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Abstract

We consider the stability of delayed feedback control (DFC) scheme for multi-dimensional discrete time systems. We first
construct a map whose fixed points copesd to the periodic orbits of the unconteal system. Then the stability of the DFC
is analyzed as the stability ofércorresponding equilibeim point of the constructed map. Feaich periodic orbit, we construct
a characteristic polynomial whesSchur stability corrgponds to the stdlliy of DFC scheme.
0 2005 Elsevier B.V. All rights reserved.
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1. Introduction As in the classical feedback control theory, various
objectives could be given for the chaotic systems, and

The study of various aspects of chaotic systems has d€Pending on these objectives various control tech-
received considerable inst in recent years. Among ~ Niques could be used, see, e[§], One such control
such aspects, the feedback control of chaotic systemsPPIective is the stabilization of unstable periodic or-
is an important area due to its numerous potential ap- PitS; [1]. Chaotic systems usually have many unstable
plications. This subject has gained a great deal of at- Periodic orbits embedded in their attractors. It was
tention after the seminal work ¢1], where the term  Shown in[1] that some of these orbits may be stabi-
“controlling chaos” was itroduced. The literature is  /12€d by using small external input, hence it may be

quite rich on the subject, and for more information the POSSible to obtain regular behaviour in such systems
interested reader may resort to, e[8,3]. by using feedback control. The delayed feedback con-

trol (DFC), which is first proposed if4], is one of
such schemes and has received considerable attention
E-mail addressmorgul@ee.bilkent.edu.t®. Morgil). due to its various attractive features. In this scheme,
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the feedback term is the multiplication of a gain with wherek =1, 2... is the discrete time index, € R”,
the difference between the current and one period de- f :R" — R”" is an appropriate function, which is as-
layed states. Therefore, if the system is already in the sumed to be differentiable wherever required. We as-

periodic orbit, this feedback term vanishes. The prob-

sume that the system given ) possesses & peri-

lem is to find an appropriate gain so that a given peri- odic orbit characterized by the set

odic orbit becomes stable.

Various applications of DFC has been reported in
the literature, including electronic systefbs5], lasers
[7], magnetoelastic systenf], traffic model[9], see
also[3,10]for more references. Although DFC is quite
simple, its stability analysis is quite difficulf10].
Several stability results has been obtained,[6¢EL—

(2)
i.e., for x(1) = x7, the iterates of1) yields x(2) =
x5, .., x(T)=x3, x(k)=x(k —T) fork > T.

Let x(-) be a solution of(1). To characterize the
convergence of(-) to X7, we need a distance mea-
sure, which is defined as follows. Fef, we will use

>r = {xi‘,x;,...,x?},

13]. These results show that the DFC scheme has ancircular notation, i.e.x} = x% for i = j (modT). Let

inherent limitation, i.e., it cannot be applied for the
stabilization of some periodic orbitfd,1,12] To over-

come these limitations, various modifications have

been proposed, s¢#4—20] Recently a set of neces-

sary and sufficient conditions to guarantee the stability

us define the following indiceg =1, ..., T):

-1

()= | Y |xte+i)—x7,;

i=0

2

: ®)

of DFC for one-dimensional discrete time systems has where |-|| denotes any norm iiR". Without loss of

been given if13].
In this Letter we consider the stability of DFC

scheme for (multi-dimensional) discrete time systems.
To analyze the stability of DFC scheme, we use the ap-

proach given irf13]. We first construct a map whose
fixed points correspond to the periodic orbits of the

generality, we will use standard Euclidean norm in the
sequel. We then define the following distance measure

d(x(k), Z7) =min{dk (D), .... di(T)}. (4)

Clearly, if x(1) € X7, thend (x(k), X7) =0, Vk. Con-
versely if d(x(k), X7) = O for somekg, then it re-

original system. Then the stability of the DFC scheme mains 0 andx(k) € X, for k > ko. We will use
can be analyzed by studying the corresponding fixed d(x(k), ¥7) as a measure of convergence to the pe-

points of this constructed map. To analyze the latter,

we form the Jacobian of this map and then find its
characteristic polynomiallThe Schur stability of this
polynomial can be used to study the stability of DFC

scheme. In that respect, the results given in this Let-

riodic solution given byX'r.

