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ABSTRACT

RESCHEDULING PARALLEL MACHINES WITH
CONTROLLABLE PROCESSING TIMES

Müge Muhafız

M.S. in Industrial Engineering

Supervisor: Prof. M. Selim Aktürk

Co-Supervisor: Asst. Prof. Sinan Gürel

May, 2012

In many manufacturing environments, the production does not always endure

as it is planned. Many times, it is interrupted by a disruption such as machine

breakdown, power loss, etc. In our problem, we are given an original production

schedule in a non-identical parallel machine environment and we assume that one

of the machines is disrupted at time t.

Our aim is to revise the schedule, although there are some restrictions that

should be considered while creating the revised schedule. Disrupted machine

is unavailable for a certain time. New schedule has to satisfy the maximum

completion time constraint of each machine. Furthermore, when we revise the

schedule we have to satisfy the constraint that the revised start time of a job

cannot be earlier than its original start time. Because, we assume that jobs are

not ready before their original start times in the revised schedule.

Therefore, we have to find an alternative solution to decrease the negative

impacts of this disruption as much as possible. One way to process a disrupted

job in the revised schedule is to reallocate the job to another machine. The other

way is to keep the disrupted job at its original machine, but to delay its start time

after the end time of the disruption. Since the machines might be fully utilized

originally, we may have to compress some of the processing times in order to

add a new job to a machine or to reallocate the jobs after the disruption ends.

Consequently, we assume that the processing times are controllable within the

given lower and upper bounds.

Our first objective is to minimize the sum of reallocation and nonlinear com-

pression costs. Besides, it is important to deliver the orders on time, not earlier
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or later than they are promised. Therefore, we try to maintain the original com-

pletion times as much as possible. So, the second objective is to minimize the

total absolute deviations of the completion times in the revised schedule from the

original completion times.

We developed a bi-criteria non-linear mathematical model to solve this non-

identical parallel machine rescheduling problem. Since we have two objectives, we

handled the second objective by giving it an upper bound and adding this bound

as a constraint to the problem. By utilizing the second order cone programming,

we solved this mixed-integer nonlinear mathematical model using a commercial

MIP solver such as CPLEX. We also propose a decision tree based heuristic

algorithm. Our algorithm generates a set of solutions for a problem instance

and we test the solution quality of the algorithm solving same problem instances

by the mathematical model. According to our computational experiments, the

proposed heuristic approach could obtain close solutions for the first objective for

a given upper bound on the second objective.

Keywords: Rescheduling, Parallel machines, Controllable processing times, Bi-

criteria, Total absolute deviations of completion times, Convex cost function,

Reallocation.



ÖZET

KONTROL EDİLEBİLİR İŞLEM SÜRELERİYLE
PARALEL MAKİNALARDA YENİDEN ÇİZELGELEME

Müge Muhafız

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. M. Selim Aktürk

Eş-Tez Yöneticisi: Yrd. Doç. Dr. Sinan Gürel

Mayıs, 2012

İmalat sistemlerinde, üretim her zaman planlandığı gibi uygulanamaz. Çoğu

zaman, makine bozulması, elektrik kesintisi gibi nedenlerden dolayı üretim ak-

samak zorunda kalır. Bu çalışmada, özdeş olmayan paralel makinelerin bu-

lunduğu bir imalat ortamında, önceden planlanmış bir üretim çizelgesinde,

makinelerden birinde herhangi bir t anında aksama meydana geldiği varsayımında

bulunduk ve makinelerde yeniden çizelgeleme üzerine çalıştık.

Bu çalışmada önceden planlanmış çizelgeyi aksaklık sonrasında mümkün

olduğunca çabuk yakalamayı ve aksaklıktan dolayı meydana gelen zaman kaybını

telafi etmeyi amaçladık. Ancak yeniden çizelge oluştururken dikkat etmemiz

gereken bazı kısıtlamalar bulunmaktadır. Aksaklık sona erene kadar, aksama

meydana gelen makine durur ve hiçbir iş işleyemez. Diğer bir yandan, yeni

çizelgede makinelerin kapasite kısıtına dikkat edilmelidir. Bununla birlikte, yeni

çizelgede işlerin başlangıç zamanları önceden planlanan çizelgeki başlangıç za-

manlarından daha erken olmamalıdır.

Makinede meydana gelen aksaklığın negatif etkilerini yumuşatmak için alter-

natif bir çözüm bulmamız gerekmektedir. Bunun bir yolu aksayan bir işi başka bir

makineye taşımak ya da aksayan işi başlangıçtaki makinesinde bırakmak ancak

aksamanın bitişinden sonra işlemektir. Ancak makinelerin kapasitesi tamamen

dolu olabileceği göz önünde bulundurulursa, bir makineye yeni bir iş taşıyabilmek

ya da aksayan makinede işleri aksama bittikten sonra işleyebilmek için işlerin

işlem sürelerini sıkıştırmak zorunda kalınabilir. Sonuç olarak, bu çalışmada işlerin

işlem sürelerinin en az ve en yüksek sınırları dahilinde kontrol edilebilir olduğu

varsayımını kullandık.
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Öncelikli amacımız, işlem sürelerinin sıkıştırılma miktarının doğrusal olmayan

bir fonksiyonu olan sıkıştırma maliyeti ile taşıma maliyetini enazlamaktır. Bunun

yanı sıra, çizelgede aksaklık olsa bile işlerin mümkün olan en kısa zamanda

tamamlanması çok önemlidir. Bu yüzden işlerin ilk çizelgedeki bitiş sürelerini

mümkün olduğunca yakalamaya çalışmayı amaçlamaktayız. Dolayısıyla, ikinci

amacımız, yeniden oluşturulan çizelge ile ilk çizelgedeki işlerin bitiş zamanları

arasındaki mutlak farkların toplamını enazlamaktır.

Bu problemi çözebilmek için çift hedefli doğrusal olmayan bir matematiksel

model geliştirdik. Çift hedefimiz olduğu için, ikinci hedefimiz olan bitiş zamanları

mutlak farklarının toplamına bir üst sınır vererek bu sınırı matematiksel modele

kısıt olarak ekledik. İkinci derece konik programlama tekniğinden faydalanarak,

bu modeli CPLEX ile karmaşık tam sayılı matematiksel modele çevirerek çözdük.

Problemin zorluğundan dolayı, çok uzun hesaplama sürelerinde mutlak çözüm bu-

lunamadığı durumlar için etkin çözümler üreten hızlı sezgisel tarama algoritmaları

geliştirdik. Sayısal deneylerimize göre, önerdiğimiz sezgisel yöntemler ikinci amaç

fonksiyonu için verilen üst sınır kısıtı altında, birinci amaç fonksiyonu açısından

matematiksel modelle yakın sonuçlara ulaşmaktadır.

Anahtar sözcükler : Yeniden çizelgeleme, Paralel makineler, Kontrol edilebilir

işlem süreleri, Çift hedefli optimizasyon, İş bitiş süreleri farkları mutlak değerleri

toplamı, Dış bükey maliyet fonksiyonu, Yeniden dağıtma, Yeniden atama.
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I also would like to thank Erdem Özdemir and Onur Uzunlar for their useful

technical discussions and contributions to my work and thank my sister Begüm
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Chapter 1

Introduction

In the scheduling literature, stable environments are mainly considered. How-

ever, in many manufacturing environments, the production does not always en-

dure as it is planned. Many times, it is interrupted by a disruption such as

machine breakdown, power loss, etc. During the disruption, machine becomes

unavailable and cannot process any job. When the machine becomes unavailable,

the existing schedule is no longer applicable, so it is needed to reschedule the jobs

on the machines.

The important issue in the rescheduling is to compensate the effects of the

disruption on the original schedule while keeping the solution quality of the re-

vised schedule as high as possible. The effect of the disruption on the original

schedule is measured in terms of the stability which is the deviation between the

original and the revised schedule. On the other hand, the solution quality of the

schedule is measured in terms of the performance criterion that is considered.

Stability is an important measure in the rescheduling because it shows how

much the revised schedule deviates from the original schedule. Minimizing the

effects of the disruption in the original schedule is possible by having higher stabil-

ity. There are several stability measures in the rescheduling literature. Deviation

of job starting times between the original and the revised schedule, difference of

job sequences between original and revised schedule, number of disrupted jobs

1



CHAPTER 1. INTRODUCTION 2

which are reallocated to different machines are some stability measures that are

used in the rescheduling literature. Total absolute deviation of job completion

times (TADC) is also a stability measure that is commonly used to measure devi-

ation between the original and revised schedule. In manufacturing systems, it is

important to deliver the jobs on time that they are promised to be. Production

plans are made according to the delivery times and jobs are scheduled according

to the production plan. If the completion time of a job in the revised schedule

exceeds the original completion time of the job due to the disruption, the job

has to be delivered late. If a job is completed in the revised schedule earlier

than the completion time in the original schedule, then the job has to be hold

in the inventory until the promised delivery time. So, in order to provide a high

quality of service, the jobs must be delivered on time as much as possible. To

do so, the completion time of the jobs in the revised schedule should be as close

as possible to the ones in the original schedule. Therefore, the deviation of the

job completion times between the original and revised schedule should be kept at

minimum.

In rescheduling, to achieve high stability and high solution quality at the same

time, the processing time decision plays an important role. In rescheduling lit-

erature, processing times are mostly assumed fixed and idle times are reserved

in the original schedules to be able to absorb a disruption. However, in many

industrial applications, such as in CNC metal cutting, processing times can be

controlled by setting the parameters of the machine. By setting the processing

speed or feed rate, processing time can be increased or decreased. Besides, setting

the processing speed to control the processing time is directly related with the

manufacturing cost. So, in order to keep the stability in rescheduling, processing

time controllability is an important tool that we have, but it brings the compres-

sion cost consideration with it. Therefore, increasing the speed of feed rate of

a machine via setting the parameters to control the processing times, results in

higher manufacturing cost which is a measure of the schedule performance.

By compressing the processing times in the revised schedule, the completion

times of the jobs could be made closer to their original completion times. If

processing times would not be controlled, right shift scheduling would have to
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be applied and the deviation of completion times would be increased. On the

other hand, by being reallocated to a different machine, a disrupted job could be

rescheduled so that its completion time in the revised schedule can be made closer

to its original completion time. Although both methods can help to provide a

stable revised schedule, they both incur additional cost which makes the schedule

cost performance worse. Processing time controllability is utilized by compressing

the processing times of the jobs which incurs compression cost. Reallocation of

the jobs to different machines results in reallocation cost. Hence, while we get

benefit of these methods, we have to consider the additional costs which incur as

a result of these methods.

In rescheduling, another useful tool to keep high stability is reallocation of

jobs which are being processed in the broken down machine in the original sched-

ule, to another machine in the revised schedule. Reallocating the disrupted jobs

to different machines other than the broken down machine brings us the flexi-

bility of rescheduling the jobs so that their start and completion times deviate

less from the original schedule. We get the chance of setting the start and com-

pletion times of the disrupted jobs on a different machine closer to their original

start and completion times by reallocating them. But in rescheduling literature,

reallocation cost is mainly neglected. However, in many manufacturing systems,

tooling of the machines is done at the beginning according to the original sched-

ule to utilize the machines efficiently. If a job has to be reallocated to a different

machine due to a disruption, the machine that the job is reallocated has to be

retooled. Additionally, transporting a job between the machines requires addi-

tional manpower or material handling. Therefore, retooling and transportation

operations which are required to reallocate a job between machines bring with

them the reallocation cost. Although reallocation is an important action in case

of a disruption to have higher stability, it results in lower schedule performance

which is measured in terms of additional cost of reallocation.

There is a trade-off between the stability measure which is the total absolute

deviation of the completion times between the original and revised schedule and

the schedule performance which is the cost of rescheduling. In the rescheduling

literature, mostly, the problems with single objective are studied. Some of the
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studies aim to minimize the cost while making processing time decisions and some

of the studies are focused on the stability of the schedule while making scheduling

decisions. Although, in many cases, the process planning and scheduling decisions

are considered independently, in our study, cost performance and stability of the

schedule are inversely correlated. While the stability is being kept higher by the

compression of processing times and the reallocation, schedule cost performance

decreases. On the other hand, while the compression and the reallocation are

kept at minimum to provide higher cost, this results in the fail of the stability

measure.

When the stability measure and the schedule performance are conflicted, it

becomes more critical to make processing time, reallocation and sequencing de-

cisions simultaneously. Although the problem becomes harder, since both of the

stability and cost performance have to be considered and these criteria are in

conflict, this gives us the flexibility of finding various alternative schedules with

different cost performance and stability levels.

In this study, we present how processing time, reallocation and sequencing

decisions can be made simultaneously to minimize the effects of this disruption

on the original schedule.

We have to find an alternative solution to smooth the negative impacts of this

disruption. Since the machines might be fully utilized initially, we may have to

compress some of the processing times in order to add a new job to a machine or

to reschedule the jobs on the disrupted machine after disruption. Consequently,

we assume that the processing times are controllable within the given lower and

upper bounds.

Our first objective is to minimize the sum of reallocation and compression

costs. In our study, the compression cost is a convex function of the compression

amount. Since the cost function is non-linear, it is hard to solve it by commercial

solvers. We utilized the conic quadratic programming to solve the rescheduling

problem with non-linear cost function. Since each machine is non-identical and

jobs might have different operational requirements, compression cost is different

for each job on each machine.
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Moreover, as it is stated earlier, it is important to deliver the orders as close

to original schedule as possible. Therefore, we try to maintain the original com-

pletion times as much as possible. So, the second objective is to minimize the

total absolute deviations of the completion times in the revised schedule from the

original completion times. Some of the completion times in the revised schedule

might exceed the completion times of the original schedule and some of the jobs

might be completed in the revised schedule earlier than they are completed in

the original schedule. Therefore, our objective is to minimize the total absolute

deviations of the completion times between original and revised schedule.

Therefore, in this study we aim to minimize both of the objective functions

which are the total cost of reallocation and compression and the total absolute

deviation of job completion times at the same time. We propose a mathematical

model and a heuristic algorithm to solve this non-linear bi-criteria problem under

different manufacturing environments.

Since we have two objectives, we handled the second objective by setting an

upper bound and adding this bound as a constraint to the problem. By utilizing

the second order cone programming, we can solve this mixed-integer non-linear

mathematical model and obtain the optimal solution in terms of the first objective

function for the given upper bound to the second objective function. For the cases

where the exact approach requires excessive computation time, we also propose

a local search based heuristic algorithm. By utilizing the heuristic algorithm, we

can generate a set of solutions with varying total cost and TADC (total absolute

deviation of completion times) values. For the non-dominated solutions among

this set of solutions that we obtain by running the algorithm, we give the TADC

values of these solutions to the mathematical model as an upper bound for the

second objective function, and find optimal total cost values for these given upper

bounds. According to our computational experiments, the proposed heuristic

approach could obtain close solutions for the first objective for a given upper

bound on the second objective in substantially decreased computation time.

