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ABSTRACT

HUB LOCATION PROBLEMS UNDER POLYHEDRAL
DEMAND UNCERTAINTY

Merve Meraklı

M.S. in Industrial Engineering

Advisor: Prof. Hande Yaman Paternotte

July, 2015

Hubs are points of consolidation and transshipment in many-to-many distribution

systems that benefit from economies of scale. In hub location problems, the aim

is to locate hub facilities such that each pairwise demand is satisfied and the total

cost is minimized. The problem usually arises in the strategic planning phase prior

to observing actual demand values. Hence incorporating robustness into hub loca-

tion decisions under data uncertainty is crucial for achieving a reliable hub network

design. In this thesis, we study hub location problems under polyhedral demand

uncertainty. We consider uncapacitated multiple allocation p-hub median problem

under hose and hybrid demand uncertainty and capacitated multiple allocation hub

location problem under hose demand uncertainty. We propose mixed integer linear

programming formulations and devise several exact solution algorithms based on

Benders decomposition in order to solve large-scale problem instances. Computa-

tional experiments are performed on instances of three benchmark data sets from

the literature.

Keywords: hub location, multiple allocation, demand uncertainty, robustness, Ben-

ders decomposition.
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ÖZET

ÇOKYÜZLÜ TALEP BELİRSİZLİĞİ ALTINDA ADÜ
YER SEÇİMİ PROBLEMLERİ

Merve Meraklı

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Prof. Dr. Hande Yaman Paternotte

Temmuz, 2015

Ana dağıtım üsleri (ADÜ) ölçek ekonomilerinden faydalanan çoklu dağıtım sis-

temlerinde toplanma ve dağıtım noktalarıdır. ADÜ yer seçimi problemlerinde

amaç ADÜ’leri noktalar arasındaki talebi en az maliyetle karşılayacak şekilde

yerleştirmektir. ADÜ yer seçimi kararları genellikle noktalar arasındaki talep

hakkında yeterli verinin olmadığı erken aşamalarda verilmektedir. Bu yüzden

alınan kararlarda talep belirsizliğinin göz önünde bulundurulması taleplerdeki

değişimlere dayanıklı ve uygulanabilir çözümler üretilmesi adına büyük önem

taşımaktadır. Bu çalışmada, talep değerlerinin çokyüzlü belirsizliğe sahip olduğu

durumlarda ADÜ yer seçimi problemleri incelenmiştir. Hose ve Hibrit belirsiz-

lik modelleri altında kapasite kısıtsız çoklu atamalı p-ADÜ medyan problemleri

ve Hose belirsizlik modeli altında kapasite kısıtlı çoklu atamalı ADÜ yer seçimi

problemleri üzerinde çalışılmıştır. Bu problemler için doğrusal karışık tamsayılı

matematiksel modeller önerilmiştir ve büyük ölçekli problemlerin çözülebilmesi için

Benders ayrıştırma metodu kullanılarak farklı çözüm algoritmaları geliştirilmiştir.

Önerilen tüm model ve algoritmalar, literatürde ölçüt olarak kullanılan üç veri seti

üzerinde test edilmiştir.

Anahtar sözcükler : ADÜ yer seçimi, çoklu atama, talep belirsizliği, dayanıklı

çözümler, Benders ayrıştırma metodu.
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Chapter 1

Introduction

Hubs are facilities that consolidate and distribute flow from many origins to many

destinations. Hubbing is common in transportation networks that benefit from

economies of scale such as airline and cargo delivery networks. Many variants

of hub location problems have been studied in the last few decades. The p-hub

median problem and the hub location problem with fixed costs are the most studied

problems in the hub location literature. In the p-hub median problem, the aim is

to locate p hubs and to route the flow between origin-destination pairs through

these hubs so that the total transportation cost is minimized. Different from the

p-hub median problem, the cost term in the hub location problem with fixed costs

includes a fixed cost of hub openings. In this case, the number of hubs to be opened

is not predetermined; it is a decision that depends on the trade-off between the

total cost of hub openings and the transportation costs. Direct shipments between

nonhub nodes are usually not allowed.

There are variants of these problems where a nonhub node can send and receive

traffic through all hubs and others where there is a restriction on the number of

hubs that a nonhub node can be connected to. The former is known as the multiple

allocation setting. In some other variants, hub or edge capacities are imposed. In

this thesis, we consider hub location problems with multiple allocation and no

direct shipments. We study a p-hub median problem with no capacity constraints
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in Chapter 3 and a hub location problem with fixed costs and capacities on hubs

in Chapter 4.

An important issue that arises while designing a hub network is coping with the

uncertainty in the data. The hub location problem is solved in the strategic plan-

ning phase, usually before actual point-to-point demand values are realized and

the network starts operating. The demand may have large variations depending on

the seasons, holidays, prices, level of economic activities, population, service time

and quality and the price and quality of the services provided by the competitors.

A decision made based on a given realization of the data may be obsolete in time

of operation.

The uncertainty in the demand values can be modeled in various forms: (i)

the probability distribution of demand values may be known; (ii) the probability

distribution may not be known but demands can take any value in a given set;

(iii) a discrete set of possible scenarios may be identified. In this study, we model

uncertainty with a polyhedral set. More precisely, we consider the hose model

and its restriction with box constraints. The hose model has been introduced by

Duffield et al. [1] and Fingerhut et al. [2] to model demand uncertainty in virtual

private networks. In the hose model, the user specifies aggregate upper bounds

on inbound and outbound traffic of each node. Modeling uncertainty with this

model has several advantages. First, it is simpler to estimate a value for each node

compared to for each node pair. Second, it has resource-sharing flexibility and is

less conservative compared to a model in which each origin-destination demand

is set to its worst case value. Still, it contains extreme scenarios in which few

origin destination pairs may have large traffic demands and remaining pairs may

have zero traffic. To consider more realistic situations, Altın et al. [3] propose to

use a hybrid model where lower and upper bounds on individual traffic demands

are added to the hose model. This requires estimation of bounds for each node

pair but leads to less conservative solutions. Even though these uncertainty mod-

els are introduced for telecommunication applications, they can also be used for

transportation applications where pairwise demands are often estimated based on

the populations at origins and destinations. The hose model is a simple way of

modeling correlations such as a person flying from Istanbul to Paris is not flying

at the same time from London to Istanbul.
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To hedge against uncertainty in the demand data, we adopt a minmax robust-

ness criterion and minimize the cost of the network under the worst case scenario.

In robust optimization, commonly, one does not make assumptions about the prob-

ability distributions, rather assumes that the data belongs to an uncertainty set. A

robust solution is one whose worst case performance over all possible realizations

in the uncertainty set is the best (see, e.g., Atamtürk [4]; Ben-Tal and Nemirovski

[5, 6, 7]; Ben-Tal et al. [8]; Bertsimas and Sim [9, 10]; Mudchanatongsuk et al.

[11]; Ordóñez and Zhao [12]; Yaman et al. [13, 14]).

In this study, we introduce two types of problems; namely the robust uncapac-

itated multiple allocation p-hub median problem under hose and hybrid demand

uncertainty and the robust capacitated hub location problem with fixed costs un-

der hose demand uncertainty. We derive mixed integer programming formulations

and propose exact solution methods based on Benders decomposition. In our

computational experiments, we first analyze the changes in cost and hub loca-

tions with different uncertainty sets. Then we test the limits of solving the model

with an off-the-shelf solver and compare the performances of two decomposition

approaches.

The rest of the thesis is organized as follows. In Chapter 2, we review the

related studies in the literature. In Chapter 3, we introduce the robust multiple

allocation p-hub median problem under hose and hybrid demand uncertainty and

propose mixed integer programming formulations. We devise two different Ben-

ders decomposition based exact solution algorithms and report our computational

findings. In Chapter 4, the robust capacitated hub location problem with fixed

costs under hose demand uncertainty is introduced. We formulate the problem as a

mixed integer linear programming problem and propose decomposition techniques

to solve large-sized instances. We summarize our contributions and conclude in

Section 5.
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Chapter 2

Literature Review

Hub location has grown to be an important and well-studied area of network analy-

sis. Detailed surveys of studies on hub location are given in Campbell [15], O’Kelly

and Miller [16], Klincewicz [17], Campbell et al. [18], Alumur and Kara [19], Camp-

bell and O’Kelly [20] and Farahani et al. [21]. Here we review first the studies on

the uncapacitated multiple allocation p-hub median problem (UMApHMP) and the

capacitated multiple allocation hub location problem with fixed costs (CMAHLP)

and then, the studies on hub location problems under data uncertainty.

UMApHMP is first formulated by Campbell [22]. Alternative formulations with

four index variables are given by Campbell [23] and Skorin-Kapov et al. [24].

Ernst and Krishnamoorthy [25] propose a three-indexed formulation based on ag-

gregated flows. Various exact and heuristic solution algorithms are devised to

solve UMApHMP efficiently (see, e.g., Campbell [26]; Ernst and Krishnamoorthy

[25, 27]). Besides, the variant of the problem where the number of hubs is not

fixed, namely the uncapacitated multiple allocation hub location problem with

fixed costs (UMAHLP), is studied by Campbell [23], Klincewicz [28], Ernst and

Krishnamoorthy [25], Ebery et al. [29], Mayer and Wagner [30], Boland et al. [31],

Hamacher et al. [32], Maŕın [33], Cánovas et al. [34] and Contreras et al. [35].

Since this problem is analogous to the UMApHMP, most of the solution methods

can be adapted to solve the UMApHMP.
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Capacitated variants of the hub location problems received less attention in

the literature compared to the uncapacitated versions. The first mixed integer

linear programming formulation for the CMAHLP is proposed by Campbell [22]

using four indexed variables. Ebery et al. [29] provide two formulations for the

same problem with three indices and devise a heuristic algorithm to solve large

instances. In order to strengthen these formulations, Boland et al. [31] propose

preprocessing procedures and valid inequalities, which lead to a significant reduc-

tion in the computation times. Maŕın [36] also provides new formulations and

resolution techniques to obtain better computational results and succeeds to solve

instances with up to 75 nodes. Sasaki and Fukushima [37] consider a capacitated

multiple allocation hub location problem where a capacity constraint is applied

both on hubs and arcs and a flow can go through at most one hub on its way from

origin to destination. They devise a branch and bound algorithm and perform

computational studies on the CAB data set.

Several Benders decomposition based approaches have been proposed to solve

hub location problems with multiple assignments and they proved to be effective.

To the best of our knowledge, Camargo et al. [38] are the first ones to apply Ben-

ders decomposition to the uncapacitated multiple allocation hub location problem.

They propose three different Benders approaches. The first one is the classical

approach, which adds a single cut at each iteration, while the second is the multi-

cut version in which Benders cuts are generated for each origin-destination pair.

Another variant allows an error margin ε for the cuts added and the algorithm

terminates when an ε-optimal solution is obtained. They solve instances with up

to 200 nodes and conclude that the single-cut version of the algorithm shows the

best computational performance. Contreras et al. [35] propose a Benders decom-

position algorithm to solve UMAHLP. They generate cuts for each candidate hub

location instead of each origin-destination pair. They construct pareto-optimal

cuts in order to improve the convergence of the algorithm and offer elimination

tests to reduce the size of the problem. Using the proposed approaches, they

succeed to solve instances with up to 500 nodes.

There are also Benders decomposition applications for the capacitated mul-

tiple allocation hub location problems. Rodŕıguez-Mart́ın and Salazar-González

[39] consider a capacitated hub location problem with multiple assignments on
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an incomplete hub network. They provide a linear programming formulation and

develop two exact solution algorithms. The first one utilizes classical Benders de-

composition approach whereas the second employs a nested two level algorithm

based on Benders decomposition. They show that the latter outperforms the clas-

sical Benders decomposition approach in terms of computation times. Contreras

et al. [40] also study a related capacitated hub location problem in which the

capacities installed on each hub is not a parameter but a decision variable. They

devise a Benders decomposition algorithm such that the subproblem turns out to

be a transportation problem which can be solved with a special algorithm. They

apply pareto optimal Benders cuts and reduction tests to improve the convergence

of the algorithm.

Benders decomposition is also used to solve other variants of the multiple allo-

cation hub location problems. Camargo et al. [41] study UMAHLP where the dis-

count factor for the connections between hub nodes is defined as a piecewise-linear

concave function. They devise two Benders decomposition algorithms generating

cuts for each origin-destination pair in each Benders iteration. Instances with up

to 50 nodes from the Civil Aeronautics Board (CAB) data set and Australian Post

(AP) data set are solved within six hours of CPU time. Gelareh and Nickel [42]

work on UMAHLP for the urban transportation and liner shipping networks where

the hub network is incomplete and the triangularity assumption does not hold. In

order to solve this problem, they proposed a Benders decomposition algorithm

such that cuts are generated for each node instead of each origin-destination pair.

The algorithm is tested on the AP data set instances with up to 50 nodes and all

the instances are solved within one hour.

Even though hub location problems are well studied over the years, the literature

addressing data uncertainty in the context of hub location problems is rather

limited. Marianov and Serra [43] investigate a hub location problem in an air

transportation network in which hubs are assumed to behave as M/D/c queues.

The probability that the number of planes in the queue exceeds a certain number

is bounded above. This restriction is later transformed into a capacity constraint

for the hubs. The authors propose a tabu search based heuristic method and

test it using the CAB data set and a randomly generated data set containing 900

instances with 30 nodes.
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Yang [44] introduces demand uncertainty into the air freight hub location and

flight routes planning problem in a two-stage stochastic programming setting. In

the first stage, the number of hubs to be opened and the locations of these hubs

are determined. The second stage deals with the flight routing decisions in re-

sponse to different demand scenarios considering the hub locations determined in

the first stage. Computational experiments are performed using real data from

Taiwan-China air freight network. Comparison of the stochastic model with the

deterministic model based on average demands shows that incorporating uncer-

tainty into the problem leads to improvements in the total cost.

Sim et al. [45] study stochastic p-hub center problem with normally distributed

travel times. They use a chance constraint to guarantee the desired service level.

They propose several heuristic algorithms and test them on the CAB and the AP

data sets.

Contreras et al. [46] consider the uncapacitated multiple allocation hub location

problem under demand and transportation cost uncertainty. They show that the

stochastic models for this problem with uncertain demands or transportation costs

dependent to a single uncertain parameter are equivalent to the deterministic

problem with mean values. This is not the case for the problem with stochastic

independent transportation costs. This latter problem is solved using Benders

decomposition and a sample average scheme. They use the AP data set to test

the efficiency and effectiveness of the proposed models and algorithms.

Alumur et al. [47] study both multiple and single allocation hub location prob-

lems with setup costs and point-to-point demands as sources of uncertainty. The

uncertainty in the setup costs is handled by a minimax regret formulation while

demand uncertainty is modeled with a stochastic programming formulation. They

integrate these two cases and propose a model considering both setup cost and

demand uncertainty. Computational analysis of the proposed models is performed

with more than 150 instances on the CAB data.

Most recently, Shahabi and Unnikrishnan [48] study the single and multiple al-

location hub location problems with ellipsoidal demand uncertainty. They propose

mixed integer conic quadratic programming formulations and a linear relaxation

7



strategy. The proposed models are tested on the CAB data set with 25 nodes and

it is concluded that opening more hubs reduces the effect of demand uncertainty

on the total cost.

Different from the studies summarized above, in this study, we adopt two poly-

hedral uncertainty sets from the telecommunications literature, namely hose and

hybrid models, to represent the uncertainty in the demand data. We propose

mixed integer linear programming formulations for the UMApHMP under hose

and hybrid demand uncertainty and the CMAHLP under hose demand uncertainty.

Motivated by successful implementations of Benders decomposition to solve hub

locations problems, we propose several exact decomposition algorithms to solve

large-scale instances.
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Chapter 3

Uncapacitated Multiple

Allocation p-Hub Median

Problem under Polyhedral

Demand Uncertainty

In this chapter, we consider the robust uncapacitated multiple allocation p-hub

median problem under polyhedral demand uncertainty. We model the demand

uncertainty in two different ways. The hose model assumes that the only available

information is the upper limit on the total flow adjacent at each node, while the

hybrid model additionally imposes lower and upper bounds on each pairwise de-

mand. We propose linear mixed integer programming formulations using a minmax

criteria and devise two Benders decomposition based exact solution algorithms in

order to solve large-scale problems. We report the results of our computational

experiments on the effect of incorporating uncertainty and on the performance of

our exact approaches.
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3.1 Mathematical Models

In this section, we devise mathematical models for the multiple allocation p-hub

median problem under different models of demand uncertainty. We consider the

uncapacitated problem where the hub network is complete and there is no direct

connection between nonhub nodes. Several formulations are developed for the

deterministic UMApHMP. The model by Hamacher et al. [32] is the strongest

among four index formulations.

