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ABSTRACT
ONE-POT, BENZYLIC AMINATION REACTIONS OF AZINE N-OXIDES

Menekse Liman
M.S. in Department of Chemistry

Supervisor: Yunus Emre Tiirkmen

June, 2017

Nitrogen-containing aromatic heterocycles, found in many biologically active natural
products and pharmaceutical drugs, constitute a highly important class of compounds in
organic chemistry. In this context, areas such as the discoveries of new synthetic
methods for both the synthesis and derivatization of nitrogen-containing heterocyclic
compounds as well as for the introduction of nitrogen to a compound attract significant
attention in the areas of organic and pharmaceutical chemistry. In this study, we have
developed a new one-pot synthetic method for the benzylic amination of azine-N-oxides
containing a methyl group at the 2-position. Following the optimization studies, the
substrate scope of the developed reaction has been investigated in detail. The reaction
tolerates quinoline and isoquinoline N-oxides with electron donating and withdrawing
substituents as the electrophilic reaction partner as well as a broad range of nucleophilic

primary, secondary and aromatic amines.

Keywords: Heterocyclic compounds, Azine N-Oxides, Benzylic amination



OZET
AZIN N-OKSIT BILESIKLERININ BENZILIK AMINASYONU

Menekse Liman
Kimya Boliimii, Yiiksek Lisans

Tez Danismani: Yunus Emre Tiirkmen

Haziran, 2017

Azot igeren aromatik heteosiklik bilesiklere hem biyolojik acidan aktif dogal tirtinlerin
hem de ilaclarin yapisinda siklikla rastlanmaktadir. Bu kapsamda, azot igeren
heterosiklik bilesiklerin sentezlenmesini, tiirevlendirilmesini ve bilesige yeni azot
eklenmesini saglayacak yeni sentetik yontemlerin bulunmasi organik ve ilag kimyasinda
olduk¢a onem tasimaktadir. Bu calismada, 2 pozisyonunda metil grubu igeren azin N-
oksitlerin benzilik pozisyondan tek basamakta aminasyonunu saglayacak yeni bir sentez
yontemi gelistirilmistir. Optimizasyon g¢alismalarinin ardindan, gelistirilen yontem ile
substrat kapsami detayli bir sekilde incelenmistir. Belirlenen bu kimyasal tepkime,
yapisinda elektron verici ve ¢ekici gruplar igeren kinolin ve isokinolin N-oksit tiirevleri
ile niikleofilik birincil, ikincil ve aromatik aminler arasinda basarili bir sekilde

uygulanabilmektedir.

Anahtar Kelimeler: Heterosiklik bilesikler, Azin N-oksit, Benzilik aminasyon
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CHAPTER 1

INTRODUCTION

1.1 Heterocyclic Chemistry and Heterocyclic Compounds

Heterocyclic chemistry is one of the important branches of organic chemistry. In 1800’s,
the era of heterocyclic chemistry began with the acceleration of development in organic
chemistry.! For more than a century, a large section of organic chemistry has been
shaped by the evolution of heterocyclic chemistry. By definition, the synthesis,
properties and various applications of heterocyclic compounds are the main subjects
covered by heterocyclic chemistry. Broadly, heterocyclic compounds, in other words
heterocycles, are defined as any class of organic chemical compounds characterized by
the fact that some or all of the atoms in their molecules are joined in rings containing at
least one atom of an element other than carbon.? Although there are many examples for
the incorporation of different elements as heteroatoms on the ring system, the most
commonly observed heteroatoms in heterocycles are nitrogen, oxygen and sulfur. Some

of the widely used heterocycles are given in Figure 1.



