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Abstract

We consider the stability of delayed feedback control (DFC) scheme for multi-dimensional discrete time systems.
construct a map whose fixed points correspond to the periodic orbits of the uncontrolled system. Then the stability of the DF
is analyzed as the stability of the corresponding equilibrium point of the constructed map. Foreach periodic orbit, we constru
a characteristic polynomial whose Schur stability corresponds to the stability of DFC scheme.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The study of various aspects of chaotic systems
received considerable interest in recent years. Amon
such aspects, the feedback control of chaotic syst
is an important area due to its numerous potential
plications. This subject has gained a great deal o
tention after the seminal work of[1], where the term
“controlling chaos” was introduced. The literature i
quite rich on the subject, and for more information t
interested reader may resort to, e.g.,[2,3].

E-mail address:morgul@ee.bilkent.edu.tr(Ö. Morgül).
0375-9601/$ – see front matter 2005 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2004.12.006
As in the classical feedback control theory, vario
objectives could be given for the chaotic systems,
depending on these objectives various control te
niques could be used, see, e.g.,[3]. One such contro
objective is the stabilization of unstable periodic
bits, [1]. Chaotic systems usually have many unsta
periodic orbits embedded in their attractors. It w
shown in[1] that some of these orbits may be sta
lized by using small external input, hence it may
possible to obtain regular behaviour in such syste
by using feedback control. The delayed feedback c
trol (DFC), which is first proposed in[4], is one of
such schemes and has received considerable atte
due to its various attractive features. In this sche
.
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the feedback term is the multiplication of a gain w
the difference between the current and one period
layed states. Therefore, if the system is already in
periodic orbit, this feedback term vanishes. The pr
lem is to find an appropriate gain so that a given p
odic orbit becomes stable.

Various applications of DFC has been reported
the literature, including electronic systems[5,6], lasers
[7], magnetoelastic systems[8], traffic model[9], see
also[3,10]for more references. Although DFC is qui
simple, its stability analysis is quite difficult,[10].
Several stability results has been obtained, see[6,11–
13]. These results show that the DFC scheme ha
inherent limitation, i.e., it cannot be applied for t
stabilization of some periodic orbits,[11,12]. To over-
come these limitations, various modifications ha
been proposed, see[14–20]. Recently a set of neces
sary and sufficient conditions to guarantee the stab
of DFC for one-dimensional discrete time systems
been given in[13].

In this Letter we consider the stability of DF
scheme for (multi-dimensional) discrete time syste
To analyze the stability of DFC scheme, we use the
proach given in[13]. We first construct a map whos
fixed points correspond to the periodic orbits of t
original system. Then the stability of the DFC sche
can be analyzed by studying the corresponding fi
points of this constructed map. To analyze the lat
we form the Jacobian of this map and then find
characteristic polynomial.The Schur stability of this
polynomial can be used to study the stability of DF
scheme. In that respect, the results given in this L
ter can be considered as a generalization of sim
results given in[13] for one-dimensional case to mult
dimensional case.

This Letter is organized as follows. In Section2 we
introduce the notation and define the stability problem
In Section3 we give our stability results. In the follow
ing section we present some simulation results. Fin
we give some concluding remarks.

2. Problem statement

Let us consider the following discrete-time syste

(1)x(k + 1) = f
(
x(k)

)
,

wherek = 1,2 . . . is the discrete time index,x ∈ Rn,
f : Rn → Rn is an appropriate function, which is a
sumed to be differentiable wherever required. We
sume that the system given by(1) possesses aT peri-
odic orbit characterized by the set

(2)ΣT = {
x∗

1, x∗
2, . . . , x∗

T

}
,

i.e., for x(1) = x∗
1, the iterates of(1) yields x(2) =

x∗
2, . . . , x(T ) = x∗

T , x(k) = x(k − T ) for k > T .
Let x(·) be a solution of(1). To characterize th

convergence ofx(·) to ΣT , we need a distance me
sure, which is defined as follows. Forx∗

i , we will use
circular notation, i.e.,x∗

i = x∗
j for i = j (modT ). Let

us define the following indices(j = 1, . . . , T ):

(3)dk(j) =
√√√√T −1∑

i=0

∥∥x(k + i) − x∗
i+j

∥∥2
,

where‖·‖ denotes any norm inRn. Without loss of
generality, we will use standard Euclidean norm in
sequel. We then define the following distance meas

(4)d
(
x(k),ΣT

) = min
{
dk(1), . . . , dk(T )

}
.