We are given a set of demand points N = {1, ..., n} and a set of possible hub

locations H = {1, ..., h}. In the deterministic problem, we know the traffic demand

wij from node i to node j for all distinct pairs i and j (we assume that wii = 0

for all nodes i). Let C = {(i, j) : i, j ∈ N, i 6= j}. We denote by dij the cost of

transporting one unit of demand from node i to node j. We have cost multipliers

χ, α and δ for collection, transfer between hubs and distribution, respectively.

Hence the cost of transporting one unit of demand from node i to node j through

hubs k and m is equal to cijkm = χdik + αdkm + δdmj.

For completeness, we first present the model of Hamacher et al. [32] for the

deterministic problem. Let yk be 1 if a hub is located at location k and be 0

otherwise and xijkm be the fraction of flow from node i to node j sent through

hubs k and m in that order. The model is as follows:

10



(UMApHMP deterministic)

min
∑

(i,j)∈C

∑
k∈H

∑
m∈H

cijkmwijxijkm (3.1)

s.t.
∑
k

yk = p, (3.2)∑
k∈H

∑
m∈H

xijkm = 1 ∀(i, j) ∈ C, (3.3)∑
m∈H

xijkm +
∑
m∈H:
m 6=k

xijmk ≤ yk ∀(i, j) ∈ C, k ∈ H, (3.4)

yk ∈ {0, 1} ∀k ∈ H, (3.5)

xijkm ≥ 0 ∀(i, j) ∈ C, ∀k,m ∈ H. (3.6)

The objective is to minimize the total transportation cost. Constraint (3.2)

ensures that p hubs are located in the network. Constraints (3.3) guarantee that

the demand between each origin-destination pair is fully satisfied. Constraints

(3.4) assure that the flow can go through only installed hub facilities. Constraints

(3.5) and (3.6) are the domain constraints.

We consider two demand uncertainty models, the hose model and the hybrid

model. In the telecommunications community, the hose model is a popular way to

model demand uncertainty. It puts limitations on the total demand associated to

demand nodes, rather than estimating pairwise demand values.

The total demand adjacent at each node i ∈ N is required to be less than or

equal to a finite and positive upper bound bi. The uncertainty set under hose

uncertainty model is

Dhose = {w ∈ Rn(n−1)
+ :

∑
j∈N\{i}

wij +
∑

j∈N\{i}

wji ≤ bi, ∀i ∈ N}.

The robust multiple allocation p-hub median problem under hose uncertainty

asks to decide on the locations of hubs and the routes for origin-destination pairs
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so that the worst case cost over all possible demand realizations in set Dhose is

minimized, i.e.,

min
(x,y)∈X

max
w∈Dhose

∑
(i,j)∈C

∑
k∈H

∑
m∈H

cijkmwijxijkm,

where X is the set defined by constraints (3.2)-(3.6).

As such, this problem is a nonlinear problem. Next we apply the dual trans-

formation used to linearize minmax type robust optimization problems (see, e.g.,

Bertsimas and Sim [9] and Altın et al. [49]). For given (x, y) ∈ X, the problem

max
w∈Dhose

∑
(i,j)∈C

∑
k∈H

∑
m∈H

cijkmwijxijkm

is a linear programming problem that is feasible and bounded. Hence, its optimal

value is equal to the optimal value of its dual. Using this result, robust UMApHMP

with hose demand uncertainty can be modeled as the following mixed integer

program:

(UMApHMP Hose)

min
∑
i∈N

λibi (3.7)

s.t. (3.2)− (3.6),

λi + λj ≥
∑
k∈H

∑
m∈H

cijkmxijkm ∀(i, j) ∈ C, (3.8)

λi ≥ 0 ∀i ∈ N, (3.9)

where λi is the dual variable associated with the constraint
∑

j∈N\{i}wij +∑
j∈N\{i}wji ≤ bi for i ∈ N .

The second uncertainty set we study is the hybrid set proposed by Altın et al.

[49]:

Dhybrid = Dhose ∩ {w ∈ Rn(n−1)
+ : lij ≤ wij ≤ uij, ∀(i, j) ∈ C},

where lij and uij are lower and upper bounds for the traffic demand from node i

to node j with 0 ≤ lij ≤ uij. Note that when lij = 0 and uij ≥ min{bi, bj} for all
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distinct pairs i and j, Dhybrid = Dhose. In addition, when uij = lij for all (i, j) ∈ C
and bi ≥

∑
j∈N\{i}(uij + uji) for all i, we have the deterministic problem.

The robust multiple allocation p-hub median problem under hybrid uncertainty

can be modeled as follows:

(UMApHMP Hybrid)

min
∑
i∈N

λibi +
∑

(i,j)∈C

(uijβij − lijµij) (3.10)

s.t. (3.2)− (3.6),

λi + λj + βij − µij ≥
∑
k∈H

∑
m∈H

cijkmxijkm ∀(i, j) ∈ C, (3.11)

λi ≥ 0 ∀i ∈ N, (3.12)

βij, µij ≥ 0 ∀(i, j) ∈ C. (3.13)

where βij and µij are the dual variables associated with the upper and lower bound

constraints, respectively.

Both models UMApHMP Hose and UMApHMP Hybrid are compact mixed

integer programming models that can be solved using a general purpose solver.

However, as the number of nodes grows, the sizes of these formulations grow

quickly. In the sequel, we propose decomposition algorithms to deal with these

large mixed integer programs.
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3.2 Benders Decomposition

Benders decomposition is a row generation based exact solution method that can

be applied to solve large-scale mixed integer programming problems [50]. In this

technique, the problem is reformulated using a smaller number of variables and

a large number of constraints. Then this reformulation is solved using a cutting

plane approach. The relaxation solved at each iteration is called as the master

problem and the problem that finds a cutting plane is called as the subproblem.

Benders decomposition uses the fact that computational difficulty of a problem

increases as the problem size increases and instead of solving a single large problem,

solving smaller problems iteratively may be more efficient in terms of the compu-

tational effort required. With this motivation, we apply Benders decomposition

to the robust UMApHMP under polyhedral demand uncertainty. In the classical

Benders approach, the master problem is solved to optimality at each iteration.

In our implementations, we use a branch-and-cut framework and separate Benders

cuts each time a candidate integer solution is found.

We decompose UMApHMP with polyhedral demand uncertainty in two different

ways. We present our approach for only the hybrid uncertainty model since the

hose model is a special case with lij = 0 and uij ≥ min{bi, bj}.

3.2.1 Decomposition with only location variables in the

master

Consider the formulation UMApHMP Hybrid we provided in the previous section.

For given hub locations represented with vector ŷ, the problem becomes

14



(PS1) min
∑
i∈N

λibi +
∑

(i,j)∈C

(uijβij − lijµij) (3.14)

s.t. λi + λj + βij − µij ≥
∑
k∈H

∑
m∈H

cijkmxijkm ∀(i, j) ∈ C, (3.15)

∑
k∈H

∑
m∈H

xijkm ≥ 1 ∀(i, j) ∈ C, (3.16)

∑
m∈H

xijkm +
∑

m∈H\{k}

xijmk ≤ ŷk ∀(i, j) ∈ C, k ∈ H, (3.17)

λi ≥ 0 ∀i ∈ N, (3.18)

βij , µij ≥ 0 ∀(i, j) ∈ C, (3.19)

xijkm ≥ 0 ∀(i, j) ∈ C, ∀k,m ∈ H. (3.20)

Note here that we modified constraints (3.16) as inequalities since the above

model has an optimal solution where these inequalities are tight. Problem PS1

is a linear programming problem. It is feasible and bounded when
∑

k∈H ŷk ≥ 1,

uij ≥ lij ≥ 0 for all (i, j) ∈ C and bi ≥
∑

j∈N\{i}(lij + lji) for all i ∈ N . We

associate dual variables ωij, ρij and νijk to constraints (3.15)-(3.17), respectively.

Then the dual subproblem is

(DS1) max
∑

(i,j)∈C

ρij −
∑

(i,j)∈C

∑
k∈H

ŷkνijk (3.21)

s.t.
∑

j∈N\{i}

ωij +
∑

j∈N\{i}

ωji ≤ bi ∀i ∈ N, (3.22)

lij ≤ ωij ≤ uij ∀(i, j) ∈ C, (3.23)

ρij − νijk − νijm ≤ cijkmωij ∀(i, j) ∈ C, ∀k,m ∈ H : k 6= m, (3.24)

ρij − νijk ≤ cijkkωij ∀(i, j) ∈ C, k ∈ H, (3.25)

ρij ≥ 0 ∀(i, j) ∈ C, (3.26)

νijk ≥ 0 ∀(i, j) ∈ C, ∀k ∈ H, (3.27)
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and is also feasible and bounded by strong duality. Hence, the robust UMApHMP

under hose demand uncertainty can be modeled as the master problem

(MP1) min q (3.28)

s.t. q ≥
∑

(i,j)∈C

ρtij −
∑

(i,j)∈C

∑
k∈H

ykν
t
ijk ∀t = 1, . . . , T, (3.29)

∑
k

yk = p, (3.30)

yk ∈ {0, 1} ∀k ∈ H, (3.31)

where (ρt, νt, ωt) is the t-th extreme point of the set defined by (3.22)-(3.27). We

solve this master problem iteratively using constraints (3.29) as cutting planes. For

a given (q̂, ŷ), we check whether there exists an inequality (3.29) that is violated

by solving the dual subproblem. Now, we investigate how the dual problem can

be solved efficiently.

First, in order to eliminate the dependencies between the constraints, we let

ρ̄ij =
ρij
ωij

and ν̄ijk =
νijk
ωij

. Then the dual subproblem becomes

max
∑

(i,j)∈C

ωij(ρ̄ij −
∑
k∈H

ŷkν̄ijk) (3.32)

s.t. (3.22) and (3.23),

ρ̄ij − ν̄ijk − ν̄ijm ≤ cijkm ∀(i, j) ∈ C, ∀k,m ∈ H : k 6= m, (3.33)

ρ̄ij − ν̄ijk ≤ cijkk ∀(i, j) ∈ C, ∀k ∈ H, (3.34)

ρ̄ij ≥ 0 ∀(i, j) ∈ C, (3.35)

ν̄ijk ≥ 0 ∀(i, j) ∈ C, ∀k ∈ H, (3.36)

which is equivalent to

max
ω∈Dhybrid

(
max

(ρ̄,ν̄):(3.33)−(4.112)

∑
(i,j)∈C

ωij(ρ̄ij −
∑
k∈H

ŷkν̄ijk)

)
.
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Now the inner problem decomposes into n(n− 1) problems:

max
ω∈Dhybrid

∑
(i,j)∈C

ωijθij,

where for (i, j) ∈ C,

θij = max ρ̄ij −
∑
k∈H

ŷkν̄ijk (3.37)

s.t. ρ̄ij − ν̄ijk − ν̄ijm ≤ cijkm ∀k,m ∈ H : k 6= m, (3.38)

ρ̄ij − ν̄ijk ≤ cijkk ∀k ∈ H, (3.39)

ρ̄ij ≥ 0, (3.40)

ν̄ijk ≥ 0 ∀k ∈ H, (3.41)

which is the dual of

θij = min
∑
k∈H

∑
m∈H

cijkmxijkm (3.42)

s.t.
∑
k∈H

∑
m∈H

xijkm ≥ 1, (3.43)∑
m∈H

xijkm +
∑

m∈H\{k}

xijmk ≤ ŷk ∀k ∈ H, (3.44)

xijkm ≥ 0 ∀k,m ∈ H. (3.45)

This problem can be solved by inspection and an optimal dual solution can be

constructed using complementary slackness conditions as explained by Contreras

et al. [35]. We note here that the dual problem computes the worst case cost

for a given choice of hub locations and it uses the fact that each commodity is

routed on a shortest path from its origin to its destination, independently of the

demand realizations. Hence, we first compute the length of a shortest path for

each origin-destination pair and then solve a linear problem to find the demand

realization for which the routing cost is maximum.

Besides, different from the deterministic case, the cut (3.29) cannot be disag-

gregated into cuts for nodes or for node pairs since the problem DS1 does not
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decompose.

3.2.2 Decomposition by projecting out the routing vari-

ables

When we fix (y, λ, β, µ) = (ŷ, λ̂, β̂, µ̂) in formulation UMApHMP Hybrid, we obtain

the following problem

max 0 x (3.46)

s.t.
∑
k∈H

∑
m∈H

cijkmxijkm ≤ λ̂i + λ̂j + β̂ij − µ̂ij ∀(i, j) ∈ C, (3.47)∑
k∈H

∑
m∈H

xijkm ≥ 1 ∀(i, j) ∈ C, (3.48)∑
m∈H

xijkm +
∑

m∈H\{i}

xijmk ≤ ŷk ∀(i, j) ∈ C, k ∈ H, (3.49)

xijkm ≥ 0 ∀(i, j) ∈ C, ∀k,m ∈ H, (3.50)

which is a feasibility problem. For this problem to be feasible, we need its dual to

be bounded. In other words, by Farkas’ lemma, we need∑
(i,j)∈C

(λ̂i + λ̂j + β̂ij − µ̂ij)γij −
∑

(i,j)∈C

ρij +
∑

(i,j)∈C

∑
k∈H

νijkŷk ≥ 0 (3.51)

for all (γ, ρ, ν) that satisfy

γijcijkm − ρij + νijk + νijm ≥ 0 ∀(i, j) ∈ C, ∀k,m ∈ H : k 6= m, (3.52)

γijcijkk − ρij + νijk ≥ 0 ∀(i, j) ∈ C, ∀k ∈ H, (3.53)

γij ≥ 0, ρij ≥ 0 ∀(i, j) ∈ C, (3.54)

νijk ≥ 0 ∀(i, j) ∈ C, ∀k,m ∈ H. (3.55)

First note that this system decomposes for each pair (i, j). In addition, since the

vector can be scaled, we take γij to be 0 or 1 without loss of generality. When
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γij = 0, we need
∑

k∈H νijkŷk ≥ ρij for all (ρij, νij) such that

νijk + νijm ≥ ρij ∀ k,m ∈ H : k 6= m, (3.56)

νijk ≥ ρij ∀ k ∈ H, (3.57)

ρij ≥ 0, (3.58)

νijk ≥ 0 ∀k,m ∈ H. (3.59)

This is always satisfied when
∑

k∈H ŷk ≥ 1. Hence, the only interesting case is

γij = 1. Consequently, we can conclude that the feasibility problem has a solution

if for all (i, j) ∈ C we have

λ̂i + λ̂j + β̂ij − µ̂ij ≥ ρij −
∑
k∈H

νijkŷk (3.60)

for all (ρij, νij) such that

cijkm + νijk + νijm ≥ ρij ∀ k,m ∈ H : k 6= m, (3.61)

cijkk + νijk ≥ ρij ∀ k ∈ H, (3.62)

ρij ≥ 0, (3.63)

νijk ≥ 0 ∀k,m ∈ H, (3.64)

Let Mij = {(ρij, νij) ∈ R+×Rh
+ : (3.61)−(3.64)} for (i, j) ∈ C. After projecting

out the x variables, the model becomes
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(MP2) min
∑
i∈N

λibi +
∑

(i,j)∈C

(uijβij − lijµij) (3.65)

s.t. λi + λj + βij − µij ≥ ρtij −
∑
k∈H

ykν
t
ijk∀(i, j) ∈ C, ∀t = 1, . . . , Tij , (3.66)

∑
k

yk = p, (3.67)

λi ≥ 0 ∀i ∈ N, (3.68)

βij , µij ≥ 0 ∀(i, j) ∈ C, (3.69)

yk ∈ {0, 1} ∀k ∈ H. (3.70)

where (ρtij, ν
t
ij) is the t-th extreme point of Mij, which has Tij extreme points.

Hence the dual subproblem for each (i, j) ∈ C can be stated as

max
(ρij ,νij)∈Mij

(
ρij −

∑
k∈H

ykνijk

)
.

which is the dual of a shortest path problem from i to j for each (i, j) ∈ C.

Again the dual variables ρ and ν can be obtained using the algorithm provided in

Contreras et al. [35].

Observe that keeping the dual variables λi’s in the master problem enables us

to disaggregate the cuts (3.29) into multiple cuts, one for each node pair.

3.3 Computational Analysis

For computational analysis, we used the Civil Aeronautics Board (CAB) data

set with 25 nodes, the Turkish network (TR) data set with 81 nodes and the

Australian Post (AP) data set with up to 200 nodes. All data sets are well-known

and commonly used in the hub location literature (accessible from [51]). The

CAB data set (Figure 3.1) was introduced by O’Kelly [52]. In this data set, the

cost and demand values are symmetric and flow from one node to itself is not
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allowed. The unit collection and distribution cost factors are taken as χ = δ = 1

while the unit transfer cost factor α is allowed to be 0.2, 0.4, 0.6, 0.8 so that

cijkm = dik + α dkm + dmj.