In Chapter 2, we present a review of studies in the current literature. It covers

the studies related to the rescheduling, controllable processing times, bi-criteria
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problems on rescheduling and total absolute deviation of job completion times

subjects. In Chapter 3, we will introduce the problem environment and problem

definition and then give the mathematical model that we formulated to solve our

problem. In Chapter 4, we first give theoretical properties which are extracted

from the problem content and then we propose heuristics using these properties.

We provide a numerical example using the algorithms proposed in this chapter

and the mathematical model given in Chapter 3. In Chapter 5, we present the

experimental factors and the results we obtained by solving the problems with

the data generated by the combinations of these factors using the algoritms and

the mathematical model we proposed. Finally in Chapter 6, we conclude with

final remarks and the future search directions.



Chapter 2

Background

In the current rescheduling literature, the processing times are usually as-

sumed fixed, although they can be controlled in many industrial applications.

Before reviewing the studies on rescheduling parallel machines with controllable

processing times, we will give a detailed literature review on the sub problems of

our problem which are rescheduling, controllable processing times, stability mea-

sures and multi-objective rescheduling problems, separately on parallel machine

environment.

7
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2.1 Controllable processing times

Trick [29] considers the processing cost and makespan objectives with con-

trollable processing times in a non-identical parallel machine environment with

linear processing cost function. He shows the NP-hardness of the problem with

a linear cost function.

Kayan and Akturk [17] determine the upper and lower bounds for the process-

ing time of each job under controllable machining conditions. A set of discrete

efficient points on the efficient frontier for a bi-criteria scheduling problem on a

single CNC machine are found by using the proposed bounding scheme. There are

two objectives to be considered; minimizing the manufacturing cost (comprised

of machining and tooling costs) and minimizing makespan. They also develop an

efficient frontier to establish a time/cost tradeoff for each manufacturing opera-

tion to link process planning and scheduling problems. By utilizing the proposed

bounding mechanism, an exact algorithm and four heuristic approaches are devel-

oped to determine a set of discrete efficient points to approximate the continuous

trade-off curve in a reasonable computation time.

Akturk and Ilhan [2] consider the scheduling of a set of jobs on a single CNC

machine to minimize the sum of total weighted tardiness, tooling and machining

costs by utilizing the controllable processing times. They develop an efficient dy-

namic programming (DP) based algorithm and indicate that there is a significant

interaction between machining conditions and weighted tardiness problems and

solving these two problems together gives very effective results in terms of cost

of the system.

Mokhtari et al. [19] study on scheduling on a no wait job shop environment

assuming the processing times are controllable. Their objective is to make optimal

decisions on both the operation times and makespan. They divide the problem

into three sub problems which are processing time decisions, sequencing and

timetabling. For timetabling problem, they use a hybrid scheduling approach

and they integrate this approach with the two-phase genetic algorithm that they

propose to solve the processing time decisions and sequencing problems.
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Daniels and Sarin [10] also treat the processing times as decision variables and

study on the control of the processing times by additional resource allocation.

They consider a joint sequencing and resource allocation problem and regarded

the number of tardy jobs as the scheduling criterion. They present theoretical

results for constructing the tradeoff curve between the number of tardy jobs and

the total amount of allocated resource.

Shabtay and Steiner [28] give a unified framework for scheduling problems with

controllable processing times by providing an up-to-date survey of the results.

The quality of a solution for a scheduling problem with controllable processing

times is measured by two criteria: The first one, F1, is a scheduling criterion

dependent on the job completion times, and the second one, F2, is the resource

consumption cost. They aim to minimize both criteria.

Leyvand et al. [18] also study scheduling problems on flexible environment

and they assume both the job processing times and the delivery dates are con-

trollable. They study a model of minimizing of scheduling costs which include

the costs of due date assignment and tardiness, and the costs of controlling the

job processing times as in Shabtay and Steiner [28]. But in this study, they con-

sider the situations where these two costs are not comparable or additive. So,

they consider these cost criteria as seperate and study problems of minimizing

the weighted number of tardy jobs plus due date assignment cost and minimizing

the total weighted resource consumption in scheduling a single machine.

Nearchou [21] studies the single machine scheduling problem of jobs with

controllable processing times and compression costs. The aim of this study to

minimise the total weighted job completion time and the cost of compression.

Four population-based heuristics are developed to apply a multi-objective proce-

dure to quantify the trade-off between the total weighted job completion times

and the cost of compression.

Xu et al. [35] consider the problem of scheduling jobs with arbitrary release

dates and due dates on a single machine. They assume that job-processing times

are controllable and are function of nonlinear convex resource consumption. They

present a branch and bound algorithm to determine simultaneously an optimal
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processing permutation as well as an optimal resource allocation, such that no

job is completed later than its due date, and the total resource consumption is

minimized.

Later, Xu et al. [36] study on single machine scheduling considering control-

lable processing times and total tardiness. Processing times are function of non-

linear convex resource consumption. They present a polynomial time algorithm

for the cases that the jobs have a common due date to obtain minimum total

resource consumption with an optimal sequence as well as the optimal resource

allocation, such that the total tardiness will not exceed a given limitation.

Gurel and Akturk [11] focus on CNC machines which is a well known industry

application that allows controllable processing times. It is noted that there is a

nonlinear relationship between the manufacturing cost and its required process-

ing time on a CNC turning machine. This study considers the situation where

both total weighted completion time and cost performance are under consider-

ation for a CNC turning machine. In order to find a set of efficient solutions

for this bi-criteria problem, a mathematical model for the total completion time

case is presented first and optimality properties are derived. Then, by utilizing

these properties, a new heuristic method to generate a set of approximate effi-

cient solutions for the bi-criteria problem with the objectives of minimizing the

manufacturing cost and the total weighted completion time is generated. This

study integrates the process planning and scheduling decisions by considering job

sequencing and processing time decisions simultaneously.

Gurel and Akturk [13] study on scheduling parallel machines with control-

lable processing times where the manufacturing cost of a turning operation is a

non-linear convex function of its processing time. They aim to minimize man-

ufacturing cost subject to a given total completion time level and give an effec-

tive formulation for this problem. Additionally, they present some optimality

properties and propose an efficient heuristic algorithm to generate approximate

non-dominated solutions.

Gurel and Akturk [12] deal with the optimal machine-job assignments and

processing time decisions so as to minimize total manufacturing cost while the
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makespan being upper bounded by a known value, they denote this as ε-constraint

approach for a bi-criteria problem. They assume manufacturing cost of a turn-

ing operation is a non-linear convex function of its processing time and aim to

minimize the total manufacturing cost objective for a given upper limit on the

makespan objective. They consider both the makespan and total manufacturing

cost objectives at the same time for a flexible machining environment and give

several methods like a branch and bound algorithm, a beam search algorithm and

an improvement search algorithm to find efficient solutions.

2.2 Rescheduling

Vieira et al. [32] present three primary types of studies from the rescheduling

literature; methods for repairing a schedule that has been disrupted, methods for

creating a schedule which is robust with respect to disruptions and studies of how

rescheduling policies affect the performance of the dynamic manufacturing sys-

tems. They briefly discuss about these studies under the framework of reschedul-

ing environment, rescheduling strategies, rescheduling policies and rescheduling

methods. Then, they mention about the unexpected events which can change the

system status and affect performance, they identify these events as rescheduling

factors which are: machine failure, urgent job arrival, job cancellation, due date

change, etc.

Sabuncuoglu and Goren [26] identify some types of response to an unexpected

event in the system. One of them is rescheduling the operations of all the remain-

ing jobs from scratch and the other one can be taking no corrective action and

letting the system recover itself from the negative effects of disruptions. Between

these two extremes, they identify another type of response which is repairing the

schedules. They state that generating a matchup schedule can be a repair method

and at some point in the future, the new schedule and the original one become

the same or converge to each other by this method.

Bean et al. [8] consider the rescheduling with multiple resources when an
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unexpected event prevents the use of a preplanned schedule. Whenever a machine

breakdown occurs, reschedule is done to match-up with the preschedule at some

point in the future. The match-up approach is compared with the no response

policy and several dispatching rules. The results are obtained significantly better

than results from pure static and dynamic strategies which are often used in

practice. The problem is formulated as a dynamic program, and the state reached

by the revised schedule is the same as that reached by the original schedule. They

present heuristic procedures for solving the matchup problem which is called the

Matchup Scheduling Algorithm (MUSA). The objective is to minimize weighted

tardiness, summed over all jobs.

Akturk and Gorgulu [1] propose a new rescheduling strategy for a modified

flow shop environment (MFS) and a match-up point determination procedure

to increase both the schedule quality and stability. The proposed approach is

compared with alternative reactive scheduling methods under different experi-

mental settings. They assume that a production schedule is produced off-line

and this preschedule then serves as the basis for the production planning deci-

sions of other shop floor activities. The proposed new rescheduling approach is

based on the idea of match-up scheduling which revises the reschedule after a

machine breakdown. The objectives of the proposed heuristic are minimization

of total tardiness of all jobs for a given match-up point on each machine under the

assumption that one machine is not available for a certain period of time due to a

machine breakdown. The study shows that the initial schedule has an important

effect on the rescheduling problem, so, it should not be evaluated only by regular

performance measures, but also by its inherent flexibility and robustness.

Sabuncuoglu and Bayız [25] study the reactive scheduling problems in a job

shop environment and measure the effect of system size and load allocation (uni-

form and bottleneck) on the performance of off-line and on-line scheduling meth-

ods. They measure the performance of the system with the mean tardiness and

makespan criteria. They also study on the partial scheduling under both deter-

ministic and stochastic environments for several system configurations.

Sabuncuoglu and Karabuk [27] study the scheduling/rescheduling problem in
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a multi-resource FMS environment. The purpose of this paper is to study the

frequency of rescheduling in the multi-resource environment of a flexible manu-

facturing system (FMS) with random machine breakdowns and processing times.

The authors propose several reactive scheduling policies to address the effects

of machine breakdowns and processing time variations. The performance of the

system is measured based on mean tardiness and makespan criteria. The results

indicate that a periodic response with an appropriate period length would be suf-

ficient to handle with interruptions. They also observe that machine breakdowns

have more significant impact on the system performance than processing time

variations.

2.2.1 Rescheduling Parallel Machines

Vieira, Herrmann and Lin [31] present new analytical models to predict the

performance of rescheduling strategies for the parallel machine systems. Periodic,

hybrid, and event-driven size rescheduling strategies are studied. Additionally,

they present analytical models which require less computational effort than sim-

ulation models, and the results show that the models estimate important perfor-

mance measures like average flow time, machine utilization, and average setup

frequency, average rescheduling frequency, average schedule execution time, av-

erage setup time percentage, average processing time percentage, average repair

time percentage and average idle time percentage.

The experimental results also show that the analytical models can accurately

predict the performance measures, especially as the rescheduling period increases.

Moreover, rescheduling period affects significantly both objectives of avoiding se-

tups and reducing flow time which are conflicting objectives. They conclude that

all three rescheduling strategies yield approximately equal system performance.

Alagoz and Azizoglu [5] study rescheduling caused by the change in machine

eligibility constraints in parallel machines environment with total flow time ob-

jective. They consider total flow time as efficiency measure and the number of

jobs processed on different machines in the initial and revised schedules as a



CHAPTER 2. BACKGROUND 14

stability measure. They propose an LP model for the rescheduling problem of

minimizing total flow time and then they present a branch and bound algorithm

for the hierarchical problem of minimizing number of disrupted jobs subject to

the constraint that total flow time is kept at its minimum level which is found by

the LP model. Additionally, they propose heuristic procedures to generate a set

of approximate efficient schedules with respect to the total flow time and number

of disrupted jobs criteria.

Curry and Peters [9] study on rescheduling which is triggered by the arrival

of new jobs to the system. They define the proportion of rescheduled jobs that

change machine assignment as the measure of schedule nervousness. They ex-

amine the trade-off between schedule stability and tardiness cost. They develop

rescheduling mechanisms that react to the arrival of new jobs to the system,

but avoid unnecessary and excessive schedule nervousness by solving a NP-hard

deterministic scheduling problem within a simulation with a branch and price

algorithm or with a heuristic if run time restrictions are exceeded.

Azizoglu and Alagoz [7] study on identical parallel machines rescheduling

results from the unavailability of a machine. They find solution procedures for

finding the set of efficient schedules for the objectives of total flow time and

number of jobs processed on different parallel machines in rescheduling. They

measure efficiency in terms of the total flow time and measure stability in terms

of the number of jobs processed on different machines in the original and new

schedules. They propose a polynomial-time algorithm that finds a set of schedules

that are efficient with respect to these two criteria.

Arnaout and Rabadi [6] introduce new repair and rescheduling algorithms for

the unrelated parallel machine environment. The rules developed are respectively

right shift repair, fit job repair, partial rescheduling, and complete rescheduling.

In this study, schedule quality is measured based on Cmax difference. Cmax dif-

ference refers to the difference between the realized and predictable schedules

makespan. Schedule stability is evaluated with match-up time and shifted jobs.

Shifted jobs refer to the number of jobs that will be shifted from one machine to

another.
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Ozlen and Azizoglu [23] develop a branch and bound algorithm to generate

all efficient solutions with respect to the total flow time and total disruption

cost criteria. This is unique rescheduling study for unrelated parallel machines,

whereas Ozlen and Azizoglu [24], optimize any non-decreasing function of these

two criteria. They consider the efficiency measure as the total flow time, and the

schedule deviation measure as the total disruption cost caused by the differences

between the initial and current schedules. The disruption cost incurs if a job is

assigned to different machines in the initial and current schedules. They pro-

vide polynomial-time solution methods to the following hierarchical optimization

problems: minimizing total disruption cost among the minimum total flow time

schedules and minimizing total flow time among the minimum total disruption

cost schedules. Then they propose exponential time algorithms to generate all

efficient solutions and to minimize a specified function of the measures.

2.2.2 Rescheduling parallel machines with controllable

processing times

Akturk, Atamturk and Gurel [4] work with the controllable processing times.

In their study, they face with the trade-off between match-up time and manufac-

turing cost objectives in a non-identical parallel machines environment. They aim

to minimize three objectives; total manufacturing cost for jobs not yet started

before disruption, sum of match-up time on the machines, maximum match-up

time for new schedule and propose exact and heuristic solution approaches to find

efficient solutions for two of three objectives. They conclude that improvement

in one of these objectives is not possible without degrading the other objective.

Controllable processing times have not been considered in the match-up time

scheduling problems before this study.