Clearly, if x(1) ∈ ΣT , thend(x(k),ΣT ) = 0,∀k. Con-
versely if d(x(k),ΣT ) = 0 for somek0, then it re-
mains 0 andx(k) ∈ ΣT , for k � k0. We will use
d(x(k),ΣT ) as a measure of convergence to the
riodic solution given byΣT .

Letx(·) be a solution of(1) starting withx(1) = x1.
We say thatΣT is (locally) asymptotically stable i
there exists anε > 0 such that for anyx(1) ∈ Rn

for which d(x(1),ΣT ) < ε holds, we have
limk→∞ d(x(k),ΣT ) = 0. Moreover if this decay is
exponential, i.e., the following holds for someM � 1
and 0< ρ < 1 (k > 1):

(5)d
(
x(k),ΣT

)
� Mρkd

(
x(1),ΣT

)
,

then we say thatΣT is (locally) exponentially stable.
To stabilize the periodic orbits of(1), let us apply

the following control law:

(6)x(k + 1) = f
(
x(k)

) + u(k)

whereu(·) is the control input. In classical DFC, th
following feedback law is used (k > T ):

(7)u(k) = K
(
x(k) − x(k − T )

)
,

whereK ∈ Rn×n is a constant gain matrix to be dete
mined. Now we state the stability problem as follow
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Problem. Let ΣT be a periodT orbit of the system
(1), and consider the system given by(6), (7). Find a
gain matrixK such thatΣT becomes stable.

3. Stability analysis

The stability analysis given here is similar to t
one given in[13]. Let us consider the simple ca
T = 1. In this case we haveΣ1 = {x∗

1} wherex∗
1 =

f (x∗
1). In other words, period 1 orbits are the sa

as fixed points off . By using change of variable
x1(k) = x(k−1), x2(k) = x(k), we can rewrite(6) and
(7) as

x1(k + 1) = x2(k),

(8)x2(k + 1) = f
(
x2(k)

) + K
(
x2(k) − x1(k)

)
.

Let us definêx = (x1x2)
T ∈ R2n, where superscrip

T denotes transpose, and defineF : R2n → R2n as
F(x̂) = (Y1Y2)

T whereY1 = x2, Y2 = f (x2)+K(x2−
x1). Hence,(8) can be equivalently written as

(9)x̂(k + 1) = F
(
x̂(k)

)
.

The fixed points ofF , i.e., the solutions ofF(x̂∗) =
x̂∗, are given asx∗

1 = x∗
2 = f (x∗

1). Hence, for any
period 1 orbitΣ1 = {x∗

1} of (1), there exists a fixed
point of F of the form x̂∗ = (x∗

1x∗
1)T . Conversely,

any fixed point ofF is of this form andΣ1 = {x∗
1}

is a period 1 orbit of(1). Hence, for the stability
of Σ1 for (6), (7), we may analyze the stability o
the corresponding fixed point ofF . To analyze the
latter, let us find the JacobianJF of F at Σ1, i.e.,
JF = ∂F

∂x
|Σ1. Note thatJF ∈ R2n×2n, and letJF (i, j)

denote itsn × n blocks. These block components c
be found asJF (1,1) = 0, JF (1,2) = I, JF (2,1) =
−K,JF (2,2) = J1 + K, whereJ1 = ∂f

∂x
|x=x∗

1
, 0 andI

are the zero and identity matrices, respectively, in
propriate dimensions. To find the characteristic po
nomial p1(λ) = det(λI − JF ), let us define an aux
iliary matrix E ∈ R2n×2n, and letE(i, j) denote its
n × n blocks, defined asE(1,1) = I , E(1,2) = 0,
E(2,1) = −K, E(2,2) = λI . Note thatE is a lower
block diagonal matrix. It can be easily verified th
R = E(λI − JF ) is an upper diagonal matrix with th
block components given asR(1,1) = λI , R(1,2) =
−I , R(2,1) = 0, R(2,2) = λ2I − λ(J1 + K) + K. By
using detR = detE det(λI − J ), and using the lowe
and upper diagonal forms ofE andR, respectively, we
obtain

(10)

p1(λ) = det(λI − JF ) = det
(
λ2I − λ(J1 + K) + K

)
.

