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Power dissipation analysis in tapping-mode atomic force microscopy
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In a tapping-mode atomic force microscope, a power is dissipated in the sample during the imaging process.
While the vibrating tip taps on the sample surface, some part of its energy is coupled to the sample. Too much
dissipated power may mean the damage of the sample or the tip. The amount of power dissipation is related to
the mechanical properties of a sample such as viscosity and elasticity. In this paper, we first formulate the
steady-state tip-sample interaction force by a simple analytical expression, and then we derive the expressions
for average and maximum power dissipated in the sample by means of sample parameters. Furthermore, for a
given sample elastic properties we can determine approximately the sample damping constant by measuring
the average power dissipation. Simulation results are in close agreement with our analytical approach.
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Tapping-mode force microscopy is utilized for surface im-the tapping-mode AFM suitabfyin this way we can easily
aging at very low lateral forces. The cantilever taps on thdind the dissipated power and compare it with our
sample surface giving rise to the interaction force. This forcesimulatior? result. Moreover, we can find the sample damp-
has two parts: One is the attractive van der Wadat$V)  ing constant by measuring the average power dissipation.
forces and second is the repulsive Hertzian contact force. The tip-sample interaction is highly nonlinear and cannot
These forces pull the sample surface up and down meaninge solved analytically without doing crude approximations.
that some part of the cantilever energy is dissipated in thghe simulations are quite useful to interpret experimental
sample where the sample can be modeled with a dashpot agfiseryationg:® However, the simulations does not give an
a spring(see Fig. 1 If the dissipated power is high enough jnsight on the effect of overall system parameters. In order to
it can break the bonds of the surface atoms. Therefore, fogain further insight, we first need to approximate the nonlin-

P;crtlgreit)ruc?gs? d?raglj'lr?grtehZrzogveevre?;i?s&%r;vﬁigﬁ :rglg?ertan ar interaction force analytically at a given steady-state tip
' oscillation amplitude. In a tapping mode, there exist two

g‘ﬁ e;j IsRsézztr?dWZO\?ée"rox ;hi oprz‘:)llseete?; tgi?fecr?:]ttllz\;)? Olgcg?lss.table oscil]ation s?atésl.:or the high amplitudg solution, the
First we obtain an analytical expression of tip-sample interliP-Sample interaction forcs has both attractive and repul-
action force for a given steady-state tip oscillation amplitudeSV& Parts as shown in Fig. 2. The repulsive force for 0
and then we give the power dissipation in terms of samplé~|t<T1 can be approximated by a cosine. A linear approxi-
parameters. We assume that the higher harmonics of the cafftation is utilized for the attractive force fan <|t|<T,. We
tilever oscillation is negligible, which is usually the case for assume that the force is even symmetric arotir®. An

high-Q systems, and hence the point-mass model describégalytic expression for the interaction force can be written as

Fo—Fm S{Zﬂ') Fm—Fcoq27/ @)

for O<|t|<T,

1—coq2mla) ™ aT; 1—cog 27/ a)
frst)=¢ Fm Fml2 1)
+ <|t|=
Tl—th T,-T, for T <[t|<T,
0 forT,<|t|<T/2.
|
In this parametric expressiof,, andF,, are the maximum >
repulsive and attractive forces exerted on the sample, respec- frs(t)=ag+ 21 a,cog nwt), (2
i=

tively. T is the period of oscillationa is a fit constant that
defines the period of the cosine and its optimum value iSvvherew—2 /T is the oscillation frequency and the series
different for different oscillation amplitudes. The results for coefficie;ts:lre q y

differenta values are very close to each other and hence for
simplicity we choosex=4. In the steady-state conditions, "
the periodic interaction force can be represented with a Fou- a :EJ fro(t)dt
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FIG. 1. The probing tip contains information about sample pa-
rameters. Mechanical behavior of the sample is modeled with a
dashpot and a spring. Positions are referred with respect to the rest
position of the sample surface. FIG. 2. Arepresentative simulated and approximated forces and

sample deformation in a fraction of one oscillation cychdA,

-3 -2 -1 0 1 2 3
Time (us)

