i + 3l2i + γω2

i + βωili = 0 for i = 1, 2, 3 we get A(i, j)

where i, j = 1, 2, 3, i < j as

A(i, j) =
β(ωilj + ωjli) + 2γωiωj + ki(ωj + 4k3

j ) + kj(ωi + 4k3
i )− 6k2

i k
2
j + 6lilj

β(ωilj + ωjli) + 2γωiωj + ki(ωj + 4k3
j ) + kj(ωi + 4k3

i ) + 6k2
i k

2
j + 6lilj

.

(4.36)



CHAPTER 4. THE KADOMTSEV-PETVIASHVILI (KP) EQUATION 33

From the coefficient of ε3 we obtain

P (∂){f3} = −[A(1, 2)P (p3 − p2 − p1) + A(1, 3)P (p2 − p1 − p3)

+ A(2, 3)P (p1 − p2 − p3)]e
θ1+θ2+θ3 . (4.37)

Hence f3 is in the form f3 = Beθ1+θ2+θ3 where B is found as

B = −A(1, 2)P (p3 − p1 − p2) + A(1, 3)P (p2 − p1 − p3) + A(2, 3)P (p1 − p2 − p3)
P (p1 + p2 + p3)

.

(4.38)

Since f4 = 0 the coefficient of ε4 gives us

e2θ1+θ2+θ3 [BP (p2 + p3) + A(1, 2)A(1, 3)P (p2 − p3)]

+ eθ1+2θ2+θ3 [BP (p1 + p3) + A(1, 2)A(2, 3)P (p1 − p3)]

+ eθ1+θ2+2θ3 [BP (p1 + p2) + A(1, 3)A(2, 3)P (p1 − p2)] = 0 (4.39)

which is satisfied when

B = A(1, 2)A(1, 3)A(2, 3). (4.40)

The two expressions (4.38) and (4.40) should be equivalent

B =− A(1, 2)P (p3 − p1 − p2) + A(1, 3)P (p2 − p1 − p3) + A(2, 3)P (p1 − p2 − p3)

P (p1 + p2 + p3)

=A(1, 2)A(1, 3)A(2, 3),

(4.41)

in fact which means eKP should satisfy the three-soliton condition for KdV-type

equations given in (2.34). After long calculations we see that this three-soliton

solution condition is satisfied when γ = β2/12 as it is stated in the theorem 4.1

and this makes eKP transformable to KP. Even if we do not have this relation

between γ and β, we construct exact solution of eKP. The equation (4.41) can be

considered as a constraint on the arbitrary constants γ, β, ki, li and ωi, i = 1, 2, 3

which are satisfying the relation (4.34). Hence by using these relations, among

eleven variables we have seven independent left. Due to this last condition the

solutions we obtain are not called ’solitonic’ solutions, but they constitute exact

solutions of eKP.



Chapter 5

The Toda Lattice (TL) Equation

In this chapter, we see the application of the Hirota direct method to a nonlinear

partial difference equation. We give the construction of one-, two- and three-

soliton solutions of the Toda lattice (Tl) equation which is also a KdV-type

equation. The Tl equation is given by

d2

dt2
log(1 + Vn(t)) = Vn+1(t) + Vn−1(t)− 2Vn(t). (5.1)

Step 1. Bilinearization: By using the transformation

Vn(t) =
d2

dt2
log fn (5.2)

in (5.1) we get the bilinear form of Tl as

f̈nfn − 2(ḟn)2 − fn−1fn+1 + f 2
n = 0 (5.3)

where ḟn =
d

dt
fn and f̈n =

d2

dt2
fn.

Step 2. Transformation to the Hirota bilinear form: The Hirota bilinear form of

Tl is

(D2
t − 4 sinh2(

1

2
Dn)){fn.fn} = 0, (5.4)

where

D2
t {fn.fn} = 2(f̈nfn − 2(ḟn)2), (5.5)

34
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and

4 sinh2(
1

2
Dn){fn.fn} =4(

e
Dn
2 − e−

Dn
2

2
)2{fn.fn′}|n=n′

=(eDn − 2 + e−Dn){fn.fn′}|n=n′

=2(fn−1fn+1 − f 2
n).

(5.6)

The above form of the Hirota D-operator is new to us. But when we analyze

Q(D) = sinh2(δDn), δ is a parameter, by using the exponential form of the

function sinh and the identity (2.2), we see that it is an even polynomial of

D-operator satisfying all properties given in section 2.1.

Step 3. Application of the Hirota perturbation: Similar to before we insert

fn = 1 + εf
(1)
n + ε2f

(2)
n + ... into the equation (5.4) so we have

P (D){fn.fn} =P (D){1.1}+ εP (D){f (1)
n .1 + 1.f (1)

n }
+ ε2P (D){f (2)

n .1 + f (1)
n .f (1)

n + 1.f (2)
n }

+ ε3P (D){f (3)
n .1 + f (2)

n .f (1)
n + f (1)

n .f (2)
n + 1.f (3)

n }+ ... = 0.

(5.7)

5.1 One-Soliton Solution of TL

In order to construct one-soliton solution of Tl we take fn = 1 + εf
(1)
n where

f
(1)
n = eθ

(1)
n for θ

(1)
n = ω1t + κ1n + α1 and f

(j)
n = 0 for all j ≥ 2. We insert f into

the equation (5.7) and provide that the coefficients of εm, m = 0, 1, 2 are zero.

The coefficient of ε0 vanishes trivially since

P (D){1.1} =(D2
t − eDn + 2− e−Dn){1.1}

=0− 1 + 2− 1 = 0.
(5.8)

From the coefficient of ε1, we have

P (D){f (1)
n .1 + 1.f (1)

n } =2P (∂)f (1)
n

=2[ω2
1 − 4 sinh2(

κ1

2
)]eθ

(1)
n = 0.

(5.9)

Hence we obtain P (p1) = 0 which implies ω1 = ξl2 sinh(
κ1

2
) where ξl = 1 or −1.