We say that a polynomial is Schur stable if all
its eigenvalues are inside the unit disc of the co
plex plane, i.e., have magnitude less than unity. I
called unstable if at least one of its roots is outs
the unit disc, and is called marginally stable if at le
one of its roots is on the unit disc while the rest
the roots are inside the unit disc. Hence, the asy
totic stability of the fixed point ofF for (9), hence the
asymptotic stability ofΣ1 for (6) and(7) could be an-
alyzed by studying the Schur stability ofp1(λ) given
by (10). Moreover note that the exponential stabil
of the fixed points ofF is equivalent to Schur stabilit
of p1(λ), [21]. From the analysis given above we m
state the following result:

Corollary 1. Let Σ1 = {x∗
1} be a period1 solution of

(1), and consider the DFC given by(6), (7) for T = 1.
Then:

(i) Σ1 is exponentially stable for(6), (7) if and only if
p1(λ) given by(12) is Schur stable. This conditio
is only sufficient for the asymptotic stability ofΣ1;

(ii) if p1(λ) is unstable, thenΣ1 cannot be asymptot
ically stabilized by DFC;

(iii) if p1(λ) is marginally stable, thenΣ1 cannot be
exponentially stabilized by DFC, and we cann
conclude the asymptotical stability with the ana
sis given above.

Proof. The proofs of these statements follow eas
from the analysis given above and from standard L
punov stability theory, see, e.g.,[21]. �

We proceed to the general caseT = m. Let Σm =
{x∗

1, . . . , x∗
m} be the periodm solution of (1). Let us

define the JacobiansJi as follows:

(11)Ji = ∂f

∂x

∣∣∣∣
x=x∗

i

, i = 1, . . . ,m.

Let us define the following variables:

(12)xj = x(k − m − 1+ j), j = 1,2, . . . ,m + 1,
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T ∈ R(m+1)n. We can rewrite

(6), (7) as

(13)x̂(k + 1) = G
(
x̂(k)

)
,

whereG is given as

(14)

G(x̂) = (
x2x3 . . . xm+1f (xm+1) + K(xm+1 − x1)

)T
.

It can easily be seen that the fixed points ofG do not
correspond toΣm. To obtain such a correspondenc
let us define a new mapF = Gm. By a simple iteration
it can be shown thatF has the following form:

(15)F(x̂) = (Y1Y2 . . .Ym+1)
T ,

Y1 = xm+1,

(16)Yi+1 = f (Yi) + K(Yi − xi), i = 1,2, . . . ,m.

Now consider the system given by(9) with (15), (16).
Next result clarifies the relation between the fix
points ofF andΣm.

Theorem 1. Let Σm = {x∗
1, . . . , x∗

m} be the periodm
solution of (1). Then x̂∗ = (x∗

1 . . . x∗
mx∗

1)T is a fixed
point of F . Conversely, any fixed point ofF has this
form and the setΣm given by(2) corresponds to a
periodm solution of (1).

Proof. Let x̂∗ = (x∗
1 . . . x∗

mx∗
m+1)

T be a fixed point
of F . By using F(x̂∗) = x̂∗, we obtain Yi = x∗

i ,
i = 1,2, . . . ,m + 1. This impliesx∗

m+1 = x∗
1, x∗

i+1 =
f (x∗

i ), i = 1,2, . . . ,m. The result then easily fol
lows. �

Hence, to study the asymptotic stability ofΣm for
(6), (7), we could study the stability of the correspond-
ing fixed pointx̂∗ for (9). To analyze the latter, first w
linearizeF at x̂∗. Let us define the Jacobian ofF as
JF = ∂F

∂x
|Σm . Note thatJF is an(m + 1)n × (m + 1)n

matrix. As before, letJ (i, j) denote itsn × n blocks,
i, j = 1,2, . . . ,m + 1. From (15) clearly we have
JF (i, j) = ∂Yi

∂xj
|Σm . By using (16), and noting that

Yi = x∗
i at fixed point, we obtain

JF (1,m + 1) = I,

(17)JF (1, j) = 0, j = 1,2, . . . ,m,

(18)JF (i + 1, j) = (Ji + K)JF (i, j) − δi,jK,
whereδi,i = 1, andδi,j = 0 for i �= j . By using(17),
(18) recursively we can easily obtainJF . After these
iterations, we find the block components ofJF as fol-
lows: for 1� i � m + 1, 1� j � m

JF (i, j)

(19)

=



0, i − j < 1,

−K, i − j = 1,

−(∏i−1
l=j+1(Ji+j−l + K)

)
K, i − j > 1

and forj = m + 1, 2� i � m + 1 we have

JF (1,m + 1) = I,

(20)JF (i,m + 1) =
i−1∏
l=1

(Ji−l + K).