Letx(-) be a solution of1) starting withx (1) = x1.
We say thatX7 is (locally) asymptotically stable if
there exists are > 0 such that for any (1) € R"
for which d(x(1),Y7) < ¢ holds, we have

ter can be considered as a generalization of similar lim;—. d(x(k), X7) = 0. Moreover if this decay is

results given irf13] for one-dimensional case to multi-
dimensional case.

This Letter is organized as follows. In Secti®dwe
introduce the notation and filee the stability problem.
In Section3 we give our stability results. In the follow-

ing section we present some simulation results. Finally

we give some concluding remarks.

2. Problem statement
Let us consider the following discrete-time system

x(k+1) = f(x®), @

exponential, i.e., the following holds for somé > 1
andO< p <1 (k>1):

d(x(k), Br) < MpFd(x(1), 7), (5)

then we say thak'r is (locally) exponentially stable.
To stabilize the periodic orbits dfl), let us apply
the following control law:

x(k+1) = f(x(k) +u(k) (6)

whereu(-) is the control input. In classical DFC, the
following feedback law is used (> T):

u(k) = K (x(k) —x(k — T)), )

whereK € R"*" is a constant gain matrix to be deter-
mined. Now we state the stability problem as follows.
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Problem. Let X7 be a periodl’ orbit of the system and upper diagonal forms @& andR, respectively, we
(1), and consider the system given (8), (7). Find a obtain
gain matrixK such that¥r becomes stable.
p1(0) = det] — Jp) =def(a?l — A(J1 + K) + K).
(10)
3. Stability analysis We say that a polynomial is Schur stable if all of
- o o its eigenvalues are inside the unit disc of the com-
The stability analysis given here is similar to the plex plane, i.e., have magnitude less than unity. It is
one given in[13]. Let us consider the simple case cg|led unstable if at least one of its roots is outside
T =1.In this case we hav&; = {x7} wherex] = the unit disc, and is called marginally stable if at least
f(x1). In other words, period 1 orbits are the same gne of its roots is on the unit disc while the rest of
as fixed points off. By using change of variables  he yoots are inside the unit disc. Hence, the asymp-
x1(k) = x(k—1), xa(k) = x(k), we canrewritg6)and  tqtic stability of the fixed point of for (9), hence the
(7)as asymptotic stability ofZ; for (6) and(7) could be an-

. alyzed by studying th Schur stability ofp1 (1) given
xalkt 1) =x2(h), by (10). Moreover note that the exponential stability
xa(k+1) = f(x2(k)) + K (x2(k) — x1(k)). 8 of the fixed points off is equivalent to Schur stability
of p1(1), [21]. From the analysis given above we may

Let us definet = (x1x2)7 € R%*, where superscript _
(x12) P P state the following result:

T denotes transpose, and defife R¥* — R?* as
F(X) = (Y1Y2)T whereYy = x2, Y2 = f(x2) + K (x2—

x1). Hence(8) can be equivalently written as Corollary 1. Let X1 = {x]} be a periodl solution of

(1), and consider the DFC given [§8), (7) for T = 1.
fk+1)=F(x(k). (9) Then

The fixed points ofF, i.e., the solutions of (x*) =
x*, are given asy] = x; = f(x]). Hence, for any

: . 1. : )
period 1 orbity = {x7} of (1), there exists a fixed is only sufficient for the asymptotic stability bf ;

i Sk __ T
pomt_of F OT the fo_rm & N (xx])”. Conversely, (ii) if p1(1) is unstable, ther¥'; cannot be asymptot-
any fixed point of /" is of this form andX; = {xj} ically stabilized by DFC

is a period 1 orbit of(1). Hence, for the stability
of X1 for (6), (7), we may analyze the stability of
the corresponding fixed point of. To analyze the
latter, let us find the Jacobians of F at X, i.e.,

Jr = 3E|5,. Note that/r € RZ"*2, and letJr (i, j)
denote itz x n blocks. These block components can
be found asJ/r(1,1) =0,Jr(1,2) =1, Jr(2,1) =
—K.Jp(2,2)=J1+ K, whereJ; = &|,_,-, 0 and!