4 (T2 =0.8, ys=107% kg/s, ks=20 N/m.
an:ff frs(t)cognwi)dt. (4)
0
_ _ o) HR
Using Eqg.(1) in Eqg. (4) we can find Fm=Fat| Za=2| s y102-075 152 _0'24502 - (8
8T1(Fp—Fm)cognwTy) The time T, when the attractive force reaches its maxi-
a,= InT. 2 mum value is given by
-5
T T T  (za=Zn— 2z
T1=§—2—COS 1 T s (9)
TF[cognwT,)—cognwT;)] .
+ (T,—T,)(7n)? ' (5) where the sample deformation in the presenc€ gfis
F
Referring to Fig. 1 the tim&@, can be found from geo- zm=k(T—TT)[(T2—T1)—(yS/kS)(l—e*ks(TZ*Tl)’“/s)]
metric considerations as sti2 1
—z,e k(T T, (10)
T T zi—z,—z,e (T T2l
To=5-— Zcosfl A , (6 Repulsive part of the interaction force is giver’by
here_zr is the rest position of the tipA is th(_e tip oscillation Frefd2)= 8_V2R E,(zo— z)¥%or z<z,, (11)
amplitude, ks and yg are the sample spring constant and 3
damping constant, respectively.is the interaction distance ) )
where the attractive force is large enough to pull up the i_ 1-v; N 1-vs (12)
sample surfacez, is the sample displacement due to maxi- E, E Es ’

mum repulsive force exerted on the sample during previous _ i )

cycle. Note thatT, depends on itself, therefore the final WhereE, is the reduced elastic modulus of tip and sample.

value of T, is found by iteration. E:, Es and v, vg are the Young’s moduli and Poisson’s
Attractive part of the interaction force as a function of ratios of the tip and sample, respectively. Using phasor

tip-sample distance is given by analysis, the fundamental component bfs can be found as

K w2\ 2 w22
HR o\?2 1/0\8 o al:_t(Ag+A2_2AoAsin¢)1/2 1— — Q12+_ ,
Fatt(z):_2 el +§) - forz>zy=g=, t Wg Wg
60 z z \/ﬁ) 13

(7
whereA, is the free tip oscillation amplitudey, is the reso-
whereH is the Hamaker constarR is the tip radius, and&  nance frequencyA and ¢ are the steady-state tip oscillation
is the interatomic distance. The effect of this force is negli-amplitude and phase, ang and Q, are the spring constant
gible for tip to sample distances larger tharv20rherefore  and quality factor of the cantilever. If the cantilever is driven
we choosez;=200. The maximum attractive forc€,, is  at its resonance frequency and assuming even symmetric in-
found by setting the derivative &f,; equal to zero: teraction forces, Eq.13) reduces to
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K¢ — ansivica
Qt(A2 A?)V2, (14 O e
F, and z, must satisfy the following equations simulta-
neously:

a;=

/18 m

8T, (Fp—Fm)cogwT,)
a1= 4T, 2
“T[ (5 }
N TF[cogwT,)—cogwT;)]
772(T1_ T2)

Average dissipated power (fW)

: (19

8V2R
szTE (zo—2z,+A—12,)%? (16) "o

Sample damping constant (kg/s)

\;v:ri:)elet?se sample displacement WHéH Is exerted on the FIG. 3. Average dissipated power versus sample damping con-

stant for variousk, values.

szﬂ (Zm_ F_> e KsT1/vs Now, we consider two asymptotic cases: For very low
Ks Ks damping constantsys/ks<T;), Eq. (21) can be approxi-
n Ys(Fm—=Fp)(1— e ks Tl/ys) 17) mated as
K2T apnw
! avg’vz -— 2 (22)
S
The displacement of the sample surface dugtds gov- ]
erned by the following differential equation Rearranging Eq(22) we get
dzy(t) _ 2Pay
Ys—gp T Kszs(D=frs(t), (18 YsT  Tanw2 (23
2 n
. " . k
using superposition, we can add the displacements due to " S
different frequencies to get the total displacement The sample spring constaky is proportional to the Young’s
modulus of the samptand for this analysis it is taken to be
a a, [ nwys EsR. For very high damping constanty{/ks>T), the av-
z(t)= k_s+nzl mco nwt—tan k|| erage power dissipation is given by
19
> a;
The instantaneous power dissipated in the sample is given n
Paerc ——. (24
by 9 2y
dz(t) Rearranging Eq(24) we get
p(t) = Frs(t) — g (20
> a;
If we integratep(t) over one cycle and divide by the period, n

we get the average power. Hence we obtain our final result Vs 2Py (25

* a2 nw The average power dissipation is also related to the tip
—1 ’}/S . . . .