Gurel, Korpeoglu and Akturk [14] study anticipative scheduling on a non-

identical parallel machining environment, where processing times are controllable

with a certain compression cost. When a disruption occurs in the initial schedule,
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a match-up time strategy is utilized such that a repaired schedule has to catch-

up initial schedule at some point in future. This requires changing machine−job

assignments and processing times for the rest of the schedule, which implies in-

creased manufacturing costs. In reactive scheduling problem, the objective is

to minimize the rescheduling cost, subject to the constraint that the repaired

schedule has to matchup with the initial schedule at a given time point after

disruption.

Turkcan et al. [30] study on a machine scheduling problem with controllable

processing times in a parallel-machine environment. The objectives are the mini-

mization of manufacturing cost, which is a convex function of processing time, and

total weighted earliness and tardiness. They assume that there are earliness and

tardiness penalties and distinct due dates of jobs, and idle time is allowed. They

first propose methods to find initial schedules in predictive scheduling. Then they

revise these proposed methods to incorporate a stability measure for reacting to

unexpected disruptions.

2.3 Multiple objectives

In scheduling literature; more than one objective at the same time are usu-

ally considered, and generally one is minimizing cost and one is a scheduling

objective. The aim of the process planning decisions is generally to minimize the

manufacturing cost, on the other hand scheduling decisions focus on a scheduling

criterion. When these two decisions are integrated, cost and scheduling critera

should be considered simultaneously. Gurel and Akturk [12] consider minimiz-

ing total manufacturing cost subject to a bound on the makespan objective in

non-identical parallel machines. Shabtay and Steiner [28] consider minimizing a

scheduling criterion dependent on the job completion times, and the resource

consumption cost. Kayan and Akturk [17] try to minimize the manufactur-

ing cost and minimize makespan. Trick [29] also considers the processing cost

and makespan objectives. Gurel and Akturk [11] handle with two criteria, total

weighted completion time and cost performance. Yedidsion et al. [37] handle a
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single machine scheduling problem to minimize maximum lateness and resource

consumption simultaneously. Jansen and Mastrolilli [16] try to minimize the pro-

cessing cost and makespan with controllable processing times on identical parallel

machines and they contribute by presenting new polynomial time approximation

algorithms. Akturk and Gorgulu [1] minimize the job tardiness and the matchup

point. Curry and Peters [9] consider total disruption cost and total tardiness. Az-

izoglu and Alagoz [7] try to minimize total flow time and number of jobs processed

on different parallel machines in rescheduling results from the unavailability of

a machine. Ozlen and Azizoglu [23] handle with the total flow time and total

disruption cost criteria. Akturk, Atamturk and Gurel [4] consider match- up time

and manufacturing cost objectives.

2.4 Total Absolute Deviation of Job Completion

Times

Total absolute deviation of job completion times (TADC) is a commonly used

stability measure. It is the measure of deviation between the original and revised

schedule.

Huang and Wang [15] consider parallel identical machines scheduling problems

with deteriorating jobs whose processing times are the function of their start

times. They focus on minimizing total absolute differences in completion times

(TADC) and total absolute differences in waiting times (TADW).

Wang and Wei [33] consider identical parallel machines scheduling problems

with a deteriorating maintenance activity. In this model, each machine has a

deteriorating maintenance activity which means that delaying the maintenance

increases the time required to perform it. They also focus on minimizing total

absolute differences in completion times (TADC) and total absolute differences

in waiting times (TADW).
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Oron [22] studies on a single machine scheduling problem with simple lin-

ear deterioration. Job processing times are the simple linear function of a job-

dependent growth rate and the job starting times. He aims to minimize the total

absolute deviation of completion times (TADC) to find the optimal schedule.

Mor and Mosheiov [20] show that minimizing TADC is polynomially solvable

under the position-dependent processing times assumption on uniform and unre-

lated machines and for a bi-criteria objective consisting of a linear combination

of total job completion times and TADC.

Wang and Xia [34] study a single machine scheduling problem in which job

processing times are controllable variables with linear costs. They focus on two

goals separately, minimizing a cost function containing total completion time,

total absolute differences in completion times and total compression cost; mini-

mizing a cost function containing total waiting time, total absolute differences in

waiting times and total compression cost.

2.5 Summary

In this chapter, we presented a review of studies related to the rescheduling, con-

trollable processing times, bi-criteria problems on rescheduling and total absolute

deviation of job completion times subjects. We observed that these subjects are

studied in the literature before with different perspectives. In the next chapter,

we will give the problem definition and the mathematical model.



Chapter 3

Problem Environment and

Modeling

In our problem environment, there are non-identical parallel machines at

which the jobs will be processed. These machines can process the jobs con-

currently.

3.1 Problem Definition

Although most scheduling studies assume that the processing times of the jobs

are known and fixed, in many manufacturing applications the processing times

can be controlled and changed. The processing time of a job can be changed

within a lower and upper bound limits by compressing or decompressing the

processing time.

On CNC machines, compression and decompression of processing times are

applied to the jobs via setting machining parameters such as machining speed

and feed rate. These actions cause changes in the tooling cost. Decreasing the

processing time of a job exerts more force on the machine and it results with an

additional tooling cost. Machine spends more effort to process the job within a

19
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smaller time interval than to process the job within the time interval of upper

bound of processing time. Additional tooling cost, which is caused by the com-

pression of the processing time of a job, is due to increased cutting speed and

feed rate. On the other hand, if the machine processes the job within a time in-

terval longer than its original processing time, it spends less effort and additional

tooling cost, which is caused by the decompression of the processing time of a

job. Additional tooling cost becomes negative, since decreased cutting speed and

feed rate requires less tooling cost.

We calculate the impact of the compression and decompression of the pro-

cessing times in terms of additional cost. Each job has a different cost function

and different processing time upper and lower bounds.

In our problem, we are given an original schedule. We assume that this

schedule is formed by manufaturing cost minimization. In this schedule we have

machine-job assignments and job sequence for each machine. Each job is pro-

cessed at its processing time upper bound. We assume that one of the machines

is disrupted at time t. This disruption can be caused by a machine breakdown,

delay in the arrival of resources or power loss, etc.

We have to take an action so that this disruption can be compensated as much

as possible. The action should be revising the schedule. The schedule until the

disruption should stay the same. After the disruption time, the remaining jobs

will be considered to be rescheduled. The job which was being processed at the

broken down machine at time t will be started processing again after the disrup-

tion. That is, preempt-repeat strategy will be applied at the disrupted machine.

All other jobs which have already started are considered to be completed at their

original machines. We consider the rescheduling of remaining jobs and disrupted

job in order to catch the original schedule as soon as possible by assigning the

jobs to different machines or compressing their processing times.

Each machine has an earliest start time for the rescheduling problem. For

the disrupted machine, since the first disrupted job is going to be processed

from scratch, the earliest start time is the end time of the disruption. For other

machines, since the jobs which are started to be processed before the disruption
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time considered to be completed, the completion of processing these jobs will be

waited and the earliest start time is going to be the completion time of the first

job completed after the disruption start time. That is, it is the minimum of all

the start times at this machine after the disruption.

There are some restrictions that should be considered while creating the re-

vised schedule. Until the disruption ends, disrupted machine is unavailable and

cannot process any job. So, the jobs, which are originally processed at the dis-

rupted machine during the disruption length, cannot be processed by that ma-

chine during the disruption and has to wait until the disruption ends. It causes

delays in the completion times of the orders.

Another restriction is the maximum completion times of the machines. Even

the jobs would be shifted right in the schedule without considering the delay

in the delivers, the machine has an available machining time which is until the

maximum completion time of that machine and we cannot go beyond this time.

The maximum completion time of each machine is the original completion time

of the last job in the original schedule on that machine. Revised schedule has to

match the maximum completion time of each machine.

Furthermore, we have to consider that when we revise the schedule we have

to comply with the constraint that in the revised schedule, the start time of a job

should be greater than or equal to the original start time of that job. Because

we assume that a job cannot be available earlier than its original start time, in

the revised schedule, start time of a job cannot be smaller than the original start

time of that job. Because, we assume that the job cannot be available earlier

than the original start time of itself.

Therefore, we have to find an alternative solution. We can reallocate a dis-

rupted job to another machine or we can keep the disrupted job at its original

machine, but to process it after the disruption. Since we should matchup the

maximum completion time of a machine in the revised schedule, it may not be

possible to add a new job to that machine or to shift the jobs after disruption

without changing the processing times of the jobs. Therefore, even if we either

reallocate a job to a different machine or shift the job after the disruption at its
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original machine, we may have to change the processing times of the jobs on the

affected machines.

If we reallocate a job to a different machine, this new machine is an affected

machine as well as the disrupted machine. The processing times can be changed

by being compressed or being decompressed as mentioned earlier. Originally, all

the jobs are being processed at their processing time upper bounds. Thus, when

we add a new job to a machine or shift the jobs after disruption, we have to

adjust the processing times so that the sum of the processing times in the revised

schedule is equal to the difference between earliest start time of the machine

and the maximum completion time of the machine. The alternatives to revise

the schedule are to reallocate the disrupted jobs to different machines and to

change their processing times or to shift the disrupted jobs to the right after

disruption at the disrupted machine and to change their processing times. But

both alternatives result with an additional cost. Reallocating the jobs brings

with itself a reallocation cost. Because reallocating a job means that transferring

the job from a machine to a different machine. It requires material handling or

additional machine work, hence an additional handling cost. In some cases, we

assume that, the machines are parallel and this reallocation cost increases linearly

with the increase in the distance between the machines. That is, if there are

three machines, while the distance between the first and second machine and the

distance between the second and third machine is one unit, the distance between

the first and third machine is 2 units. As the distance increases, reallocation

cost increases. On the other hand, this reallocation cost can be considered fixed

between the machines. In this case, the reallocation cost between the 1st machine

and the 2nd machine is considered to be the same with the reallocation cost

between the 1st machine and the 3rd machine.

Changing the processing times brings some additional cost. Because the jobs

are originally at their processing time upper bounds, to be able to fit the sum of

the processing times of the jobs when we add a new job to a machine or we shift

the job to the right after the disruption, we have to decrease the processing time

of some of the jobs. To do so, we have to compress some of the processing time

of the jobs. As it is mentioned earlier, it requires an additional tooling cost.
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When we find the alternative solution to matchup the maximum completion

times of the machines, we aim to minimize the cost which results from reallocation

and compression. Therefore, our first objective is to minimize the total of these

costs.

Moreover, as it is stated earlier, it is important to deliver the orders as soon as

possible. We have to decrease the impacts of the disruption on the order delays.

The other important thing is that we also have to avoid the early deliveries.

Although the job start times in the revised schedule are restricted to be greater

than or equal to the job start times in the original schedule, revised completion

times of some of the jobs may be smaller than the original completion times

because of either compression or change in the sequence. This causes carrying

the inventory and this also results in additional cost.

Therefore, we try to maintain the original completion times as much as pos-

sible. Thus, the second objective is to minimize the total absolute deviations of

job completion times in the revised schedule from the original completion times.

3.2 Mathematical Modeling

In order to solve this problem, we propose a bi-criteria non-linear mathe-

matical model. The notation that is used in the mathematical model and the

formulation of the model are as follows:
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Decision Variables

xij : 1 if job i is assigned to machine j in the revised schedule, else 0

zikj : 1 if job i precedes job k on machine j in the revised schedule, else 0

S̃ij : start time of job i on machine j in the revised schedule

p̃ij : processing time of job i on machine j in the revised schedule

C̃i : completion time of job i in the revised schedule

wij : compression amount of processing time of job i at machine j

fij(wij) : cost function of compression amount of processing time of job i

on machine j

Parameters

yij : 1 if job i is originally assigned to machine j, else 0

cij : manufacturing cost of job i on machine j

Si : original start time of job i

pij : original processing time of job i at machine j

pui : processing time upper bound of job i

pli : processing time lower bound of job i

bij, kij : compression cost coefficients for job i on machine j, b ≥ 0, k ≥ 0

Dj : maximum completion time of machine j

γj : capacity of machine j

rtj : ready time of machine j in the revised schedule

djk : reallocation cost of reallocating a job between machines j and k

Ci : original completion time of job i

B : bound for the second objective function

m : number of machines

Definition

[n] : nth positioned job on a machine j where j = 1 . . .m
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Sets

N : set of all jobs

N : set of jobs to be rescheduled

J : set of machines

P = {(i,j) : yij = 1}

F1 : min
∑

i∈N
∑

j∈J fij(wij) +
∑

(i,j)∈P
∑

k∈J (djk xik)

F2 : min
∑

i∈N

∣∣∣C̃i − Ci

∣∣∣
subject to

∑
j∈J

xij = 1, ∀ i ∈ N , (3.1)

S̃ij ≥ rtj − (rtj + 1)(1− xij), ∀ i ∈ N ,∀ j ∈ J , (3.2)

S̃ij ≥ S̃kj + p̃kj − (Dj + 1)(1− zkij),∀ i ∈ N ,∀ k ∈ N , k 6= i,∀ j ∈ J , (3.3)

S̃kj ≥ S̃ij + p̃ij − (Dj + 1)(1− zikj),∀ i ∈ N ,∀ k ∈ N , k 6= i,∀ j ∈ J , (3.4)

xij + xkj ≥ 2(zikj + zkij), ∀ i ∈ N ,∀ k ∈ N , k 6= i,∀ j ∈ J , (3.5)

xij + xkj ≤ zikj + zkij + 1, ∀ i ∈ N ,∀ k ∈ N , k 6= i,∀ j ∈ J , (3.6)

zikj + zkij ≤ 1, ∀ i ∈ N ,∀ k ∈ N , k 6= i,∀ j ∈ J , (3.7)

S̃ij ≤ (Dj + 1)(xij), ∀ i ∈ N ,∀ j ∈ J , (3.8)

p̃ij ≤ (Dj + 1)(xij), ∀ i ∈ N ,∀ j ∈ J , (3.9)∑
j∈J

(S̃ij + p̃ij) = C̃i, ∀ i ∈ N , (3.10)

p̃ij = pui xij − wij, ∀ i ∈ N ,∀ j ∈ J , (3.11)∑
j∈J

S̃ij ≥ Si, ∀ i ∈ N , (3.12)

∑
j∈J

p̃ij ≥ pli, ∀ i ∈ N , (3.13)

∑
j∈J

p̃ij ≤ pui, ∀ i ∈ N , (3.14)

S̃ij + p̃ij ≤ Dj, ∀ i ∈ N ,∀ j ∈ J , (3.15)

S̃ij, p̃ij, wij, C̃i, C̃ij ≥ 0, ∀ i ∈ N ,∀ j ∈ J , (3.16)
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F1 is the first objective function which aims to minimize the sum of total

reallocation cost and compression cost. In order to calculate the total reallocation

cost, the term djk xik is summed over the (i, j) machine-job pair set which is

formed by the machine-job pairs of the original schedule. So if (i, j) is a pair in

the original schedule, that is job i is assigned to job j in the original schedule

and if in the revised schedule, job i is assigned to machine k which is different

from machine j, reallocation cost between machine j and k is added to the total

reallocation cost. If the machines j and k are same, then the reallocation cost

is 0 between these machines. Total compression cost is calculated by summing

the cost function fij(wij) over all jobs and machines. The cost function fij(wij)

is equal to bij (w
kij
ij ) where bij and kij are compression cost coefficients.