are the zero and identity matrices, respectively, in ap-
propriate dimensions. To find the characteristic poly-
nomial p1(1) = detAl — Jr), let us define an aux-
iliary matrix E € R?*2' and letE(i, j) denote its

n x n blocks, defined a¥(1,1) =1, E(1,2) =0,
E(2,1) = —K, E(2,2) = Al. Note thatFE is a lower af
block diagonal matrix. It can be easily verified that =9
R = E(AI — JF) is an upper diagonal matrix with the
block components given aB(1,1) = A, R(1,2) = Let us define the following variables:
—I,R2,1)=0,R(2,2) =221 —A(J1+ K)+ K.By

using def? = detE detx] — J), and using the lower  *j =x(k—m—1+4+j), j=12....m+1 (12)

(i) X1 is exponentially stable fq6), (7)if and only if
p1(A) given by(12)is Schur stable. This condition

(iii) if p1(r) is marginally stable, ther¥'; cannot be
exponentially stabilized by DFC, and we cannot
conclude the asymptotical stability with the analy-
sis given above.

Proof. The proofs of these statements follow easily
from the analysis given above and from standard Lya-
punov stability theory, see, e.§21]. O

We proceed to the general caBe=m. Let X}, =
{x3,...,x;} be the periodn solution of(1). Let us
define the Jacobiank as follows:

i=1....m. (11)

- 9
8)(' x=xi*
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and sett = (x1...x,41)" € R™+tD" We can rewrite
(6), (7)as

Xk +1) =G(xk)),

whereG is given as

(13)

G(X) = (x2x3. .. Xpms1 f (tms1) + K (tmy1 — X1))T.

(14)

It can easily be seen that the fixed pointsbtlo not
correspond ta¥,,. To obtain such a correspondence,
let us define anew map = G™. By a simple iteration,

it can be shown thak has the following form:

F(&)=1Y2.. . Ymi1)", (15)
Y1 =Xy,
Yipi=fY)+KY;—x), i=12,...,m. (16)

Now consider the system given K9) with (15), (16).
Next result clarifies the relation between the fixed
points of F and X,.

Theorem 1. Let X, = {x], ..., x;;} be the periodn
solution of (1). Thent* = (x}...x;xP)T is a fixed
point of F. Conversely, any fixed point @& has this
form and the set,, given by(2) corresponds to a
periodm solution of (1).
Proof. Let #* = (x}...x5x% )" be a fixed point
of F. By using F(x*) = x*, we obtainY; = x},
i=12...,m+ 1. This impliesx;';lJrl =xj, x;“H =
f&), i =12,...,m. The result then easily fol-
lows. O

Hence, to study the asymptotic stability a¥, for
(6), (7), we could study the skality of the correspond-
ing fixed pointt™* for (9). To analyze the latter, first we
linearize F at x*. Let us define the Jacobian #f as
Jr = 3515, . Note that/r is an(m + Lyn x (m + Ln
matrix. As before, let/ (i, j) denote its: x n blocks,
i,j=212,...,m+ 1. From (15) clearly we have
Jr(i, j) = 25, . By using (16), and noting that

J
Y; = x;" at fixed point, we obtain

JF(l,m+l)=I’
Jr(1,j)=0,
Jr(+ 1, j)= i + K)Jr(, j)— 8 K,

17
(18)

j=12...,m,
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whereé; ; = 1, ands§; ; = 0 fori # j. By using(17),
(18) recursively we can easily obtaif-. After these
iterations, we find the block components.f as fol-
lows: forl<i<m+1,1<j<m

Jr(i, )
0, i—j<1,
=1 i-j=1
_(HE;Jl'H(JiJrH +K)K, i—j>1
(19)
andforj=m+1,2<i<m+1wehave
JFLm+1)=1,
i—1

1=1
Note that the order of multiplication is important here
since each term is a matrix, i.e., we have

P

Dy D ...D >
HD1={ k Di+1 p P2k,
I=k

0, p <k. (21)

Now, for the stability analysis, we will find the char-
acteristic polynomial of, i.e.,

pm(2) =detAl — Jr). (22)

Since all components af given by (19), (20) are
matrices, to findp,, (1) is not trivial. Our approach is
similar to the procedure we used for the case- 1.
We first find a lower block diagonal matrik such
thatR = E(ALI — JF) is upper diagonal. Then by using
detR = detE det(Al — Jr), we can evaluate,, (1)
easily.