#

#

# ## #
## ## ### ##

#

#
# ##

#

##

#

#

3 Boston

8 Denver

7 Dallas

24 Tampa

14 Miami

9 Detroit4 Chicago

1 Atlanta

23 Seattle

13 Memphis
19 Phoenix

10 Houston

6 Cleveland
17 New York

2 Baltimore5 Cincinnati21 St. Louis 20 Pittsburgh
25 Washington

15 Minneapolis

11 Kansas City

12 Los Angeles

16 New Orleans

22 San Francisco

Figure 3.1: Locations of demand nodes for CAB data set

We also consider the TR data set (Figure 3.2) containing data for 81 cities of

Turkey. The unit collection, distribution and transfer cost factors are taken as in

the CAB data set. Different from the CAB data, the pairwise demand values are

not symmetric in the TR data set. We use the original distance values and, for

the ease of representation, scale the demand values by dividing with 1000.

Although the CAB and the TR data sets are small-to-medium size, the AP

data set is available for larger instances. The AP data set is initially introduced

by Ernst and Krishnamoorthy [53] and it consists of flow data for 200 postcode

districts in Australia. The unit collection, transfer and distribution cost factors

are taken as χ = 3, α = 0.75 and δ = 2. In the AP data set, demand and flow

values are not symmetric. For the uniformity of computation, we do not allow flow

from a node to itself even though the AP data set contains such demand values.

In order to set the problem parameters, we use the nominal demand val-

ues of the deterministic problem instances. We generate our traffic bounds

as bi =
∑

j∈N\{i}(wij + wji) for all i ∈ N . For the hybrid model, we let

lij = max{0, (1 − ψ)wij} and uij = (1 + ψ)wij for all distinct pairs i and j, with

ψ ∈ {0.2, 0.4, 0.6, 0.8, 1, 2}. All demand nodes are taken as candidate locations for
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Figure 3.2: Locations of demand nodes for TR data set

hubs, i.e., H = N .

The experiments are done on a 64-bit machine with Intel Xeon E5-2630 v2

processor at 2.60 GHz and 96 GB of RAM using Java and Cplex 12.5.1 We set a

time limit of ten hours. All solution times are given in seconds.

First we compare the hub location decisions made for each uncertainty set

and their total transportation costs. In Table 3.1, we present results of different

uncertainty sets using the CAB data set instances with 25 nodes, p ∈ {2, 3, 4, 5}
and α ∈ {0.2, 0.4, 0.6, 0.8}. We obtained these results by solving our models using

the solver CPLEX. For each p, α and uncertainty set, we report the optimal value

and the locations of hubs in the optimal solutions.

When we compare the hub locations of the deterministic model, with those of

the hose model, we see that there has been a change in the hub locations in 12

out of 16 instances. The hubs that are closed are usually replaced with a nearby

alternative. For example, in the instance with p = 3 and α = 0.4, the hubs are

installed in Chicago (4), Los Angeles (12) and New York (17) in the deterministic

model, whereas the hub at Chicago (4) is replaced with a hub at Cincinnati (5) in

the hose model solution. The hub locations of some instances shift several times
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Table 3.1: Results for the CAB data set (total transportation cost / hub locations)

Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid
p α Deterministic (ψ = 0.2) (ψ = 0.4) (ψ = 0.6) (ψ = 0.8) (ψ = 1) (ψ = 2) Hose

2 0.2
996.02 1007.72 1019.41 1031.10 1042.80 1054.49 1054.99 1054.99
12,20 12,20 12,20 12,20 12,20 12,20 12,20 12,20

2 0.4
1072.49 1095.61 1118.73 1141.84 1164.96 1188.08 1190.79 1190.79
12,20 12,20 12,20 12,20 12,20 12,20 12,20 12,20

2 0.6
1137.08 1172.03 1206.98 1241.87 1269.64 1297.42 1319.78 1319.78
12,20 12,20 12,20 8,20 8,20 8,20 12,20 12,20

2 0.8
1180.02 1222.71 1256.55 1290.39 1318.08 1342.32 1417.49 1418.84
12,20 8,20 8,20 8,20 11,20 11,20 8,20 5,12

3 0.2
752.91 770.59 788.02 805.36 822.70 839.44 845.12 845.26

12,17,21 12,17,21 4,12,17 4,12,17 4,12,17 5,12,17 5,12,17 5,12,17

3 0.4
859.64 893.41 927.19 960.96 994.66 1024.40 1036.58 1037.64
4,12,17 4,12,17 4,12,17 4,12,17 4,12,18 5,12,17 5,12,17 5,12,17

3 0.6
949.23 996.94 1044.22 1091.50 1136.48 1180.64 1209.00 1213.09
4,12,17 4,12,18 4,12,18 4,12,18 2,12,21 2,12,21 5,12,17 5,12,17

3 0.8
1020.04 1079.13 1136.03 1190.64 1244.66 1293.22 1359.06 1367.93
4,12,17 12,18,21 2,12,21 2,12,21 12,21,25 12,20,21 5,8,17 5,12,17

4 0.2
618.48 635.69 652.91 670.12 687.33 704.54 722.29 726.44

4,12,17,24 4,12,17,24 4,12,17,24 4,12,17,24 4,12,17,24 4,12,17,24 4,12,17,24 4,12,14,17

4 0.4
754.49 788.62 821.96 854.22 886.47 918.73 954.92 967.16

4,12,17,24 4,12,17,24 1,4,12,17 1,4,12,17 1,4,12,17 1,4,12,17 1,4,12,17 5,12,14,17

4 0.6
866.45 914.26 962.07 1009.88 1057.70 1105.51 1156.82 1170.07

1,4,12,17 1,4,12,17 1,4,12,17 1,4,12,17 1,4,12,17 1,4,12,17 1,4,12,17 5,12,17,24

4 0.8
951.76 1013.03 1074.31 1135.59 1196.86 1251.39 1326.78 1343.21

1,4,12,17 1,4,12,17 1,4,12,17 1,4,12,17 1,4,12,17 1,4,8,17 4,5,12,17 5,12,17,22

5 0.2
530.00 547.75 565.50 583.25 601.00 618.74 639.79 646.72

4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,7,12,14,17

5 0.4
676.34 711.42 746.51 781.60 816.68 851.77 899.59 914.10

4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,12,13,14,17 1,4,12,17,20

5 0.6
804.70 855.24 905.78 956.32 1005.79 1055.19 1112.80 1129.91

4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,7,12,14,17 4,7,12,14,18 4,7,12,14,18 1,4,12,17,20 5,8,12,17,24

5 0.8
910.35 974.35 1037.38 1098.67 1158.20 1215.17 1298.23 1322.23

4,7,12,17,24 4,7,12,17,24 1,4,7,12,17 4,7,12,17,25 4,7,12,17,25 4,8,13,17,20 1,4,12,17,20 5,12,14,17,22

as the uncertainty set enlarges. Consider the instance with p = 3 and α = 0.2. In

the deterministic case, hubs are installed at Los Angeles (12), New York (17) and

St. Louis (21). As we switch to hybrid uncertainty set with ψ = 0.4, Chicago (4)

replaces St. Louis (21) in the optimal solution; whereas Chicago (4) is replaced

with Cincinnati (5) in the hose model solution. Some instances are more sensitive

to the demand model changes. The optimal hub locations of the instance with

p = 3 and α = 0.8 change for the hybrid models with ψ = 0.2, 0.4, 0.8, 1, 2 and

the hose model. Moreover, the optimal hub locations for some instances change

for the hybrid model, but not the hose model. In the instance with p = 2 and

α = 0.6, the hubs are located at Los Angeles (12) and Pittsburgh (20) for both

deterministic and the hose models. However, considering the hybrid models with

ψ = 0.6, 0.8, 1, the hub at Los Angeles (12) is moved to Denver (8).
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We further observe that for larger values of transfer cost factor α, hub locations

in the optimal solution are more likely to change for different demand uncertainty

sets. The instances with no hub location change generally have smaller α values.

For p = 2, none of the instances with α ∈ {0.2, 0.4} has a change in the hub

locations. Considering p = 5, only the hub locations of the instance with the

smallest α value, which is 0.2, remain unchanged. The possibility of a change in

the optimal hub locations increases as α increases. On the other hand, the CAB

data set instances do not display any patterns depending on the value of p. All

instances with p = 3, 4 have a change in the hub locations while there are instances

with no change with p = 2, 5. It is difficult to draw any conclusions about the

effects of p value on the optimal hub locations for different uncertainty sets.

We observe, in Table 3.1, that the changes in the locations of hubs are not major.

Another important aspect to be considered is the performance of deterministic hub

location decisions under different demand realizations. In Table 3.2, we analyze,

for the CAB data set, how the total cost will be affected if hubs are selected based

on the deterministic model but the demand changes with one of the proposed

uncertainty sets. We report the worst case costs using deterministic hub locations

under different uncertainty sets and the percentage deviations from the optimal

values. It can be observed that the deviation from the optimal value usually

increases as α grows and the uncertainty set enlarges. However, there are some

instances that does not follow this pattern. For example, the instance with p = 2

and α = 0.8 has its largest deviation (4.11%) in the hybrid model with ψ = 1

which is significantly greater than the deviation in the corresponding hose model

solution (0.81%). In addition, we observe that by incorporating uncertainty into

the decision making process, we can make savings of up to 4.11% in the total cost.

We perform the same location and cost analysis also on the TR data set in-

stances. Table 3.3 presents the optimal hub locations and corresponding total

transportation costs under different demand uncertainty model settings. Consid-

ering the hub locations, it can be seen that the TR data set is more sensitive to

the changes in the demand. For all 16 instances, there has been a change in the

hub locations in response to the demand model changes. In six of them, the hub

location change occurs in the least conservative model with the demand uncer-

tainty (hybrid model with ψ = 0.2). 11 instances out of 16 are exposed to changes
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Table 3.2: Cost analysis for the CAB data set

Cost and Percentage deviation from the optimal solution
Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid

p α Deterministic (ψ = 0.2) (ψ = 0.4) (ψ = 0.6) (ψ = 0.8) (ψ = 1) (ψ = 2) Hose

2 0.2 12,20
1007.72 1019.41 1031.10 1042.80 1054.49 1054.99 1054.99

0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.4 12,20
1095.61 1118.73 1141.84 1164.96 1188.08 1190.79 1190.79

0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.6 12,20
1172.03 1206.98 1241.93 1276.88 1311.83 1319.78 1319.78

0.00 0.00 0.01 0.57 1.11 0.00 0.00

2 0.8 12,20
1223.51 1266.99 1310.48 1353.97 1397.45 1429.48 1430.32

0.07 0.83 1.56 2.72 4.11 0.85 0.81

3 0.2 12,17,21
770.59 788.27 805.94 823.62 841.30 859.58 863.10
0.00 0.03 0.07 0.11 0.22 1.71 2.11

3 0.4 4,12,17
893.41 927.19 960.96 994.74 1028.51 1055.69 1060.65
0.00 0.00 0.00 0.01 0.40 1.84 2.22

3 0.6 4,12,17
997.32 1045.41 1093.50 1141.60 1189.69 1239.84 1250.90
0.04 0.11 0.18 0.45 0.77 2.55 3.12

3 0.8 4,12,17
1080.04 1140.04 1200.04 1260.04 1320.05 1396.40 1414.78

0.08 0.35 0.79 1.24 2.07 2.75 3.43

4 0.2 4,12,17,24
635.69 652.91 670.12 687.33 704.54 722.29 730.25
0.00 0.00 0.00 0.00 0.00 0.00 0.52

4 0.4 4,12,17,24
788.62 822.75 856.88 891.00 925.13 961.00 972.51
0.00 0.10 0.31 0.51 0.70 0.64 0.55

4 0.6 1,4,12,17
914.26 962.07 1009.88 1057.70 1105.51 1156.82 1187.47
0.00 0.00 0.00 0.00 0.00 0.00 1.49

4 0.8 1,4,12,17
1013.03 1074.31 1135.59 1196.86 1258.14 1327.55 1372.05

0.00 0.00 0.00 0.00 0.54 0.06 2.15

5 0.2 4,7,12,14,17
547.75 565.50 583.25 601.00 618.75 639.79 646.72
0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.4 4,7,12,14,17
711.42 746.51 781.60 816.68 851.77 900.93 915.26
0.00 0.00 0.00 0.00 0.00 0.15 0.13

5 0.6 4,7,12,14,17
855.24 905.78 956.32 1006.86 1057.40 1135.80 1160.08
0.00 0.00 0.00 0.11 0.21 2.07 2.67

5 0.8 4,7,12,17,24
974.35 1038.35 1102.35 1166.35 1230.35 1324.49 1367.82
0.00 0.09 0.34 0.70 1.25 2.02 3.45
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Table 3.3: Results for the TR data set (total transportation cost / hub locations)

Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid
p α Deterministic (ψ = 0.2) (ψ = 0.4) (ψ = 0.6) (ψ = 0.8) (ψ = 1) (ψ = 2) Hose

2 0.2
781669.72 786824.72 797134.72 802289.71 812599.71 822909.71 823485.27 826877.58

44,54 38,41 38,41 38,41 38,41 38,41 38,41 38,41

2 0.4
820586.50 840112.66 859638.82 879164.99 892040.38 902575.19 902575.19 902575.19

38,41 38,41 38,41 38,41 6,44 6,44 6,44 6,44

2 0.6
857219.51 883983.61 910717.95 926290.29 940622.96 954955.62 954955.62 954955.62

38,41 38,41 38,54 6,46 6,46 6,46 6,46 6,46

2 0.8
878672.80 909256.41 938955.05 959486.50 978472.84 996333.67 996504.70 996504.70

38,41 38,54 38,54 6,44 6,44 6,34 6,34 6,34

3 0.2
660218.05 669320.24 678208.41 687096.58 695984.75 704872.91 704872.91 704872.91
12,41,68 6,41,44 6,41,44 6,41,44 6,41,44 6,41,44 6,41,44 6,41,44

3 0.4
726196.77 743571.26 760945.74 778320.22 795694.70 812263.87 812263.87 812263.87

6,41,44 6,41,44 6,41,44 6,41,44 6,41,44 6,34,44 6,34,44 6,34,44

3 0.6
778077.05 802850.50 827328.13 851179.46 874652.79 896670.92 896670.92 896670.92

6,41,44 6,41,44 6,41,46 6,41,46 6,34,46 6,34,46 6,34,46 6,34,46

3 0.8
845601.96 861246.30 892534.96 908179.30 939110.71 963781.26 968747.12 968747.41

6,41,44 6,41,44 6,41,44 6,41,44 6,34,44 1,3,6 6,34,44 6,34,44

4 0.2
570217.55 580050.10 589882.64 598397.47 606822.73 615247.99 618170.78 619704.92
6,34,44,45 6,34,44,45 6,34,44,45 27,34,64,71 27,34,64,71 27,34,64,71 27,34,64,71 6,34,35,44

4 0.4
657662.12 676223.28 694784.44 713345.61 731857.44 749377.80 751689.75 751736.11
6,34,44,45 6,34,44,45 6,34,44,45 6,34,44,45 6,34,35,44, 3,34,71,80 6,34,35,44 6,34,35,44

4 0.6
729447.41 755449.94 780891.70 804676.28 828223.76 849488.45 856918.94 856956.89
6,34,44,45 6,34,45,46 6,34,45,46 3,6,34,46 3,6,34,46 1,3,6,34 1,6,23,34 1,6,23,34

4 0.8
777778.51 811709.80 843479.75 875182.54 906333.49 933544.51 947749.84 950994.70
1,3,41,58 1,6,23,41 3,6,34,44 3,6,34,44 3,6,34,46 1,3,6,34 3,6,34,38 1,6,34,44

5 0.2
492494.33 501839.91 511185.49 520391.93 529385.67 538379.41 540666.63 541609.30

6,12,34,45,80 6,12,34,45,80 6,12,34,45,80 1,6,12,34,35 1,6,12,34,35 1,6,12,34,35 6,12,34,35,80 6,12,34,35,80

5 0.4
595161.93 613491.23 631820.52 650149.82 668479.11 685959.90 691650.49 693039.20

1,6,12,34,45 1,6,12,34,45 1,6,12,34,45 1,6,12,34,45 1,6,12,34,45 1,6,12,34,64 1,6,23,34,35 1,6,23,34,35

5 0.6
678419.46 705452.52 732038.97 757265.98 782009.47 806752.95 816929.99 821577.20

1,6,23,34,45 1,6,23,34,45 1,6,23,34,64 1,3,6,23,34 1,3,6,23,34 1,3,6,23,34 1,3,6,23,34 1,3,6,23,34

5 0.8
744056.84 779668.60 812942.30 846138.12 879333.95 912157.71 928125.96 935014.05

1,6,23,41,45 1,3,6,23,41 1,3,6,23,34 1,3,6,23,34 1,3,6,23,34 1,3,6,34,44 1,3,6,34,44 1,3,6,23,34

in the hub locations under hybrid uncertainty models with ψ value up to 0.6. In

the TR data, the cities Ankara (6), İstanbul (34) and İzmir (35) are the ones with

the largest demand values. We observe that as the uncertainty set enlarges, these

cities are more likely to be in the set of optimal hub locations. For example, with

parameters p = 2 and α = 0.4, 0.6, 0.8, the deterministic model chooses Kayseri

(38) and Kocaeli (41) as hub locations while the hose model chooses Ankara (6)

in all three instances and İstanbul (34) in one of them. Additionally, from Tables

3.1 and 3.3, it can be seen that the optimal value of the hybrid model converges

to the optimal value of the hose model as ψ and consequently the upper bounds

on the pairwise demands increases. Considering TR data set instance with p = 2
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and α = 0.4, the optimal solution value of the hybrid model increases as ψ grows

and ultimately becomes equal to the optimal value of the hose model when ψ = 1.