The coefficient of ε2 becomes zero since

P (D){eθ
(1)
n .eθ

(1)
n } =(ω1 − ω1)

2 − 4 sinh2(
κ1 − κ1

2
) = 0. (5.10)
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Without loss of generality we may take ε = 1, hence fn = 1 + eθ
(1)
n and so one-

soliton solution of Tl is

Vn(t) =
4 sinh2(κ1

2
)eθ

(1)
n

(1 + eθ
(1)
n )2

(5.11)

where θ
(1)
n = ξl2 sinh(κ1

2
)t + κ1n + α1 for ξl = 1 or −1.

5.2 Two-Soliton Solution of TL

Here we take fn = 1+εf
(1)
n +ε2f

(2)
n where f

(1)
n = eθ

(1)
n +eθ

(2)
n for θ

(i)
n = ωit+κin+αi,

i = 1, 2. The function f
(2)
n shall be determined later. Note that f

(j)
n = 0 for all

j ≥ 3. We insert fn into (5.7) and make the coefficients of εm, m = 0, 1, ..., 4 to

vanish appeared in the Hirota perturbation. The coefficient of ε0 is identically

zero. From the coefficient of ε1 we have

P (D){f (1)
n .1 + 1.f (1)

n } =2P (∂){eθ
(1)
n + eθ

(2)
n }

=2[
2∑

i=1

(ω2
i − 4 sinh2(

κi

2
))e2θ

(i)
n ] = 0

(5.12)

so we get the dispersion relation P (pi) = 0 implying ωi = ξl2 sinh(
κi

2
), i = 1, 2

for ξl = 1 or −1. The coefficient of ε2 becomes

P (D){f (2)
n .1 + 1.f (2)

n + f (1)
n .f (1)

n } =2P (∂)f (2)
n + 2P (D){eθ

(1)
n .eθ

(2)
n }

=2P (∂)f (2)
n + 2P (p1 − p2)e

θ
(1)
n +θ

(2)
n = 0.

(5.13)

To satisfy the above equation f
(2)
n should have the form f

(2)
n = A(1, 2)eθ

(1)
n +θ

(2)
n . If

we insert f
(2)
n into (5.13), we obtain A(1, 2) as

A(1, 2) = −P (p1 − p2)

P (p1 + p2)
= −(ω1 − ω2)

2 − 4 sinh2(κ1−κ2

2
)

(ω1 + ω2)2 − 4 sinh2(κ1+κ2

2
)
. (5.14)

Since f
(3)
n = 0, the coefficient of ε3 turns out to be

P (D){f (1)
n .f (2)

n + f (2)
n .f (1)

n } =2A(1, 2)[P (D){eθ
(1)
n .eθ

(1)
n +θ

(2)
n + eθ

(2)
n .eθ

(1)
n +θ

(2)
n }]

=2A(1, 2)[P (p2)e
2θ

(1)
n +θ

(2)
n + P (p1)e

θ
(1)
n +2θ

(2)
n ]

(5.15)
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and this is already zero since P (pi) = 0, i = 1, 2. The coefficient of ε4 also vanishes

automatically. Hence by setting ε = 1 we have fn = 1+eθ
(1)
n +eθ

(2)
n +A(1, 2)eθ

(1)
n +θ

(2)
n

and two-soliton solution of Tl is

Vn(t) =
L(t)

M(t)
, (5.16)

where

L(t) = 4{[A(1, 2)(sinh(
κ1

2
) + sinh(

κ2

2
))2 + (sinh(

κ1

2
)− sinh(

κ2

2
))2]eθ

(1)
n +θ

(2)
n

+sinh2(
κ1

2
)eθ

(1)
n +sinh2(

κ2

2
)eθ

(2)
n +A(1, 2)[sinh2(

κ1

2
)eθ

(1)
n +2θ

(2)
n +sinh2(

κ2

2
)e2θ

(1)
n +θ

(2)
n ]}
(5.17)

and

M(t) = (1 + eθ
(1)
n + eθ

(2)
n + A(1, 2)eθ

(1)
n +θ

(2)
n )2 (5.18)

for θ(i)
n = ξl2 sinh(

κi

2
)t + κin + αi, i = 1, 2 with ξl = 1 or −1 and A(1, 2) is as

given in (5.14).

5.3 Three-Soliton Solution of TL

To construct three-soliton solution of Tl we take f = 1 + εf
(1)
n + ε2f

(2)
n + ε3f

(3)
n

where f
(1)
n = eθ

(1)
n + eθ

(2)
n + eθ

(3)
n , for θ

(i)
n = ωit + κin + αi, i = 1, 2, 3 and substitute

it into (5.7). Note that f
(j)
n = 0 for all j ≥ 4. As we did before we provide that

the coefficients of εm, m = 0, 1, ..., 6 are zero. The coefficient of ε0 is identically

zero. From the coefficient of ε1 we have

P (D){f (1)
n .1 + 1.f (1)

n } = 2P (D){eθ
(1)
n + eθ

(2)
n + eθ

(3)
n } = 0 (5.19)

which implies P (pi) = 0 so ωi = ξl2 sinh(
κi

2
), i = 1, 2, 3 for ξl = 1 or −1. By the

coefficient of ε2 we get

−P (∂)f (2)
n = [(ω1 − ω2)

2 − 4 sinh2(
κ1 − κ2

2
)]eθ

(1)
n +θ

(2)
n

+[(ω1 − ω3)
2 − 4 sinh2(

κ1 − κ3

2
)]eθ

(1)
n +θ

(3)
n

+[(ω2 − ω3)
2 − 4 sinh2(

κ2 − κ3

2
)]eθ

(2)
n +θ

(3)
n .

(5.20)
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To satisfy the above equation f
(2)
n has to be in the form f

(2)
n = A(1, 2)eθ

(1)
n +θ

(2)
n +

A(1, 3)eθ
(1)
n +θ

(3)
n + A(2, 3)eθ

(2)
n +θ

(3)
n . We insert f

(2)
n into the equation (5.20) and we

obtain A(i, j) as

A(i, j) = −P (pi − pj)

P (pi + pj)
= −(ωi − ωj)

2 − 4 sinh2(
κi−κj

2
)

(ωi + ωj)2 − 4 sinh2(
κi+κj

2
)

(5.21)

for i, j = 1, 2, 3, i < j. The coefficient of ε3 gives

−P (∂){f (3)
n } =P (D){f (1)

n .f (2)
n }

={A(1, 2)P (p3 − p2 − p1) + A(1, 3)P (p2 − p1 − p3)

+ A(2, 3)P (p1 − p2 − p3)}eθ
(1)
n +θ

(2)
n +θ

(3)
n .