Let E(i, j) denote(i, j)th block matrix compo-
nents ofE, wherei, j =1,2,...,m + 1. By utilizing
the structure of/r given by(20), (21), after straight-
forward calculations webtain a suitable matri¥ as
follows:

0, i<j,
AL i=j,
EG, j)= N "2Jr. ). j=i-1
AM=2p(, )
FY T i1
(23)
i) i i—j
X;“’:Z Z Z Jr(i,i —1i1)
i1=1 ip=i1+1 ii=ij—1+1
X Jp(i —i1,i —ip) -+ Jp(i —if, J). (24)
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By using(19), (20), (23), (24) we see thaR has up-

per diagonal form. Similar t&, let R(i, j) denote the
block matrix components aR. The diagonal compo-
nents ofR are given as

R(i,i)
A, i<m,
=t o Jem+1,m+1)
=S Ay, i=m+1.
(25)
m m m
Xi=Y > .. > Jrm+1i—iy
i1=1i=i1+1  ij=ij_1+1
x Jp(i —i1, i —i2)---Jr(i —ij,m+1). (26)

From (23)—(26)we obtain def = A" and delR =
AN detR(m +1, m+1), whereN = m(m +1)n/2. By
using these, we obtain

() =deth] — Jp) =detR(m + 1, m + 1), (27)

whereR(m + 1, m + 1) is given by(25), (26). By us-
ing (19), (20)in (25), (26), equivalently we obtain the
following:

m+1
Pm() = de< oA Pz) : (28)
1=0
where the matrice®; are given as
m—1
Pusi=1.  Pun=—[]Un-i+K)
i=0
Po=—(—-D"K"™, (29)
Py =—(-1)
m m m m—1
x> > o e+ K,
i1=1 ip=i1+1 ij=ij—1+1 i=0
1<l<m, (30)
and the matrice®; are defined as
) ks k #£{i1,i2,...,101},
Dk_{o, kef{ii,io, ... i} (31)

Remark 1. The formulas given by(28)—(31) may
look complicated, but theimterpretations are rather
simple. Let us denote?,,_; = —(—1)!P,,_;. Now
consider theordered set Z,, = {m,m — 1,...,1}

and an arbitraryl selection of indices front,, as
o; = {i1,i2,...,1;} preserving the order, i.eig >
ip > - > i. A typical term in P,,_; is of the form
Iwlyp—1...I'1, wherel', = K if i €0y, and I} =
Ji + K if otherwise, seg30), (31). Then, P,,_; is
the sum of all possible such terms. For the case
m =1, p1(1) given above is the same #%0). As
an example, for the case = 2, the matrices given
by (28)—(31) becomesP; = —(J2 + K)(J1 + K),
Pi=(Jo+ K)K + K(J1 + K), Po = —K?. For
the casem = 3, these matrices are given &3 =
—~(J3+ K)(J2 + K)(J1+ K), P, = (J3+ K)(J2 +
K)K + (J3+ K)K(J1 +K)+ K(J2+ K)(J1 + K),
Pi=—(Ja+ K)K?— K(Jo+ K)K — K%(J1 + K),
Po=K?3.

The characteristic polynomiai,, (1) given by(28)
is related to the periodic orbiX,, given by(2). Note
that in constructing,, (1), the order of the periodic
points is important, se@9)—(31) On the other hand,
any circular permutation of the periodic pointsin,
corresponds to the same periodic orbit, and such per-
mutations may correspond to different characteristic
polynomials due to the fact that both Jacobians and
the gaink are matrices whose products may not com-
mute. To take this point into account, let us define any
circular permutation o, as follows:

*
,Xj+m_1}, (32)
where we used circular notation, i.e;; = x;f if i =

Zn={x x5 1</ <m,

j (modm). Let p,ﬁ()») denqte the characteristic poly-
nomial corresponding t&@;,. Note that with this no-

tation we haveXl = ¥,,. We now state the following

result.