Note that the order of multiplication is important he
since each term is a matrix, i.e., we have

(21)
p∏

l=k

Dl =
{

DkDk+1 . . .Dp, p � k,

0, p < k.

Now, for the stability analysis, we will find the cha
acteristic polynomial ofF , i.e.,

(22)pm(λ) = det(λI − JF ).

Since all components ofJF given by (19), (20) are
matrices, to findpm(λ) is not trivial. Our approach is
similar to the procedure we used for the casem = 1.
We first find a lower block diagonal matrixE such
thatR = E(λI −JF ) is upper diagonal. Then by usin
detR = detE det(λI − JF ), we can evaluatepm(λ)

easily.
Let E(i, j) denote(i, j)th block matrix compo-

nents ofE, wherei, j = 1,2, . . . ,m + 1. By utilizing
the structure ofJF given by(20), (21), after straight-
forward calculations weobtain a suitable matrixE as
follows:

(23)

E(i, j) =




0, i < j,

λi−1I, i = j,

λi−2JF (i, j), j = i − 1,

λi−2JF (i, j)

+ ∑i−j−1
l=1 λi−2−lX

i,j
l , j < i − 1.

(24)

X
i,j
l =

i−j∑
i1=1

i−j∑
i2=i1+1

. . .

i−j∑
il=il−1+1

JF (i, i − i1)

× JF (i − i1, i − i2) · · ·JF (i − il , j ).
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By using(19), (20), (23), (24) we see thatR has up-
per diagonal form. Similar toE, let R(i, j) denote the
block matrix components ofR. The diagonal compo
nents ofR are given as

R(i, i)

(25)

=




λiI, i � m,

λm+1I − λmJF (m + 1,m + 1)

−∑m
l=1 λm−lXl, i = m + 1.

(26)

Xl =
m∑

i1=1

m∑
i2=i1+1

. . .

m∑
il=il−1+1

JF (m + 1, i − i1)

× JF (i − i1, i − i2) · · ·JF (i − il ,m + 1).

From (23)–(26)we obtain detE = λN and detR =
λN detR(m+1,m+1), whereN = m(m+1)n/2. By
using these, we obtain

(27)pm(λ) = det(λI − JF ) = detR(m + 1,m + 1),

whereR(m + 1,m + 1) is given by(25), (26). By us-
ing (19), (20) in (25), (26), equivalently we obtain the
following:

(28)pm(λ) = det

(
m+1∑
l=0

λlPl

)
,

where the matricesPl are given as

Pm+1 = I, Pm = −
m−1∏
i=0

(Jm−i + K),

(29)P0 = −(−1)mKm,

Pm−l = −(−1)l

×
m∑

i1=1

m∑
i2=i1+1

. . .

m∑
il=il−1+1

m−1∏
i=0

(Dm−i + K),

(30)1 < l < m,

and the matricesDk are defined as

(31)Dk =
{

Jk, k �= {i1, i2, . . . , il},
0, k ∈ {i1, i2, . . . , il}.

Remark 1. The formulas given by(28)–(31) may
look complicated, but their interpretations are rathe
simple. Let us denotePm−l = −(−1)lP̂m−l . Now
consider theordered set Im = {m,m − 1, . . . ,1}
and an arbitraryl selection of indices fromIm as
σl = {i1, i2, . . . , il} preserving the order, i.e.,i1 >

i2 > · · · > il . A typical term in P̂m−l is of the form
ΓmΓm−1 . . .Γ1, where Γi = K if i ∈ σl , and Γi =
Ji + K if otherwise, see(30), (31). Then, P̂m−l is
the sum of all possible such terms. For the c
m = 1, p1(λ) given above is the same as(10). As
an example, for the casem = 2, the matrices given
by (28)–(31) becomesP2 = −(J2 + K)(J1 + K),
P1 = (J2 + K)K + K(J1 + K), P0 = −K2. For
the casem = 3, these matrices are given asP3 =
−(J3 + K)(J2 + K)(J1 + K), P2 = (J3 + K)(J2 +
K)K + (J3 + K)K(J1 + K) + K(J2 + K)(J1 + K),
P1 = −(J3 + K)K2 − K(J2 + K)K − K2(J1 + K),
P0 = K3.