(5.22)

Thus f
(3)
n is in the form f

(3)
n = Beθ

(1)
n +θ

(2)
n +θ

(3)
n . So the equation (5.22) gives

B = −A(1, 2)P (p3 − p1 − p2) + A(1, 3)P (p2 − p1 − p3) + A(2, 3)P (p1 − p2 − p3)
P (p1 + p2 + p3)

.

(5.23)

If we make all the simplifications by using ωi = ξl2 sinh(
κi

2
), i = 1, 2, 3 for ξl = 1

or −1, we see that B = A(1, 2)A(1, 3)A(2, 3). Since f
(4)
n = 0 from the coefficient

of ε4 we have

P (D){f (1)
n .f (3)

n + f (3)
n .f (1)

n + f (2)
n .f (2)

n } = 0. (5.24)

After some calculations we get

e2θ1+θ2+θ3 [BP (p2 + p3) + A(1, 2)A(1, 3)P (p2 − p3)]

+ eθ1+2θ2+θ3 [BP (p1 + p3) + A(1, 2)A(2, 3)P (p1 − p3)]

+ eθ1+θ2+2θ3 [BP (p1 + p2) + A(1, 3)A(2, 3)P (p1 − p2)] = 0. (5.25)

This is satisfied by B = A(1, 2)A(1, 3)A(2, 3). Finally the coefficients of ε5 and

ε6 also vanish automatically. We may set ε = 1, therefore

f = 1 + eθ
(1)
n + eθ

(2)
n + eθ

(3)
n + A(1, 2)eθ

(1)
n +θ

(2)
n

+ A(1, 3)eθ
(1)
n +θ

(3)
n + A(2, 3)eθ

(2)
n +θ

(3)
n + Beθ

(1)
n +θ

(2)
n +θ

(3)
n (5.26)

and three-soliton solution of Tl is

Vn(t) =
L(t)

M(t)
(5.27)



CHAPTER 5. THE TODA LATTICE (TL) EQUATION 39

where

L(t) = k2
1e

θ1 + k2
2e

θ2 + k2
3e

θ3 + e2θ1+θ2+θ3 [A(1, 2)A(1, 3)(k2 − k3)
2 + B(k2 + k3)

2]

+ eθ1+θ2+2θ3 [A(1, 3)A(2, 3)(k1 − k2)
2 + B(k1 + k2)

2]

+ eθ1+2θ2+θ3 [A(1, 2)A(2, 3)(k1 − k3)
2 + B(k1 + k3)

2]

+ eθ1+θ2 [(k1 − k2)
2 + A(1, 2)(k2

1e
θ2 + k2

2e
θ1 + (k1 + k2)

2)]

+ eθ1+θ3 [(k1 − k3)
2 + A(1, 3)(k2

1e
θ3 + k2

3e
θ1 + (k1 + k3)

2)]

+ eθ2+θ3 [(k2 − k3)
2 + A(2, 3)(k2

2e
θ3 + k2

3e
θ2 + (k2 + k3)

2)]

+ eθ1+θ2+θ3 [A(1, 2)(k2
1 + k2

2 + k2
3 + 2k1k2 − 2k1k3 − 2k2k3)

+ A(1, 3)(k2
1 + k2

2 + k2
3 + 2k1k3 − 2k1k2 − 2k2k3)

+ A(2, 3)(k2
1 + k2

2 + k2
3 + 2k2k3 − 2k1k2 − 2k1k3)

+ B(k2
1 + k2

2 + k2
3 + 2k1k2 + 2k1k3 + 2k2k3)]

+ Beθ1+θ2+θ3 [A(1, 2)k2
3e

θ1+θ2 + A(1, 3)k2
2e

θ1+θ3 + A(2, 3)k2
1e

θ2+θ3 ]

(5.28)

and

M(t) = [1 + eθ
(1)
n + eθ

(2)
n + eθ

(3)
n + A(1, 2)eθ

(1)
n +θ

(2)
n

+ A(1, 3)eθ
(1)
n +θ

(3)
n + A(2, 3)eθ

(2)
n +θ

(3)
n + Beθ

(1)
n +θ

(2)
n +θ

(3)
n ]2 (5.29)

for θ
(i)
n = ξl2 sinh(κi

2
)t+αi for ξl = 1 or−1, A(i, j) is as given in (5.21) i, j = 1, 2, 3,

i < j and B = A(1, 2)A(1, 3)A(2, 3).



Chapter 6

The Modified Korteweg-de Vries

(MKdV) Equation

In this chapter, we analyze the modified Korteweg-de Vries (mKdV) equation and

construct one-, two-, three- and N-soliton solutions of it. The mKdV equation

is different than the KdV-type equations since it can only be written as a pair

of Hirota bilinear equations. At last, we give a list of the mKdV-type equations.

The mKdV equation is given by

ut + 24u2ux + uxxx = 0. (6.1)

Step 1. Bilinearization By the transformation u(x, t) =
gxf − gfx

g2 + f 2
the mKdV

equation can be written as a combination of bilinear equations,

− (g2 + f 2)(gtf − gft + gxxxf − 3gxxfx + 3gxfxx − gfxxx)

+ 6(fgx − gfx)(ffxx − f 2
x + ggxx − g2

x) = 0. (6.2)

Step 2. Transformation to the Hirota bilinear form: MKdV can only be expressed

as the following pair of the Hirota bilinear equations:

{
P1(D){f.f + g.g} = D2

x{f.f + g.g} = 0

P2(D){g.f} = (D3
x + Dt){g.f} = 0.

(6.3)

40
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Step 3. Application of the Hirota perturbation: We have two different differ-

entiable functions g and f which may have different forms than we use for the

KdV-type equations. Let f = f0 + εf1 + ε2f2 + ... and g = g0 + εg1 + ε2g2 + ...

where f0, g0 are constants with (f0, g0) 6= (0, 0) to avoid the trivial solution and

fm, gm, m = 1, 2, ..., N are exponential functions. We insert f and g into the

Hirota bilinear form of mKdV so we have

P1(D){f.f + g.g} = P1(D){f0.f0 + g0.g0}
+ εP1(D){f1.f0 + f0.f1 + g1.g0 + g0.g1}
+ ε2P1(D){f2.f0 + f1.f1 + f0.f2 + g2.g0 + g1.g1 + g0.g2}+ ... = 0,

(6.4)

P2(D){g.f} = P2(D){g0.f0}+ εP2(D){g0.f1 + g1.f0}
+ ε2P2(D){g1.f1 + g0.f2 + g2.f0}+ ... = 0.