Table 3.4: Cost analysis for the TR data set

Cost and Percentage deviation from the optimal solution

Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid

p α Deterministic (ψ = 0.2) (ψ = 0.4) (ψ = 0.6) (ψ = 0.8) (ψ = 1) (ψ = 2) Hose

2 0.2 44,54
783544.78 796104.52 808664.27 821224.01 833783.75 833783.75 833783.75

0.24 0.52 0.79 1.06 1.32 1.25 0.84

2 0.4 38,41
840112.66 859638.82 879164.99 898691.15 918217.31 921559.32 930866.70

0.00 0.00 0.00 0.75 1.73 2.10 3.13

2 0.6 38,41
883983.61 910747.71 937511.82 964275.92 991040.02 1002321.11 1022210.03

0.00 0.00 1.21 2.51 3.78 4.96 7.04

2 0.8 38,41
909727.56 940782.32 971837.08 1002891.84 1033946.60 1062003.87 1087904.35

0.05 0.19 1.29 2.50 3.78 6.57 9.17

3 0.2 12,41,68
669853.39 679488.72 689124.06 698759.40 708394.74 709086.96 710106.96

0.08 0.19 0.30 0.40 0.50 0.60 0.74

3 0.4 6,41,44
743571.26 760945.74 778320.22 795694.70 813069.18 813069.18 813069.18

0.00 0.00 0.00 0.00 0.10 0.10 0.10

3 0.6 6,41,44
802850.50 827623.94 852397.39 877170.84 901944.28 901944.28 901944.28

0.00 0.04 0.14 0.29 0.59 0.59 0.59

3 0.8 6,41,44
845601.96 876890.63 908179.30 939467.96 970756.63 972720.83 972972.74

0.00 0.00 0.00 0.04 0.72 0.41 0.44

4 0.2 6,34,44,45
580050.10 589882.64 599715.19 609547.74 619380.28 620309.11 620511.25

0.00 0.00 0.22 0.45 0.67 0.35 0.13

4 0.4 6,34,44,45
676223.28 694784.44 713345.61 731906.77 750467.93 752020.97 752067.33

0.00 0.00 0.00 0.01 0.15 0.04 0.04

4 0.6 6,34,44,45
756075.41 782703.41 809331.41 835959.40 862587.40 864553.81 864563.66

0.08 0.23 0.58 0.93 1.54 0.89 0.89

4 0.8 1,3,41,58
812107.62 846436.72 880765.83 915094.93 949424.03 973930.34 1011155.08

0.05 0.35 0.64 0.97 1.70 2.76 6.33

5 0.2 6,12,34,45,80
501839.91 511185.49 520531.08 529876.66 539222.24 541268.35 541955.19

0.00 0.00 0.03 0.09 0.16 0.11 0.06

5 0.4 1,6,12,34,45
613491.23 631820.52 650149.82 668479.11 686808.41 692054.29 694136.79

0.00 0.00 0.00 0.00 0.12 0.06 0.16

5 0.6 1,6,23,34,45
705452.52 732485.59 759518.65 786551.71 813584.77 820365.80 822480.01

0.00 0.06 0.30 0.58 0.85 0.42 0.11

5 0.8 1,6,23,41,45
780024.31 815991.77 851959.23 887926.70 923894.16 938903.81 941633.65

0.05 0.38 0.69 0.98 1.29 1.16 0.71

27



We also investigate how the total transportation cost is affected as we change

the demand uncertainty model using the TR data set instances. In Table 3.4, the

deterministic model optimal hub locations, their total transportation costs under

different uncertainty models and the percentage deviations from the optimal value

of the corresponding model are presented. It can be seen that the deterministic

model solutions perform well under the hybrid demand uncertainty with ψ value

up to 0.6; the deviation from the optimal value is within less than 1.5%. However,

for larger uncertainty sets, the total cost can be subject to an increase of up to

10%. Four of the instances under the hose model show percentage increase in the

total transportation costs with 3.13%, 7.04%, 9.17% and 6.33%, respectively. An

interesting observation is that for these instances, Ankara (6), İstanbul (34) and

İzmir (35) are not selected as hub nodes in the deterministic model, unlike the

hose model. It can be concluded that, in these instances, the cost of uncertainty

may increase significantly when the nodes with large inbound and outbound traffic

are not chosen as hubs.

We obtained similar results after performing cost and location analysis for the

AP data set instances. In Table 3.5, we present the optimal transportation costs

and hub locations under different demand models. There is a change in the optimal

hub locations in 7 out of 12 AP data set instances. Again it can be seen that there

is no pattern in the variations in the hub locations depending on the value of p.

For the instances with 25 nodes, there exists a change in the optimal hub locations

in all except the one with p = 2. On the other hand, considering the instances

with 40 nodes, the only instance that shows a change in the hub locations is the

one with p = 2. In Table 3.6, we also provide the analysis of how the optimal hub

locations of the deterministic model performs under different demand uncertainty

models. In view of our computational results, the AP data set instances turn

out to be quite resilient to the uncertainty in the demand. It can be seen that

the maximum percentage deviation from the optimal value is 1.37% and for many

instances the percentage deviation is almost zero.
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Table 3.5: Results for AP data set (total transportation cost / hub locations)

Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid

n p Deterministic (ψ = 0.2) (ψ = 0.4) (ψ = 0.6) (ψ = 0.8) (ψ = 1) (ψ = 2) Hose

25 2 161302.58 165060.80 168819.02 172577.24 176335.46 180093.68 187247.20 203814.57

8,18 8,18 8,18 8,18 8,18 8,18 8,18 8,18

3 143324.89 147422.11 151519.33 155317.65 158889.51 162461.37 168723.49 182598.15

2,8,18 2,8,18 2,8,18 7,14,18 7,14,18 7,14,18 7,14,18 7,14,18

4 129326.76 133170.64 137000.41 140830.19 144659.96 148172.11 154566.97 166162.91

2,8,18,20 2,8,15,18 2,8,15,18 2,8,15,18 2,8,15,18 7,14,17,18 2,12,14,18 2,8,15,18

5 115391.48 119026.66 122661.84 126292.66 129914.99 133537.32 139672.40 152274.07

2,8,17,18,20 2,8,17,18,20 2,8,17,18,20 2,8,15,17,18 2,8,15,17,18 2,8,15,17,18 2,8,17,18,20 2,8,15,16,18

40 2 167111.47 171404.41 175697.36 179990.31 184283.25 188576.20 196166.30 209111.18

12,28 12,28 12,28 12,28 12,28 12,28 12,29 12,29

3 149821.91 153747.16 157672.41 161597.66 165522.92 169448.17 176035.95 189952.43

12,23,28 12,23,28 12,23,28 12,23,28 12,23,28 12,23,28 12,23,28 12,23,28

4 135798.16 139463.84 143129.51 146795.19 150460.86 154126.54 160622.60 176189.84

12,23,26,28 12,23,26,28 12,23,26,28 12,23,26,28 12,23,26,28 12,23,26,28 12,23,26,28 12,23,26,28

5 126356.39 129982.82 133609.26 137235.70 140862.14 144488.57 150883.31 165649.37

3,13,23,26,28 3,13,23,26,28 3,13,23,26,28 3,13,23,26,28 3,13,23,26,28 3,13,23,26,28 3,13,23,26,28 3,13,23,26,28

50 2 168991.03 173131.97 177272.91 181413.84 185554.78 189695.72 197309.05 211318.98

15,35 15,35 15,35 15,35 15,35 15,35 15,36 14,36

3 151329.99 155228.15 159126.30 163024.46 166922.61 170820.77 177595.47 191842.19

14,28,35 14,28,35 14,28,35 14,28,35 14,28,35 14,28,35 14,28,35 14,29,35

4 137087.13 140720.60 144354.06 147987.53 151620.99 155254.45 161910.24 177383.68

14,28,32,35 14,28,32,35 14,28,32,35 14,28,32,35 14,28,32,35 14,28,32,35 14,28,32,35 14,28,32,35

5 126236.27 130029.85 133816.84 137577.93 141339.02 145100.10 151722.01 166131.78

4,14,28,32,35 4,14,28,32,35 4,15,28,32,35 4,15,28,32,35 4,15,28,32,35 4,15,28,32,35 4,15,28,32,35 4,15,28,32,35
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Table 3.6: Cost analysis for the AP data set

Cost and Percentage deviation from the optimal solution

Hybrid Hybrid Hybrid Hybrid Hybrid Hybrid

n p Deterministic (ψ = 0.2) (ψ = 0.4) (ψ = 0.6) (ψ = 0.8) (ψ = 1) (ψ = 2) Hose

25 2 8,18 165060.80 168819.02 172577.24 176335.46 180093.68 187247.20 203814.57

0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 2,8,18 147422.11 151519.33 155616.55 159713.77 163810.99 171026.91 184133.59

0.00 0.00 0.19 0.52 0.83 1.37 0.84

4 2,8,18,20 133184.51 137042.27 140900.02 144757.78 148615.54 154967.51 166906.79

0.01 0.03 0.05 0.07 0.30 0.26 0.45

5 2,8,17,18,20 119026.66 122661.84 126297.02 129932.19 133567.37 139672.40 153183.43

0.00 0.00 0.00 0.01 0.02 0.00 0.60

40 2 12,28 171404.41 175697.36 179990.31 184283.25 188576.20 196172.81 210533.98

0.00 0.00 0.00 0.00 0.00 0.00 0.68

3 12,23,28 153747.16 157672.41 161597.66 165522.92 169448.17 176035.95 189952.43

0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 12,23,26,28 139463.84 143129.51 146795.19 150460.86 154126.54 160622.60 176189.84

0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 3,13,23,26,28 129982.82 133609.26 137235.70 140862.14 144488.57 150883.31 165649.37

0.00 0.00 0.00 0.00 0.00 0.00 0.00

50 2 15,35 173131.97 177272.91 181413.84 185554.78 189695.72 197585.68 213080.60

0.00 0.00 0.00 0.00 0.00 0.14 0.83

3 14,28,35 155228.15 159126.30 163024.46 166922.61 170820.77 177595.47 191965.14

0.00 0.00 0.00 0.00 0.00 0.00 0.06

4 14,28,32,35 140720.60 144354.06 147987.53 151620.99 155254.45 161910.24 177383.68

0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 4,14,28,32,35 130029.85 133823.44 137617.02 141410.60 145204.18 151832.60 166398.25

0.00 0.00 0.03 0.05 0.07 0.07 0.16

Next we analyze the performance of the proposed exact solution methods us-

ing AP instances. In Table 3.7, we present the results obtained for the robust

UMApHMP with hose demand uncertainty using the mathematical model, the

first Benders decomposition proposed in Section 3.2.1 (Benders 1) and the Ben-

ders decomposition by projecting out flow variables as described in Section 3.2.2

(Benders 2). We compare the computational effectiveness of each approach in

terms of solution times. We also present the number of Benders cuts added and

the number of callbacks performed in Benders 1 and Benders 2 until the optimal
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solution or the best solution obtained within the time limit. Since we use the lazy

constraint callback function of the CPLEX, the number of callbacks here implies

how many times the lazy constraints are checked during the branch-and-bound

process. At each time an incumbent solution is found, associated optimality cuts

are added to a cut pool managed by the solver, but only a set of these cuts is

active in the model. “# of Cuts Added” represents the number of optimality cuts

added until optimality is achieved. Note that the first Benders approach adds at

most a single cut in each iteration whereas in the second, at most n(n − 1) cuts

can be added. The solutions marked with an asterisk are not the optimal solutions

but the best of the solutions obtained within the ten hours of time limit. For the

unsolved instances, instead of the solution time, the optimality gap is reported.

The mixed integer programming model can be solved for instances with at

most 50 nodes while Benders decomposition based formulations succeed to solve

instances with up to 200 nodes. Benders 1 can not solve three instances out of

32 whereas Benders 2 is not able to solve one of them. Although the number of

iterations is much smaller in Benders 2, still the number of Benders cuts added

is extremely high compared to Benders 1. It can be seen that for the model with

hose demand uncertainty, the computational performance of Benders 2 is superior

to Benders 1. Benders 2 has the shortest solution times for all the instances

except two and the difference with the Benders 1 solution times for these two

instances is less than one second. Benders 2 is able to solve two instances for

which Benders 1 stopped with gaps of 2.20% and 2.18%. For the only instance for

which both approaches failed to reach optimality, the finals gaps are 7.43% with

Benders 1 and 0.49% for Benders 2. For these instances, adding multiple cuts

clearly outperforms the approach where a single cut is added at each iteration. It

is also interesting to note that decomposition approaches are faster than solving

the compact formulation even for small instances.
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Table 3.7: Comparison of exact approaches for hose demand uncertainty - AP
instances

Benders 1 Benders 2

Optimal MIP Model CPU Time # Cuts # CPU Time # Cuts #

n p Value CPU Time (gap) Added Callbacks (gap) Added Callbacks

25 2 203814.57 43.02 0.49 15 19 0.56 3148 10

3 182598.15 124.45 1.29 69 73 0.41 3487 12

4 166162.91 167.13 2.77 159 163 0.74 3373 12

5 152274.07 111.91 5.00 244 255 0.44 3061 14

40 2 209111.18 706.84 1.05 17 21 1.19 6994 8

3 189952.43 1696.29 5.37 90 94 1.53 7920 10

4 176189.84 4901.37 20.93 332 340 2.91 7437 9

5 165649.37 6490.57 69.41 972 985 5.14 9571 17

50 2 211318.98 4293.26 3.15 23 28 2.05 10583 8

3 191842.19 22310.31 12.63 103 109 4.54 16932 12

4 177383.68 (1.93) 52.27 421 434 6.14 16721 12

5 166131.78 (1.70) 148.67 1034 1045 10.86 14418 14

75 2 215849.01 (100) 20.57 39 42 19.32 28048 9

3 196368.51 (100) 89.57 170 175 29.08 25571 8

4 181077.10 (100) 285.68 537 545 41.44 50558 18

5 170306.35 (100) 999.65 1568 1581 54.04 35986 14

100 2 217300.63 memory 81.72 62 66 70.59 82426 15

3 196754.67 memory 310.00 231 236 82.01 85402 17

4 181884.09 memory 1109.29 791 804 196.37 82644 20

5 172098.88 memory 6519.98 3122 3132 669.04 102888 25

125 2 217967.72 memory 177.87 59 63 99.92 124401 16

3 197275.77 memory 731.11 247 255 257.16 141245 17

4 182518.12 memory 2589.21 838 850 490.46 198014 31

5 172420.17 memory 15116.85 3209 3225 945.73 191772 31

150 2 219010.32 memory 412.00 68 76 186.19 182517 18

3 198361.42 memory 1755.15 293 299 715.35 257936 26

4 183373.34 memory 6399.51 1050 1057 1470.29 222830 18

5 173381.56 memory (2.20) 3882 3896 4860.56 212098 22

200 2 219688.55 memory 1476.67 89 95 644.09 296487 17

3 199944.64 memory 6951.20 430 437 4020.22 426417 22

4 185433.91 memory (2.18) 1830 1846 9332.57 490686 31

5 176175.91* memory (7.43) 1783 1798 (0.49) 474147 26
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Table 3.8: Comparison of exact approaches for hybrid demand uncertainty - small
AP instances