F2 is the second objective function which aims to minimize the total absolute

values of the completion time differences. If we try to keep the processing times

closer to their upper bounds to minimize the compression cost in the revised

schedule, since all the jobs will move towards to the right of the timeline, the

second objective will get worse. Therefore, we cannot minimize both objectives

F1 and F2 at the same time. So, the problem is to generate an efficient solution

set. A solution (F1(x), F2(x)) is efficient if there does not exist another solution

(F1(y), F2(y)) such that F1(y) ≤ F1(x) and F2(y) ≤ F2(x) and one inequaliy

is strict. Therefore we try to keep F2 at a given maximum level and find efficient

solutions for this level of F2. In order to do this we give a bound B to the F2,

remove F2 from the objectives and add the constraint
∑

i∈N

∣∣∣C̃i − Ci

∣∣∣ ≤ B to

the constraint set.

Constraint (3.1) ensures that each job should be assigned to a machine. Con-

straint (3.2) requires that if the original start time of a job is greater than or

equal to disruption time, start time of that job should be greater than or equal

to the ready time of the machine which the job is assigned to.

Constraints (3.3)-(3.7) are disjunctive constraints, which provide that no two

jobs can be operated on the same machine simultaneously. Constraints (3.8)

and (3.9) force the start time and the processing time of a job to be equal to

zero for the machines which that job is not assigned to, respectively. Constraint
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(3.10) calculates the completion time of a job by summing the start time of

that job and the processing time of that job. Constraint (3.11) implies that the

compression amount of a job is equal to the difference between the upper bound

of the processing time of that job and the processing time of that job. Constraint

(3.12) guarantees that the start time of a job on the machine that the job is

assigned to is greater than or equal to the original start time of that job.

Constraint (3.13) and (3.14) ensure that the processing time of a job should

be between the lower bound and the upper bound of the processing time of that

job. Constraint (3.18) provides that completion time of any job cannot be greater

than the maximum completion time of the machine which the job is assigned to.

Constraints (3.16) are the nonnegativity constraints.

Since the cost function in the first objective function F1 is non-linear, we

reformulate the mathematical model in order to handle this non-linearity. Model

is put into conic optimization problem with linear objective and conic constraints.

In order to do this, we replace each term bij (w
kij
ij ) in the objective F1 with an

auxiliary variable tij ≥ 0 and add bij (w
kij
ij ) ≤ tij into the constraints. After the

reformulation, the constraints are strengthened and can be represented as conic

quadratic constraints as in Akturk, Atamturk and Gurel [3]. The reformulated

model is as follows:

min
∑

i∈N
∑

j∈J tij

subject to

(3.1)-(3.16) (3.17)

bij (w
kij
ij ) ≤ tij, ∀ i ∈ N ,∀ j ∈ J , (3.18)

tij ≥ 0, ∀ i ∈ N ,∀ j ∈ J , (3.19)

Trick [29] assumed that processing times are controllable and focused on the

processing cost and makespan objectives. He showed the NP-hardness of the

problem in a non-identical parallel machine environment with linear processing

cost function. Therefore, our problem with nonlinear cost function of processing

time compression is also NP-hard and we propose heuristics to solve this problem

in the next chapter.
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3.3 Summary

In this chapter, we introduce the problem environment and then give the mathe-

matical model. We formulate a nonlinear bi-criteria mathematical model to solve

our problem and then reformulated it into conic quadratic programming. We con-

clude that our problem is NP-hard and we will propose a local search heuristic

in the next chapter.



Chapter 4

Proposed Heuristic Algorithm

It is hard to solve the mathematical model given in Chapter 3, as it involves

discrete decision variables with nonlinear objective function. So, we developed a

heuristic algorithm to solve the problem in a reasonable computation time.

4.1 Theoretical Properties

We extracted some properties from the problem considerations and utilized

them while developing the algorithm. These properties are given below:

Rule 1. The processing times and the sequence of the jobs on a machine do not

change in the revised schedule, if it is not a disrupted machine and if no jobs are

removed from or added to this machine.

Justification: The jobs are scheduled to be processed at their upper bounds

in the original schedule, and the processing time of a job cannot exceed its pro-

cessing time upper bound. Any change in the processing time of a job can only

be achieved by compression and even a small amount of compression incurs com-

pression cost and deviation of completion times and any change in the sequence

also incurs deviation of completion times.

29
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Rule 2. If a disruption occurs on a machine and all the jobs after the disruption

become late since the schedule is right shifted, compressing the processing time of

the jobs which are sequenced earlier gives better results in terms of TADC.

Justification: Let

n[r]: number of jobs that succeed the rth positioned job on the machine, that the

job is assigned to, including the job itself

F2: TADC objective function value

w[r]: compression amount on the processing time of the rth positioned job

One unit of compression on processing time of rth positioned job on a machine

results in the gain of n[r] units in TADC value.

If w[r] = δ, then ∆F1 = −δ × n[r]. Let us assume that there are two jobs

whose positions are v and y such that v ≤ y.

If v ≤ y, then n[v] ≥ n[y], ∆F1v ≥ ∆F1y. As it can be seen in Figure 4.1,

Figure 4.1: Right shift scheduling and rescheduling by compressing the processing
times

when there is a disruption for δ unit of time, if we do not compress the processing

times of the jobs and right shift the jobs due to the disruption, we have 5δ units

of TADC and we violate the maximum completion time constraint. In order to

match-up the maximum completion time of the machine, we have to compress

the processing times of the jobs on this machine for δ unit.

If we apply total of the δ unit of compression on the 1st positioned job as it

can be seen in the Revised Schedule 1 in Figure 1, TADC value becomes 0, that

is we gain 5δ units of TADC value compared to the right shifted schedule since

n[1] = 5.

On the other hand, if we apply total of the δ unit of compression on the last
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job (5th positioned job) as it can be seen in the Revised Schedule 2 in Figure 1,

TADC value becomes 4δ, that is we gain only δ units of TADC value compared

to the right shifted schedule since n[5] = 1.

Rule 3. In order to decide the sequence of two jobs on the same machine, we pro-

pose a slope criterion, which is the marginal change in the cost when we compress

the processing time of a job by one more unit. We calculate this slope criterion

for each job, separately. We sequence the jobs in the order of their slopes starting

from the smallest one.

Justification: Let us assume that the compression on processing time of job i

on machine j is wij. Then, marginal change in the compression cost is;

∂fij/∂w

If we compress the processing time of a job by ∆ units, a lower bound on the

compression cost is

∆× ∂fij/∂w

Then we compare the slopes of the jobs. It means that if we compress the

processing times of these jobs by same amount of additional units, compressing

the processing time of the job with larger slope costs more than the cost of

compressing the processing time of the job with smaller slope. Since compressing

the processing time of the jobs which are sequenced earlier gives better results

in terms of TADC (see Rule 2), also in order to get better results in terms of

the compression cost we sequence the job with the smaller slope early on the

machine.

Rule 4. For each job, we find the number of succeeding jobs on the same ma-

chine in the revised sequence. This number is called as afterJobs value of a job.

Then, we sum afterJobs values over each job and find the proportion of com-

pression amount for each job by dividing their afterJobs value to this sum. Find

the required compression amounts for each job by multiplying the total required

compression amount with the proportion of afterJobs value of each job over this

sum.



CHAPTER 4. PROPOSED HEURISTIC ALGORITHM 32

4.2 Decision Tree Algorithm

In our heuristic algorithm, we apply a search algorithm on a decision tree

structure which will be denoted as Decision Tree Algorithm (DTA) during the

study. This method helps us to find an efficient frontier. In the decision tree,

we start with a solution at the root node and we generate a number of child

nodes from the root node. Each node represents a different solution. We call the

total number of child nodes of one node in the tree as branchSize. We evaluate

the child nodes of the root node and eliminate some of these nodes. Then, the

selected nodes are used to generate new child nodes in the next level of the tree.

We call the number of nodes that we select to generate the next level of the tree

with their child nodes as beamSize. In each level of the tree, we generate new

child nodes for each selected node of the previous level in branchSize. Then, we

evaluate all the child nodes of that level and select the best nodes in beamSize to

generate new child nodes by filtering the remaining nodes. We generate the next

level of the tree with the child nodes of these selected nodes. In Figure 4.2, the

white nodes represent the nodes selected and striped nodes represent the nodes

fathomed. In the last level, the red nodes represent the non-dominated solutions.

Figure 4.2: Tree structure in the algorithm

In our algorithm, we start with the original schedule in the root node by
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considering the disruption duration as a blocked time. At each level of the tree,

we insert a disrupted job from the disrupted job list DJ to one of the machines.

The number of levels in the tree is equal to the number of disrupted jobs. In each

child node, we fix the schedule of its parent node and try to insert a disrupted job,

which is considered at that level of the tree, to the schedule by doing “move” and

“swap” operations. In Move(k, l, n) operation, job k is inserted to the position

n of machine l. In Swap(k, l, s) operation, job k is swapped with the job s

which is at the first position of machine l. The details of these operations will

be explained in the steps of the DTA. By utilizing Rule 2, we try to move a

disrupted job to the early positions in the sequence. So, we try just two earliest

positions of each machine to move a disrupted job to and try to swap a disrupted

job with the first positioned job of each machine. We try just one position which

is the earliest position of the disrupted machine to move a disrupted job to.

Because, since the earliest position of the disrupted machine is after the end

time of the disruption, even this position is late of the disrupted job in terms

of TADC. Therefore, we branch three child nodes for each undisrupted machine

(two for move operations and one for swap operation) and one child node for the

disrupted machine (for move operation) from one parent node. The branchSize

of the DTA is (3 × (m − 1) + 1). Then we select the nodes generated within a

level in beamSize b and go to the next level with the number of nodes b.

We first give the additional notation that will be used throughout the algo-

rithm and then start with the steps of the algorithm.

Notation

ESTj : earliest start time of machine j

j̃ : disrupted machine

DJ = {i : t ≤ Si ≤ t+ disr} and
{
i : pij̃ > 0

}
Lj = {i : Sij ≥ ESTj}

⋂
{i : pij > 0} for j = 1 . . .m

|n| : nth positioned job in Lj where j = 1 . . .m
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STEP 1: Find ESTj for j ∈ J (For disrupted machine, end time of the

disruption, for other machines, smallest start time which is greater than

or equal to the disruption start time.)

STEP 2: Start with the job k = argmin {Si} where i ∈ DJ .

STEP 3: Move(k, l, |n|) for k ∈ DJ , l ∈ J and n = 1, 2.

There are four alternatives to insert the disrupted job k on machine l; if n = 1,

job k is inserted just before or just after the first job in Ll, if n = 2, job k is

inserted just before or just after the second job in Ll. First job in Ll is the job

which has the smallest start time among the jobs in Ll, second job in Ll is the

job which has the second smallest start time among the jobs in Ll.

STEP 3.1: Check if Move(k, l, |n|) is feasible, if not, then fathom

this node.

(Set p̃il = pli where i ∈ Ll and i = k

If(
∑

i p̃il ≤ Dl − ESTl) where i ∈ Ll and i = k, then it is feasible

Else moving the disrupted job to this machine is infeasible.)

STEP 3.2: Set the start time of the disrupted job k at machine l

(S̃kl).

In order to compress job k more than other jobs on machine l and utilize Rule

2, we try to insert job k to the earliest positions in the revised schedule.

In order to decide where to insert job k, we calculate the slope of job k and

the nth job in Ll according to Rule 3 and we sequence the job with the smaller

slope just before the other one.

If we insert job k just before the nth job in Ll, we set the start time of job

k in the revised schedule to the original start time of the nth job of machine l

and update Ll such that Ll = Ll ∪ {k}, otherwise we leave the start time of the

nth job of machine l same in the revised schedule and set the start time of job k

in the revised schedule to the completion time of the nth job of machine l in the

revised schedule and update Ll = Ll\ {|n|} ∪ {k}.

In a move operation, we sequence the disrupted job k and the nth job in Ll
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according to Rule 3, and we do not change the sequence of other jobs on machine

l.

For the machines other than machine l, we keep the schedule same with the

schedule of the parent node as we explained in Rule 1.

For machine l, we set the processing times of all jobs in Ll and job k to their

upper bounds and sum these upper bounds.

STEP 3.3: Sum the processing time upper bounds of jobs in (Ll)

SUMl =
∑

i pui where i ∈ Ll

If SUMl ≤available time on machine l, fix the processing times to their

upper bounds and go to STEP 3.7.

Otherwise, go to STEP 3.4 to find the required compression amount.

STEP 3.4: Find the required compression amount which is the dif-

ference between this sum and the time between maximum completion

time and start time of job k on machine l

EXCESSl = Dl − Śkl − SUMl

STEP 3.5: Distribute the required compression amount to the jobs

in Ll according to the Rule 4.

STEP 3.6: Subtract the required compression amount distributed

to each job (wil where i ∈ Ll) from their processing times set at the

previous level and calculate new processing times of the jobs

p̃il = pi − wil where i ∈ Ll

If p̃il < pli then p̃il = pli where i ∈ Ll

STEP 3.7: Calculate new start times and completion times of the

jobs in Ll.

STEP 3.8: If the completion time of last job at the machine l

exceeds the maximum completion time of this machine, apply maxi-

mum completion time feasibility rule.

Maximum completion time feasibility rule: Although we calculate the required
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compression amount of each job such that the sum of the processing times of jobs

should be equal to Dl − Śkl, after we subtract the required compression amount

of each job from their processing times, completion time of the last job may be

greater than or equal to the maximum completion time of the machine. The

reason is that if the processing time of a job after compressing it goes below its

lower bound, we set it at its lower bound. Since the compression amount of the

jobs early in the sequence is more than the compression of succeeding jobs, the

processing times of these jobs are closer to their lower bounds than the succeeding

jobs are. So, we start from the last job in the sequence of machine l and subtract

the over time amount, which is the difference between the completion time of last

job at a machine and the maximum completion time of that machine, from the

processing time of last job. If it goes below the lower bound of the last job, fix

the processing time of last job at its lower bound and go to the preceding job of

last job, and subtract the remaining over time amount from the processing time

of this job and check the lower bound, if it goes below the lower bound, go to the

preceding job of this job and go on until the over time amount becomes 0.

The earliest start time of the machine becomes the completion time of the

disrupted job.

STEP 3.9: Ll = Ll\ {k} and update the number of jobs and earliest

start times of all machines and update the positions of all jobs at all

machines

Updating the earliest start times:

ESTj = ESTj ∀j = 1 . . .m and j 6= l

ESTl = C̃kl

Updating the position of the jobs: The positions of the jobs at the machines

other than machine l remain the same.