Theorem 2. Let X, given by(2) be a periodn orbit of
(2). Let o7 given by(32) be any circular permutation
of X, and let p,ﬁ; (1) be the corresponding character-
istic polynomial given by28)—(31) The DFC scheme
given by(6), (7) is:

(i) locally exponentially stable if and only if at least
one of the polynomialg;, (1) is Schur stablg
(i) unstable if all of the polynomialg;, (1) are un-
stable
(iiiy if all p;,(») are marginally stable, the,, can-
not be exponentially stabilized by DFC, and we
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cannot conclude the asymptotical stability with
the analysis given above.

Proof. Note that¥,, and 2,{, correspond to _the same
periodic orbit. Hence, stabilization of any;, is the

same as the stabilization of the periodic orbit in ques-

tion. Also note that exponential stability is equivalent
to the stability of linearization, see, e.g21]. The
proof of the theorem then follow easily from the analy-
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necessary condition for the Schur stability of any
polynomial p(4) is that p(1) > 0 should hold, see,
e.g.,[23]. Now consider the polynomiat,, (1) given

by (28)—(31) which corresponds tgl. Here we
have p,, (1) = det}""4! P;). By using(29)—(31) af-

ter straightforward calculations it can be shown that
we havep,,(1) = detl — J}), i.e., the contribution

of the terms containing the gaik cancels. By us-
ing Jordan canonical form, it can be shown easily that

sis given above and from standard Lyapunov stability p»(1) > 0 if and only if the number of real eigen-

theory, see, e.g[21]. O

Remark 2. Note that althouglf,{l given by(32) cor-

values ofJ! greater than 1 is even. Therefore, if this
number is odd, then DFC cannot be stablel

responds to the same periodic orbit, the related charac-Remark 4. The condition given infTheorem 3an be

teristic polynomials,o,{1 (1) may be differentforn > 1,
see(28)—(31) However, for the case = 1, these poly-

interpreted as an inherent limitation of DFC. This lim-
itation is known as odd number limitation, and for

nomials are identical, since in this case both the Ja- alternative proofs see, e.¢1.1,12,20]

cobians and the gain are scalars, which necessarily

commute. We also note that for the case- 1, the
polynomial p,,, (A) given by (28)—(31)is the same as
given in[13].

Letus consideE,{; given by(32), and let us define
the associated product of Jacobians as

In=JjJjz1Jjgm-1, 1< j<m, (33)

where we used circular notation, i.d; = J; if i =
j (modm).

Remark 3. Note that although, # J,,’; fori #j in
general, the eigenvalues gf, and J,; are exactly the

Note that the DFC scheme achieves only local sta-
bilization. Hence, for implementation it should be ap-
plied when the solutions are sufficiently close to the
periodic orbitY,,. Following[13], to achieve this aim
we may use the following implementation f¥):

u(k) = e (k) (x (k) — x(k —m)), (34)
S P @

whered (k) is a distance measure for the domain of
attraction ofX,,,, ande,, is a measure of the domain of
attraction ofX,,,. Now let us consider the selection of
d(k) in (35). The distance measure given {3), (4) is

same since both correspond to the same periodic orbit, not suitable from implementation point of view, since

see, e.g.[22].

The next result shows the well-known limitation of
the DFC scheme, which is known as “odd number lim-
itation”, see, e.g[11].

Theorem 3. Let X, given by(2) be a periodn orbit of
(2). Let 2,{1 given by(32) be any circular permutation
of X,,. Consider the product of Jacobian’s’; given
by (33). If any (hence alj of J,{l has an odd number
of real eigenvalues greater thah then DFC scheme
given by(6), (7) cannot be asymptotically stable.

Proof. Note that the eigenvalues o},{; are the same
for j =1,2,...,m, see Remark3. A well-known

m iterates of(1) starting fromx (k) are compared with
X, Whereas to compute(k) we could only use the
past iterates. For this reason, instea@)fwe modify
di(j) for the simulations as followsj =1, 2, ..., m):

m—1

di(j) =J S lxtk—m+1+iy—xf, |5 (36)
i=0

We could choose eithed (k) = dy(j) or asd(k) =

d(x(k), X)) =min{dg (1), ..., dr(m)} wheredy(j) is

given as in(36). We will use the latter choice for the

implementation of7) in our simulations.