( 2

’ Oxygen-based heterocycles Sulfur-based heterocycles
.Nitrogen-based heterocycles ’ Multiple heteroatom heterocycles
S S
Furan 1,4-dioxane Thiophene  Tetrahydrothiopyran Pyrrolidine
Imidazole Pyrimidine Piperidine Morpholine Oxazole
\ J

Figure 1. Some of the widely used heterocycles in organic chemistry

Heterocyclic organic structures can be encountered both in natural and non-natural
products. In nature, such heterocycles are among the key structures for biological
systems. For instance, some vitamins such as thiamin (vitamin B;), riboflavin (vitamin
B,), nicotinamide (vitamin Bg3), pyridoxal (vitamin Bg) and ascorbic acid (vitamin C),
hormones, hemoglobin, enzymes and proteins which are essential to human life and
biological processes are composed of heterocyclic structures. Besides, the building
blocks of nucleic acids and three of amino acids- Proline, Tryptophan and Histidine- are

heterocyclic compounds (Figure 2).2

f i \
Os_N_ _NH, N | OH / |/’N N
Y NP NH N N
N7 OH \
. . OH O
Cytosine Pyridoxal O Allopurinol
(Vitamin By) Tryptophan

Figure 2. Heterocycles in biological systems



1.1.1 General Applications of Heterocyclic Compounds

Synthetic heterocyclic compounds can be designed for a broad range of applications.
They can be used as agrochemicals or veterinary products, in material science as
dyestuff or fluorescent sensors. These compounds can also act as organic conductors and
organic light-emitting diodes® (OLEDs)® (Figure 3)%’. Moreover, medicinal chemists
benefit extensively from heterocycles to develop new drugs against diseases. These
heterocycles are preferred to be utilized in a diverse array of applications due to their
ring stabilization, structural tunability and high degree of diversity. It is also possible to
derivatize or manipulate heterocycles easily by the addition of functional groups either
as substituents or as part of the ring itself.> Due to the fact that such heterocycles are
important compounds both biologically and industrially, not surprisingly, development
of new synthetic methodologies to obtain different heterocyclic compounds has gained

importance.

( )

S H 0 Br
N
N N
Cl o } Cl
c, N\
=

(Z£)-2-((1H-indol-3-yl)methylene)
hydrazinecarbothioamide

TZ o
Tz
Z
o

Chlorantraniliprole

(Fluorescent sensor) (Insecticide)

Figure 3. Heterocycles in different applications

1.2 Nitrogen-containing Heterocyclic Compounds in Drug Discovery

Heterocyclic organic compounds are mostly used in pharmaceutical and medicinal

chemistry. These heterocycles play a crucial role on drug chemistry, especially for the

3



synthesis of new medicinal drugs. The main reason of this preference is the rich activity

of heterocycles in biological systems.

According to a study, among 25-top selling pharmaceuticals in 2014, 12 of them contain
heterocyclic domains within their structures. Four of these drugs are shown in Figure 4.
Another result of this study indicates that almost all of these pharmaceuticals containing

heterocyclic structure have also at least one nitrogen atom.®

CI/Q\N
Cl K/)\I\/\/\Omo N4
H

Aripiprazole (Otsuka)
rank:1, sales: $6.42B
Treats: schizophrenia, bipolar disorder

-

Tiotropium bromide (Boehringer-Ingelheim, Pfizer)
rank: 15, sales: $4.72B
Treats: chronic obstructive pulmonary disease

o N7
oG
N " " N? O

Yo
Imatinib (Novartis) o /O/N\)ﬁ

rank: 14, sales: $4.75B
Treats: multiple cancers N
o) 7S
=

Rivaroxaban (Bayer)
rank: 23, sales: $3.68B

Treats: venous thromboembolism
4 J

Figure 4. Four of top-selling pharmaceutical drugs (in 2014) containing heterocyclic

domains

There is also another survey about the top selling 200 pharmaceutical drugs in the USA.

This study reveals that 92% of most selling 200 drugs contains at least one nitrogen



atom.? These studies do not only demonstrate the importance of heterocyclic compounds
in medicinal chemistry, but they also highlight the beneficial effects of the presence of
nitrogen atoms within heterocycles. In summary, it can be concluded that molecules
with heterocycles containing nitrogen are important compounds in organic and
pharmaceutical chemistry and they have a huge impact on the historical development of

drugs.

For many years, nitrogen containing heterocycles have been used to synthesize drugs to
combat diseases including fatal ones. These can be used as cholesterol reducing™®, anti-
inflammatory, anti-fungal, anti-hypertensive, therapeutic agents as well as for cancer
treatment.”> Some of the examples of widely known drugs composed of nitrogenous

heterocycles are given in Figure 5.