Benders 1 Benders 2

Optimal MIP Model CPU # Cuts # CPU # Cuts #

n p ψ Value CPU Time Time Added Callbacks Time Added Callbacks

25 2 0.2 165060.80 8.94 0.93 11 15 0.98 3011 10

2 0.4 168819.02 7.11 0.58 13 17 0.61 3011 10

2 0.6 172577.24 12.59 0.96 13 18 0.80 3218 10

2 0.8 176335.46 15.10 0.61 15 20 0.54 2650 8

2 1.0 180093.68 53.39 0.67 17 22 0.47 2650 8

2 2.0 187247.20 54.70 0.88 15 20 0.99 3000 11

3 0.2 147422.11 10.11 2.40 60 67 1.10 2775 10

3 0.4 151519.33 13.92 2.48 61 67 0.95 3340 9

3 0.6 155317.65 23.58 2.47 63 69 1.05 3119 10

3 0.8 158889.51 23.94 2.27 67 71 1.29 3341 11

3 1.0 162461.37 69.24 2.17 64 67 1.11 3369 13

3 2.0 168723.49 88.71 2.30 75 80 0.93 3099 9

4 0.2 133170.64 19.26 6.24 154 161 1.33 3786 15

4 0.4 137000.41 29.90 6.78 169 180 1.68 3547 12

4 0.6 140830.19 34.71 6.37 169 178 1.95 3874 14

4 0.8 144659.96 37.91 7.09 195 201 2.35 4076 14

4 1.0 148172.11 108.11 6.15 193 199 1.69 3772 16

4 2.0 154566.97 113.37 5.69 209 213 3.30 3981 14

5 0.2 119026.66 12.43 6.78 157 167 1.23 3333 12

5 0.4 122661.84 14.62 7.00 173 180 1.29 3566 13

5 0.6 126292.66 16.65 6.54 184 193 1.37 3164 16

5 0.8 129914.99 23.45 7.41 198 206 1.63 2963 10

5 1.0 133537.32 71.16 6.46 214 223 1.16 3243 14

5 2.0 139672.40 92.62 6.80 235 242 1.34 3287 12

40 2 0.2 171404.41 104.02 2.98 12 16 3.07 7025 8

2 0.4 175697.36 135.42 3.74 16 19 2.15 7025 7

2 0.6 179990.31 138.01 3.48 17 21 3.25 8141 9

2 0.8 184283.25 411.30 3.97 21 24 3.73 6240 6

2 1.0 188576.20 934.60 3.44 21 24 3.12 7491 8

2 2.0 196166.30 1035.25 3.14 20 24 4.10 7491 9

3 0.2 153747.16 92.14 14.48 73 77 7.31 9734 13

3 0.4 157672.41 121.64 19.82 100 104 6.36 8059 11

3 0.6 161597.66 214.98 18.75 95 101 5.82 7067 9

3 0.8 165522.92 350.33 20.20 108 116 8.96 8226 9

3 1.0 169448.17 1128.39 15.77 97 103 7.59 9198 14

3 2.0 176035.95 1924.03 13.85 97 104 10.86 9174 11

4 0.2 139463.84 79.44 38.63 183 188 6.44 7371 8

4 0.4 143129.51 81.20 44.15 216 225 10.24 8422 9

4 0.6 146795.19 138.11 37.54 204 211 6.53 7904 8

4 0.8 150460.86 167.99 36.81 211 220 12.23 9674 12

4 1.0 154126.54 922.64 46.79 279 289 6.55 9037 10

4 2.0 160622.60 1566.95 33.04 233 241 5.64 7863 9

5 0.2 129982.82 75.20 90.13 440 448 5.92 9248 12

5 0.4 133609.26 102.48 101.98 499 510 8.74 8657 8

5 0.6 137235.70 176.89 114.02 559 569 12.86 10077 15

5 0.8 140862.14 320.06 117.21 624 634 18.19 10437 14

5 1.0 144488.57 1308.45 111.63 634 642 8.39 8193 10

5 2.0 150883.31 2074.97 99.42 689 699 15.80 7764 8

Continued on the next page
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(Table 3.8 Continued) Comparison of exact approaches for hybrid demand uncertainty - small AP instances

Benders 1 Benders 2

Optimal MIP Model CPU # Cuts # CPU # Cuts #

n p ψ Value CPU Time Time Added Callbacks Time Added Callbacks

50 2 0.2 173131.97 514.61 5.70 17 22 7.76 11155 7

2 0.4 177272.91 943.06 6.46 19 24 6.60 12598 9

2 0.6 181413.84 1859.99 7.01 21 27 7.21 13489 8

2 0.8 185554.78 1885.02 7.07 21 26 9.02 13943 11

2 1.0 189695.72 3841.30 8.38 26 31 7.50 13469 10

2 2.0 197309.05 5515.32 7.27 24 28 8.63 12532 9

3 0.2 155228.15 495.82 30.15 104 112 16.03 15462 14

3 0.4 159126.30 680.51 31.94 115 121 23.80 14787 14

3 0.6 163024.46 1308.55 36.52 124 133 25.26 13948 10

3 0.8 166922.61 1635.23 36.04 125 133 24.21 14554 11

3 1.0 170820.77 11089.81 33.96 119 125 30.52 16151 11

3 2.0 177595.47 23037.79 41.90 154 164 43.42 20128 16

4 0.2 140720.60 350.84 72.92 258 265 20.88 15936 13

4 0.4 144354.06 430.25 74.70 259 268 21.64 16615 12

4 0.6 147987.53 499.01 75.89 262 272 23.42 16757 14

4 0.8 151620.99 1132.57 83.17 287 295 32.97 13563 12

4 1.0 155254.45 4467.07 84.23 290 302 21.12 15511 11

4 2.0 161910.24 5585.95 82.31 300 310 34.95 14725 10

5 0.2 130029.85 440.22 145.28 482 493 29.94 16715 18

5 0.4 133816.84 604.71 155.34 536 543 64.05 15333 12

5 0.6 137577.93 651.43 179.25 588 598 48.70 14081 11

5 0.8 141339.02 1212.00 207.58 672 684 61.76 15423 16

5 1.0 145100.10 5370.77 222.32 722 733 62.97 14736 13

5 2.0 151722.01 6910.13 246.59 843 852 63.50 17597 16

Tables 3.8 and 3.9 show the results of comparison between exact solution meth-

ods for the robust UMApHMP under hybrid demand uncertainty. The results

obtained from small instances with up to 50 nodes are presented in Table 3.8 and

the results for the larger ones with up to 150 nodes are in Table 3.9. Among the

instances with more than 50 nodes, the MIP formulation is able to solve only the

instance with n = 75, p = 2 and ψ = 0.2. For the others, it fails to find lower

bounds within the time limit, hence MIP formulation results are not included in

Table 3.9. All instances in Table 3.8 are solved to optimality by all three ex-

act methods proposed. For the small instances presented in Table 3.8, Benders

2 outperforms the others in terms of computational times. Benders 2 has the

shortest solution times for 61 instances out of 72. For the instances which Benders

1 performs better, the difference between the solution times of the two Benders
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algorithms is less than two seconds. Again the number of cuts added in Benders

2 is higher than the number of cuts added in Benders 1 even though less number

of iterations is performed by Benders 2.

The results of UMApHMP under hybrid demand uncertainty for instances with

75, 100, 125 and 150 nodes are provided in Table 3.9. These results indicate that

Benders 1 outperforms Benders 2 in terms of solution times for large instances

with hybrid demand uncertainty. Benders 1 is able to solve all of 96 instances

whereas Benders 2 can not solve 11 of them. Considering all the results for the

robust UMApHMP under hybrid demand uncertainty, we observe that Benders 1

tends to perform better as n increases and p decreases. Even though the number

of callbacks performed is much smaller for Benders 2 compared to Benders 1; for

the instances with large n and small p values, the computational effort required

at each node of the branch-and-cut tree is too high to be compensated by the

decrease in the number of callbacks. It can be seen that for instances with up

to 50 nodes, although Benders 2 outperforms Benders 1 in the overall, Benders

1 has shorter solution times for some instances with small p values. Considering

the large instances presented in Table 3.9, Benders 2 has shorter solution times

for some instances with large p values even though Benders 1 performs better in

general.
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Table 3.9: Comparison of exact approaches for hybrid demand uncertainty - large
AP instances

Benders 1 Benders 2

Best CPU Time # Cuts # Best CPU Time # Cuts #

n p ψ Upper Bound (gap) Added Callbacks Upper Bound (gap) Added Callbacks

75 2 0.2 176713.81 18.99 22 26 176713.81 73.43 35648 12

2 0.4 181152.69 22.76 26 32 181152.69 49.58 26079 6

2 0.6 185591.56 24.47 29 35 185591.56 132.48 37573 12

2 0.8 189777.48 21.28 27 31 189777.48 85.84 42447 12

2 1.0 193811.57 21.36 27 31 193811.57 32.77 24805 7

2 2.0 201768.16 23.46 34 38 201768.16 68.81 49102 16

3 0.2 158616.03 87.51 116 122 158616.03 132.58 36343 11

3 0.4 162688.30 96.27 128 136 162688.30 286.56 55479 18

3 0.6 166760.57 119.75 157 169 166760.57 374.71 48110 18

3 0.8 170832.83 108.09 144 152 170832.83 268.94 36734 10

3 1.0 174905.10 104.82 146 151 174905.10 391.39 61704 28

3 2.0 181884.48 115.25 176 180 181884.48 262.15 50051 13

4 0.2 143378.36 217.57 289 299 143378.36 280.31 55631 18

4 0.4 147155.22 229.61 302 316 147155.22 303.98 50264 19

4 0.6 150932.07 238.42 317 326 150932.07 364.40 56162 23

4 0.8 154708.93 253.93 340 351 154708.93 461.78 49790 21

4 1.0 158485.78 252.40 344 351 158485.78 300.92 44829 12

4 2.0 165109.53 244.89 366 376 165109.53 309.91 48873 18

5 0.2 133621.16 650.01 813 827 133621.16 919.75 47096 19

5 0.4 137394.13 695.39 874 883 137394.13 254.12 41254 13

5 0.6 141167.10 753.99 934 947 141167.10 549.18 43507 17

5 0.8 144940.08 833.32 1022 1032 144940.08 570.64 53242 17

5 1.0 148713.05 894.67 1097 1111 148713.05 1192.06 55431 24

5 2.0 155507.19 1014.41 1295 1304 155507.19 605.26 45319 19

100 2 0.2 177186.48 53.63 30 34 177186.48 301.60 66051 12

2 0.4 181474.44 61.17 35 39 181474.44 291.48 77118 15

2 0.6 185762.40 67.16 38 42 185762.40 327.72 86229 16

2 0.8 190050.37 74.32 42 46 190050.37 615.40 117601 26

2 1.0 194338.33 79.53 44 51 194338.33 1202.99 129983 22

2 2.0 202290.52 83.85 52 58 202290.52 429.12 96230 19

3 0.2 158994.51 266.28 158 164 158994.51 613.84 95231 18

3 0.4 163006.54 286.83 171 177 163006.54 794.49 63053 11

3 0.6 167018.57 363.24 208 222 167018.57 956.68 58406 12

3 0.8 171030.60 329.37 194 201 171030.60 1810.63 84255 15

3 1.0 175042.62 335.73 202 207 175042.62 1543.70 90341 17

3 2.0 181994.20 331.32 217 225 181994.20 1253.26 84163 13

4 0.2 144217.26 775.50 451 460 144217.26 2421.80 94983 17

4 0.4 147958.05 777.60 452 461 147958.05 1481.09 105415 25

4 0.6 151698.84 838.58 483 495 151698.84 1428.31 88840 20

4 0.8 155439.64 902.40 518 530 155439.64 2241.51 132278 39

4 1.0 159180.43 869.02 507 517 159180.43 1932.22 101617 20

4 2.0 166020.92 895.31 568 583 166020.92 1354.11 90833 21

5 0.2 135171.84 3335.92 1716 1725 135171.84 2680.25 102190 22

5 0.4 138973.88 3769.12 1897 1906 138973.88 6385.78 100316 21

5 0.6 142764.70 4227.88 2026 2039 142764.70 3482.66 86521 18

5 0.8 146518.15 4689.46 2210 2222 146518.15 3844.03 105163 23

5 1.0 150271.61 5794.66 2380 2396 150271.61 5963.45 99574 19

5 2.0 157031.30 5717.20 2732 2743 157031.30 6479.52 134770 38

Continued on the next page
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(Table 3.9 Continued) Comparison of exact approaches for hybrid demand uncertainty - large AP instances

Benders 1 Benders 2

Best CPU Time # Cuts # Best CPU Time # Cuts #

n p ψ Upper Bound (gap) Added Callbacks Upper Bound (gap) Added Callbacks

125 2 0.2 177656.21 101.37 27 31 177656.21 792.85 110365 9

2 0.4 181911.00 123.76 33 37 181911.00 368.67 97826 11

2 0.6 186165.79 129.38 35 38 186165.79 511.98 105653 11

2 0.8 190420.58 158.12 43 47 190420.58 763.25 125546 13

2 1.0 194675.38 159.73 44 47 194675.38 1036.49 132165 15

2 2.0 202645.51 186.27 55 60 202645.51 1189.37 149437 18

3 0.2 159417.26 602.77 168 176 159417.26 3864.58 117924 12

3 0.4 163452.67 624.23 177 184 163452.67 2535.40 136126 15

3 0.6 167488.07 685.71 190 198 167488.07 3504.79 150912 16

3 0.8 171523.48 700.98 200 202 171523.48 4964.69 176865 24

3 1.0 175538.13 779.58 221 227 175538.13 9866.77 180790 27

3 2.0 182590.08 767.05 237 245 182590.08 4695.79 195335 24

4 0.2 144632.27 1807.48 504 515 144632.27 4242.95 145345 17

4 0.4 148396.25 1827.44 506 521 148396.25 4193.69 207417 28

4 0.6 152160.22 1931.55 541 551 152160.22 4711.28 168262 25

4 0.8 155924.20 1977.29 551 563 155924.20 12664.45 207851 34

4 1.0 159681.40 2078.27 571 584 159681.40 13821.47 150987 24

4 2.0 166538.70 2130.83 649 661 166538.70 10433.65 212734 35

5 0.2 135542.63 9681.35 1900 1912 135542.63 22826.78 178238 29

5 0.4 139343.37 8937.65 2001 2012 139343.37 24590.05 146195 18

5 0.6 143144.12 9801.77 2205 2222 143144.12 16461.26 169122 22

5 0.8 146944.86 10986.91 2395 2401 146944.86 24385.10 138443 19

5 1.0 150745.61 12202.34 2643 2656 150745.61 29901.92 224433 40

5 2.0 157452.82 13971.64 3059 3073 157481.18* (0.97) 227450 35

150 2 0.2 178241.48 226.10 31 34 178241.48 2402.19 202748 18

2 0.4 182556.63 268.77 37 40 182556.63 1803.00 195567 15

2 0.6 186871.77 314.94 43 46 186871.77 3691.49 221884 17

2 0.8 191186.91 294.34 42 45 191186.91 1859.89 162276 12

2 1.0 195487.73 351.05 49 54 195487.73 5731.63 242812 18

2 2.0 203638.50 421.42 61 69 203638.50 3228.16 188447 12

3 0.2 159983.60 1244.12 171 182 159983.60 5269.90 193319 15

3 0.4 164032.32 1412.94 199 208 164032.32 22681.38 257271 23

3 0.6 168081.04 1522.25 218 221 168081.04 15230.17 196443 15

3 0.8 172129.76 1701.13 240 249 172129.76 20277.20 216270 17

3 1.0 176178.48 1756.99 251 259 176178.48* (1.06) 210705 15

3 2.0 183335.89 1674.74 269 276 183335.89* (0.72) 306489 27

4 0.2 145198.98 4088.74 585 596 145198.98 19923.08 219854 17

4 0.4 148975.27 4572.64 648 663 148975.27 20134.93 221218 22

4 0.6 152751.56 4361.46 607 620 152751.56* (16.22) 300320 33

4 0.8 156527.85 4651.64 650 665 156527.85 35125.56 316005 33

4 1.0 160304.14 4900.01 695 709 160304.14 35840.99 292375 25

4 2.0 167163.01 5001.49 784 796 167163.01* (0.54) 266554 26

5 0.2 136037.51 20716.03 2169 2186 137205.61* (11.11) 259562 17

5 0.4 139833.66 21068.13 2300 2309 140087.65* (1.36) 315885 29

5 0.6 143629.82 22197.72 2508 2520 143629.82* (0.40) 278246 28

5 0.8 147425.97 25575.96 2720 2729 148260.76* (1.50) 314151 27

5 1.0 151222.12 28342.47 2963 2975 151222.12* (2.96) 292740 31

5 2.0 158001.70 33081.89 3667 3681 158001.70* (11.52) 278170 26
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3.4 Conclusions

In this chapter, we introduced the robust multiple allocation p-hub median prob-

lems under hose and hybrid demand uncertainty sets. We presented compact mixed

integer programming formulations and two Benders decomposition approaches to

solve these problems. The results showed that keeping the dual variables in the

master problem and adding multiple cuts works better with the hose model whereas

moving the dual variables to the subproblem and adding a single cut at each iter-

ation works better for large size instances with hybrid uncertainty.
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Chapter 4

Capacitated Multiple Allocation

Hub Location Problem under

Hose Demand Uncertainty

In this chapter we consider the capacitated multiple allocation hub location prob-

lem (CMAHLP) where the aim is to locate a set of hub facilities on a given network

and route flows through these hubs so that pairwise demands are satisfied at mini-

mum cost. Unlike the p-hub median problem, the cost term consists of a fixed cost

of opening hubs and the transportation costs. The number of hubs to be opened

is a decision that depends on the trade-off between these two cost components.