Remark 5. Let X, given by(2) be a periodn orbit of
(1) and letpy, (1) be the corresponding characteristic
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polynomial given by(28)—(31) Although theTheo-
rem 2gives necessary and sufficient conditions for the
exponential stability o, for the DFC scheme given
by (6), (7), itis more suitable to decide whether a given
K achieves this aim. If a stabilizing, if it exists, is

to be found than the best way is to use a numerical

37

The characteristic polynomial is given (38)—(31)is
computed as

p2(n) =detfZ31 — 3%(J2 + K)(J1 + K)

+1((J2+ K)K + K(J1+K)) — K?).
(40)

search by keeping the gain components as variablesafter straightforward calculations, we find some stabi-

and testing the stability of polynomials given (88)—
(31) by using numerical methods. Fere= 1 and small

m, some analytical results may be obtained, see, e.g.,
[13]. However, as and/omm increases, finding analyt-
ical results become increasingly difficult and one has
to resort to numerical methods to find a suitaldle
Note thatK is andn x n matrix, and computational
complexity of finding a suitabl& increases possibly
exponentially withn. Therefore, to keep the computa-
tional complexity low, we used the cases- 2 in our
simulations.

4. Simulation results

We first considered the well-known Hénon map
given as

wherew = (xy)! € R2. Note that instead of the nota-
tion x in (1), (6) and(7) to denote the state variable, we
usew here since it is customary to use the labetnd

y for the variables in Hénon map. This map has pe-
riod 2 solution characterized by the s&f = (w7, w3}
where

14+ y—1.4x2

ra = 37)

« _( 0.975800051
“1=\ —0.142740015 "

« _ ( —0.47580005
W2 = ( 0.2927400155 ' (38)
The Jacobiang; andJ2 can be computed as
Lo _(-27322 1

1= Jw w:wI - 03 O ’

of 1.3322 1

Jo=— = . 39
ST ( 0.3 o) (39)

lizing gains. For simulations we choose the following

gain
-04 O

K =< 0.2 —0.2)'
We simulated6), (34) and(35) for the map given by
(37) with the gain(41) and ¢, = 0.1. Initial condi-
tions are chosen as(1) = 0.5, y(1) = 0. The results
of the simulation are shown iRig. 1 In Fig. 1(a),
we showd (w(k), X») versusk, and as can be seen
the decay is exponential fdr > 300. Thex (k) ver-
susy(k) plot in Fig. 1(b) is plotted fork > 400. As
can be seen from these figures, the solutions con-
verge to the period 2 orbit characterized By. Fi-
nally, the required input componenis(k) anduz(k),
whereu(k) = (u1(k)uz(k))’, are shown irFig. 1(c)
and (d), respectively. As can be seen from these fig-
ures,u(k) — 0 ask — oo.

In the second simulation, we consider the well-
known lkeda Laser map given below

o= )

wherew = (xy)” € R2, andt =¢1 — c3/(1 + x2 +
y?). For the parameter values, we choese 1, ¢; =
0.4, ¢c2 =0.9, c3 = 6, for which this system has a well
known chaotic attractor, sg@2]. This map has pe-
riod 2 solution characterized by the s&f = (w73, w3}
where

(41)

r + c2(x COST — ySinT)

c2(x sint + y cost) (42)

. (062160432
*1=\ 0.509837250 °
. ( 0605933647
Y2 = (—0.608369929 ' (43)

The related Jacobians and the characteristic polyno-

mial can be found by usin@12), (39) and(40). After

straightforward calculations, we find some stabilizing

gains. For simulations we choose the following gain

which yielded smallest eigenvalues fef(1):
06 —-045

k= ( 05 ) :

0.8 (44)
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Fig. 1. DFC applied to Hénon map: (@jw(k), X2) vs.k; (b) x (k) vs. y(k) for k > 400; (C)uq(k) vs.k; (d) up(k) vs.k.