( N
HO N OH OH O
C1Q/\ \ Q 7 N/\/k/k/u\OH

N* N =
N= H
/
Ny NH &) O
N /

\N F
Losartan Atorvastatin
(Antihypertensive) (Cholestrol-reducing)
E

C)\\S’NHz
‘0 NN
N
N N F
F = OH
N’N
)
SN
Celecoxib Fluconazole Morphine
(Anti-inflammatory) (Antifungal) (Analgesic)
\ y,

Figure 5. Pharmaceutical drugs composed of nitrogenous heterocycles



1.3 Use of Azine N-Oxides in Pharmaceutical Chemistry

Even though nitrogen containing heterocyclic compounds take enormous place among
pharmaceuticals, having nitrogen on the ring system is not enough by itself to invent or
develop new drugs. Some modifications on heterocycles may be required in line with the
intended purpose to develop pharmaceutical drugs. By taking advantage of easy
manipulation of heterocycles, various types of effective drugs with desired properties
can be synthesized. One of the changes in the structure for nitrogen containing
heterocycles can be N-oxidation. With N-oxidation, biologically active compounds and
beneficial therapeutic agents can be obtained. Although heterocyclic N-oxides in
chemistry have drawn attention for many years, they have started to dominate drug
discovery recently. These heterocyclic N-oxides can be observed as either a part of a
drug or can be used as synthetic intermediates during the development of drugs (Figure

6)".

) g
T
1
o

H,N" ~N? NH, O ©
Minoxidil Chlordiazepoxide
L (Amti-alopecia) (Anti-anxiety, panic attack) )

Figure 6. Heterocyclic N-oxides as pharmaceutical drugs

Heterocyclic N-oxides, especially azine N-oxides, are common building blocks of
pharmaceuticals due to being bioactive compounds. For this reason, to find out new

methodologies for modification, derivatization or functionalization of azine compounds



has been risen subject. Actually, there are various effective methods to functionalize

nitrogen containing heterocycles.

1.4 Methods for Derivatization of Azine Components

In heterocyclic chemistry, cross-coupling reactions are one of widely used methods for

derivatization of azine components such as pyridine, quinoline or isoquinoline.*2*34
N N 2
N N
[ ) 1) Pd(OAc),, [ )
O K,CO;, >
CuCN
N ! . I\i N
Ik + 2 - 7
N X N X
N _ il
- D X=CLBr]l | —R
P
I A dioxane, 110°C
N.I"{I/ 2) Pd/C, NH,HCO,, MeOH
- or Pd/C, H,, NH,OH

N

Scheme 1. Cross-coupling reactions for derivatization of azine N-oxide derivatives with
aryl chlorides, bromides and iodides *°

Pyridine and pyridine-like azine components have electrophilic characteristics due to
their electron-deficient nature. Thus, they can react directly with aryl lithium reagents
which are strong nucleophiles.*® Similarly, aryl Grignard reagents can also react directly
with azine N-oxides as nucleophilic addition reaction.!’ In a collaborative work between
Almqvist research group and Acadia Pharmaceuticals Company reported in 2010,
pyridine N-oxide derivatives were shown to react efficiently with aryl Grignard reagents
to afford arylated pyridine products after treatment with trifluoroacetic anhydride

(Scheme 2)*8.



Ph 4-OMe-PhMgCl,
N THF, -40°C vinylMgCl, THF B
N7 AcOH, chloranil, MeOH, TFAA, | N7
(')— -40°C to rt o~ -40°C to rt o~

Scheme 2. Synthesis of substituted pyridines with Grignard reagents

In 2014, the studies of Aggarwal and co-workers showed that pre-activated pyridine and
quinoline derivatives reacted with chiral boronate complexes in an enantio-spesific and

diastereo-selective manner (Scheme 3) *°

Bpin Ar—Li Al Bpin + ©:/)\]