The characteristic polynomialpm(λ) given by(28)
is related to the periodic orbitΣm given by(2). Note
that in constructingpm(λ), the order of the periodi
points is important, see(29)–(31). On the other hand
any circular permutation of the periodic points inΣm

corresponds to the same periodic orbit, and such
mutations may correspond to different characteri
polynomials due to the fact that both Jacobians
the gainK are matrices whose products may not co
mute. To take this point into account, let us define a
circular permutation ofΣm as follows:

(32)Σ
j
m = {

x∗
j , x∗

j+1, . . . , x
∗
j+m−1

}
, 1 � j � m,

where we used circular notation, i.e.,x∗
i = x∗

j if i =
j (modm). Let p

j
m(λ) denote the characteristic pol

nomial corresponding toΣj
m. Note that with this no-

tation we haveΣ1
m = Σm. We now state the following

result.

Theorem 2. LetΣm given by(2)be a periodm orbit of
(1). LetΣj

m given by(32)be any circular permutation
of Σm and letpj

m(λ) be the corresponding characte
istic polynomial given by(28)–(31). The DFC scheme
given by(6), (7) is:

(i) locally exponentially stable if and only if at lea
one of the polynomialspj

m(λ) is Schur stable;
(ii) unstable if all of the polynomialspj

m(λ) are un-
stable;

(iii) if all p
j
m(λ) are marginally stable, thenΣm can-

not be exponentially stabilized by DFC, and w
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the analysis given above.

Proof. Note thatΣm andΣ
j
m correspond to the sam

periodic orbit. Hence, stabilization of anyΣj
m is the

same as the stabilization of the periodic orbit in qu
tion. Also note that exponential stability is equivale
to the stability of linearization, see, e.g.,[21]. The
proof of the theorem then follow easily from the ana
sis given above and from standard Lyapunov stab
theory, see, e.g.,[21]. �
Remark 2. Note that althoughΣj

m given by(32) cor-
responds to the same periodic orbit, the related cha
teristic polynomialspj

m(λ) may be different forn > 1,
see(28)–(31). However, for the casen = 1, these poly-
nomials are identical, since in this case both the
cobians and the gain are scalars, which necess
commute. We also note that for the casen = 1, the
polynomialpm(λ) given by(28)–(31)is the same a
given in[13].

Let us considerΣj
m given by(32), and let us define

the associated product of Jacobians as

(33)J
j
m = JjJj+1 · · ·Jj+m−1, 1 � j � m,

where we used circular notation, i.e.,Jj = Ji if i =
j (modm).

Remark 3. Note that althoughJ i
m �= J

j
m for i �= j in

general, the eigenvalues ofJ
j
m andJ i

m are exactly the
same since both correspond to the same periodic o
see, e.g.,[22].

The next result shows the well-known limitation
the DFC scheme, which is known as “odd number li
itation”, see, e.g.,[11].

Theorem 3. LetΣm given by(2)be a periodm orbit of
(1). LetΣj

m given by(32)be any circular permutation
of Σm. Consider the product of JacobiansJ j

m given
by (33). If any (hence all) of J

j
m has an odd numbe

of real eigenvalues greater than1, then DFC scheme
given by(6), (7) cannot be asymptotically stable.

Proof. Note that the eigenvalues ofΣ
j
m are the same

for j = 1,2, . . . ,m, see Remark3. A well-known
necessary condition for the Schur stability of a
polynomial p(λ) is that p(1) > 0 should hold, see
e.g.,[23]. Now consider the polynomialpm(λ) given
by (28)–(31), which corresponds top1

m. Here we
havepm(1) = det(

∑m+1
l=1 Pl). By using(29)–(31), af-

ter straightforward calculations it can be shown t
we havepm(1) = det(I − J 1

m), i.e., the contribution
of the terms containing the gainK cancels. By us-
ing Jordan canonical form, it can be shown easily t
pm(1) > 0 if and only if the number of real eigen
values ofJ 1

m greater than 1 is even. Therefore, if th
number is odd, then DFC cannot be stable.�
Remark 4. The condition given inTheorem 3can be
interpreted as an inherent limitation of DFC. This lim
itation is known as odd number limitation, and f
alternative proofs see, e.g.,[11,12,20].