(6.5)

6.1 One-Soliton Solution of MKdV

We take f = f0 + εf1 and g1 = g0 + εg1 where f1 = F1e
φ1 and g1 = G1e

θ1 . Here

φ1 = k̂1x + ω̂1t + α̂1, θ1 = k1x + ω1t + α1 and F1, G1 are constants. Note that

fj = gj = 0 for all j ≥ 2. For nontrivial solution, f0 and g0 should not vanish at

the same time. Both P1(D) and P2(D) should be considered to find the functions

f and g. At first let us examine the Hirota perturbation on P1(D){f.f +g.g} = 0

by inserting f and g into the equation (6.4), and make the coefficients of εm,

m = 0, 1, 2 to vanish. The coefficient of ε0 is identically zero because both f0 and

g0 are constants. The coefficient of ε1 gives us

P1(D){f0.f1 + f1.f0 + g0.g1 + g1.g0} =2f0P1(∂)f1 + 2g0P1(∂)g1

=2f0F1k̂1

2
eφ1 + 2g0G1k

2
1e

θ1 = 0.
(6.6)

We have two possibilities to satisfy this equality:

1. g0 = 0 and F1 = 0 so f1 = 0,

2. f0 = 0 and G1 = 0 so g1 = 0.



CHAPTER 6. THE MODIFIED KORTEWEG-DE VRIES (MKDV) EQUATION42

We shall take the first one. Choosing the other one changes only the sign of

solutions which are also one-soliton solution of mKdV. By this choice and since

f2 = 0, the coefficient of ε2 turns out to be

P1(D){f1.f1 + f2.f0 + f0.f2 + g1.g1 + g2.g0 + g0.g2} =P1(D){g1.g1}
=P1(p1 − p1)e

2θ1

(6.7)

which is zero. Now we shall examine P2(D){g.f} = 0 by inserting f and g into

the equation (6.5) and going through in the same way. The coefficient of ε0 is

again equal to zero because f0 is a constant and g0 = 0. By the coefficient of ε1

we have

P2(D){g0.f1 + g1.f0} = f0G1(k
3
1 + ω1)e

θ1 = 0. (6.8)

For nontrivial solution, f0 and G1 do not vanish at the same time with g0 and F1

so ω1 = −k3
1 (dispersion relation). The coefficient of ε2

P2(D){g1.f1 + g0.f2 + g2.f0} = 0 (6.9)

since f1 = g0 = g2 = 0. Finally without loss of generality we may set f0 = G1 =

ε = 1 and so we get f = 1, g = eθ1 and therefore one-soliton solution of mKdV is

u(x, t) =
gxf − gfx

g2 + f 2
=

k1

2 cosh(θ1)
. (6.10)

where θ1 = k1x− k3
1t + α1.

6.2 Two-Soliton Solution of MKdV

In the process of finding one-soliton solution of mKdV, it has been found that g0

and f1 are zero. Hence to find two-soliton solution, we can take f = f0 + ε2f2

and g = εg1 + ε2g2 where g1 = eθ1 + eθ2 for θi = kix+ωit+αi, i = 1, 2. Note that

here fj = gj = 0 for all j ≥ 3. At first we substitute f and g into the equation

(6.4) and we try to make the coefficients of εm, m = 0, 1, ..., 4 to vanish. The

coefficient of ε0 is trivially zero. The coefficient of ε1

P1(D){f0.f1 + f1.f0 + g0.g1 + g1.g0} = 0 (6.11)
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also vanishes automatically since g0 = f1 = 0. From the coefficient of ε2 we have

2f0P1(∂)f2 + P1(D){g1.g1} =2f0P1(∂)f2 + 2P1(D)eθ1 .eθ2

=2f0P1(∂)f2 + 2P1(p1 − p2)e
θ1+θ2 = 0.

(6.12)

Hence f2 should have the form f2 = A(1, 2)eθ1+θ2 . By putting f2 into the above

equation we obtain A(1, 2) as

A(1, 2) = − P1(p1 − p2)

f0P1(p1 + p2)
= − (k1 − k2)

2

f0(k1 + k2)2
. (6.13)

Since f3 = 0, from the coefficient of ε3 we have

P1(D){g1.g2} = 0. (6.14)

We do not know g2 so we stop here and apply same procedure to P2(D){g.f} = 0.

The coefficient of ε0 is trivially zero. From the coefficient of ε1 we get

P2(∂)g1 = P2(p1)e
θ1 + P2(p2)e

θ2 = 0 (6.15)

which implies P2(pi) = 0 so ωi = −k3
i for i = 1, 2. The coefficient of ε2 gives us

P2(D){g1.f1 + g0.f2 + g2.f0} = f0P2(∂)g2 = 0. (6.16)

Thus we may choose g2 = 0. So the equation (6.14) is also satisfied. The coeffi-

cient of ε3 becomes

P2(D){g1.f2 + g2.f1 + g0.f3 + g3.f0} =P2(D){g1.f2}
=− A(1, 2)[P2(p2)e

2θ1+θ2 + P2(p1)e
θ1+2θ2 ]

(6.17)

and it is zero since P2(pi) = 0, i = 1, 2. The coefficient of ε4 also becomes zero.

Without loss of generality we take f0 = ε = 1 so finally we get g = eθ1 + eθ2 and

f = 1 + A(1, 2)eθ1+θ2 . Hence two-soliton solution of mKdV is

u(x, t) =
k1e

θ1 + k2e
θ2 − A(1, 2)eθ1+θ2(k1e

θ2 + k2e
θ1)

1 + e2θ1 + e2θ2 + 2eθ1+θ2(1 + A(1, 2)) + A(1, 2)2e2θ1+2θ2
(6.18)

where θi = kix− k3
i t + αi for i = 1, 2 and A(1, 2) = −(k1 − k2)

2

(k1 + k2)2
.
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6.3 Three-Soliton Solution of MKdV

By our previous experiments we have discovered that g0 = f1 = g2 = 0. So for

three-soliton solution we may take f = f0 + ε2f2 + ε3f3 and g = εg1 + ε3g3 where

g1 = eθ1 + eθ2 + eθ3 for θi = kix + ωit + αi, i = 1, 2, 3. Note that fj = gj = 0

for all j ≥ 4. Now we insert f and g into the equation (6.4) and then to (6.5).