)\ e —— )\ Li
Ph™ Me THf, Ph™ Me Activator,
-78°C Temperature

syn anti

Scheme 3. Reaction of pre-activated quinoline derivatives with chiral boronate

complexes

A work published in 2015 by Antonchick and co-workers indicates that quinoline N-
oxide derivatives reacted directly with aryl boronic acid derivatives for arylation

reactions without being activated and in the absence of metal catalyst (Scheme 4) %

©\/ HO. ; R? __DMSO /
+
T 110°C le

H

Scheme 4. Arylation reaction between quinoline N-oxide derivatives with aryl boronic
acid

In addition to arylation reactions, alkylation and alkenylation reactions of pyridine N-

oxide derivatives were investigated in recent studies by the Cho and Bower research



groups (Scheme 5 and 6).%** Moreover, Janssen Research and Development Company

reported highly efficient amination reactions of pyridine N-oxides.??

W 7 i toluene, 80°C . SyISR’
N+ pinB~ ~Bpin ofuenc, N

O_

Scheme 5. Alkylation of pyridine N-oxide derivatives, pin=pinacol

120-140 °C
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Scheme 6. Alkenylation of pyridine N-oxide derivatives

Lastly, transformation of azine N-oxides to bromo- or chloro-azine derivatives via oxalyl
bromide and oxalyl chloride, respectively, was conducted by the researchers of Amgen

Biopharmaceutical Company in 2015 (Scheme 7).%

X (COX), R R?
e X
I(I\)I_ Et;N N7 X
X=Cl, Br

Scheme 7. Bromination or chlorination pyridine N-oxide derivatives

As it is seen in the above examples, most of the recent methods for the derivatization of
azine N-oxides have been explored and developed by different pharmaceutical
companies. This observation underscores the importance of such reactions for the

derivatization of azine compounds in drug development and pharmaceutical industry.



1.5 PyBroP as Activating Agent

In addition to aforementioned studies, pyridine and pyridine-like azine compounds can
be functionalized through the utilization of activating agents. In the absence of activating
agents, reactions usually require harsh conditions that generally result in low functional
group tolerance.®®*” On the other hand, activated N-oxides can be prepared via
activating agent and these pre-activated N-oxides can undergo reactions under milder

conditions compared to non-activated N-oxides derivative.

In the light of this information, pyridine and pyridine-like azine components are needed
to be strongly activated in order to react with many different nucleophiles under mild
conditions. For this purpose, in an ongoing research program of Pfizer, one of the
world’s largest research-based pharmaceutical companies, PyBroP
(Bromotripyrrolidinophosphonium hexafluorophosphate) was discovered to be highly
successful to activate azine N-oxide compounds and utilized in a myriad of synthetically

useful organic transformations (Scheme 8)%.

Vs

)
1 1 Z N 5 PF6
R\\ PyBroP R\\ Ly
E/j + H - E/j\ Br—P—N<:|
P ,N\ ~ /R3 |
N
R2

-0 25°C ( ;
44-95 % (__PyBroP
\_ J

Scheme 8. Amination reaction of pyridine N-oxide derivatives by using PyBroP as

activating agent
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In these studies, azine N-oxide components were initially activated by PyBroP and then,
reacted with 1° and 2° amines, silyl ketene acetals, phenol derivatives and various other
nucleophiles so that functionalized. Azine products were obtained in a single step.
28293031 1 addition, Londregan and co-workers reported in 2016 that activated azine N-
oxides could undergo addition reactions with non-phenolic aliphatic alcohols that
possess lower nucleophilicity (Scheme 9).3%** A general reaction scheme for the
derivatization of azine components via nucleophilic addition reaction under mild

conditions is given in Scheme 10.%

4 )
R! PyBroP, Rl
Z j ) N32CO3 or lPrzEtN //n
l + HO—R -
Q*N\ - CH,Cl,, 25°C x-N
(@)
Oug2
(. /