Note that the DFC scheme achieves only local
bilization. Hence, for implementation it should be a
plied when the solutions are sufficiently close to
periodic orbitΣm. Following[13], to achieve this aim
we may use the following implementation for(7):

(34)u(k) = ε(k)
(
x(k) − x(k − m)

)
,

(35)ε(k) =
{

K, d(k) � εm,

0, d(k) > εm,

whered(k) is a distance measure for the domain
attraction ofΣm, andεm is a measure of the domain
attraction ofΣm. Now let us consider the selection
d(k) in (35). The distance measure given by(3), (4) is
not suitable from implementation point of view, sin
m iterates of(1) starting fromx(k) are compared with
Σm, whereas to computeu(k) we could only use the
past iterates. For this reason, instead of(3), we modify
dk(j) for the simulations as follows(j = 1,2, . . . ,m):

(36)dk(j) =
√√√√m−1∑

i=0

∥∥x(k − m + 1+ i) − x∗
i+j

∥∥2
.

We could choose eitherd(k) = dk(j) or as d(k) =
d(x(k),Σm) = min{dk(1), . . . , dk(m)} wheredk(j) is
given as in(36). We will use the latter choice for th
implementation of(7) in our simulations.

Remark 5. Let Σm given by(2) be a periodm orbit of
(1) and letpj

m(λ) be the corresponding characteris
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polynomial given by(28)–(31). Although theTheo-
rem 2gives necessary and sufficient conditions for
exponential stability ofΣm for the DFC scheme give
by (6), (7), it is more suitable to decide whether a giv
K achieves this aim. If a stabilizingK, if it exists, is
to be found than the best way is to use a numer
search by keeping the gain components as varia
and testing the stability of polynomials given by(28)–
(31)by using numerical methods. Forn = 1 and small
m, some analytical results may be obtained, see,
[13]. However, asn and/orm increases, finding analy
ical results become increasingly difficult and one h
to resort to numerical methods to find a suitableK.
Note thatK is andn × n matrix, and computationa
complexity of finding a suitableK increases possibl
exponentially withn. Therefore, to keep the comput
tional complexity low, we used the casesn = 2 in our
simulations.

4. Simulation results

We first considered the well-known Hénon m
given as

(37)f (w) =
(

1+ y − 1.4x2

0.3x

)
,

wherew = (xy)T ∈ R2. Note that instead of the nota
tion x in (1), (6)and(7) to denote the state variable, w
usew here since it is customary to use the labelsx and
y for the variables in Hénon map. This map has
riod 2 solution characterized by the setΣ2 = {w∗

1,w∗
2}

where

w∗
1 =

(
0.975800051

−0.142740015

)
,

(38)w∗
2 =

(−0.475800051
0.292740015

)
.

The JacobiansJ1 andJ2 can be computed as

J1 = ∂f

∂w

∣∣∣∣
w=w∗

1

=
(−2.7322 1

0.3 0

)
,

(39)J2 = ∂f

∂w

∣∣∣∣
w=w∗

2

=
(

1.3322 1
0.3 0

)
.

The characteristic polynomial is given by(28)–(31)is
computed as

(40)

p2(λ) = det
(
λ3I − λ2(J2 + K)(J1 + K)

+ λ
(
(J2 + K)K + K(J1 + K)

) − K2).
After straightforward calculations, we find some sta
lizing gains. For simulations we choose the followi
gain

(41)K =
(−0.4 0

0.2 −0.2

)
.

We simulated(6), (34) and(35) for the map given by
(37) with the gain(41) and εm = 0.1. Initial condi-
tions are chosen asx(1) = 0.5, y(1) = 0. The results
of the simulation are shown inFig. 1. In Fig. 1(a),
we showd(w(k),Σ2) versusk, and as can be see
the decay is exponential fork � 300. Thex(k) ver-
susy(k) plot in Fig. 1(b) is plotted fork � 400. As
can be seen from these figures, the solutions c
verge to the period 2 orbit characterized byΣ2. Fi-
nally, the required input componentsu1(k) andu2(k),
whereu(k) = (u1(k)u2(k))T , are shown inFig. 1(c)
and (d), respectively. As can be seen from these
ures,u(k) → 0 ask → ∞.