At machine l;

If C̃kl ≤ S̃|1|l then |v| = |v|
If C̃|1|l ≤ S̃kl or C̃kl ≤ S̃|2|l then |v − 1| = |v|
If C̃|2|l ≤ S̃kl then |v − 2| = |v|
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We do not change the schedules of the other machines (Rule 1). At each level,

we calculate the additional compression cost and reallocation cost for each job.

That is, we subtract the required compression amount from the processing time

upper bound of each job and calculate its compression cost. Afterwards, we find

the cost of compressing the processing time of the job from its upper bound to

its processing time value at the beginning of that level and find the difference

between these two costs as the additional compression cost of that job at that

level. Reallocation cost of the disrupted job incurred by this move operation is

added to the additional compression cost and this is the additional cost of the

node in which this move operation is done.

STEP 4: Swap(k, l, s) for k ∈ DJ , l ∈ J , s ∈ Ll and s = |1|

Another operation used in the DTA is swap operation. In swap operation, we

exchange two jobs between two machines. We try to insert the disrupted job k

to the position of job s on machine l in the original schedule and insert the job s

before the first job in Lj̃ on machine j̃.

STEP 4.1: Check the feasibility of moving job k to the machine l

and job s to the disrupted machine j̃, if it is infeasible, then fathom

this node

Checking the feasibility:

Set p̃il = pli where i ∈ Ll and i = k and p̃ij̃ = pli where i ∈ Lj̃ and i = s

If (
∑

i p̃il ≤ Dl−ESTl) where i ∈ Ll and i = k and (
∑

i p̃ij̃ ≤ Dj̃ −ESTj̃)
where i ∈ Lj̃ and i = s, then it is feasible.

Else swapping the disrupted job k and job s is infeasible, fathom this node.

STEP 4.2: Ll = Ll\ {s} ∪ {k} and Lj̃ = Lj̃\ {k} ∪ {s}
STEP 4.3: Set the start time of job s and job k (S̃kl, S̃sj̃)

Setting the start time:

S̃sj̃ = ESTj̃

If Ssl ≥ Skj̃ then S̃kl = Ssl

Else

If
∑

i pli ≤ Dl − Skj̃ where i ∈ Ll then S̃kl = Skj̃
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Else this swap is infeasible, filter this node

For all other jobs in Ll

S̃|v|l = S̃|v−1|l + p̃|v−1|l

For all other jobs at the disrupted machine j̃

S̃|v|j̃ = S̃|v−1|j̃ + p̃|v−1|j̃

We do not change the sequence of other jobs on both machines.

STEP 4.4: Sum the processing time upper bounds of jobs in Lj̃

SUMj̃ =
∑

i pui where i ∈ Lj̃

STEP 4.5: Find the difference between this sum and the time be-

tween maximum completion time of machine j̃ and start time of job s

EXCESSj̃ = Dj̃ − S̃sj̃ − SUMj̃

STEP 4.6: Distribute this excess amount to the jobs in Lj̃

according to the Rule 4
(
wij̃

)
STEP 4.7: Subtract the amount wij̃ distributed to each job i where

i ∈ Lj̃ from their processing time upper bounds and calculate new

processing times of the jobs

p̃ij̃ = pui − wij̃ where i ∈ Lj̃

If p̃ij̃ < pli then p̃ij̃ = pli where i ∈ Lj̃

STEP 4.8: Calculate the start time and completion time of the jobs

in Lj̃

The start time of a job is the completion time of the previous job in the

sequence. Then we calculate the start and completion time of the jobs by adding

the processing times to their start times.

STEP 4.9: If the completion time of last job at the disrupted machine

j̃ exceeds the maximum completion time of this machine, apply

maximum completion time feasibility rule

We do the STEPS 4.4-4.9 for machine l and job k.

STEP 4.10: Ll = Ll\ {k}, Lj̃ = Lj̃\ {s} and update the number of
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jobs and earliest start times of all machines and update the positions

of all jobs at all machines

Updating the earliest start times:

ESTj = ESTj ∀j = 1 . . .m and j 6= l, j̃

ESTl = C̃kl

ESTj̃ = C̃sj̃

Updating the positions of the jobs: The positions of the jobs at the machines

other than machine l remain same.

At machine l;

|v − 1| = |v|

Lastly, the total cost of this swap operation is calculated by summing the

additional compression cost and the reallocation cost occurred by inserting the

disrupted job k to machine l and inserting the job s to the disrupted machine j̃.

This is the additional cost of the node in which this swap operation is done.

As it is stated before, only the jobs which are started to be processed after

the disruption time, are considered to be rescheduled. In the first level of tree, we

branch nodes in number of branchSize for the first disrupted job. In each node,

we try to place the first disrupted job in a different position. In the first node,

we move the first disrupted job to the first position of the first machine. In the

second node, we move the first disrupted job to the second position of the first

machine. In the third node, we swap the disrupted job with the first job of the

first machine. We finish the operations with the first machine and we pass to the

second machine. In the fourth and fifth nodes, we move the first disrupted job to

the first and second positions of the second machine, respectively. In sixth node,

we swap the first disrupted job with the first job of the second machine. Thus, we

finish the operations of the second machine and we pass to the next machine. To

sum up, we apply move operations at two nodes and one swap operation at one

node for each machine for a disrupted job. When we finish all operations for each

machine for the first level, we calculate the cost and the sum of absolute value

of completion time differences of each node and we sort the costs of all nodes at

that level.
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STEP 5: Calculate the additional cost of each move and swap operations

STEP 6: Keep the best b nodes in this level and fathom the remaining

nodes

In the previous steps, for each node, we determine the processing times of

the jobs and the job sequence of the machines. We could improve the solution

quality of a node by solving a single machine sub-problem. For each node kept

in this level, for each machine on which the “move” or “swap” operations are

applied on this node, the sequence and TADC value which are obtained in the

previous steps, are given as input to the NLP model which solves a single machine

sub-problem. Then the NLP model is solved with these inputs to determine the

optimal processing times to minimize the total compression cost.

STEP 7: For each node among the best b nodes kept in this level, solve

a single machine sub-problem using an NLP model to determine the opti-

mal processing times (For a given sequence on each machine, determine

the optimal processing times for each job for a given TADC value and the

maximum completion time constraints.)

This model is bi-criteri single machine model. The objective functions are the

compression costs of the jobs on the machine on which the model is solved and

TADC value of all jobs at all machines.

In a node, if “move” operation is applied, this model is solved for only machine

l. If this is a “swap” operation, this NLP model is first solved for the disrupted

machine j̃ and then it is solved for the machine l. In this model, we know the

sequence of the machine on which the model is solved and overall TADC upper

bound value B is given. Set Nj denotes the set of jobs included in the sequence

of machine j. If this is a “move” operation, we include disrupted job k in Ll and

if this is a “swap” operation, we include disrupted job k in Ll and swapped job

s in Lj̃. We also use the rtj, Dj, pui, pli, disr, bij and kij values of the original

schedule as the parameters.
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min
∑
i∈Nj

bij (w
kij
ij )

s.t.∑
i∈Nj

∣∣∣C̃i − Ci

∣∣∣ ≤ B −
∑

i∈N ,i/∈Nj

∣∣∣C̃i − Ci

∣∣∣ , (4.1)

S̃ij ≥ rtj, ∀ i ∈ Lj, (4.2)

S̃[k+1]j ≥ S̃[k]j + p̃[k]j, ∀ [k], [k + 1] ∈ Nj, (4.3)

S̃ij + p̃ij = C̃i, ∀ i ∈ Nj, (4.4)

p̃ij = pui − wij, ∀ i ∈ Nj, (4.5)

S̃ij ≥ Si, ∀ i ∈ Nj, (4.6)

p̃ij ≥ pli, ∀ i ∈ Nj, (4.7)

p̃ij ≤ pui, ∀ i ∈ Nj, (4.8)

S̃ij + p̃ij ≤ Dj, ∀ i ∈ Nj, (4.9)

S̃ij, p̃ij, wij, C̃i ≥ 0, ∀ i ∈ Nj, (4.10)

This model aims to minimize the compression cost on machine j. Compression

cost is calculated by summing the cost function fij(wij) over all jobs at the

machine j. The cost function fij(wij) is equal to bij (w
kij
ij ) where bij and kij are

compression cost coefficients.

In Constraint (4.1), TADC value which is found in the previous steps is given

to this model as an upper bound for TADC value.

Constraint (4.2) requires that start times of the job in Lj is greater than or

equal to disruption time, new start times of these jobs should be greater than or

equal to the ready time of the machine j on which the model is solved.

Constraints (4.3) assures that start time of the job at position [k + 1] of

machine j is greater than or equal to the sum of the start time and processing

time of the job at position [k]. Constraint (4.4) calculates the completion time

of a job at the machine j by summing the start time and the processing time of

that job. Constraint (4.5) implies that the compression amount of a job at the
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machine j is equal to the difference between the upper bound of the processing

time of that job and the processing time of that job at the machine j. Constraint

(4.6) guarantees that new start time of a job at the machine j is greater than or

equal to the start time of that job in the original schedule.

Constraint (4.7) and (4.8) ensure that the processing time of a job on machine

j should be between the lower bound and the upper bound of the processing time

of that job. Constraint (4.9) provides that completion time of any job at the

machine j cannot be greater than the maximum completion time of the machine.

Constraints (4.10) are the nonnegativity constraints.

Since the objective function in this model is non-linear, we reformulate this

model putting into conic optimization problem with linear objective and conic

constraints as we did to handle the non-linearity in the original mathematical

model given in Chapter 3. Each term bij (w
kij
ij ) in the objective function is

replaced with an auxiliary variable tij ≥ 0 and the constraint bij (w
kij
ij ) ≤ tij is

added into the constraints as in Akturk, Atamturk and Gurel [3].

This NLP model differs from the original mathematical model given in Chap-

ter 3 with the exclusion of the sequence constraints (3.3)-(3.7). One of the aspects

of the hardness of original mathematical model is these constraints. Since we give

the sequence of the machines as an input to the model, NLP model in this step

of the algorithm is easily solved relative to the original mathematical model.

Each node corresponds to a solution and as we keep a node, we keep a solution

and we proceed with that solution through the next levels.

STEP 8: DJ = DJ\ {k}
STEP 9: Go to next level by selecting the next job k = argmin {Si}
where i ∈ DJ , if DJ = ∅ then go to STEP 11

STEP 10: For each solutions kept in the previous level do the STEPS

3-7, go to STEP 8.

When we pass to the second level, we branch nodes in number of branchSize b

for each node that we kept in the previous level. In this level, in each node, we
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try to place the second disrupted job in a different position by keeping the start,

completion and the processing time of the first disrupted job at the parent node.

For the first node that we kept in the first level, we branch nodes in number

of branchSize at the second level. In the first child node, we move the second

disrupted job to the first position of the first machine. In the second child node,

we move the second disrupted job to the second position of the first machine. In

the third child node, we swap the second disrupted job with the first job of the

first machine. We apply move operations at two child nodes and swap operation

at one child node for each machine for this parent node. When we branch the

child nodes of the second parent node that we kept in the previous level, we again

apply move operations at two child nodes and swap operation at one child node

for each machine and each operation corresponds to one child node. We branch

nodes in number of branchSize for each parent node that we kept in the previous

level. Then we calculate the costs and the sum of the absolute value of the

completion time differences for each child node at the second level and we again

eliminate the nodes correspond to the solutions with the cost more than the bth

smallest cost among all solutions at this level and we keep the nodes correspond

to the solutions with the cost less than or equal to the bth smallest cost. We

proceed with these nodes, which we kept in this level, through the next levels.

Then we pass to the next level to place the next disrupted job. In each level,

we keep the position and the processing time of the disrupted jobs that we placed

in the previous levels.

We branch child nodes for the parent nodes until we place all of the disrupted

jobs. When there are no remaining disrupted jobs to be placed, we stop and

examine the nodes that we kept at the last level. In the last level, we place the

last disrupted job by keeping the places and the processing times of the previous

disrupted jobs. So, in the last level, as we place the last disrupted job, in each

node we kept, we have a solution of a complete schedule. After we calculate the

costs and the sum of absolute value of the completion time differences of the

nodes we kept in the last level, we look for the non-dominated solutions.

STEP 11: Calculate the sum of absolute value of completion time differ-
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ences and total cost of the solutions kept at the last level

Sum of absolute value of completion time differences: Throughout the DTA,

we regard to place the jobs to keep the difference between the new completion

time of a job and the original completion time of that job minimum as much

as possible. This is the second objective of our problem, which is calculated by

summing the absolute value of the completion time differences over all jobs.

We calculate the total cost by summing the compression cost of each job

resulted from subtracting the slack from the processing times and the total real-

location cost.

STEP 12: If there are any feasible solutions at the last level, find the

non-dominated solutions among solutions kept the at the last level and

STOP, else go to STEP 13

STEP 13: Increase the maximum completion time of each machine by ∆

units and go to STEP 1

If there is a solution that there is not any solution with lower total cost and

lower TADC at the same time comparing to this solution, this is a non-dominated

solution. Each node with a solution which is among the non-dominated solutions

corresponds to a final solution of our problem.

4.3 Summary

In this chapter, we first gave theoretical properties and then we proposed a search

algorithm using these properties. First we determined the sequence and the

processing times in the early steps of the algorithm and in STEP 7, for a given

sequence on a machine, we determined the optimal processing times for a given

TADC upper bound. In Chapter 5, we will give numerical examples to clarify

the proposed DTA heuristic. First we will give an example without including the

STEP 7, and then we will give an example in which the STEP 7 is included in

the algorithm.



Chapter 5

Numerical Example

In Figure 5.1, we give an original schedule example. There are 2 machines and

disruption occurs on machine 1. Disruption starts at time 3.58 and ends at time

8.68. So, the disrupted jobs include the jobs 2, 7 and 10, i.e., DJ = {2, 7, 10}.
Original start times, processing times, completion times, processing time upper

and lower bounds and the machine coefficients for each job can be seen in Tables

5.1 and 5.2.

Figure 5.1: Original schedule

In the search tree, each node has 4 ((3× (2− 1)) + 1) immediate child nodes.

For this example, these immediate child nodes of a parent node corresponds to

the solutions that;

� 1st child node; moving the disrupted job of that level to the first position

of machine 1

� 2nd child node; moving the disrupted job of that level to the first position

of machine 2

45
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� 3rd child node; moving the disrupted job of that level to the second position

of machine 2

� 4th child node; swapping the disrupted job of that level with the swapped

job of that level on machine 2.