We assume that the hub network is complete and there is no direct connection

between nonhub nodes. The total flow coming to a hub node is restricted by a ca-

pacity level and flows can be split among different paths. Classical approach in the

literature is to assume that the pairwise demands are deterministic. In this study,

we assume that demands take value from a polyhedral uncertainty set, namely

the hose set. We propose a mixed integer programming (MIP) formulation for

the robust CMAHLP under hose demand uncertainty and devise different Benders

decomposition based exact solution algorithms. We test our mathematical model

and solution algorithms on the AP data set instances.
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4.1 MIP Formulation

In this section we formulate the robust CMAHLP under hose demand uncertainty.

We consider a hub location problem where nonhub nodes can be connected to

multiple hubs and a capacity constraint on the incoming flow at each hub from

nonhub nodes is applied. The deterministic version of this problem is well-studied

in the literature and has been formulated in several ways. Since the formulation

proposed by Hamacher et. al. [32] is the strongest one for the hub location

problems among path based models, we will use it as a starting point. This

formulation is devised for the uncapacitated version of the problem, hence we will

adjust it by adding a set of capacity constraints as proposed in [29].

Assume that we are given a complete graph G = (N,A) where N is the set of

demand points and A is the set of directed connections. Let H ⊆ N be the set

of possible hub locations and C be the set of commodities such that C = {(i, j) :

i, j ∈ N, i 6= j}, meaning there is no demand from a node to itself. The demand

from node i to node j is assumed to be known in the deterministic problem and

denoted by wij. We define the remaining problem parameters as follows: fk is

the fixed cost of opening a hub facility at node k, ak is the capacity of the hub

at node k, dij is the unit cost of transshipment from node i to node j and χ, α

and δ are the cost multipliers of collection, transfer between hubs and distribution,

respectively. The cost of sending one unit of flow from node i to node j through

hubs k and m in this order is expressed as cijkm = χdik + αdkm + δdmj.

First we present the MIP formulation for the deterministic CMAHLP. The

decision variables of this model are yk, the binary variable taking value of 1 if there

is a hub located at node k and 0 otherwise, and xijkm, the fraction of flow sent

from node i to node j through hubs k and m in that order. Then the deterministic

problem is
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(CMAHLP deterministic)

min
∑
k∈H

fkyk +
∑

(i,j)∈C

∑
k∈H

∑
m∈H

cijkmwijxijkm (4.1)

s.t.
∑
k∈H

∑
m∈H

xijkm = 1 ∀(i, j) ∈ C, (4.2)∑
m∈H

xijkm +
∑
m∈H:
m 6=k

xijmk ≤ yk ∀(i, j) ∈ C, k ∈ H, (4.3)

∑
(i,j)∈C

∑
m∈N

wijxijkm ≤ akyk ∀k ∈ H, (4.4)

yk ∈ {0, 1} ∀k ∈ H, (4.5)

xijkm ≥ 0 ∀(i, j) ∈ C, ∀k,m ∈ H. (4.6)

The objective is to minimize the total cost of opening hubs and transportation

costs. Constraints (4.2) quarantee that pairwise demands are fully satisfied. With

constraints (4.3), direct flow between nonhub nodes is prevented. Constraints

(4.4) are the capacity constraints that limit the total incoming flow at each hub.

Constraints (4.5) and (4.6) are the domain constraints.

Different from previous studies in the literature, we assume that demand is not

known in advance but can be modelled with a hose uncertainty set. In this model,

as explained in Chapter 3, instead of estimating pairwise demands, we limit the

total flow associated with each demand node. The demand uncertainty set under

hose model can be stated as

Dhose = {w ∈ Rn(n−1)
+ :

∑
j∈N\{i}

wij +
∑

j∈N\{i}

wji ≤ bi, ∀i ∈ N}.

The robust CMAHLP under hose demand uncertainty aims to build a hub

network which is viable under any demand realization while minimizing the worst

case total cost over all possible demand realizations in the set Dhose. Hence the
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robust problem can be represented as:

min
∑
k∈H

fkyk + max
w∈Dhose

∑
(i,j)∈C

∑
k∈H

∑
m∈H

wijcijkmxijkm (4.7)

s.t. (4.2), (4.3), (4.5), (4.6)

max
w∈Dhose

∑
(i,j)∈C

∑
m∈H

wijxijkm ≤ akyk ∀k ∈ H (4.8)

Here the capacity constraints (4.4) of the deterministic model is altered so that

each hub facility opened is ensured to have enough capacity to serve under the

worst case demand realization in the set Dhose.

Observe that this formulation is nonlinear since the demand is a variable. To

linearise it, we use a dual transformation, which is widely used in the robust opti-

mization literature. For a feasible flow vector x̂, the inner maximization problem

of the objective function

max
w∈Dhose

∑
(i,j)∈C

∑
k∈H

∑
m∈H

wijcijkmx̂ijkm (4.9)

and the maximization problem at the left hand side of the capacity constraint

max
w∈Dhose

∑
(i,j)∈C

∑
m∈H

wijx̂ijkm (4.10)

are both linear programming problems that are feasible and bounded. Therefore

the optimal value of these problems are equal to the optimal value of their corre-

sponding duals. Using this property, we obtain the following MILP formulation

for the robust CMAHLP under hose demand uncertainty:
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(CMAHLP hose)

min
∑
k∈H

fkyk +
∑
i∈N

λibi (4.11)

s.t. (4.2), (4.3), (4.5), (4.6)∑
k∈H

akyk ≥ min

{(∑
i∈N

bi −max
i∈N

bi

)
,
∑
i∈N

bi/2

}
(4.12)

λi + λj ≥
∑
k∈H

∑
m∈H

cijkmxijkm ∀(i, j) ∈ C, (4.13)

∑
i∈N

βki bi ≤ akyk ∀k ∈ H, (4.14)

βki + βkj ≥
∑
m∈H

xijkm ∀(i, j) ∈ C, ∀k ∈ H, (4.15)

λi ≥ 0 ∀i ∈ N, (4.16)

βki ≥ 0 ∀i ∈ N, ∀k ∈ H, (4.17)

where the dual variables λ and β are associated with the hose model constraint

in problems (4.9) and (4.10), respectively.

Here constraint (4.12) actually corresponds to the following inequality.∑
k∈H

akyk ≥ max
w∈Dhose

∑
(i,j)∈C

wij (4.18)

With this inequality, we ensure that we open hubs with sufficient capacity to

route the worst case traffic. However right-hand-side of the inequality is also an

optimization problem. In the following proposition we compute the optimal value

of this maximization problem.

Proposition 1.

max
w∈Dhose

∑
(i,j)∈C

wij = min

{(∑
i∈N

bi −max
i∈N

bi

)
,
∑
i∈N

bi/2

}
.
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Proof. The problem maxw∈Dhose

∑
(i,j)∈C wij is

max
∑

(i,j)∈C

wij (4.19)

s.t.
∑

j∈N\{i}

wij +
∑

j∈N\{i}

wji ≤ bi ∀i ∈ N, (4.20)

wij ≥ 0 ∀(i, j) ∈ C. (4.21)

Taking the dual of this problem, we obtain the following LP:

min
∑
i∈N

ϑibi (4.22)

s.t. ϑi + ϑj ≥ 1 ∀(i, j) ∈ C, (4.23)

ϑi ≥ 0 ∀i ∈ N. (4.24)

Observe that the dual problem is equivalent to the LP relaxation of a weighted

vertex covering problem. Nemhauser and Trotter [54] show that any extreme point

ϑ of this LP satisfies ϑi ∈ {0, 1/2, 1} for all i ∈ N . Since we have a complete graph,

we can further characterize the optimal solution.

The vector of all ones (1, 1, .., 1) is clearly not an optimal solution as none of

the constraints strictly holds and one can obtain a better objective function value

by decreasing ϑi′ with ε > 0 for an arbitrary i′ ∈ N since bi′ is positive. In the case

that we know ϑi′ = 1/2 for a node i′ ∈ N , ϑi ≥ 1/2 for all i ∈ N \{i′} for feasibility.

Hence the solution with the smallest objective value is the vector (1/2, 1/2, .., 1/2)

with the objective function value equal to
∑

i∈N bi/2. Finally, if there exists a

node i′ ∈ N such that ϑi′ = 0, then we must have ϑi = 1 for all i ∈ N \ {i′} to

ensure feasibility. The objective function value of this solution is
∑

i∈N bi− bi′ . To

minimize this value, we set ϑi = 0 for a node i with the largest bi value. Therefore

the minimum objective value in this case is
∑

i∈N bi −maxi∈N bi. Hence, the dual

optimal value is min
{(∑

i∈N bi −maxi∈N bi
)
,
∑

i∈N bi/2
}

. By strong duality, this

is also the optimal value of the primal.
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Even though the model (CMAHLP hose) is linear, its size increases rapidly

as the number of demand points increases, which makes it difficult to solve large

instances using this formulation. In the next section, we devise several Benders

decomposition algorithms as an attempt to solve large problem instances.

4.2 Benders Reformulation

In the previous section, we provide a mixed integer programming formulation for

the capacitated multiple allocation hub location problem under hose demand un-

certainty. Next we propose different Benders decomposition approaches to benefit

from the computational efficiency of solving many small-sized problems iteratively

instead of a single large model.

Benders decomposition is an exact solution method proposed by Benders [50]

which is effectively used to solve various mixed integer programming problems in

the literature. In this method, the original problem is reformulated by projecting

out some of the variables and hence obtaining a formulation with a smaller number

of variables and a large number of constraints. Afterwards, the reformulation is

solved using a cutting plane approach such that each time a candidate solution is

found, related cuts are added to the relaxed formulation. The relaxation solved at

each iteration is called the master problem and the separation problem solved at

each time a candidate solution is found is called the subproblem.

The effectiveness of a Benders decomposition algorithm depends on various

factors; the number of times the subproblem is solved until optimality is achieved,

the computational effort required to solve the master problem and the subproblem

etc. In this study, we propose several Benders reformulations for the CMAHLP

under hose demand uncertainty by considering these factors in order to obtain an

effective decomposition scheme.
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4.2.1 Decomposition by fixing location variables y (Ben-

ders1)

Consider the mixed integer formulation CMAHLP hose as presented in Section 4.1.

Assume that only the hub location decisions are handled in the master problem and

the rest is left to the subproblem. For fixed hub location vector y, the subproblem

becomes the following:

(PS1) min
∑
i∈N

λibi (4.25)

s.t.
∑
k∈H

∑
m∈H

xijkm ≥ 1 ∀(i, j) ∈ C, (4.26)∑
m∈H

xijkm +
∑
m∈H:
m6=k

xijmk ≤ ŷk ∀(i, j) ∈ C, k ∈ H, (4.27)

λi + λj ≥
∑
k∈H

∑
m∈H

cijkmxijkm ∀(i, j) ∈ C, (4.28)∑
i∈N

βki bi ≤ akŷk ∀k ∈ H, (4.29)

βki + βkj ≥
∑
m∈H

xijkm ∀(i, j) ∈ C, ∀k ∈ H, (4.30)

λi ≥ 0 ∀i ∈ N, (4.31)

βki ≥ 0 ∀i ∈ N,∀k ∈ H, (4.32)

xijkm ≥ 0 ∀(i, j) ∈ C, ∀k,m ∈ H. (4.33)

Note that even though we modify constraints (4.26) here as inequalities, there

exists an optimal solution where they hold as equalities. Taking the dual of PS1,

we obtain the dual subproblem
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(DS1) max
∑

(i,j)∈C

ρij −
∑

(i,j)∈C

∑
k∈H

ŷkνijk −
∑
k∈H

akŷkγk (4.34)

s.t.
∑

j∈N\{i}

ωij +
∑

j∈N\{i}

ωji ≤ bi ∀i ∈ N, (4.35)

ρij − νijk − νijm − uijk ≤ cijkmωij∀(i, j) ∈ C, ∀k,m ∈ H : k 6= m, (4.36)

ρij − νijk − uijk ≤ cijkkωij ∀(i, j) ∈ C, ∀k ∈ H, (4.37)∑
j∈N\{i}

uijk +
∑

j∈N\{i}

ujik ≤ biγk ∀i ∈ N, ∀k ∈ H, (4.38)

γk ≥ 0 ∀k ∈ H, (4.39)

ρij ≥ 0, ωij ≥ 0, ∀(i, j) ∈ C, (4.40)

uijk, νijk ≥ 0 ∀(i, j) ∈ C, ∀k ∈ H. (4.41)

where dual variables ρ, ν, ω, γ and u correspond to constraints (4.26) - (4.30),

respectively.

Note that both PS1 and DS1 are feasible and bounded when

∑
k∈H

akyk ≥ min

{(∑
i∈N

bi −max
i∈N

bi

)
,
∑
i∈N

bi/2

}

As primal and dual subproblems are both feasible and bounded, we need only the

Benders optimality cuts in the master problem.

Let S1 be the set of extreme points (ρ, ν, ω, γ, u) of the dual subproblem. Then

the master problem can be formulated as;

(MP1) min
∑
k∈H

fkyk + q (4.42)

s.t. q ≥
∑

(i,j)∈C

ρij −
∑

(i,j)∈C

∑
k∈H

ykνijk

−
∑
k∈H

akykγk ∀(ρ, ω, ν, u) ∈ S1, (4.43)

(4.5), (4.12).
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Since we are not able to decompose the subproblem, we add a single cut at each

iteration.

4.2.2 Decomposition by fixing variables y and λ (Benders

2)

After fixing variables y and λ as ȳ and λ̄ in the master problem, the remaining

becomes a feasibility problem as presented below,

(PS2) min 0 (4.44)

s.t.
∑
k∈H

∑
m∈H

xijkm ≥ 1 ∀(i, j) ∈ C, (4.45)∑
m∈H

xijkm +
∑
m∈H:
m6=k

xijmk ≤ ŷk ∀(i, j) ∈ C, k ∈ H, (4.46)

λ̂i + λ̂j ≥
∑
k∈H

∑
m∈H

cijkmxijkm ∀(i, j) ∈ C, (4.47)∑
i∈N

βki bi ≤ akŷk ∀k ∈ H, (4.48)

βki + βkj ≥
∑
m∈H

xijkm ∀(i, j) ∈ C, ∀k ∈ H, (4.49)

βki ≥ 0 ∀i ∈ N,∀k ∈ H, (4.50)

xijkm ≥ 0 ∀(i, j) ∈ C, ∀k,m ∈ H. (4.51)

Its dual is

(DS2) max
∑

(i,j)∈C

ρij −
∑

(i,j)∈C

∑
k∈H

ŷkνijk −
∑
k∈H

akŷkγk −
∑

(i,j)∈C

(λ̂i + λ̂j)ωij (4.52)
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s.t. ρij − νijk − νijm − uijk ≤ cijkmωij ∀(i, j) ∈ C, ∀k,m ∈ H : k 6= m, (4.53)

ρij − νijk − uijk ≤ cijkkωij ∀(i, j) ∈ C, ∀k ∈ H, (4.54)∑
j∈N\{i}

uijk +
∑

j∈N\{i}

ujik ≤ biγk ∀i ∈ N, k ∈ H, (4.55)

γk ≥ 0 ∀k ∈ H, (4.56)

ρij ≥ 0, ωij ≥ 0 ∀(i, j) ∈ C, (4.57)

uijk, νijk ≥ 0 ∀(i, j) ∈ C, ∀k ∈ H. (4.58)

where dual variables ρ, ν, ω, γ and u are associated with the constraints (4.45) -

(4.49), respectively.