We simulated6), (34) and(35) for the map given by lowing one-dimensional unidirectionally coupled lat-
(42) with the gain(44) ande¢,, = 0.1. Initial condi- tices:

tions are chosen ag1) = 0.9, y(1) = 0.3. The results ] . ) .

of the simulation are shownyiﬁig. 2 In Fig. 2a), xe41() = g (0 (D)) +€( (i — D)) = (x (D)),

we showd (w(k), X») versusk, and as can be seen (45)

the decay is exponential fdr > 200. Thex (k) ver- whereg:R — R, i =1,2,..., L denotes the lattice
susy(k) plot in Fig. 2(b) is plotted fork > 300. As sites, L indicates the system sizeé,= 0,1, ... indi-

can be seen from these figures, the solutions con- cates the discrete time index, and as is usual we apply

verge to the period 2 orbit characterized Byg. Fi- periodic boundary site conditions, i.eq (i + L) =
nally, the required input componenis(k) andu(k), xx (i), ande is a coupling constant. For an application
whereu (k) = (u1(k)uz(k))’, are shown inFig. 2(c) of this model to coupled diode resonators, see, e.g.,
and (d), respectively. As can be seen from these fig- [25]. We will use this system fokE = 2 with the well-
ures,u(k) — 0 ask — oo. known logistic and tent maps. The reason for choosing

In the last two simulations, we considered the cou- L low is basically because of computational difficul-
pled map lattices, which exhibit various interesting dy- ties in finding an appropriate gain, see Remark 5
namical behaviours, see, e [24]. We will use the fol- Note that in this casek will be a L x L matrix, and
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Fig. 2. DFC applied to Ikeda laser map: &) (k), X) vs.k; (b) x (k) vs. y(k) for k > 300; (C)uq(k) vs.k; (d) up(k) vs.k.

finding a stabilizing gain using the determinant given
by (28)—(31)will become increasingly difficult as we
will increase exponentially as we increase

For L = 2, and for a given map(x), the dynamics

g(x) +e(g(y) — g(x))
= 46

) (g(y) T e(e() - g() (48)

First we will consider the logistic map given as
g(x) =rx(1—x).Forr =3.87 ande = 0.99, the map
set¥3 = {w], w5, wi} where
X <0.4450407823
wl =

increaseL. Most possibly, the required calculations

is given by the following map:

wherew = (xy)! € R2.

given by(46) has a period 3 orbit characterized by the
0.526709116) °

39
1
0.5}
o
o
@
2 o
=
=
-0.5
-1 L = -
0.5 0.55 0.6 0.65 0.7
x(k), k > 300
(b)
0.15
0.1t
0.05¢
N 0
-0.05¢
0.1t
-0.15¢
~0.2 - - - -
0 200 400 600 800 1000
k
(@
. {0.96464994
%2 =\ 0.955899891/ °
. (0.16282924
w3 = (0.13228038 : (47)

The Jacobiang; can easily be calculated by using
(46). The characteristic polynomial given £38)—(31)
can be computed gs3(1) = det(A*] + Par3+ Por2 +
P1A + Po) with P3 = —(J3 + K)(J2+ K)(J1 + K),
Po=(J3+ K)(J2+ K)K + (J3+ K)K(J1+ K) +
K(Jo+K)J1+K), Pr=—(J3+ K)K?2— K(Jo +
K)K — K%(J1 + K), Py = K3. After an extensive
search, we find the following stabilizing gain yielding
smallest roots fopz(1):

K — ( 0.1745 00260>

—0.1255 00255/ (48)



40 O. Morgiil / Physics Letters A 335 (2005) 31-42

x107°
2 . , , ,
0.8t
1.5 1
S
® ® 0.6}
A Al
z 1 ] =
5 204}
>
0.5 1 02}
0 - - - 0
200
107
200

0 400 600 800 1000 0 0.2 0.4 0.6 0.8 1
X

Kk x(k), k > 300
2
I
0
-2

(@) (b)
0

1 1 1 1 ) 1 1 1 1
400 600 800 1000 0 200 400 600 800 1000
k k
(© (d)

Fig. 3. DFC applied to coupled logistic map lattice: &) (k), X3) vs.k; (b) x (k) vs. y(k) for k > 300; (C)u1 (k) vs.k; (d) up(k) vs.k.