Original Original Original
M/C Job Start Comp Process

Time Time Time

1 6 0 1 1

1 15 1 2.28 1.28

1 4 2.28 3.58 1.3

1 2 3.58 5.1 1.52

1 7 5.1 6.65 1.55

1 10 6.65 8.68 2.03

1 13 8.68 10.74 2.06

1 14 10.74 13.44 2.7

2 3 0 1 1

2 8 1 2.09 1.09

2 1 2.09 3.58 1.49

2 11 3.58 5.54 1.96

2 5 5.54 7.62 2.08

2 12 7.62 9.79 2.17

2 9 9.79 12.45 2.66

Table 5.1: Original Start, Processing and Completion Times

There will be 3 levels that the algorithm will be executed. At each level, we

will try to move the disrupted job to two positions on the second machine and

be swapped with the first job of L2. Additionally, the disrupted job will also

be moved to the first position on the disrupted machine. We will try only one

position on the disrupted machine, because it will be the first position after the

end time of the disruption and even this position is late for the disrupted job in

terms of TADC. In this example, we assume that the reallocation cost of moving a

job between the machines is 4. Note that, first we will solve the problem without

including STEP 7 and then solve it adding the STEP 7.

The disrupted job will be job 2 at the first level, job 7 at the second level

and job 10 at the third level. And since there will be no jobs after job 10 in the

disrupted job list, the algorithm will terminate.
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Job Coeff Coeff Coeff Coeff Upper Lower
i bi1 bi2 ki1 ki2 Bound Bound

1 14.95 13.10 1.6 3 1 0,44

2 14.75 12.86 1.5 1.3 1,28 0,57

3 12.45 19.60 2.2 3 1,3 0,43

4 18.20 15.89 2.6 1.5 1,52 0,23

5 13.27 16.14 1.6 1.2 1,55 0,17

6 19.05 18.57 1.4 1.7 2,03 0,72

7 18.36 14.48 1.6 2.1 2,06 0,73

8 12.96 13.03 2.1 1.3 2,7 0,46

9 15.72 18.29 1.7 1.6 1 0,45

10 11.37 17.92 1.8 2.1 1,09 0,28

11 16 10.01 2.2 3 1,49 0,4

12 12.29 19.63 2.9 1.9 1,96 0,93

13 18.94 19.69 1.3 2.7 2,08 1,02

14 19 12.26 2.2 1.9 2,17 0,39

15 16.37 11.85 2.5 2.1 2,66 1,29

Table 5.2: Cost Coefficients and Processing Time Upper and Lower Bounds

For the first level, the disrupted job k = 2.. The swapped job will be job 11 at

machine 2, because of Rule 2, we select the first job in the sequence of machine

2 as it can be seen in Figure 5.2. Earliest start time is time 3.58 for machine

2 and 8.68 for machine 1, since it is the end time of the disruption (See Figure

5.2).

Figure 5.2: Disrupted and swapped jobs and EST of machines at the first level
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Figure 5.3: Positions at the first level

Figure 5.4: Additional costs of all solutions at the first level
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5.1 Solution without STEP 7

In Figure 5.4, at node 1, we try to move job 2 to the first position at disrupted

machine. For machine 1, first position is just after or just before the job 13 for

the first level.

The job list of machine 1 includes L1 = {13, 14}, since the start times of

these jobs at the disrupted machine is greater than or equal to the disruption

end time. In order to check the feasibility of this move operation, we set the

processing times of the jobs in the job list and the disrupted job to their lower

bounds and sum these processing times. This sum is equal to 1.42 and this can

fit the time interval between earliest start time and maximum completion time

of the disrupted machine which is equal to 13.44 − 8.68 = 4.76. Therefore, we

check the feasibility and conclude that this move operation is feasible.

Since we try to place the job 2 into the first position of the disrupted machine

and the start time of job 13 is 8.68 which is greater than the original start

time of job 2 which is 3.58, we compare the slopes of job 2 and job 13. Slope

of job 2 is k2,1 × b2,1 × (pu2 − (p2,1 − 1))(k2,1−1) = 16.71 and slope of job 13

is k13,1 × b13,1 × (pu13 − (p13,1 − 1))(k13,1−1) = 24.62. Since the change in the

compression cost will be less when we compress job 2 additional one more unit

comparing to the compressing job 13 additional one more unit, we decide to place

the job 2 just before the job 13. Start time of job 2 becomes 8.68 and job 13

stays in the L1 and it becomes L1 = L1 ∪ {2}.

Then we apply the compression rule. There are 2 jobs after job 2, one job

after job 13, there is no job after job 14. Sum of these numbers is 2+1+0 = 3 and

compression proportion of job 2 is 2/3, compression proportion of job 13 is 1/3

and compression proportion of job 14 is 0. When we set the processing times of

the jobs in L1 = {2, 13, 14} to their upper bounds and sum these upper bounds we

obtain 5.65. Difference between the time between maximum completion time and

the start time of job 2 and this sum is equal to 5.65− (13.44− 8.68) = 1.52. So,

we try to distribute 1.52 to the jobs 2, 13 and 14 according to their compression

proportion. We compress (1.52×2/3) = 1.01 units from job 2, (1.52×1/3) = 0.51
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units from job 13 and 0 unit from job 14. So, their new processing times becomes

(1.52−1.01) = 0.51, (2.06−0.51) = 1.55 and 2.7, respectively. All new processing

times are greater than or equal to the lower bounds.

New schedule at the end of the first level is shown in Figure 5.5. Number of

jobs in the disrupted machine and the positions stays same and the earliest start

time becomes the completion time of job 2 which is 9.19. L1 is also updated as

L1 = L1\ {2}.

Figure 5.5: Schedule at the end of the first level at node 1

Figure 5.6: Positions at the end of the first level at node 1

At node 2, we try to move job 2 to the first position at machine 2. For machine

2, first position is just after or just before the job 11 for the first level (Figure

5.3). New schedule at the end of the first level is shown in Figure 5.7.

At node 3, we try to move job 2 to the second position at machine 2. For

machine 2, second position is just after or just before the job 5 for the first level.

At node 4, we try the job to swap with the first job after EST of machine 2, the

swapped job will be job 11 at machine 2 at the first level (Figure 5.3). Then we

calculate the additional cost of each move and swap operations as it can be seen

in Figure 5.4 and update the disrupted job list (DJ = {7, 10}).
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Figure 5.7: Schedule at the end of the first level-at node 2

Figure 5.8: Positions at the end of the first level at node 2

In this problem, we choose the beamSizeb = 7. Therefore, we keep the best

7 nodes in this level and fathom all other nodes and go to next level by selecting

the next disrupted job from the disrupted job list. Since there are 4 nodes at the

first level, we keep all nodes in this level to go to the next level. The disrupted

job is k = 7 at the second level.

For each nodes kept in the previous level, we apply the same operations as we

do in the previous level (Figure 5.9).

In the second level, at child node 6 of parent node 1, job 7 is moved to the

first position of machine 2 (See Figure 5.6).

The job list of machine 2 includes L2 = {11, 5, 12, 9}. Sum of the processing

time lower bounds of the jobs in L2 and the disrupted job 7 is equal to 3.8 and

it is less than time interval between earliest start time and maximum completion

time of the disrupted machine which is equal to 12.45 − 3.58 = 8.. This move

operation is also feasible.
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Figure 5.9: Additional costs of all solutions at the second level

The first job in L2 is job 11 and its start time is 3.58. This is less than 5.1

which is the original start time of job 7. The difference (5.1− 3.58 = 1.52), 1.52

is within the upper and lower bounds of processing time of job 11. So, we set the

start time of job 11 to 3.58 and completion time of job 11 to 5.1 and insert job 7

just after the job 11. Start time of job 7 becomes the completion time of job 11

and L2 = L2\ {11} ∪ {7}.

There are 3 jobs succeeding job 7, 2 jobs succeeding job 5, one job succeeding

job 12 and there is no job succeeding job 9. Sum of these numbers is 3+2+1+0 = 6

and compression proportion of job 7 is 3/6 and compression proportion of job 5

is 2/6, compression proportion of job 12 is 1/6 and compression proportion of

job 9 is 0. Sum of the processing times of jobs in L2 is equal to 8.9. Difference

between the time between maximum completion time and the start time of job 2

and this sum is 8.46− (12.45− 5.1) = 1.11. So, we compress (1.11× 3/6) = 0.56

units of job 7, (1.11× 2/6) = 0.37 units of job 5, (1.11× 1/6) = 0.19 units of job

12 and 0 units of job 9. So, new processing times become (1.55 − 0.47) = 1.08,

(2.08−0.37) = 1.71, (2.17−0.19) = 1.98 and 2.66, respectively. All new processing

times are greater than or equal to the lower bounds.

New schedule at the end of the second level is shown in Figure 5.10. Number

of jobs in the disrupted machine is decreased by 1 and the positions of each job on

machine 2 are decreased by 1 and the earliest start time becomes the completion

time of job 7 which is 6.1. L2 becomes L1 = L1\ {7}.
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Figure 5.10: Schedule at the end of the second level at node 6

Figure 5.11: Positions at the end of the second level at node 6

In the second level, at child node 10 of parent node 2, we move job 2 to the

first position at machine 2. For machine 2, first position is just after or just before

the job 11 for the first level.(Figure 5.8) New schedule at the end of the second

level is shown in Figure 5.12.

Figure 5.12: Schedule at the end of the first level-at node 10

After we complete all the required operations in this level and calculate the

additional costs correspond to each operation as it can be seen in Figure 5.9,

we keep the best 7 nodes in this level and fathom all other nodes. The nodes

we selected in this level are the nodes 6, 7, 10, 11, 14, 18 and 19. We update

the disrupted job list (DJ = {10}). We go to next level by selecting the next

disrupted job. The disrupted job is k = 10 at the third level.
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Figure 5.13: Positions at the end of the first level at node 10

For each nodes kept in the previous level, we apply the same operations as we

do in the previous level (Figure 5.14).

Figure 5.14: Additional costs of all solutions at the third level

In the third level, at child node 21 of parent node 6, job 10 is moved to the

first position of the disrupted machine (See Figure 5.11).

The processing time lower bounds of jobs in L1 = {13, 14} and job 10 is

equal to 1.91 and this is smaller than the time interval between earliest start

time and maximum completion time of the disrupted machine which is equal to

13.44− 9.19 = 4.25. Hence, the feasibility of this move operation is checked.

First job in L2 is job 13 and the start time of job 13 is 9.19. It is greater than

6.65 which is the original start time of job 10. Slope of job 10 is k10,1 × b10,1 ×
(pu10 − (p10,1 − 1))(k10,1−1) = 20.47 and slope of job 13 is k13,1 × b13,1 × (pu13 −
(p13,1 − 1))(k13,1−1) = 27.86. Hence, we decide to insert job 10 just before the job

13. Start time of job 10 becomes 9.19 and L1 becomes L1 = L1 ∪ {10}.



CHAPTER 5. NUMERICAL EXAMPLE 55

There are 2 jobs succeeding job 10, one job succeeding job 13; there is no

job succeeding job 14. Sum of these numbers is 2 + 1 + 0 = 3 and sum of

the processing time upper bounds in L1 is 6.79. Difference between the time

between maximum completion time and the start time of job 10 and this sum is

equal to 6.79− (13.44− 9.19) = 2.54. So, the required compression amounts are

(2.54×2/3) = 1.70, (2.54×1/3) = 0.85 and 0, for jobs 10, 13 and 14 respectively.

So, new processing times are (2.03 − 1.70) = 0.33, (2.06 − 0.85) = 1.21 and 2.7,

respectively. But new processing time of job 10 is less than its lower bound. So

we set the processing time of job 10 to its lower bound 0.72. In this case, the

completion time of job 14 becomes 13.83. This violates the maximum completion

time constraint, the completion time of the last job at a machine should be less

than or equal to the maximum completion time and the maximum completion

time of the machine 1 is 13.44. So, we try to decrease the amount exceeds

the maximum completion time from the processing times of the jobs starting

from the last job of the machine. We decrease the processing time of job 14 by

13.83− 13.44 = 0.39 and it becomes 2.7− 0.39 = 2.31. This is within the upper

and lower bounds of job 14. Now, all new processing times are within their upper

and lower bounds.

New schedule at the end of the third level is shown in Figure 5.15. Number

of jobs in the disrupted machine and the positions stays same and the earliest

start time becomes the completion time of job 10 which is 9.91. L1 becomes

L1 = L1\ {10}.

Figure 5.15: Schedule at the end of the second level at node 6

In the third level, at child node 29 of parent node 10, job 10 is moved to the

first position of machine 1. For machine 1, first position is just after or just before

the job 13 for the first level (Figure 5.13). New schedule at the end of the third

level at node 29 is shown in Figure 5.16.

After we complete the required operations at nodes from 21 to 48, we calculate
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Figure 5.16: Schedule at the end of the third level at node 29

the additional costs correspond to each operation as it can be seen in Figure 5.14,

we keep the best 7 nodes in this level and fathom all other nodes. At the end of

the third level, since disrupted job list becomes empty (DJ = ∅), the algorithm

terminates.

Nodes selected in the third level are nodes 21, 22, 29, 32, 37, 41 and 45

(See Figure 5.14). We calculate the sum of absolute value of completion time

differences of the solutions correspond to the nodes kept at the last level as it can

be seen in Figure 5.17.

Figure 5.17: Total cost and sum of completion time differences of all solutions
kept in the third level

Finally, we find the non-dominated solutions among the solutions kept at the

last level. As we see in the Figure 5.17, non-dominated solutions of this problem

corresponds to the nodes 21 and 29 in the tree. First solution corresponds to

node 21 and it means that, at the first level, at node 1, job 2 is moved to the first

position of the disrupted machine, at the second level, at node 6, job 7 is moved

to the first position of machine 2, at the third level, at node 21, job 10 is moved

to the first position of the disrupted machine. Second solution corresponds to
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node 29 and it means that, at the first level, at node 2, job 2 is moved to the first

position of machine 2, at the second level, at node 10, job 7 is moved to the first

position of machine 2, at the third level, at node 29, job 10 is moved to the first

position of machine 2.

Figure 5.18: Optimal schedule corresponding to solution 1 of the algorithm

Figure 5.19: Optimal schedule corresponding to solution 2 of the algorithm

The objective 1 (total cost) of the solution 1 which corresponds to node 21

is 65.79 and the objective 2 (TADC) of the solution 1 is 6.87 (See Figure 5.17).

When we give the objective 2 of this solution to the MIP model as an upper bound,

we obtain the optimal schedule which is shown in Figure 5.18. The objective

1 of this optimal schedule of solution 1 is 58.67. So, the deviation between the

objective 1 values of the algorithm and the MIP model for given same upper

bound on TADC is 12.14% which is calculated as (65.79− 58.67)/58.67.

The objective 1 of the solution 2 (node 29) is 70.70 and the objective 2 of

the solution 2 is 2.12 (See Figure 5.17). When we give the objective 2 of this

solution to the MIP model as a bound, we obtain the optimal schedule which is

shown in Figure 5.19 and the objective 1 of this optimal schedule of solution 1

as 63.74. Hence, we obtain the deviation between the objective 1 values of the

algorithm and model as 10.91% calculating (70.70− 63.74)/63.74.