Similar to before we make the coefficients of the εm, m = 0, 1, ..., 6 to be zero.

The coefficients of ε0 and ε1 are automatically zero since f0 is constant and

g0 = f1 = 0. From the coefficient of ε2 we have

−2f0P1(∂)f2 =P1(D){g1.g1}
=2[P1(D)eθ1 .eθ2 + P1(D)eθ1 .eθ3 + P1(D)eθ2eθ3 ]

=2[P1(p1 − p2)e
θ1+θ2 + P1(p1 − p3)e

θ1+θ3 + P1(p2 − p3)e
θ2+θ3 ].

(6.19)

We see that f2 is in the form f2 = A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 .

When we substitute f2 into the above equation we get

A(i, j) = − P1(pi − pj)

f0P1(pi + pj)
= − (ki − kj)

2

f0(ki + kj)2
(6.20)

for i, j = 1, 2, 3, i < j. From the coefficient of ε3 we get P1(∂){f3} = 0 so we may

choose f3 = 0. Since f4 = 0, the coefficient of ε4 gives us

2P1(D){g1.g3}+ P1(D){f2.f2} = 0. (6.21)

We do not know g3 so we cannot go further. Thus let us now consider the Hirota

perturbation on P2(D){g.f} = 0. The coefficient of ε0 is trivially zero. The

coefficient of ε1

P2(D){g0.f1 + g1.f0} = f0P2(∂){eθ1 + eθ2 + eθ3} = 0 (6.22)

gives us the dispersion relation P2(pi) = 0 so ωi = −k3
i for i = 1, 2, 3. From the

coefficient of ε3 we have

−f0P2(∂)g3 =P2(D){g1.f2}
=eθ1+θ2+θ3 [A(1, 2)P2(p3 − p1 − p2) + A(1, 3)P2(p2 − p1 − p3)

+ A(2, 3)P2(p1 − p2 − p3)].

(6.23)
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Hence g3 is in the form g3 = Beθ1+θ2+θ3 where after some calculations by using

the dispersion relation the coefficient B is found as

B = f0A(1, 2)A(1, 3)A(2, 3). (6.24)

Since g3 is known now, we can replace it in the equation (6.21) and we see that

the equation is satisfied. The coefficient of ε4 is P2(D){g1.f3} + P2(∂)g4 = 0

since f3 = g4 = 0. The coefficients of ε5 and ε6 vanish trivially. Finally by

setting f0 = ε = 1 we have f = 1 + A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 ,

g = eθ1 + eθ2 + eθ3 + Beθ1+θ2+θ3 and so three-soliton solution of mKdV is

u(x, t) =
L(x, t)

M(x, t)
(6.25)

where

L(x, t) = B[(k1+k2+k3)+k3A(1, 2)eθ1+θ2+k2A(1, 3)eθ1+θ3+k1A(2, 3)eθ2+θ3 ]}eθ1+θ2+θ3

+k1e
θ1 +k2e

θ2 +k3e
θ3 +{A(1, 2)(k3−k1−k2)+A(1, 3)(k2−k1−k3)+A(2, 3)(k1−k2−k3)

−A(1, 2)eθ1+θ2(k2e
θ1+k1e

θ2)−A(1, 3)eθ1+θ3(k3e
θ1+k1e

θ3)−A(2, 3)eθ2+θ3(k2e
θ3+k3e

θ2)

(6.26)

and

M(x, t) = 1 + e2θ1 + e2θ2 + e2θ3 + 2(1 + A(1, 2))eθ1+θ2 + 2(1 + A(2, 3))eθ2+θ3

+2(1+A(1, 3))eθ1+θ3+A(1, 2)2e2θ1+2θ2+A(2, 3)2e2θ2+2θ3+A(1, 3)2e2θ1+2θ3+B2e2θ1+2θ2+2θ3

+2eθ1+θ2+θ3 [(B+A(1, 2)A(1, 3))eθ1 +(B+A(1, 2)A(2, 3))eθ2 +(B+A(1, 3)A(2, 3))eθ3 ]

(6.27)

with θi = kix − k3
i t + αi, A(i, j) = −(ki − kj)

2

(ki + kj)2
for i, j = 1, 2, 3, i < j and

B = A(1, 2)A(1, 3)A(2, 3).
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6.4 N-Soliton Solution of MKdV

MKdV is written as a combination of Hirota bilinear equations as

− (g2 + f 2)(gtf − gft + gxxxf − 3gxxfx + 3gxfxx − gfxxx)

I

+ 6(fgx − gfx)(ffxx − f 2
x + ggxx − g2

x) = 0

II

(6.28)

and we have seen that to construct soliton-solution of mKdV, we find f and g

satisfying the equations I and II separately. For N-soliton solution of mKdV, we

claim that f(x, t) and g(x, t) take the form

f(x, t) =

[N/2]∑
m=0

∑

NC2m

A(i1, ..., i2m)exp(θi1 + ... + θi2m), (6.29)

and

g(x, t) =

[(N−1)/2]∑
m=0

∑

NC2m+1

A(i1, ..., i2m+1)exp(θi1 + ... + θi2m+1) (6.30)

where

A(i1, ..., im) =

(m)∏

l<j

A(l, j) , A(l, j) = −(kl − kj)
2

(kl + kj)2
. (6.31)

Here [N/2] denotes the maximum integer which does not exceed N/2, NCm in-

dicates the summation over all possible combinations of m elements from N and

(m) indicates the product of all possible combinations of the m elements with

(l < j). Note that A(im) = 1 for m = 1, 2, ..., N . To prove our claim we substitute

the expression for f(x, t) and g(x, t) into the equations I and II. Then we will

check that these equations are satisfied. Substitution of f(x, t) and g(x, t) give

us some exponential terms. To satisfy the equations I and II, the coefficients of

the exponential terms should vanish. From these coefficients we get the relations

m∑
r=0

∑

mCr

A(i1, ..., ir)A(ir+1, ..., im)g1(i1, ..., ir; i(r+1), ..., im), m = 1, 3, 5, ... ≤ N,