Scheme 9. Reaction between activated azine N-oxides and non-phenolic aliphatic

alcohols

PyBroP,

R

S iPr,EtN R\
Nucleophile + E+/ = > l/ﬁ
I(?)I _ CHyCL,25°C  Nuc” "N7

Scheme 10. Derivatization of azine N-oxides via nucleophilic addition reactions

Another study in which PyBroP was used as an activating agent was published in 2016
by Singh and co-workers.®* In this study, sulfoximine components were used as

nucleophile and N-azine sulfoximine products were obtained in high yields (Scheme 11).
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Scheme 11. Nucleophilic addition reactions of azine N-oxides using sulfoximine

components

As a result of these investigations using PyBroP, functionalization of heterocyclic
compounds with various nucleophiles can be achieved under mild conditions, which is a
noteworthy development because carbon-heteroatom bonds can be formed under metal
free conditions.>* Hence, environmentally friendly and metal-free reaction conditions for
derivatization of heterocycles have been developed. This type of reaction conditions has
been widely preferred among organic and pharmaceutical chemists due to the atom-

economical nature of these methods.

1.5.1 Other Activating Agents

In order to activate azine N-oxide derivatives, activating agents containing sulfonyl or
anhydride groups can be also used instead of PyBroP. For instance, TsCl, MsCl, Ts,0,

Ms,O and Tf,0 are among the commonly used activating agents (Figure 7).
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Figure 7. Various activating agents

A study by Amgen Biopharmaceutical Company shows that azine N-oxides activated by
TsCI can react with saccharine as the nucleophile and then, amino pyridine derivatives

can be obtained in high yields after acidic hydrolysis (Scheme 12)%®.

- - _
Rl R2 A | )
X Saccharin | . O aq HCl R R
e - N —wc LI
5 iPr,NEL, TsCl 08 80 °C N” > NH,
CH,Cl,, 0 °C 8

Scheme 12. Synthesis of amino pyridine derivatives by using TsCl as activating agents

Recently, there has been a growing interest among organic and pharmaceutical chemists
in the transformation of azine N-oxides to bromo- or chloro-azine derivatives. However,
traditional reagents used for this synthetic transformation such as POCI3, POBr3, SOCl,,
phosgene (COCI,), etc. either work with poor regioselectivity and low yields or require
harsh reaction conditions such as high temperature or excessive use of reagents. In a
collaborative work between Bristol-Myers Squibb Pharmaceutical Company and Scripps

Research Institute reported in 2013, azine N-oxides were shown to be transformed to
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bromo-azine derivatives under mild conditions. Rather than PyBroP, Ts,0 was preferred

in this work as the activating agent (Scheme 13)%.

CH,Cl,

R R

E\/ﬁ TBABI,Ts,0 \/ﬁ\
+ - > E _
N N Br
O -

Scheme 13. Bromination of azine N-oxide derivatives by using Ts,0 as activating agent

1.6 Traditional Methods for Derivatization of 2-methyl Azine Components

There exist a number of traditional methods for the derivatization of 2-methyl azine
compounds. For instance, protons of the -CH3 group in 2-methyl pyridine (2-picoline)
and related compounds have weak acidic character and one of the protons can be
abstracted using a strong base like n-BuLi. The picolinate anion formed this way has
nucleophilic and basic character, and thus, it can react with an appropriate electrophile to
yield a functionalized azine compound (Scheme 14).*" The requirement of having
cryogenic conditions and using air-sensitive and highly reactive bases can be considered

as the drawbacks of this synthetic methodology.

R n-BuLi, THF R
L e
N” CH, then, electrophile (E") N7~¢”

H,

Scheme 14. One of traditional methods for derivatization of 2-methyl azine N-oxide

derivatives

Another method for the benzylic functionalization of azine compounds is radical

bromination reaction using NBS. Although the synthesis of Ar-CH,Br compounds can
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be achieved in a single step, mono-bromo product is difficult to be obtained in high yield
due to the possibility of multiple halogenations. Usually, a mixture of mono-bromination
and multiple-bromination products is obtained in these reactions (Scheme 15)®. On the
other hand, NBS may not be used for reactions with complex molecules with other

functional groups due to the high reactivity of this brominating agent.