In the second simulation, we consider the we
known Ikeda Laser map given below

(42)f (w) =
(

r + c2(x cosτ − y sinτ )

c2(x sinτ + y cosτ )

)
,

wherew = (xy)T ∈ R2, andτ = c1 − c3/(1 + x2 +
y2). For the parameter values, we chooser = 1, c1 =
0.4, c2 = 0.9, c3 = 6, for which this system has a we
known chaotic attractor, see[22]. This map has pe
riod 2 solution characterized by the setΣ2 = {w∗

1,w∗
2}

where

w∗
1 =

(
0.621604323
0.509837250

)
,

(43)w∗
2 =

(
0.605933647

−0.608369928

)
.

The related Jacobians and the characteristic poly
mial can be found by using(42), (39) and(40). After
straightforward calculations, we find some stabilizi
gains. For simulations we choose the following g
which yielded smallest eigenvalues forp2(λ):

(44)K =
(

0.6 −0.45
0.8 −0.5

)
.
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(a) (b)

(c) (d)

Fig. 1. DFC applied to Hénon map: (a)d(w(k),Σ2) vs.k; (b) x(k) vs.y(k) for k � 400; (c)u1(k) vs.k; (d) u2(k) vs.k.
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We simulated(6), (34) and(35) for the map given by
(42) with the gain(44) and εm = 0.1. Initial condi-
tions are chosen asx(1) = 0.9,y(1) = 0.3. The results
of the simulation are shown inFig. 2. In Fig. 2(a),
we showd(w(k),Σ2) versusk, and as can be see
the decay is exponential fork � 200. Thex(k) ver-
susy(k) plot in Fig. 2(b) is plotted fork � 300. As
can be seen from these figures, the solutions c
verge to the period 2 orbit characterized byΣ2. Fi-
nally, the required input componentsu1(k) andu2(k),
whereu(k) = (u1(k)u2(k))T , are shown inFig. 2(c)
and (d), respectively. As can be seen from these
ures,u(k) → 0 ask → ∞.

In the last two simulations, we considered the c
pled map lattices, which exhibit various interesting d
namical behaviours, see, e.g.,[24]. We will use the fol-
lowing one-dimensional unidirectionally coupled la
tices:

(45)

xk+1(i) = g
(
xk(i)

) + ε
(
g
(
xk(i − 1)

) − (
xk(i)

))
,

whereg : R → R, i = 1,2, . . . ,L denotes the lattice
sites,L indicates the system size,k = 0,1, . . . indi-
cates the discrete time index, and as is usual we a
periodic boundary site conditions, i.e.,xk(i + L) =
xk(i), andε is a coupling constant. For an applicati
of this model to coupled diode resonators, see, e
[25]. We will use this system forL = 2 with the well-
known logistic and tent maps. The reason for choos
L low is basically because of computational difficu
ties in finding an appropriate gain, see theRemark 5.
Note that in this case,K will be a L × L matrix, and
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(a) (b)

(c) (d)

Fig. 2. DFC applied to Ikeda laser map: (a)d(w(k),Σ2) vs.k; (b) x(k) vs.y(k) for k � 300; (c)u1(k) vs.k; (d) u2(k) vs.k.
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finding a stabilizing gain using the determinant giv
by (28)–(31)will become increasingly difficult as w
increaseL. Most possibly, the required calculatio
will increase exponentially as we increaseL.

ForL = 2, and for a given mapg(x), the dynamics
is given by the following map:

(46)f (w) =
(

g(x) + ε(g(y) − g(x))

g(y) + ε(g(x) − g(y))

)
,

wherew = (xy)T ∈ R2.
First we will consider the logistic map given a

g(x) = rx(1− x). Forr = 3.87 andε = 0.99, the map
given by(46)has a period 3 orbit characterized by t
setΣ3 = {w∗

1,w∗
2,w∗

3} where

w∗
1 =

(
0.4450407828
0.526709116

)
,

w∗
2 =

(
0.964649945
0.955899891

)
,

(47)w∗
3 =

(
0.162829246
0.132280381

)
.