(6.32)
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and

m∑

r=0

∑

mCr

(−1)rA(i1, ..., ir)A(ir+1, ..., im)g2(i1, ..., ir; i(r+1), ..., im), m = 2, 4, 6, ... ≤ N,

(6.33)

where

g1(i1, ..., ir; i(r+1), ..., im) = (ki1 + ... + kir − ki(r+1)
− ...− kim)3

− (k3
i1 + ... + k3

ir − k3
i(r+1)

− ...− k3
im), (6.34)

and

g2(i1, ..., ir; i(r+1), ..., im) = (ki1 + ... + kir − ki(r+1)
− ...− kim)2. (6.35)

For fixed m the equations (6.34) and (6.35) become

D1(k1, ..., km) =
∑

σ1,...,σm=±1

b(σ1k1, ..., σmkm)g1(σ1k1, ..., σmkm) = 0, (6.36)

for m is odd and

D2(k1, ..., km) =
∑

σ1,...,σm=±1

(
m∏

i=1

σi)b(σ1k1, ..., σmkm)g2(σ1k1, ..., σmkm) = 0,

(6.37)

for m is even, where

b(σ1k1, ..., σmkm) =

(m)∏

l<j

(σlkl − σjkj)
2, (6.38)

and

g1(σ1k1, ..., σmkm) = (σ1k1 + ... + σmkm)3 − ((σ1k1)
3 + ... + (σmkm)3), (6.39)

and

g2(σ1k1, ..., σmkm) = (σ1k1 + ... + σmkm)2. (6.40)

We will prove these identities by induction. Before that we state the following

properties of D1(k1, ..., km) and D2(k1, ..., km) [9],

(i) D1 and D2 are symmetric, homogeneous polynomials,

(ii) D1 is an even function of k1, ..., km,
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(iii) If k1 = 0, then D2 = 0,

(iv) If kl = kj we have

D1(k1, ..., km) = 2(2kl)2D(k1, ..., kl−1, kl+1, ..., kj−1, kj+1, ..., kn)
m∏

s=1

′
(k2

l − k2
s)

2,

D2(k1, ..., km) = −2(2kl)2D(k1, ..., kl−1, kl+1, ..., kj−1, kj+1, ..., kn)
m∏

s=1

′
(k2

l − k2
s)

2.

Here the primes indicate that the products do not include s = l and s = j. Now

let us first consider D1(k1, ..., km). For m = 1, the identity clearly holds since

D1(k1) = (σ1k1)
2(σ1k1)[−(σ1k1)

3 + (σ1k1)
3] = 0. (6.41)

Now assume that the identity holds for m − 2. By using the properties of

D1(k1, ..., km) we see that it can be factored by

(m)∏

l<j

(k2
l − k2

j )
2 whose degree is

2m(m− 1). But the equation (6.36) shows that the degree of D1 is m(m− 1) + 3

which is smaller than 2m(m− 1) for m > 1. Since this is impossible, the identity

should hold for m. In a similar way we will analyze D2(k1, ..., km). It is easily

seen that for m = 2 the identity holds since

D2(k1, k2) =
∑

σ1,σ2=±1

(
2∏

i=1

σi)(σ1k1 − σ2k2)
2(σ1k1 + σ2k2)

2

=
∑

σ1,σ2=±1

(σ1(k
2
1 − k2

2)
2 + σ2(k

2
1 − k2

2)
2) = 0.

(6.42)

Now we assume that the identity holds for m− 2. By the help of the properties

of D2(k1, ..., km) we obtain that D2 can be factored by
∏m

i=1 ki

∏(m)
l<j (kl − kj)

2 of

degree m2. On the other hand by the equation (6.37), we have known that D2 is

of degree m(m−1)+2 which is smaller than m2 for m > 2. But this is impossible

so the identity holds for m.
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6.5 The MKdV-type Equations

Here we will give a list of equations [21] which can be written as a pair of Hirota

bilinear equations,

{
P1(D){g.f} = 0,

P2(D){f.f + g.g} = 0.
(6.43)

where P1(D) is an even and P2(D) is odd. We call the equations written in this

form the mKdV-type equations. For mKdV-type Hirota bilinear equations we

can make a rotation f = F + G and g = i(F − G) so the pair (6.43) becomes

P1(D){G.F} = 0 and P2(D){G.F} = 0. The mKdV-type equations are

{
(aD7

x + bD5
x + D2

xDt + Dy){G.F} = 0,

D2
x{G.F} = 0,

(6.44)

{
(aD3

x + bD3
x + Dy){G.F} = 0,

DxDt{G.F} = 0,
(6.45)

{
(DxDyDt + aDx + bDt){G.F} = 0,

DxDt{G.F} = 0,
(6.46)

{
(D3

x + Dy){G.F} = 0,

(D3
xDt + aD2

x + DtDy){G.F} = 0,
(6.47)

{
(D3

x + Dy){G.F} = 0,

(D6
x + 5D3

xDy − 5D2
y + DtDx){G.F} = 0.

(6.48)

Here a and b are arbitrary constants.



Chapter 7

The Sine-Gordon (SG) Equation

In this chapter, we consider the sine-Gordon (sG) equation, which describes

motion of dislocations in crystals, some models of elementary particles, self-

transparency due to nonlinear effects of optical pulses, motion magnetic flux

in Josephson junctions, and so forth. We construct one-, two-, three-soliton so-

lutions of it. Similar to the mKdV equation, the sG equation is different than

the KdV-type equations since it can only be written as a pair of Hirota bilinear

equations. The form of the sG equation also differs from the mKdV equation

by the parity of Hirota bilinear equations. Finally, we give a list of the sG-type

equations. The sG equation is given by

φxx − φtt = sin φ. (7.1)

Step 1. Bilinearization: Here we use the transformation φ = 4 arctan(g/f) which

provides sG to be written as a combination of bilinear equations,

(f 2 − g2)(fxxg − 2fxgx + fgxx − fttg + 2ftgt − fgtt − fg)