For these two non-dominated solutions, average deviation is found as 11.53.
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5.2 Solution with STEP 7

Before we apply STEP 7, we follow the previous steps to find the additional

cost of the nodes at each level. After we calculate the additional costs of each node

generated at a level and we filter some of the nodes, we solve the single machine

sub-problem which is used in STEP 7 to calculate the total cost of corresponding

selected nodes.

We start with the same original schedule which is shown in Figure 5.1. Then,

we applied the previous steps to find the additional costs and so we obtain the

additional costs as in Figure 5.4 for the first level. We select all the nodes to

generate child nodes, since there are less than 7 nodes in this level.

Before we go to the next level, we solve the NLP model given in STEP 7 for

the machines on which processing times of the jobs are changed or there is a job

arrival or removal.

For example, in node 1, we try to move the first disrupted job 2 at the dis-

rupted machine after the end time of the disruption as we stated earlier. We

obtained the schedule in Figure 5.5 in node 1 by following the steps in DTA.

Then we give the sequence of this schedule as an input and TADC value of this

schedule as an upper bound to the NLP model in STEP 7 and we solve this NLP

model to find the optimal processing times that minimize the total compression

cost with these given parameters. The schedule which is found by the NLP model

in STEP 7 is shown in Figure 5.20.

Figure 5.20: Schedule in node 1 found by STEP 7

Besides, in node 2, we move the first disrupted job 2 to the first position of

machine 2 and at the end of the STEP 6, the schedule in Figure 5.7 is obtained.

Then we solve the NLP model for the 2nd machine and the optimal schedule is
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attained as in Figure 5.21.

Figure 5.21: Schedule in node 2 found by STEP 7

At the end of the first level, cost values, obtained by solving NLP model in

STEP 7 for the selected nodes, is shown in Figure 5.22.

Figure 5.22: Objective values at the end of the first level

Then we go to the next level and generate the child nodes of the nodes selected

in the previous level. We calculate the additional costs following the previous

steps of DTA; the additional costs of the second level can be seen in Figure 5.23.

We select the best 7 nodes among these solutions and solve NLP model in
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Figure 5.23: Additional costs of all solutions at the second level

STEP 7 for these nodes. The selected nodes of these level are nodes 6, 9, 10,

11, 14, 18 and 19. In child node 6 of parent node 1, we try to move the second

disrupted job 7 to the first position of machine 2 and first we get the schedule in

Figure 5.24 by applying the previous steps of DTA.

Figure 5.24: Schedule in node 6 at the end of the STEP 6

Then we solve the NLP model in STEP 7 for machine 2 giving the sequence

and TADC value of the schedule in Figure 5.24 as inputs to the model and we

obtain the optimal schedule for given parameters as in Figure 5.25.

Figure 5.25: Schedule in node 6 found by STEP 7

As well, in child node 10 of parent node 2, we try to move the second disrupted

job 7 to the first position of machine 2. The schedules obtained at the end of

the STEP 6 and by the STEP 7 are shown in Figure 5.26 and Figure 5.27,

respectively.
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Figure 5.26: Schedule in node 10 at the end of the STEP 6

Figure 5.27: Schedule in node 10 found by STEP 7

After we solve NLP model in STEP 7 for the selected nodes of the second

level, we calculate the total costs of these nodes as it can be seen in Figure 5.28.

Figure 5.28: Objective values at the end of the second level

We go to the next level by generating the child nodes of the selected parent

nodes of the second level and calculate the additional costs of these child nodes

applying the procedures until STEP 7 as it is shown in Figure 5.29. It is the

last level in the decision tree, since job 10 is the last disrupted job. We select the

best 7 nodes among these child nodes in terms of the additional cost and filter

the remaining nodes. In this level, the selected nodes are nodes 21, 22, 24, 25,

27, 29 and 41. We solve the NLP model in STEP 7 for these selected nodes.
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Figure 5.29: Additional costs of all solutions at the third level

In child node 21 of parent node 6, we move the last disrupted job 10 to the

first position of the disrupted machine, that is, we move this job after the end

time of the disruption. We first get the schedule in Figure 5.30 at the end of the

STEP 6.

Figure 5.30: Schedule in node 21 at the end of the STEP 6

After we apply STEP 7 giving this schedule as an input to the NLP model

in STEP 7 and solve this sub-problem for the disrupted machine, we get the

optimal processing times for the disrupted machine and new schedule becomes as

in Figure 5.31.

Figure 5.31: Schedule in node 21 found by STEP 7

Besides, in child node 29 of parent node 10, we also move the disrupted job 10

after the disruption end time on the disrupted machine and the schedule obtained

at the end of the STEP 6 is shown in Figure 5.32.
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Figure 5.32: Schedule in node 29 at the end of the STEP 6

Then, we solve the NLP model in STEP 7 for the disrupted machine and

we get the schedule with optimal processing times on the disrupted machine for

given sequence and TADC upper bound as in Figure 5.33.

Figure 5.33: Schedule in node 29 found by STEP 7

After we solve the NLP model in STEP 7 for all the selected nodes at the last

level, we obtain the cost values as it is given in Figure 5.34.

Figure 5.34: Objective values at the end of the third level

As it can be seen in Figure 5.34 that, when we apply STEP 7 for the selected

nodes of the last level, non-dominated solutions correspond to the nodes 21 and

29. Then, we give the TADC values of these nodes as an upper bound to the

mathematical model given in Chapter 3 and find the optimal schedules for these

TADC values.

For solution 1 which corresponds to node 21, we first moved the disrupted job 2
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to the first position on the disrupted machine, then we moved the second disrupted

job 7 to the first position of the 2nd machine and finally we moved the disrupted

job 10 to the first position on the disrupted machine, that is, we reallocated only

1 job to different machine and so the reallocation cost is found 4. After these

operations, we get the total cost which is the objective 1 as 65.01 and second

objective which is TADC value as 6.43 with the schedule given in Figure 5.31.

If we give 6.43 as an upper bound for TADC value to the mathematical model,

we get the optimal total cost value 58.67 with this given TADC upper bound.

So, the deviation between the objective 1 values of the model and algorithm is

(65.01−58.67)/58.67 = 9.75%. Optimal schedule for solution 1 is shown in Figure

5.35.

Figure 5.35: Optimal schedule for given TADC upper bound of solution 1

In solution 2 which is the node 29, first disrupted job 2 is moved to the first

position of the 2nd machine and then the second disrupted job 7 is also moved

to the first position of the 2nd machine and last disrupted job 10 is moved to the

first position of the disrupted machine. So, we reallocated two jobs to different

machines and we get the reallocation cost 8 and total cost as 68.10 with the

second objective TADC value of 1.81. We give this TADC value as an upper

bounf to the mathematical model, we get the optimal schedule which is shown

in Figure 5.36 with the optimal total cost value of 66.33. The deviation for this

non-dominated solution is (68.10− 66.33)/66.33 = 2.66%.

Figure 5.36: Optimal schedule for given TADC upper bound of solution 2

Hence, for these two non-dominated solutions, the average deviation between

the objective 1 values of the MIP model and the algorithm with STEP 7 is 6.21

for given upper bound on TADC.
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5.3 Summary

In this chapter, we solved numerical examples using the proposed DTA algo-

rithm excluding and including the STEP 7. For each non-dominated solution, we

gave the TADC value of the solutions obtained by the algorithm to the mathe-

matical model as an upper bound for TADC value. We compared the objective

functions 1 of the solutions obtained by heuristics and the model for given same

objective function 2. We observed that the average objective 1 deviation of the

non-dominated solutions is decreased from 11.53% to 6.21% with inclusion of the

STEP 7 to the algorithm. In the next chapter, we will first present the exper-

imental factors and then analyze the solutions obtained by using the proposed

heuristics and the mathematical model.



Chapter 6

Computational Study

In the computational study, we tested the performance of heuristic algorithm

for generating approximate efficient solutions. We compared the computation

time and solution quality of the exact solution approach and the heuristic algo-

rithm on a set of randomly generated test problems.

6.1 Experimental Factors

We used some experimental factors to generate test problems randomly. These

factors and the values that these factors can take are listed in Table 6.1.

Factors Level 1 Level 2 Level 3
(Job,Machine) Pairs (40,3) (50,4) (60,4)
# of Disrupted Jobs 5 6
Distance Between Parallel Machines 4 8 16
Reallocation Cost Between Machines Constant Linear

Table 6.1: Experimental design factors

We choosed the (Job,Machine) pairs with the values in Table 6.1, because we

solved the model for smaller size problems in terms of number of jobs and number

of machines and we observed that when the number of jobs increases to 40 and

number of machines is 3, it becomes harder for mathematical model to solve the

66
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problem. Then, we increased the number of jobs to 50 and 60 and number of

machines to 4 and solved the problem for these pairs.

Number of disrupted jobs affect the disruption duration. For a problem in-

stance with 50 jobs and 4 machines, there are 12 jobs on one machine on the

average. So, 5 job disruption duration is a long time for a machine and it is hard

to compensate this duration. So, we increased the number of disrupted jobs by 1

more job and solved the problem for these values (5 and 6).

Distance between machines is very important in our problem since the real-

location cost is a function of the distance which is a part of the objective 1, e.g.,

total cost. We observed that when the distance between machines is very small

such as 4, the mathematical model tries to solve the problem by reallocating more

jobs to different machines, since this small reallocation cost can be compensated

with the decrease in TADC and compression cost. But as the distance increases to

16, number of reallocated jobs decreased, because reallocation of one job caused

the 75% increase in the reallocation cost. So, we solved the problem for three

levels of distance between machines.

We used the reallocation cost as another factor in the experimental design. For

level 1, we assumed the reallocation cost to be a constant function of the distance

between machines. So, reallocation cost of reallocating a job from machine 1 to

machine 3 and the reallocation cost of reallcating a job from machine 2 to machine

3 are equal. For level 2, we assume the reallocation cost to be a linear function of

the distance between machines. So, when the distance between machines is equal

to 8, reallocating a job from machine 1 to machine 3 costs 16, but reallocating a

job from machine 1 to machine 2 costs 8.

bij Uniform[10, 20]
kij Uniform[1.1, 3.1]
pui Uniform[1.0, 3.0]
pli Uniform[0.1, 2.5]
γj 1.5× (

∑
i∈N pui/m)

beamSize b 7

Table 6.2: Parameters
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The remaining parameters are selected from a given distribution randomly for

each replication. These parameters are given in Table 6.2.

We first generated an original schedule by solving the following mathematical

model;

min
∑

i∈N
∑

j∈J cij yij

subject to∑
j∈J

yij = 1, ∀ i ∈ N (6.1)

∑
j∈J

(pui × yij) ≤ γj, ∀ j ∈ J (6.2)

In this model yij are decision variables which will be used as parameters in

the revised schedule. We try to minimize the manufacturing cost of all jobs at all

machines. In Constraint 6.1, we ensure that each job should be assigned to only

one machine. Constraint 6.2 implies that, sum of the processing times of the jobs

which are assigned to a machine should be less than or equal to the capacity of

that machine. So, originally the jobs are processed at their processing time upper

bounds.

By this mathematical model, we obtained the original machine–job assign-

ments. Then we sequenced the jobs on a machine according to the SPT (shortest

processing time) rule.

After we formed the original schedule, we generated a breakdown by selecting

a disrupted machine and disruption start time randomly such that the disruption

will start at the first 20% of the job load of the disrupted machine. We set

the duration of the disruption as the sum of the original processing times of the

disrupted jobs at the disrupted machine. We set the ready times of the machines

such that for the disrupted machine it is the disruption end time and for other

machines it is the smallest start times of the jobs which are not started to be

processed yet at that machine before the disruption start time. Then we found

the maximum completion time of each machine in the original schedule.

The heuristics were coded in C++ language and compiled in the Visual Studio
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2010 environment. Linear programming models are solved by using the library

routines of ILOG CPLEX version 12.1 solver. All the heuristics and the mathe-

matical models were run on a personal computer with 2.20GHz Intel Core 2 Duo

CPU and 4GB of RAM.

6.2 Computational Experiments

We ran the algorithm for each instance and get approximate efficient solutions.

There are 2 × 3 × 2 × 3 = 36 full combinations of the experimental factors and

we run each combination for 3 replications resulting in 108 randomly generated

schedules. For each non-dominated solution of an instance, we gave the TADC

value of the solution as an upper bound to the mathematical program and solved

the same instance by running the model. Since the problem is NP-hard, when

the problem size gets larger, it becomes harder to solve the problem as reported

in Table 6.4. We could not get optimal solutions in acceptable amount of CPU

time for the instances that are generated by using the factors in Table 6.1. So,

we gave a time limit of 10,000 CPU seconds to the mathematical program to

solve each instance.

Therefore, we compared the solutions that are found by heuristic algorithm

and found by CPLEX within given time limit and TADC value upper bound and

we have done the analysis based on the deviation between these solutions. For

each instance, we calculated the deviation as follows:

τ = 100× (F1A − F1M)/F1M

where F1A is the total cost value of the solution which is found by the proposed

heuristic and F1M is the total cost value of the solution which is found by solving

the mathematical program.

For each instance, the algorithm finds a number of solutions in short CPU

times in the decision tree as reported in Table 6.4 in detail, whereas the mathe-

matical model runs for 10,000 seconds to obtain one feasible solution.

In Table 6.3 we can see the analysis of deviations obtained by heuristic with
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and without STEP 7 of the algorithm for the same replication. We ran the

heuristic with STEP 7 and without STEP 7 for replication 2, separately. In

Table 6.3, first column represents the inclusion of the STEP 7 in the algorithm.

In this column, “With” represents the inclusion of STEP 7 in the algorithm, and

“Without” represents the exclusion of STEP 7 from the algorithm. The second

column in this table shows the average τ , third column shows maximum of τ ,

fourth column shows minimum of τ . Fifth column shows the number of efficient

solutions obtained with τ ≥ 0 and seventh column shows the average τ of these

solutions, sixth column shows the number of solutions obtained with τ < 0 and

eighth column shows the average τ of these solutions. Ninth column shows the

average CPU time that the heuristic takes to obtain these solutions.

It can be seen in Table 6.3 that we obtain results with smaller deviations

with STEP 7 in average, although the average CPU time of the heuristic with

STEP 7 is greater than the CPU time of heuristic without STEP 7 observably.

Since we achieve an almost 10% decrease in average deviation with STEP 7, we

accept the CPU time increase of this step and solved the randomly generated

problem instances for other 2 replications (1 and 3) by including the STEP 7 and

compared the solutions obtained by heuristic with this step and the solutions of

the mathematical model. Heuristic with STEP 7 still has the CPU time advantage

on the mathematical model. The results of the efficient solutions obtained by the

inclusion of STEP 7 and the results of the efficient solutions obtained by the

exclusion of STEP 7 are given in Appendix A and B, respectively.