E r{tan k_” (21)  oscillation amplitudeA and phase¢ by the following

=1 24y5+ (ks/nw)? s equation*3

Figure 3 shows the average power dissipated in one cycle
for A/Ay=0.8. The parameters used in calculations are cho- Pavg™ 2Q
sen to beAy=100 nm, f=w/27=20 kHz, k;=16 N/m, Q,
=250, E;=90 GPa, E,.=2 GPa, v;=v,=0.2, H=80zJ, Hence, we are able to estimate the sample damping constants
R=10 nm, ando=2 A Taking the first 100 terms in Eq. by measuring the average power dissipation. As can be seen
(21) provides less than 1% error. It is seen that the calculatetfom Egs.(17) and(10) z, andz, are zero for high damping
and the simulated power values are in agreement. constants, and they are equalRg/ks and F,/ks for low

[AOA sin¢— (wW/wg)A?]. (26)
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TABLE |. Actual and estimated values.

Estimatedy with

10% error included in 50% error included in
Multiplying
factor Actual y, Estimatedy, H R Pavg H R Pavg

1078 1.00 1.04 1.040.02 1.04-0.02 1.04-0.11 1.05-0.12 1.06-0.13 1.04-0.53
1077 1.00 1.04 1.040.02 1.04-0.02 1.04-0.11 1.05-0.12 1.06:0.13 1.04-0.53
1076 1.00 1.01 1.0£0.02 1.01-0.02 1.01-0.10 1.01:0.12 1.02:0.13 1.01-0.50
10°° 1.00 0.77 0.7%20.02 0.77-0.02 0.77-0.08 0.78-0.09 0.78-0.10 0.78-0.39
104 1.00 1.36 1.360.03 1.34-0.05 1.370.14 1.36:0.10 1.32:0.23 1.81-0.90
1073 1.00 0.78 0.7&0.02 0.79-0.03 0.78-0.08 0.78-0.06 0.78-0.14 1.06:0.54
1072 1.00 0.76 0.76:0.04 0.77-0.03 0.76-0.08 0.76-0.06 0.76-0.13 1.0G:0.50

damping constants, respectively. Equati@@® and(24) are  Substituting Eq(27) into Eq. (20) we get
also plotted in Fig. 3. The approximation is valid for either
low or high damping constants, it deviates from the exact

result for mediumyg values. a, _ L [nwys
The procedure to finds for a sample with known elas- PmaX:E \/ﬁ Z a,sin tan |
ticity can be stated as follows. First, the interaction force . vt (ks/nw)” n s

parameters are found using E¢8)—(17). Using Eq.(5) a, (28)

values are calculated. The average power given by(F).
is determined. Finallyy values are found using Eg@3) or  Although the average power dissipation is in femtowatt lev-
(25). AMATLAB code that does these calculations is availables|s, we have to consider the peak power dissipated in the

11 . .
for download: ~ sample. It is found that the peak instantaneous power can be
To calculate the error bounds, we made several simulamore than 100 times the average power.

tions. Table | summarizes the results. The Hamaker constant In summary, we formulated the average and maximum
H depends on tip-sample system geometry, and the tip radiysower dissipation in terms of the sample parameters. This
R can roughly be estimated. Therefore we include the errorgnalytical approach also gives a physical meaning to the
coming from these constants into our analysis. It is seen thidhases of the cantilevefsee Eqs(21) and(26)]. It is clear

the phase measurement errorfp,q is dominant. Also, itis  that ¢ is a complicated function of the tip and the sample

interesting to see that adding a 50% uncertaintitor R parameters as well as the oscillation amplitude. In addition,

does not significantly alter the results. we are able to find many important quantities such as the
To find the maximum power dissipation, we equatecontact time, the sample deformation, and the maximum
d?zy(t)/dt? to zero and get forces exerted on the sample analytically. We also see from
Fig. 3 that softening the lever more and more does not sig-
t:i #l2+tan 1 %” 2 nificantly reduce the power dissipation which is not seen

nw Ks directly from Eq.(26).
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