− 2fg(ffxx − f 2
x − ggxx + g2

x − fftt + f 2
t + ggtt − g2

t ) = 0. (7.2)

Step 2. Transformation to the Hirota bilinear form: Similar to mKdV, sG is

not exactly bilinearizable. We can only express it as a pair of the Hirota bilinear

50
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equations

{
P1(D){f.g} = (D2

x −D2
t − 1){f.g} = 0

P2(D){f.f − g.g} = (D2
x −D2

t ){f.f − g.g} = 0.
(7.3)

Step 3. Application of the Hirota perturbation: When we insert the finite pertur-

bation expansions f(x, t) = f0 + εf1 + ε2f2 + ... and g(x, t) = g0 + εg1 + ε2g2 + ...

into P1(D){f.g} = 0 and P2(D){f.f − g.g} = 0, to satisfy these Hirota bilinear

equations g(x, t) and f(x, t) take different forms as in mKdV. We do not give the

details but we use the forms given in [10]. The general form of g(x, t) and f(x, t)

are

g(x, t) =

[(N−1)/2]∑
m=0

∑

NC2m+1

A(i1, ..., i2m+1)exp(θi1 + ... + θi2m+1), (7.4)

f(x, t) =

[N/2]∑
m=0

∑

NC2m

A(i1, ..., i2m)exp(θi1 + θi2 + ... + θi2m), (7.5)

where

A(i1, ..., im) =

(m)∏

l<j

A(l, j) , A(l, j) =
(kl − kj)

2 − (ωl − ωj)
2

(kl + kj)2 + (ωl + ωj)2
. (7.6)

Here [N/2] denotes the maximum integer which does not exceed N/2. NCm

indicates the summation over all possible combinations of m elements taken from

N and (m) indicates the product of all possible combinations of m elements with

(l < j). Note that A(im) = 1 for m = 1, 2, ..., N .

7.1 One-Soliton Solution of SG

For one-soliton solution of sG we take g = εg1 where g1 = eθ1 , θ1 = k1x +

ω1t + α1 and f = 1. At first we insert them into P1(D){f.g} = 0 and consider

the coefficients of ε1 since there is no other power of ε comes from the Hirota

perturbation. By the coefficient of ε1 we have

P1(D){1.g1} = P1(p1)e
θ1 = 0 (7.7)
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which is satisfied when P1(p1)=0 and this gives us the dispersion relation

ω1 = ξl

√
k2

1 − 1 for ξl = 1 or −1. Now we analyze the Hirota perturbation

on P2(D){f.f − g.g} = 0. Here only ε0 and ε2 appear and we make their coef-

ficients to vanish. The coefficient of ε0 is P2(D){1.1} and it is identically zero.

The coefficient of ε2 also vanishes trivially since

P2(D){eθ1 .eθ1} = P2(0, 0)e2θ1 = 0. (7.8)

Finally we set ε = 1 and so g = eθ1 , f = 1. Thus one-soliton solution of sG is

φ(x, t) = 4 arctan(eθ1), (7.9)

where θ1 = k1x + ξl

√
k2

1 − 1t + α1 for ξl = 1 or −1.

7.2 Two-Soliton Solution of SG

To construct two-soliton solution of sG we take g = εg1 where g1 = eθ1 + eθ2 with

θi = kix + ωit + αi, i = 1, 2 and f = 1 + ε2f2 where f2 shall be determined later.

Now we examine the Hirota perturbation on P1(D){f.g} = 0. The coefficient of

ε1 gives

P1(D){1.g1} = P1(p1)e
θ1 + P1(p2)e

θ2 = 0 (7.10)

which implies P1(pi) = 0, i = 1, 2 and so ωi = ξl

√
k2

i − 1, i = 1, 2 for ξl = 1 or

−1. The coefficient of ε3 becomes

P1(D){f2.g1} = P1(D){f2.e
θ1}+ P1(D){f2.e

θ2} (7.11)

but since we do not know f2 we stop here and go to P2(D){f.f − g.g} = 0. The

coefficient of ε0 is identically zero. The coefficient of ε2 turns out to be

P2(D){f2.1 + 1.f2 − g1.g1} =2P2(∂)f2 − 2P2(D){eθ1 .eθ2}
=2P2(∂)f2 − 2P2(p1 − p2)e

θ1+θ2 = 0.
(7.12)

To satisfy the above equation f2 has to be in the form f2 = A(1, 2)eθ1+θ2 . Inserting

this form gives us A(1, 2) as

A(1, 2) =
P2(p1 − p2)

P2(p1 + p2)
=

(k1 − k2)
2 − (ω1 − ω2)

2

(k1 + k2)2 − (ω1 + ω2)2
. (7.13)
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The coefficient of ε4 vanishes trivially. Now since we know f2 we go back to the

equation (7.11)

P1(D){f2.g1} =A(1, 2)[P1(D)eθ1+θ2 .eθ1 + P1(D)eθ1+θ2 .eθ2 ]

=A(1, 2)[P1(p2)e
2θ1+θ2 + P1(p1)e

θ1+2θ2 ].
(7.14)

This equation vanishes automatically since P1(pi) = 0, i = 1, 2. Finally we may

set ε = 1, so g = eθ1 + eθ2 and f = 1 + A(1, 2)eθ1+θ2 . Thus two-soliton solution of

sG is

φ(x, t) = 4 arctan

(
eθ1 + eθ2

1 + A(1, 2)eθ1+θ2

)
(7.15)

where θi = kix + ξl

√
k2

i − 1t + αi, i = 1, 2 for ξl = 1 or −1 and A(1, 2) is as given

in (7.13).

7.3 Three-Soliton Solution of SG

In order to construct three-soliton solution of sG, we take g = εg1 + ε3g3 where

g1 = eθ1 + eθ2 + eθ3 with θi = kix + ωit + αi, i = 1, 2 and f = 1 + ε2f2. Here we

shall decide what are g3 and f2 while we are applying the method. Now firstly we

insert g and f into P1(D){f.g} = 0 and make the coefficients of ε2m+1, m = 0, 1, 2

to be zero. From the coefficient of ε1 we have

P1(D){1.g1} = P1(p1)e
θ1 + P1(p2)e

θ2 + P1(p3)e
θ3 = 0. (7.16)

Hence P1(pi) = 0, i = 1, 2, 3 and so ωi = ξl

√
k2

i − 1, i = 1, 2, 3 for ξl = 1 or −1.