Clearly we only need Benders feasibility cuts in the master problem since the

subproblem is a feasibility problem. Hence the master problem becomes

(MP2) min
∑
k∈H

fkyk +
∑
i∈N

λibi (4.59)

s.t. 0 ≥
∑

(i,j)∈C

ρij −
∑

(i,j)∈C

∑
k∈H

ŷkνijk

−
∑
k∈H

akykγk −
∑

(i,j)∈C

(λi + λj)ωij ∀(ρ, ω, ν, u) ∈ S2, (4.60)

(4.5), (4.12).

where S2 is the set of extreme rays (ρ, ν, ω, γ) of the dual subproblem. Again, we

are not able to decompose the subproblem because of the dependencies between

variables. Hence in each iteration of the Benders algorithm a single feasibility cut

is added.
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4.2.3 Decomposition by fixing variables y and β (Benders

3)

By fixing variables y and β as ŷ and β̂, we obtain the following primal subproblem:

(PS3) min
∑
i∈N

λibi (4.61)

s.t.
∑
k∈H

∑
m∈H

xijkm ≥ 1 ∀(i, j) ∈ C, (4.62)∑
m∈H

xijkm +
∑
m∈H:
m6=k

xijmk ≤ ŷk ∀(i, j) ∈ C, k ∈ H, (4.63)

λi + λj ≥
∑
k∈H

∑
m∈H

cijkmxijkm ∀(i, j) ∈ C, (4.64)

β̂ki + β̂kj ≥
∑
m∈H

xijkm ∀(i, j) ∈ C, ∀k ∈ H, (4.65)

λi ≥ 0 ∀i ∈ N, (4.66)

xijkm ≥ 0 ∀(i, j) ∈ C, ∀k,m ∈ H. (4.67)

The dual of the subproblem is

(DS3) max
∑

(i,j)∈C

ρij −
∑

(i,j)∈C

∑
k∈H

ŷkvijk −
∑

(i,j)∈C

∑
k∈H

(β̂ki + β̂kj )uijk (4.68)

s.t.
∑

j∈N\{i}

wij +
∑

j∈N\{i}

ωji ≤ bi ∀i ∈ N, (4.69)

ρij − νijk − νijm − uijk ≤ cijkmωij∀(i, j) ∈ C, ∀k,m ∈ H : k 6= m, (4.70)

ρij − νijk − uijk ≤ cijkkωij ∀(i, j) ∈ C, ∀k ∈ H, (4.71)

ωij, ρij ≥ 0 ∀(i, j) ∈ C, (4.72)

uijk, νijk ≥ 0 ∀(i, j) ∈ C, ∀k ∈ H. (4.73)
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Dual variables ρ, ν, ω and u correspond to constraints (4.62) - (4.65), respec-

tively. Note that for any vector β̂ ∈ R|N ||H|+ such that
∑

k∈H(β̂ki + β̂kj ) ≥ 1 for all

(i, j) ∈ C, both the primal and dual subproblems will be feasible and bounded.

This result follows from constraints (4.62) and (4.65).

Let S3 be the set of extreme points (ρ, ω, ν, u) of the dual subproblem. Then

the master problem can be formulated as follows;

(MP3) min
∑
k∈H

fkyk + q (4.74)

s.t. q ≥
∑

(i,j)∈C

ρij −
∑

(i,j)∈C

∑
k∈H

ykνijk

−
∑

(i,j)∈C

∑
k∈H

(βki + βkj )uijk ∀(ρ, ω, ν, u) ∈ S3, (4.75)

∑
k∈H

(βki + βkj ) ≥ 1 ∀(i, j) ∈ C, (4.76)

(4.5), (4.12), (4.14), (4.17).

Constraints (4.75) are the Benders optimality cuts, which enable algorithm to

converge to an optimal solution while constraints (4.76) are added into the formu-

lation to ensure feasibility. In the next subsections we describe how to solve the

subproblem efficiently.

4.2.3.1 The Subproblem

In the dual subproblem, constraints (4.69) and (4.70)-(4.71) are interdependent

due to the variables ω. In order to eleminate these dependencies, we let ρ̄ij =
ρij
ωij
, ν̄ijk =

νijk
ωij

and ūijk =
uijk
ωij

. Hence the dual subproblem can be presented as

max
ω∈Dhose

∑
(i,j)∈C

wijθij.
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where for (i, j) ∈ C,

(Dij) θij = max ρ̄ij −
∑
k∈H

ŷkν̄ijk −
∑
k∈H

(β̂ki + β̂kj )ūijk (4.77)

s.t. ρ̄ij − ν̄ijk − ν̄ijm − ūijk ≤ cijkm ∀k,m ∈ H : k 6= m, (4.78)

ρ̄ij − ν̄ijk − ūijk ≤ cijkk ∀k ∈ H, (4.79)

ρ̄ij ≥ 0, (4.80)

ν̄ijk, ūijk ≥ 0 ∀k ∈ H. (4.81)

which is the dual of

(Pij) θij = min
∑
k∈H

∑
m∈H

cijkmxijkm (4.82)

s.t.
∑
k∈H

∑
m∈H

xijkm ≥ 1, (4.83)∑
m∈H

xijkm +
∑

m∈H\{k}

xijmk ≤ ŷk ∀k ∈ H, (4.84)

β̂ki + β̂kj ≥
∑
m∈H

xijkm ∀k ∈ H, (4.85)

xijkm ≥ 0 ∀k,m ∈ H. (4.86)

Note that there exists an optimal solution of Pij such that constraints (4.83)

strictly hold. Next we devise an algorithm to compute the dual variables of Dij

for any distinct origin destination pair (i, j).

4.2.3.2 Computing the Dual Variables

For given ŷ and β̂ vectors, the optimal solution of problem Pij can be found by

inspection. Notice that when all hub capacities are large enough, each flow is

routed through the shortest path. In the case that capacities are tightly imposed,

the flow sent through a path only affects the capacity of the first hub on that

path. Therefore the flow from i to j using hub k first will go through only the

path i − k − m(k) − j which is a shortest path from i to j using hub k as the
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first hub. Besides, (β̂ki + β̂kj ) value sets a bound on the amount of flow from node

i to node j that can be sent through hub k. As the capacity of hub k reserved

for commodity (i, j) is known, the routing decision for each commodity becomes

independent from each other. Hence, for commodity (i, j) ∈ C, sequencing shortest

paths i− k−m(k)− j for each hub k in a nondecreasing order of cost and sending

flow from i to j using these paths in a greedy manner provides an optimal solution

for our problem.

Algorithm 1 Compute optimal solution of Pij

Set xijkm ← 0 ∀k,m ∈ H
Set residual← 1 and p←

∑
k∈H ŷk

Sequence hubs as k1, k2, ..., kp such that cijk1m(k1) ≤ cijk2m(k2) ≤ ... ≤ cijkpm(kp)

for h = 1 to p do

if residual > 0 and (β̂khi + β̂khj ) > 0 then

Set xijkhm(kh) ← min{residual, (β̂khi + β̂khj )}
Set residual← residual − xijkhm(kh)

end if

end for

Algorithm 1 describes how an optimal solution of Pij is computed for (i, j) ∈ C.

Here residual represents the fraction of remaining flow to be sent from node i to

node j. Since there exists an optimal solution in which the total fraction of flow sent

from i to j is equal to 1, we initially set residual to 1. Afterwards, the remaining

flow from i to j is routed through hub k with the shortest i − k −m(k) − j path

among the hubs that have available capacity.

With the optimal primal solution obtained above, an optimal solution for the

dual problem Dij can be constructed using the complementary slackness condi-

tions. An optimal dual solution should satisfy both the constraints (4.78)-(4.81)
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and the complementary slackness conditions given below:

ρ̄ij(
∑
k∈H

∑
m∈H

xijkm − 1) = 0 (4.87)

ν̄ijk(
∑
m∈H

xijkm +
∑

m∈H\{k}

xijmk − ŷk) = 0 ∀k ∈ H, (4.88)

ūijk(β̂
k
i + β̂kj −

∑
m∈H

xijkm) = 0 ∀k ∈ H, (4.89)

xijkm(ρ̄ij − ν̄ijk − ν̄ijm − ūijk − cijkm) = 0 ∀k,m ∈ H : k 6= m, (4.90)

xijkk(ρ̄ij − ν̄ijk − ūijk − cijkk) = 0 ∀k ∈ H. (4.91)

We compute the dual variables in two steps. First, we fix a set of variables

to some feasible values and hence drop the constraints related with them. In the

second step, we compute the values of the remaining variables by solving a reduced

system of inequalities.

Since
∑

k∈H
∑

m∈H xijkm = 1 in our optimal solution of Pij, conditions (4.87)

are always satisfied. Let H0 = {k ∈ H : yk = 0}, H1 = {k ∈ H : yk = 1} and

Fij = {(k,m) ∈ H1 ×H1 : xijkm > 0}. Then, conditions (4.90) and (4.91) imply

ρ̄ij − ν̄ijk − ν̄ijm − ūijk = cijkm ∀(k,m) ∈ Fij : k 6= m, (4.92)

ρ̄ij − ν̄ijk − ūijk = cijkk ∀(k, k) ∈ Fij. (4.93)

In order to find a solution satisfying these conditions, we fix ρ̄ij = max(k,m)∈Fij
cijkm

and ν̄ijk = 0 for all k ∈ H1. We set ūijk = ρ̄ij − cijkm(k)
for all k ∈ H1 such that∑

m∈H xijkm > 0. When
∑

m∈H xijkm = 0, we need to evaluate two cases in order to

compute the value of ūijk. In the case that (β̂ki + β̂kj ) > 0, we need to have ūijk = 0

for condition (4.89) to hold. When (β̂ki + β̂kj ) = 0 we need to check dual feasibility.

We set ūijk = max{0, ρ̄ij − cijkm(k)
} for all k ∈ H1 such that

∑
m∈H xijkm = 0.

Then we consider the variables ν̄ijk and ūijk for k ∈ H0. Since we fixed the

values of ρ̄ij, ν̄ijk and ūijk for k ∈ H1, we can use them to obtain bounds on ν̄ijk

and ūijk for k ∈ H0. Using constraints (4.78), we obtain the following bounds for
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each k ∈ H0,

ν̄ijk ≥ max
m∈H1

{ρ̄ij − cijmk − ūijm} = l1ijk (4.94)

ν̄ijk + ūijk ≥ max
m∈H1

{ρ̄ij − cijkm} = l2ijk (4.95)

ν̄ijk + ν̄ijm + ūijk ≥ ρ̄ij − cijkm ∀m ∈ H0 (4.96)

Similarly, using constraints (4.79), we obtain

ν̄ijk + ūijk ≥ ρ̄ij − cijkk = l4ijk (4.97)

Due to constraints (4.89), for k ∈ H0, in the case that (β̂ki + β̂kj ) > 0, variable

ūijk must be equal to zero. Hence, we fix ūijk = 0 for all k ∈ H0. Next, considering

the bounds we obtained so far on variables ν̄ijk, we set ν̄ijk = max{0, l1ijk, l2ijk, l4ijk}
and then adjust these variables so that constraint (4.96) is satisfied. κ ∈ [0, 1] is

the scaling parameter used in this adjustment.

The algorithm for computing ρ̄ij, ν̄ij and ūij for any (i, j) ∈ C can be seen in

Algorithm 2.

Proposition 2. The dual solution computed using Algorithm 2 is optimal.

Proof. We first check the complementary slackness conditions and then the dual

feasibility.

The dual solution computed using this algorithm satisfies the complementary

slackness conditions with the primal solution computed using Algorithm 1. As

mentioned before, conditions (4.87) are already satisfied since
∑

k∈H
∑

m∈H xijkm =

1 for all (i, j) ∈ C. Considering conditions (4.88), we know that
∑

m∈H xijkm +∑
m∈H\{k} xijmk = ŷk = 0 when k ∈ H0 and otherwise ν̄ijk is set to zero, hence they

hold. Conditions (4.89) are also satisfied. We know that ūijk > 0 when β̂ki + β̂kj = 0

or when path i−k−m(k)− j is used but it is shorter than the longest path among

the ones used to send flow from i to j. In both cases the capacity bound on hub

k is tight. Therefore if ūijk > 0 then β̂ki + β̂kj =
∑

m∈H xijkm. Finally, conditions
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Algorithm 2 Compute (ρ̄ij, ν̄ij, ūij)

Compute optimal solution of Pij
Set ρ̄ij = max(k,m)∈Fij

cijkm
for k ∈ H1 do

Set ν̄ijk = 0
if
∑

m∈H xijkm > 0 then
Set ūijk = ρ̄ij − cijkm(k)

else if
∑

m∈H xijkm = 0 and (β̂ki + β̂kj ) = 0 then
Set ūijk = max{0, ρ̄ij − cijkm(k)

}
else

Set ūijk = 0
end if

end for
for k ∈ H0 do

Set ūijk = 0
Set ν̄ijk = max{0, l1ijk, l2ijk, l4ijk}

end for
for k,m ∈ H0 such that ρ̄ij − cijkm > 0 do

Define ∆ = (ρ̄ij − cijkm)− ν̄ijk − ν̄ijm
if ∆ > 0 then

Update ν̄ijk ← ν̄ijk + κ∆
Update ν̄ijm ← ν̄ijm + (1− κ)∆

end if
end for

(4.90) hold since when xijkm > 0 for any (i, j) ∈ C, that means k,m ∈ H1 and thus

ν̄ijk = ν̄ijm = 0. Consequently ρ̄ij − ν̄ijk − ν̄ijm− ūijk − cijkm = ρ̄ij − ūijk − cijkm =

ρ̄ij−(ρ̄ij−cijkm(k)
)−cijkm = 0. Validity of conditions (4.91) can be shown similarly.

Next we check the dual feasibility of a solution constructed with our algorithm.

First we consider the constraints (4.78). For each commodity (i, j) ∈ C there are

four cases to be evaluated:

• Case 1: k ∈ H1, m ∈ H1

Since k,m ∈ H1 we know that ν̄ijk = ν̄ijm = 0. Hence ρ̄ij−ν̄ijk−ν̄ijm−ūijk =

ρ̄ij − ūijk. All possible values of ūijk should be considered.

If xijkm > 0 then ρ̄ij − ūijk = ρ̄ij − (ρ̄ij − cijkm(k)
) = cijkm(k)

= cijkm. When

xijkm = 0 and β̂ki + β̂kj = 0, the value of ūijk is set to max{0, ρ̄ij − cijkm(k)
}.
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If ūijk = 0, then the proof is as in the previous case. Otherwise, ūijk =

ρ̄ij−cijkm(k)
and ρ̄ij−ūijk = ρ̄ij−(ρ̄ij−cijkm(k)

) = cijkm(k)
≤ cijkm by definition.

When xijkm = 0 and β̂ki + β̂kj > 0, ρ̄ij − ūijk ≤ ρ̄ij = max(k′,m′)∈Fij
cijk′m′ ≤

cijkm. The last relation holds since any path not chosen although it has

available capacity should be not shorter than those which are chosen to send

flow.

• Case 2: k ∈ H1, m ∈ H0

Since ν̄ijk′ = 0 ∀k′ ∈ H1 and our solution satisfies the inequality (4.94), we

have

ρ̄ij − ν̄ijk − ν̄ijm − ūijk ≤ ρ̄ij −maxk′∈H1{ρ̄ij − cijk′m − ūijk′} − uijk ≤ cijkm.

• Case 3: k ∈ H0, m ∈ H1

In this case, we know that ν̄ijm = ūijk = 0. Using the inequality (4.95),

ρ̄ij − ν̄ijk − ν̄ijm − ūijk = ρ̄ij − ν̄ijk ≤ ρ̄ij −maxm′∈H1{ρ̄ij − cijkm′} ≤ cijkm.

• Case 4: k ∈ H0, m ∈ H0

Due to the inequality (4.96), we have ρ̄ij − ν̄ijk − ν̄ijm − ūijk ≤ ρ̄ij − (ρ̄ij −
cijkm) = cijkm.

In order to check constraints (4.79), we evaluate two cases.

• Case 1: k ∈ H1

For k ∈ H1, the value of ν̄ijk is set to zero in our algorithm. Thus, ρ̄ij −
ν̄ijk − ūijk = ρ̄ij − ūijk. Again we need to consider all possible values of ūijk.

If xijkk > 0 then ρ̄ij − ūijk = ρ̄ij − (ρ̄ij − cijkm(k)
) = cijkk since we are sending

flow through path i− k − j. When xijkk = 0 and β̂ki + β̂kj = 0, the value of

ūijk is set to max{0, ρ̄ij − cijkm(k)
}. If ūijk = 0, then the proof is the same as

the former. Otherwise, ρ̄ij − ūijk = ρ̄ij − (ρ̄ij − cijkm(k)
) ≤ cijkk. If xijkk = 0

and β̂ki + β̂kj > 0, then ūijk is also set to zero. Hence ρ̄ij − ūijk = ρ̄ij =

max(k′,m′)∈Fij
cijk′m′ ≤ cijkk.

• Case 2: k ∈ H0

Using inequality (4.97), ρ̄ij − ν̄ijk − ūijk ≤ ρ̄ij − (ρ̄ij − cijkk) = cijkk.