We simulated6), (34) and(35) for the map given by  for 0.5 < x < 1 in (46). Form = 1.4 ande = 0.1,

(46) and the logistic map, with the ga{d8) ande,, = this map has period 2 solution characterized by the set
0.1. Initial conditions are chosen ag1) = 0.445, Yo = {w], w3} where
y(1) =0.527. The results of the simulation are shown
in Fig. 3. In Fig. 3(@), we showd (w(k), X'3) versusk.
- . «_ (0.49065420
The x (k) versusy(k) plot in Fig. 3(b) is plotted for wy = (0.665109033’

k > 300. As can be seen from these figures, the so-
lutions converge to the period 3 orbit characterized 0.66510903
by X3. Finally, the required input components(k) W2 = (0.490654209 : (49)
anduz(k), whereu (k) = (u1(k)u2(k))”, are shown in
Fig. 3(c) and (d), respectively. As can be seen from The related Jacobians and the characteristic polyno-
these figuresy (k) — 0 ask — oo. mial can be found by usin@#6), (39) and(40). After

For the last set of simulations, we used the tent map straightforward calculations, we find some stabilizing

given asg(x) = mx for x < 0.5, andg(x) =m — mx gains. For simulations we choose the following gain
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Fig. 4. DFC applied to coupled tent map lattice: d&u (k), X2) vs.k; (b) x (k) vs. y(k) for k > 200; (C)uy (k) vs.k; (d) up(k) vs.k.

which yielded smallest eigenvalues feF(1):

04 O
k= ( 0 o.4>'
We simulated6), (34) and(35) for the map given by
(46) with the gain(44) ande,, = 0.1 for the tent map.
Initial conditions are chosen ag(1) = 0.9, y(1) =
0.55. The results of the simulation are showrig. 4.
In Fig. 4(a), we showd (w(k), X2) versusk, and as

can be seen the decay is exponential. e ver-
susy(k) plot in Fig. 4(b) is plotted fork > 200. As

(50)

can be seen from these figures, the solutions con-

verge to the period 2 orbit characterized By. Fi-
nally, the required input components(k) anduz(k),
whereu(k) = (u1(k)uz(k))’, are shown irFig. 4(c)

and (d), respectively. As can be seen from these fig-
ures,u(k) — 0 ask — oo.

5. Conclusion

In this Letter we analyzed the stability of DFC
scheme for (multi-dimensional) discrete time chaotic
systems. We adopted the technique use{lLB] for
one-dimensional systems. We first constructed a map
whose fixed points correspond to the periodic orbits
of the uncontrolled chaotic system. Then we analyzed
the stability of the constructed map around the fixed
point corresponding to the related periodic orbit. For
the stability analysis we fit linearize this map around
the fixed point and find the characteristic polynomial
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of the related Jacobian matrix. We give a form of this
polynomial which is related to the Jacobians of the
original chaotic map at the periodic orbit points and
the DFC gain matrix. Then the stability of the DFC

O. Morgiil / Physics Letters A 335 (2005) 31-42

[5] K. Pyragas, A. Tamasegius, Phys. Lett. A 180 (1993) 99.

[6] W. Just, et al., Phys. Rev. Lett. 78 (1997) 203.

[7] S. Bielawski, D. DerozierP. Glorieux, Phys. Rev. E 49 (1994)
R971.

[8] T. Hikihara, K. Kawagishi, Phys. Lett. A 211 (1996) 29.

scheme can be determined by checking the Schur sta- [g] k. konishi, H. Kokame, K. Hirata, Phys. Rev. E 60 (1999)

bility of the associated @racteristic polynomial. We
also presented some simulation results.

Note that, for a given¥,, and K, Theorem 2can
easily be used whether the giv&nhachieves stabiliza-
tion. On the other hand, if a stabilizing is to be
found, then by using the components &f as vari-
ables, one may try to find such & by using The-
orem 2and a numerical search. The computational
complexity of this seah obviously increases as
and/orm increases. Therefore, by usifidheorem 2
to develop some simple techniques which may yield a
stabilizing gain, if it exists, seems to be an open prob-
lem. However, this point requires further research.
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