The JacobiansJi can easily be calculated by usin
(46). The characteristic polynomial given by(28)–(31)
can be computed asp3(λ) = det(λ4I +P3λ

3+P2λ
2+

P1λ + P0) with P3 = −(J3 + K)(J2 + K)(J1 + K),
P2 = (J3 + K)(J2 + K)K + (J3 + K)K(J1 + K) +
K(J2 + K)(J1 + K), P1 = −(J3 + K)K2 − K(J2 +
K)K − K2(J1 + K), P0 = K3. After an extensive
search, we find the following stabilizing gain yieldin
smallest roots forp3(λ):

(48)K =
(

0.1745 0.0260
−0.1255 0.0255

)
.
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(a) (b)

(c) (d)

Fig. 3. DFC applied to coupled logistic map lattice: (a)d(w(k),Σ3) vs.k; (b) x(k) vs.y(k) for k � 300; (c)u1(k) vs.k; (d) u2(k) vs.k.
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We simulated(6), (34) and(35) for the map given by
(46)and the logistic map, with the gain(48)andεm =
0.1. Initial conditions are chosen asx(1) = 0.445,
y(1) = 0.527. The results of the simulation are sho
in Fig. 3. In Fig. 3(a), we showd(w(k),Σ3) versusk.
The x(k) versusy(k) plot in Fig. 3(b) is plotted for
k � 300. As can be seen from these figures, the
lutions converge to the period 3 orbit characteriz
by Σ3. Finally, the required input componentsu1(k)

andu2(k), whereu(k) = (u1(k)u2(k))T , are shown in
Fig. 3(c) and (d), respectively. As can be seen fr
these figures,u(k) → 0 ask → ∞.

For the last set of simulations, we used the tent m
given asg(x) = mx for x � 0.5, andg(x) = m − mx
for 0.5 < x � 1 in (46). For m = 1.4 and ε = 0.1,
this map has period 2 solution characterized by the
Σ2 = {w∗

1,w∗
2} where

w∗
1 =

(
0.490654205
0.665109034

)
,

(49)w∗
2 =

(
0.665109034
0.490654205

)
.

The related Jacobians and the characteristic poly
mial can be found by using(46), (39) and(40). After
straightforward calculations, we find some stabilizi
gains. For simulations we choose the following g
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(a) (b)

(c) (d)

Fig. 4. DFC applied to coupled tent map lattice: (a)d(w(k),Σ2) vs.k; (b) x(k) vs.y(k) for k � 200; (c)u1(k) vs.k; (d) u2(k) vs.k.
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which yielded smallest eigenvalues forp2(λ):

(50)K =
(

0.4 0
0 0.4

)
.

We simulated(6), (34) and(35) for the map given by
(46) with the gain(44)andεm = 0.1 for the tent map
Initial conditions are chosen asx(1) = 0.9, y(1) =
0.55. The results of the simulation are shown inFig. 4.
In Fig. 4(a), we showd(w(k),Σ2) versusk, and as
can be seen the decay is exponential. Thex(k) ver-
susy(k) plot in Fig. 4(b) is plotted fork � 200. As
can be seen from these figures, the solutions c
verge to the period 2 orbit characterized byΣ2. Fi-
nally, the required input componentsu1(k) andu2(k),
whereu(k) = (u1(k)u2(k))T , are shown inFig. 4(c)
and (d), respectively. As can be seen from these
ures,u(k) → 0 ask → ∞.

5. Conclusion

In this Letter we analyzed the stability of DF
scheme for (multi-dimensional) discrete time chao
systems. We adopted the technique used in[13] for
one-dimensional systems. We first constructed a m
whose fixed points correspond to the periodic orb
of the uncontrolled chaotic system. Then we analy
the stability of the constructed map around the fix
point corresponding to the related periodic orbit. F
the stability analysis we first linearize this map aroun
the fixed point and find the characteristic polynom
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of the related Jacobian matrix. We give a form of t
polynomial which is related to the Jacobians of
original chaotic map at the periodic orbit points a
the DFC gain matrix. Then the stability of the DF
scheme can be determined by checking the Schur
bility of the associated characteristic polynomial. We
also presented some simulation results.

Note that, for a givenΣm andK, Theorem 2can
easily be used whether the givenK achieves stabiliza
tion. On the other hand, if a stabilizingK is to be
found, then by using the components ofK as vari-
ables, one may try to find such aK by usingThe-
orem 2 and a numerical search. The computatio
complexity of this search obviously increases asn
and/orm increases. Therefore, by usingTheorem 2,
to develop some simple techniques which may yie
stabilizing gain, if it exists, seems to be an open pr
lem. However, this point requires further research.
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