Since the solution computed using Algorithm 2 is dual feasible and it satisfies

complementary slackness conditions with solution x, it is an optimal dual solution.
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4.2.4 Decomposition by projecting out the flow variables

(Benders 4)

In this section, we aim to find a decomposition scheme such that the subproblem

can be further decomposed for each commodity. For fixed vectors ŷ, λ̂ and β̂, the

subproblem becomes the following feasibility problem;

min 0 (4.98)

s.t.
∑
k∈H

∑
m∈H

xijkm ≥ 1 ∀(i, j) ∈ C, (4.99)∑
m∈H

xijkm +
∑
m∈H:
m6=k

xijmk ≤ ŷk ∀(i, j) ∈ C, k ∈ H, (4.100)

λ̂i + λ̂j ≥
∑
k∈H

∑
m∈H

cijkmxijkm ∀(i, j) ∈ C, (4.101)

β̂ki + β̂kj ≥
∑
m∈H

xijkm ∀(i, j) ∈ C, ∀k ∈ H, (4.102)

λi ≥ 0 ∀i ∈ N, (4.103)

xijkm ≥ 0 ∀(i, j) ∈ C, ∀k,m ∈ H. (4.104)

For this problem to be feasible, its dual needs to be bounded, meaning that∑
(i,j)∈C

ρij−
∑

(i,j)∈C

∑
k∈H

ŷkνijk−
∑

(i,j)∈C

∑
k∈H

(β̂ki +β̂kj )uijk−
∑

(i,j)∈C

ωij(λ̂i+λ̂j) ≤ 0 (4.105)

for all (ρ,ν,ω,u) that satisfy

ρij − νijk − νijm − uijk ≤ cijkmωij ∀(i, j) ∈ C, ∀k,m ∈ H : k 6= m, (4.106)

ρij − νijk − uijk ≤ cijkkωij ∀(i, j) ∈ C, ∀k ∈ H, (4.107)

ρij, ωij ≥ 0 ∀(i, j) ∈ C (4.108)

uijk, νijk ≥ 0 ∀(i, j) ∈ C, ∀k ∈ H (4.109)

This system decomposes for each (i, j) ∈ C. Without loss of generality, we can
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take ωij = 0 or ωij = 1 for (i, j) ∈ C. When ωij = 0, the system becomes,

ρij −
∑
k∈H

ŷkνijk −
∑
k∈H

(β̂ki + β̂kj )uijk ≤ 0 (4.110)

for all (ρij,νij,uij) such that

ρij − νijk − νijm − uijk ≤ 0 ∀k,m ∈ H : k 6= m, (4.111)

ρij − νijk − uijk ≤ 0 ∀k ∈ H, (4.112)

ρij ≥ 0 (4.113)

uijk, νijk ≥ 0 ∀k ∈ H (4.114)

It can be seen that this system of inequalities always holds when
∑

k∈H ŷk ≥ 1

and
∑

k∈H(β̂ki + β̂kj ) ≥ 1 and the former inequality is already implied by constraint

4.12. Hence we only need to consider the case ωij = 1. When we fix ωij = 1, the

system becomes,

ρij −
∑
k∈H

ŷkνijk −
∑
k∈H

(β̂ki + β̂kj )uijk ≤ λ̂i + λ̂j (4.115)

for all (ρij,νij,uij) satisfying

ρij − νijk − νijm − uijk ≤ cijkm ∀(i, j) ∈ C, ∀k,m ∈ H : k 6= m, (4.116)

ρij − νijk − uijk ≤ cijkm ∀k ∈ H, (4.117)

ρij ≥ 0 (4.118)

uijk, νijk ≥ 0 ∀k ∈ H (4.119)
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Hence, after projecting out x variables, the problem can be reformulated as follows

min
∑
k∈H

fkyk +
∑
i∈N

λibi (4.120)

s.t. λi + λj ≥ ρtij −
∑
k∈H

ykν
t
ijk −

∑
k∈H

(βki + βkj )utijk ∀(i, j) ∈ C,∀t = 1, .., Tij , (4.121)

∑
k∈H

(βki + βkj ) ≥ 1 ∀(i, j) ∈ C, (4.122)

(4.5), (4.12), (4.14), (4.16), (4.17).

where (ρtij, ω
t
ij, ν

t
ij, u

t
ij) is the t-th extreme point of Sij = {(ρij, ωij, νij, uij) ∈

R+ × R+ × Rh
+ × Rh

+ : (4.116) − (4.119)} for (i, j) ∈ C and Tij is the number

of extreme points of Sij. The variables corresponding to an extreme point of Sij

maximizing the right-hand-side of constraint (4.121) can be computed as in Section

4.2.3.2. In this reformulation, we are able to add multiple cuts at each iteration

of the Benders decomposition algorithm instead of a single cut.

4.3 Computational Analysis

We test our mathematical model and solution algorithms on well-known Australian

Post (AP) data set instances with up to 50 nodes. To the extend of our knowledge,

the AP data set is the only data set with fixed costs of hub opening and node

capacities (accessible from OR-Library [51]). For both fixed costs and capacities,

two settings are available. Instances with tight (T ) fixed costs have larger costs of

hub opening compared to the instances with loose (L) fixed costs. Similarly, the

instances with tight (T ) capacities have smaller available capacities in comparison

with the instances with loose (L) capacities. For each problem size n, we consider

four cases: LL,LT, TL, TT where the first letter corresponds to the fixed cost

setting and the second to the capacity setting.

In our experiments we consider AP instances with n = 25, 40, 50. The traffic

bounds for the hose model are generated as bi =
∑

j∈N\{i}(wij +wji) for all i ∈ N .
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All nodes are taken as possible hub locations, i.e., H = N . We perform our com-

putational experiments on a 64-bit machine with Intel Xeon E5-2630 v2 processor

at 2.60 GHz and 96 GB of RAM using Java and Cplex 12.5.1 We set a time limit

of three hours. All solution times are given in seconds. For the Benders decompo-

sition algorithm implementations, we use the lazy constraint callback function of

CPLEX.

Table 4.1: Computational results for the MIP formulation of deterministic
CMAHLP

# nodes Instance Objective CPU time Hubs

25 LL 222411.23 4.26 8,18
25 LT 248713.51 54.56 9,16,19
25 TL 293850.21 26.08 9,23
25 TT 312743.36 227.73 6,14,24
40 LL 230495.10 46.64 14,29
40 LT 252982.48 909.59 14,26,30
40 TL 284821.33 518.83 14,19
40 TT 326827.27 2637.96 14,25,38

For completeness of analysis, we first present the results of CMAHLP with

deterministic demand values in Table 4.1. We present the optimal value, CPU

time until the optmality is achieved and the hub locations in the optimal solution

for each instance with n = 25, 40. Larger instances can not be solved to optimality

within the time limit. It can be seen that computational difficulty of the problem

rapidly increases as the problem size n increases and as the fixed cost-capacity

settings become tight (T ).

In Table 4.2, the optimal objective value, CPU time and hub locations in the

optimal solution of the mathematical model (CMAHLP hose) are reported. For

instances with 40 nodes, the mathematical model was not able to obtain the op-

timal solution within the time limit of three hours so that only the instances with

25 nodes are included in our analysis. As we compare these results with the ones

for the deterministic case represented in Table 4.1, it can be seen that the compu-

tational effort required to solve the problems to optimality significantly increases

as the demand vector becomes a variable taking value from a hose uncertainty set.

The deterministic model instances can be solved to optimality within five minutes,
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while it may take up to three hours for the instances with hose demand uncer-

tainty. Considering the hub locations, it can be seen that there is a change in the

optimal hub locations in all instances. In some of them, as in 25LL, only one hub

location is changed whereas in some others like 25TL all hubs of the deterministic

model are replaced in the solution of the problem with the hose model.

Table 4.2: Computational results for the MIP formulation with hose demand un-
certainty

# nodes Instance Objective CPU time Hubs

25 LL 269373.49 5896.78 8,19
25 LT 299613.46 4883.77 9,12,19
25 TL 330504.18 9765.26 11,14
25 TT 361699.66 3372.66 9,12,14

As expected, the optimal total costs increase in the CMAHLP with hose demand

uncertainty in comparison with the deterministic case. We observe an average

increase of 17.43% in the objective value of the optimal solutions. The maximum

percentage increase is for the instance 25LL with 21.12% whereas the minimum is

12.47% for the instance 25TL.

Next we analyse the computational effectiveness of proposed Benders reformu-

lations. For each reformulation, we present the optimal objective value, CPU time

until achieving optimality, the number of Benders cuts added and hub locations

in the optimal solutions. In Table 4.3, results of Benders 1, in which we only fix

the location variables in the master problem, are shown. Benders 1 is able to solve

eight instances out of 12 to optimality within the time limit. For the instances

that can not be solved, the run is terminated due to inadequate memory. Benders

1 solves four additional instances that can not be solved by the MIP formulation.

Besides, this Benders decomposition approach clearly outperforms the mathemat-

ical model in terms of computation times. All eight instances with no memory

errors are solved to optimality within 1.5 hours. The reason behind the memory

error may be the size of the subproblem; in this decomposition scheme, most of

the decisions are left to the subproblem.
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Table 4.3: Computational results for Benders 1

# nodes Instance Objective CPU time # Cuts Hubs

25 LL 269373.49 215.81 69 8,19
25 LT 299613.46 1339.73 411 9,12,19
25 TL 330504.18 104.22 34 11,14
25 TT 361699.66 399.52 126 9,12,14
40 LL 271656.49 1502.42 66 14,29
40 LT memory - - -
40 TL 314904.30 479.48 19 14,19
40 TT 385661.54 3880.55 185 14,19,25
50 LL memory - - -
50 LT memory - - -
50 TL 340552.90 1729.11 32 24,27
50 TT memory - - -

Table 4.4 displays results of Benders 2 in which only the Benders feasibility

cuts are added to the formulation. Since the algorithms give a memory error for

instances with more than 25 nodes, only the results for the instances with 25 nodes

are included. In view of our results, it can be said that fixing ŷ and λ̂ in the master

problem is not an efficient decomposition approach for the CMAHLP under hose

demand uncertainty. Out of 12 AP instances only one can be solved to optimality

within 3 hours. For the instance 25TL we obtain a feasible solution with a large

optimality gap. The other two instances marked as time do not yield any feasible

solutions within the time limit. The failure of this decomposition approach may

be due to the excessive number of callbacks until optimality is guaranteed and

the computational burden of finding extreme rays of the dual subproblem. If we

compare it with the number of callbacks in Benders 1, it can be seen that Benders

2 performs almost 10 times more number of callbacks than Benders 1.

Table 4.4: Computational results for Benders 2

# nodes Instance Objective CPU time # Cuts Hubs

25 LL 269373.49 8921.29 649 8,19
25 LT time - - -
25 TL 566200.91 (67.30) 558 21
25 TT time - - -
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We also report the results of Benders 3 where y and β are fixed as ŷ and β̂ in the

master problem in Table 4.5. Out of 12 AP data set instances, Benders 3 is able

to solve six of them within three hours. Among the instances with 50 nodes, it

obtains a feasible solution only for instance 50LT . For the others, it cannot find a

feasible solution within the time limit. It can be seen that Benders 3 works better

than Bender 2 and the MIP formulation but it is still outperformed by Benders

1. An interesting observation here is the large number of cuts added until the

algorithm converges to an optimal solution. As we add at most one cut at each

time the callback is invoked, the number of times callback is performed is at least

as many as the number of cuts. Hence it can be concluded that the quality of the

cuts added needs to be improved to obtain better results using this decomposition

scheme.

Table 4.5: Computational results for Benders 3

# nodes Instance Objective CPU time # Cuts Hubs

25 LL 269373.49 929.93 10657 8,19
25 LT 299613.46 2923.96 7002 9,12,19
25 TL 330504.18 40.52 1284 11,14
25 TT 361699.66 400.15 5180 9,12,14
40 LL time - - -
40 LT time - - -
40 TL 314904.29 285.99 2362 14,19
40 TT time - - -
50 LL time - - -
50 LT 343860.19 (43.69) 19164 14,32,35
50 TL 340552.89 914.53 3362 24,27
50 TT time - - -

Finally, we evaluate the performance of reformulation Benders 4, which employs

a multicut approach, in Table 4.6. It is clear that Benders 4 is the best exact

solution algorithm for the CMAHLP under hose demand uncertainty among the

ones we proposed in this study. It succeeds to solve nine instances out of 12 to

optimality within the time limit and for the others it is able to obtain feasible

solutions with relatively lower gap values. The maximum CPU time for the solved

instances is approximately nine minutes. We here note that Benders 4 spends a

considerable amount of time to improve the lower bound after an optimal solution
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is found. Therefore its computational performance can be further improved by the

use of stronger cuts that could yield better lower bounds.

Table 4.6: Computational results for Benders 4

# nodes Instance Objective CPU time # Cuts Hubs

25 LL 269373.49 5.39 5334 8,19
25 LT 299613.46 121.20 10987 9,12,19
25 TL 330504.18 4.33 5058 11,14
25 TT 361699.66 29.78 8806 9,12,14
40 LL 271656.49 53.27 13446 14,29
40 LT 315624.51 (3.22) 63883 14,26,30
40 TL 314904.30 4.74 3852 14,19
40 TT 385661.54 524.30 34195 14,19,25
50 LL 276091.56 285.91 26848 15,35
50 LT 315039.04 (6.57) 92034 6,26,32,46
50 TL 340552.90 109.71 21632 24,27
50 TT 452151.20 (11.50) 108806 25,26,41,48

4.4 Conclusions

In this chapter, we studied a capacitated multiple allocation hub location problem

where the demand takes value from a hose uncertainty set. We proposed a mixed

integer programming formulation and devised four different Benders decomposition

based exact solution algorithms. In view of our computational results, Benders

4, which utilizes a multicut approach outperformed all the others in terms of

computational efficiency. It succeeded to solve AP data set instances with up to

50 nodes and obtained feasible solutions with relatively lower optimality gaps for

the instances that can not be solved within the time limit.
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Chapter 5

Conclusion

In this thesis, we studied hub location problems under polyhedral demand uncer-

tainty. Hub location decisions are a part of the strategic planning process in airline,

cargo and telecommunications networks. They are usually made long before sys-

tem starts operating so that any decision based on the estimated pairwise demands

may become obsolete in the time of operation. Hence incorporating uncertainty

into our decisions is an important aspect to be considered. However, even though

hub location problems are well-studied in the literature, uncertainty in the hub

location context is rather an unexplored area. Most of the existing works assume

that the probability distribution for demand is known. In our study, demand is

assumed to take value from a polyhedral uncertainty set. We used two different

models from the telecommunications literature to represent the demand uncer-

tainty; namely hose and hybrid models. For the hose model, only an estimation

of the total demand associated with each node is required while the hybrid model

additionally puts bounds on the pairwise demands.

First we introduced demand uncertainty into the uncapacitated multiple allo-

cation p-hub median problem. In this problem, the aim is to find hub locations

and routes for the commodities that minimize the total transportation cost under

the worst case demand realization. We provided mixed integer linear program-

ming formulations for the problem with hose and hybrid uncertainty sets. In order
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to solve large-scale instances, we devised two Benders decomposition based exact

solution algorithms such that the first one is a classical Benders decomposition ap-

plication while the second utilizes a multicut approach. For the problem with the

hose model, the second decomposition algorithm succeeded to solve instances with

up to 200 nodes whereas the mathematical model was able to solve instances with

up to 50 nodes. In the case of the hybrid model, the first Benders decomposition

algorithm outperformed the others for large instances while the second algorithm

has smaller computational times for small instances.

Next we considered a capacitated multiple allocation hub location problem.

Since capacity constraints are imposed, demand uncertainty has an impact on the

total cost and the feasibility of the solutions. With this motivation, we studied

the capacitated multiple allocation hub location problem under hose demand un-

certainty. We presented a mathematical formulation of the problem and devised

four different Benders decomposition based exact solution algorithms. We also

developed an algorithm for the subproblem to accelerate the convergence of the

proposed solution algorithms. With the last Benders decomposition approach, we

were able to solve instances with up to 50 nodes to optimality while the MIP

formulation could solve instances with up to 25 nodes. Besides, three of our al-

gorithms are superior to the MIP formulation in terms of solution times even for

small instances.

As future research, demand uncertainty can be incorporated into different vari-

ants of the hub location problem using hose and hybrid models. In particular,

problems with single allocation would be interesting to study. Note that when

each demand node is required to be assigned to a single hub facility, routing deci-

sions become interdependent. We expect these problems to be more challenging.

Moreover, considering the sequential nature of the decisions in the hub location

problems, another research direction may be to use an adjustable robust opti-

mization approach. As hub location decisions are usually handled before system

starts operating, it is possible to take recourse actions in the routing phase based

on the demand realizations. This approach may help balancing the conservatism

of solutions and thus reducing the price of robustness. One last extension could

be to consider other sources of uncertainty in the hub location problems such as

fixed cost of opening hubs and transportation costs. These cost terms are also
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subject to uncertainty due to prices of property, raw materials etc. and it would

be worthwhile to investigate their effects on location and routing decisions in hub

networks.
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