The number of efficient solutions obtained by the heuristic could vary for

a given problem instance. Therefore, we obtained a total of 206 efficient solu-

tions, since the heuristic could generate more than one efficient solution for each

instance.

# of # of Avg.
Avg Max Min Soln. Soln. Avg(%) Avg(%) CPU

STEP 7 (%) (%) (%) (τ ≥ 0) (τ < 0) (τ ≥ 0) (τ < 0) time(sec.)

Without -5.60 20.99 -54.10 30 26 13.07 -27.15 7.2

With -15.19 17.28 -50.61 15 60 6.41 -20.59 482.92

Table 6.3: Analysis of the STEP 7 of the algorithm in terms of τ
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(Job,Machine) size (40,3) (50,4) (60,4)
# of disrupted jobs 5 6 5 6 5 6

# of nodes the algorithm generated 203 252 290 360 290 360
# of nodes at which model 35 42 35 42 35 42

in STEP 7 is solved
Selected efficient solutions 7 7 7 7 7 7
Algorithm CPU time(sec.) 344 418 473 585 525 603

Table 6.4: CPU Time and generated solutions

As it can be seen in Table 6.4, CPU time increases as the solution size (in

terms of the number of jobs and number of machines) and number of disrupted

jobs increase. Since as the number of disrupted jobs increase, the level of decision

tree and number of nodes explored in the tree increase. So, it is reflected in the

CPU time of algorithm. As it is stated earlier, the mathematical model requires

extensive computation time to obtain optimal solution. For the problem instances

which are generated randomly for the experimental design, we gave a time limit

to the mathematical model and the average gap between the best node and best

integer that CPLEX achieved in 10,000 CPU seconds is 76.14%. Note that, the

gap is calculated by (best integer − best node)/best node. As it can be seen in

Table 6.5, when the problem size gets larger, gap increases, because it gets harder

to solve the problem. It is also observed that number of disrupted jobs affects the

gap, because it increases the complexity of the problem. These gaps are achieved

by the mathematical model which is strengthened by reformulating as a conic

quadratic problem. If we did not solve it by conic constraints, the nonlinear

mathematical model would not even find these solutions in a given time limit.

# of
disrupted

(job,mac) jobs Min(%) Avg(%) Max(%)
5 34.45 72.69 98.86

40,3 6 45.96 77.54 97.16
5 48.47 71.55 98.51

50,4 6 56.69 76.33 97.40
5 59.14 89.13 100

60,4 6 56.97 89.13 100

Table 6.5: Analysis of gap between best node and best integer
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# of # of
# of Soln. Soln. Avg(%) Avg(%)
Soln. Avg(%) Max(%) Min(%) (τ ≥ 0) (τ < 0) (τ ≥ 0) (τ < 0)

206 -6.42 22.95 -48.50 81 125 7.12 -15.19

Table 6.6: Analysis of τ

Since the total costs of the solutions which are obtained by the algorithm for

different instances are not comparable because of different factors and replica-

tions, we analyzed the deviation between the total costs of the solutions which

are obtained by the heuristic and the model for given TADC value for each in-

stance of 3 replications as reported in Table 6.6.

In Table 6.6, first column represents the total number of efficient soluitons

obtained by the heuristic using the experimental factors. The second column in

this table shows the average τ of these solutions, third column shows maximum of

τ , fourth column shows minimum of τ among these solutions. Fifth column shows

the number of efficient solutions obtained with τ ≥ 0 and seventh column shows

the average τ of these solutions, sixth column shows the number of solutions

obtained with τ < 0 and eighth column shows the average τ of these solutions.

Minimum deviation in Table 6.6 is obtained on the instance of

(60 jobs, 4 machines), with 6 disrupted jobs and reallocation cost of 4. Since,

the problem size in terms of number of jobs and number of machines is large,

the gap between the best node and best integer stayed at 99.99%. Maximum

deviation in Table 6.6 is obtained on the instance of (60 jobs, 4 machines) with 6

disrupted jobs and reallocation cost of 16. Since our algorithm tends to reallocate

more jobs compared to the mathematical model, when the number of disrupted

jobs to be reallocated and the reallocation cost between the machines get higher,

this causes the difference between the total reallocation costs of the model and the

algorithm to get higher. For this instance with deviation 22.95%, the deviation,

between the compression costs of the solutions obtained by algorithm and the

mathematical model, is −23.39% (see Table 6.6). Since the algorithm reallocated

two more jobs than the model did in this instance, it brought along this deviation

between the total costs of two approaches.
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# of # of
# of Soln. Soln. Avg(%) Avg(%)

Rep Soln. Avg(%) Max(%) Min(%) (τ < 0) (τ ≥ 0) (τ < 0) (τ ≥ 0)

1 70 -7.52 14.05 -48.50 49 21 -12.96 5.18

2 66 -13.20 17.28 -39.50 52 14 -18.38 6.04

3 70 1.38 22.95 -35.60 24 46 -12.85 8.34

Table 6.7: Analysis of τ for each replication

Replications cause changes in the deviations as it can be seen in Table 6.7,

because replication affects the original schedule. Especially, in replication 3,

loads are distributed to the machines unbalanced. Some machines have heavier

loads (more jobs), whereas some machines have very few. In other replications,

machines have relatively more balanced loads. They have almost same maximum

completion times for the revised schedule. This unbalanced job distributions

cause higher deviations between heuristic and model in terms of total cost.

# of
disrupted # of Avg(%) Avg(%)

jobs (job,mac) soln. Avg(%) Min(%) Max(%) (τ < 0) (τ ≥ 0)
40,3 36 -8.43 -37.95 6.35 -16.69 3.14

5 50,4 34 -3.10 -24.09 19.20 -11.12 7.06
60,4 35 -10.21 -38.80 17.51 -21.32 9.93
40,3 38 -2.45 -35.60 17.28 -10.13 7.04

6 50,4 36 -1.70 -44.49 18.94 -10.47 10.58
60,4 27 -14.88 -48.50 22.95 -21.41 6.17

Table 6.8: Analysis of effects of number of disrupted jobs on τ

Number of disrupted jobs is an important factor in our problem. It affects the

duration of the disruption and as it increases, it requires more compression and we

need to reallocate more jobs. Another side effect of the number of disrupted jobs

factor is that it increases the search tree level in the algorithm, so the computation

time also increases as the number of disrupted jobs increases. It also affects the

complexity of the problem, as the number of disrupted jobs increases; it becomes

harder for the mathematical model to solve each problem. As it can be seen in

Table 6.8, τ increases with the increase in the number of disrupted jobs for the

instances with (40 jobs, 3 machines) and (50 jobs, 4 machines). This deviation

increase is coming from the increase in the reallocation cost. In Table 6.8, we
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Reallocation cost Distance between # of
function two machines solutions Avg(%) Min(%) Max(%)

4 29 -14.52 -48.5 18.94
Constant 8 36 -6.8 -36.56 18.32

16 39 -3.22 -37.95 22.95
4 36 -7.76 -45.17 11.77

Linear 8 36 -5.95 -37.47 19.2
16 32 -1.55 -38.8 16.61

Table 6.9: Analysis of effects of reallocation cost on τ

can see that only in the instances of (60 jobs, 4 machines), with 6 disrupted

jobs, there is a decrease in the average deviation compared to the instances of

(60 jobs, 4 machines), with 5 disrupted jobs. The hardest instances to solve for the

mathematical model are the instances with (60 jobs, 4 machines) and 6 disrupted

jobs. So, the average gap between the best node and the best integer that the

model could achieve stayed at 99.90% for these instances.

Reallocation cost is a an important factor in our problem. Since our algo-

rithm tends to reallocate more jobs than the mathematical model does, as the

reallocation cost between machines increases, total cost increases sharply and it

causes huge deviations between the total costs of the solutions obtained by the

algorithm and the mathematical model as it is analyzed in Table 6.9.

6.3 Summary

In this chapter, we presented the experimental factors and the results we ob-

tained by solving the problems with the data generated by the combinations of

these factors using the algoritms and the mathematical model we proposed. We

analyzed the solutions obtained by model and heuristics under some conditions,

statistically. In the next chapter, we will give the conclusion of our study with

the final remarks and the future search directions.



Chapter 7

Conclusion

In this study, we focused on rescheduling non-identical parallel machines due

to a disruption at one of the machines. Although in many scheduling and

rescheduling studies, processing times are assumed to be fixed parameters, in

practice, they can be controlled by setting machining parameters or using addi-

tional resources. We assumed that the processing times are controllable and we

can control them by setting the machining parameters. Processing time control-

lability is a very important tool in rescheduling, especially if there is a maximum

completion time constraint. If the maximum completion time constraint would

not exist, right shift scheduling could be applied in the rescheduling and disrupted

jobs could be processed by right shifting. Because of the maximum completion

time constraint we are restricted to the time limit up to the maximum completion

time of each machine. For this reason, processing time controllability is very use-

ful to matchup the maximum completion time of the machines by compressing

the processing times. We also utilized the reallocation of the jobs to different

machines to be able to realize the processing of the disrupted jobs by matching

up the maximum completion time constraint. In many rescheduling studies, al-

though the reallocation of the jobs to different machines is used to compensate

for the disruption, cost of this operation is generally neglected. We assumed that

the reallocation operation incurs a reallocation cost which is a function of the

distance between the machines. Another restriction in our problem is that the

75
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start times of the jobs in the revised schedule cannot be less than the start times

of the jobs in the original schedule.

We aimed to minimize the total absolute deviation of job completion times

between the original and revised schedule, because even a disruption occurs, it

is important to deliver the jobs on time that is promised to be in the original

schedule, not earlier or not later. So, processing time controllability and the

reallocation became very useful for us, since they gave us the chance of matching

up the maximum completion time and the original completion times. But on

the other hand, we needed to consider the costs incurred from both compression

and reallocation to minimize. Two objectives which are cost and TADC are in

conflict, when one of them decreases, the other one increases.

7.1 Contributions

In this study, we aimed to minimize the cost and schedule performance

(TADC) at the same time such that both criteria are in conflict in our study.

We have taken into account the reallocation cost, although the reallocation cost

is generally neglected in the studies in which the reallocation is utilized for the

rescheduling. We tried to solve this bi-criteria problem to minimize both of the

objectives at the same time. We developed a mathematical model to solve this

problem and applied an ε-constraint approach (Gurel and Akturk [12]) to handle

these two conflicting objectives. We integrated the nonlinear compression cost

and the reallocation cost in the cost objective and we regarded the total absolute

deviation of the job completion times as the schedule stability objective. We gave

an upper bound to the TADC objective function and added it to the constraints

and tried to minimize the compression and reallocation costs in the objective

function.

In many rescheduling studies in which the processing times are assumed con-

trollable, cost of compression is taken into account as a linear function of process-

ing times. We considered the compression cost function as a nonlinear function
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of compression amount. We handled this non-linearity by utilizing the conic

quadratic programming with a linear objective and conic quadratic constraints

by reformulating the problem.

The problem is NP-hard, so even (40 jobs, 3 machines)-size problems require

extensive computation time. So, we proposed a decision tree algorithm (DTA) to

solve the problems in reasonable computation time. We could obtain solutions

by this algorithm in very short CPU time. We used some experimental factors

and generated problem instances for different combinations of these factors ran-

domly. We ran the heuristic for each randomly generated problem instance and

we obtained efficient solutions for each instance. Afterwards, we gave the TADC

value of each solution of each instance to the mathematical model as an upper

bound and solved the model for each solution of each problem instance. We ob-

tained very close solutions with the algorithm and the model for each solution as

summarized in Chapter 6.

7.2 Future Research Directions

In this study, we integrated the compression cost and the reallocation cost in

the cost objective. We concluded that the main drawback of our heuristics is the

reallocation. Although we obtained very close solutions with the heuristics and

the mathematical model in terms of the compression cost, the maximum deviation

between the solutions of the heuristics and the mathematical model is obtained

at the instances with the maximum reallocation cost and maximum number of

disrupted jobs. Because our proposed search algorithm tends to reallocate the

jobs as much as possible in order to decrease the compression cost by trying to

relax the disrupted machine. On the other hand, in STEP 7 of the algorithm,

we give the schedule of all machines to the NLP model and we find the optimal

processing times for this sequence. For this reason, compression cost is minimized

optimally for the given sequence by the heuristics, but reallocation cost is obtained

by the heuristics further from the optimal reallocation cost. We have foreseen

this, so we used the reallocation cost factor in the experimental design and when
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we compared the solutions obtained by the heuristics and the mathematical model

for the same instance, we observed that, the heuristics generally reallocated more

jobs than the mathematical model did. Hence, in the instances with the maximum

reallocation cost which is a linear function of the distance between machines, we

have seen that one more reallocated job caused the total cost to increase almost

25-30%. So, in the future research, the heuristics can be improved to handle with

the greater reallocation costs.

As we stated earlier, there are many scheduling stability objectives. In the

future research, another stability objective can be studied. For instance, we

regarded the reallocated jobs in the cost objective by considering the reallocation

cost. It can be also regarded as a schedule stability objective by considering the

number of reallocated jobs to different machines.

As another extension to this problem, as we considered the TADC in the

scheduling objective, the deviation between the original and revised job comple-

tion times can also be regarded as earliness and tardiness and stability objective

can be the total cost of earliness and tardiness. This problem can also be sup-

ported by relaxing the constraint which does not allow the revised start times to

be earlier than the original start times.
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Appendix A

Results with STEP 7

In the table below, we show the results of the computational studies with the in-

clusion of STEP 7 in the algorithm. “Prob. no” is the problem number and each

line in the table corresponds to an efficient solution. “Rep” is the replication.

”‘J, M/C” defines the (job, machine) size of the instance. “Dist.” is the distance

between the parallel machines. “Realloc. Cost Func.” shows that the reallocation

cost is whether a constant function of the distance between machines or a linear

function of the distance between machines. “# of Disr. Jobs” is the number of

disrupted jobs for corresponding instance. “# of Non-domin. sol.” shows how

many non-dominated solutions obtained for given instance. “Non-domin. sol.

no” is the non-dominated solution number among all non-dominated solutions

of the given instance. “TADC Value” is total absolute deviation of completion

times value of corresponding non-dominated solution which is obtained by the

algorithm. “Algo. Obj. 1” is the objective 1 value of the algorithm for corre-

sponding non-dominated solution. “Model Obj. 1” is the objective 1 value of the

model for given TADC value of this corresponding non-dominated solution. “Best

node model achieved” is the objective 1 value obtained by the model for given

time limit of 10,000 CPU seconds for corresponding non-dominated solutions.

84
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Appendix B

Results without STEP 7

In the table below, we show the results of the computational studies by excluding

STEP 7 from the algorithm.
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