The coefficients of ε3 and ε5 give P1(D){1.g3 + f2.g1} = 0 and P1(D){f2.g3} = 0

respectively. But since we do not know f2 and g3, we cannot go further. So now

we analyze the Hirota perturbation on P2(D){f.f − g.g} = 0. We provide that

the coefficients of ε2m, m = 0, 1, 2, 3 vanish. The coefficient of ε0 is identically

zero. By the coefficient of ε2 we have

P2(D){f2.1 + 1.f2 − g1.g1} = 2P (∂)f2 − 2P (D){eθ1 .eθ2 + eθ1 .eθ3 + eθ2 .eθ3} = 0,

(7.17)

hence

P2(∂)f2 = [P2(p1 − p2)e
θ1+θ2 + P2(p1 − p3)e

θ1+θ3 + P2(p2 − p3)e
θ2+θ3 ]. (7.18)
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We see that f2 is in the form f2 = A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 . If

we insert this expression for f2 into the equation (7.18) we obtain

A(i, j) =
P2(pi − pj)

P2(pi + pj)
=

(ki − kj)
2 − (ωi − ωj)

2

(ki + kj)2 − (ωi + ωj)2
(7.19)

for i, j = 1, 2, 3, i < j. Now we again turn to the Hirota perturbation on

P1(D){f.g} = 0 to find g3 from the coefficient of ε3. The coefficient of ε3 becomes

−P1(∂)g3 =P1(D){f2.g1}
=[A(1, 2)P1(p3 − p1 − p2) + A(1, 3)P1(p2 − p1 − p3)

+ A(2, 3)P1(p1 − p2 − p3)]e
θ1+θ2+θ3 .

(7.20)

We see that g3 = Beθ1+θ2+θ3 . Inserting g3 into the above equation gives us B as

B = −A(1, 2)P1(p3 − p1 − p2) + A(1, 3)P1(p2 − p1 − p3) + A(2, 3)P1(p1 − p2 − p3)
P1(p1 + p2 + p3)

.

(7.21)

The coefficient of ε5 appeared in the first Hirota bilinear equation of sG turns

out to be

P1(D){f2.g3} = A(1, 2)P1(p3)e
2θ1+2θ2+θ3 + A(1, 3)P1(p2)e

2θ1+θ2+2θ3

+ A(2, 3)P1(p1)e
θ1+2θ2+2θ3 (7.22)

and this is trivially zero since P1(pi) = 0, i = 1, 2, 3. Thus we are done with

P1(D){f.g} = 0. Now we turn back to the second Hirota bilinear equation of sG

where only the coefficients of ε4 and ε6 are remained. The coefficient of ε4 is

P2(D){f2.f2 − g1.g3 − g3.g1} = 0 (7.23)

and after some calculation it becomes

e2θ1+θ2+θ3 [A(1, 2)A(1, 3)P (p2 − p3)−BP (p2 + p3)]

+ eθ1+2θ2+θ3 [A(1, 2)A(2, 3)P (p1 − p3)−BP (p1 + p3)]

+ eθ1+θ2+2θ3 [A(1, 3)A(2, 3)P (p1 − p2)]−BP (p1 + p2) = 0. (7.24)

Hence we obtain that B = A(1, 2)A(1, 3)A(2, 3). We should check that this

equation for B is same with the previous expression found for B in (7.21). Indeed
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we see that they are same after some simplifications. The coefficient of ε6 clearly

vanishes. We may set ε = 1 thus g = eθ1 + eθ2 + eθ3 + Beθ1+θ2+θ3 , f = 1 +

A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3 and so three-soliton solution of sG is

φ(x, t) = 4 arctan

(
eθ1 + eθ2 + eθ3 + Beθ1+θ2+θ3

1 + A(1, 2)eθ1+θ2 + A(1, 3)eθ1+θ3 + A(2, 3)eθ2+θ3

)
(7.25)

where θi = kix + ξl

√
k2

i − 1t + αi for ξl = 1 or −1, A(i, j) is as given in (7.19),

i, j = 1, 2, 3, i < j and B = A(1, 2)A(1, 3)A(2, 3).

7.4 The SG-type Equations

Here we will give a list of equations [21] which can be written as a pair of Hirota

bilinear equations,

{
P1(D){g.f} = 0,

P2(D){f.f + g.g} = 0.
(7.26)

where both P1(D) and P2(D) are even. We call the equations written in this form

the sG-type equations. Note that the bilinear form of sG that we have analyzed

is different than the above one but under a suitable transformation we can get

this form. The sG-type equations are

{
(DxDt + b){g.f} = 0,

(D3
xDt + 3bD2

x + DtDy){f.f + g.g} = 0,
(7.27)

{
(aD3

xDt + DtDy + b){g.f} = 0,

DxDt{f.f + g.g} = 0,
(7.28)

where a and b are arbitrary constants.



Chapter 8

Conclusion

In this thesis we have studied the Hirota direct method. It is used to construct

multi-soliton solutions of integrable nonlinear partial differential and difference

equations. We have applied the Hirota method to the Korteweg-de Vries (KdV),

Kadomtsev-Petviashvili (KP), extended Kadomtsev-Petviashvili (eKP) and Toda

lattice (Tl) equations. We have constructed one-,two- and three-soliton solutions

of them. Additionally we have given N-soliton solution of KdV. Since the others

are KdV-type equations, in a similar way, we can also construct their N-soliton

solutions.

Different than KdV, KP, and Tl, the extended Kadomtsev-Petviashvili equa-

tion is a non-integrable equation unless it satisfies a condition which makes it

transformable to KP. By using eKP, we have seen that even an equation is not

integrable it may possess one- and two-soliton solutions but to possess three-

soliton solution it should satisfy a special condition. In spite of this fact, we

obtain infinitely many solutions of this equation by using the Hirota method.

We have also studied the equations written as a pair of Hirota bilinear equa-

tions such that the modified Korteweg-de Vries (mKdV) and sine-Gordon (sG)

equations. We have constructed their one-, two- and three-soliton solutions. We

have also given N-soliton solution of mKdV. Similarly we can also construct N-

soliton solution of sG since sG has similar Hirota bilinear form as mKdV.
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