R Br

R
L, e CSls| O
P AIBN - r
N ~CH, N %’
2

N-bromosuccinimide

Scheme 15. Benzylic bromination reaction using NBS

1.7 Synthesis via Rearrangement Reactions

Functionalized or substituted pyridine or pyridine-like azine N-oxide derivatives can be
achieved either by rearrangement of N-oxides or by rearrangement of an alternative
heterocycle. The former is named as Boekelheide Rearrangement and the latter one is

Ciamician-Dennstedt Rearrangement.

1.7.1 Boekelheide Rearrangement

Boekelheide rearrangement is a rearrangement reaction of 2-alkylpyridine N-oxide and
related compounds. It is a frequently used method for functionalization of pyridine N-
oxide derivatives from the carbon substituent at the C-2 position under relatively mild
conditions.***° Basically, pyridine N-oxide is reacted with acetic anhydride. The first

step is oxygen acylation of N-O part in heterocycle. Then, a proton from the C-2
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position of pyridine N-oxide is abstracted. Following this step, a concerted [3, 3]-
sigmatropic shift can afford the rearranged azine product. Alternatively, a stepwise
mechanism has also been proposed for the rearrangement step. As shown in Scheme 16,
the leaving of the acetate (OAc’) would give an ion pair which can give the

rearrangement product upon recombination.**

Although acetic anhydride is the most commonly used anhydride for the Boekelheide
rearrangement, rearrangement can be also done by Ms,0 or Ts,0. These sulfonyl based
anhydrides can provide target products containing good leaving groups. Besides them,
trifluoroacetic anhydride (TFAA), phenyl acetic anhydride or trichloroacetic anhydride

can also be employed.*
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Scheme 16. Mechanism of Boekelheide rearrangement

In the literature, there are some important examples of Boekelheide rearrangement for
derivatization of 2-methyl azine N-oxides. When 2-methyl azine N-oxide compounds are
heated with acetic anhydride or trifluoroacetic anhydride, 2-acetoxymethyl or 2-
trifluoroacetoxymethyl azine derivatives can be obtained as products (Scheme 17).
Although these types of reactions are beneficial in organic chemistry, they have some
drawbacks. Primarily, acetic anhydride is used as solvent in this reaction rather than a
stoichiometric compound. Also, these types of reactions require high temperatures.

Secondly and more importantly, 2-acetoxymethyl or 2-trifluoroacetoxymethyl azine
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derivatives should be hydrolyzed in basic environment to get 2-hydroxymethyl
derivatives. Then, these 2-hydroxymethyl derivatives are needed to be re-activated for
derivatization with nucleophiles because they do not have enough electrophilic
character. As seen, these reactions require at least two-three steps which decrease the

atom economy of the whole sequence.

( )

(CH,C0),0 or

R R
\1 CF.CO),0 X
™ (CRE050 | |/j\ 0C(0)CX
[ [N C/ ( ) 3
O- H,

N* "CH; 60-90 °C

X:HorF

. J

Scheme 17. Derivatization of azine N-oxide derivatives by using with acetic anhydride
or trifluoroacetic anhydride

1.7.2 Ciamician-Dennstedt Rearrangement

Ciamician-Dennstedt rearrangement is a rearrangement for transformation of pyrroles to
3-halopyridines with dihalogen carbene in the presence of a strong base.***®*"*® This
method can also be extended to synthesize 3-halogen substituted quinoline derivatives
from indoles. In the mechanism, dihalocarbene is initially formed via a-elimination.
Then, formed dihalocarbene undergoes a cyclopropanation reaction with pyrrole
resulting in an intermediate named as 6,6-dihalo-2-azabicyclo[3.1.0]hexane. Afterwards,
ring expansion takes place to form 3-halogen substituted pyridine derivative (Scheme

18).*° Ciamician-Dennstedt reaction is commonly used to synthesize calixarenes

composed of pyrrole by making carbon bridge.*
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Scheme 18. Mechanism of Ciamician-Dennstedt rearrangement
1.8 Cross-Coupling Reactions for Drug Synthesis

Within the last two decades, cross-coupling reactions have become widely used and
predominant synthetic method in pharmaceutical chemistry due to the success of these
reactions and their broad substrate scope. Heck reaction which is one of the most
popular coupling reactions can be used for the synthesis of Taxol (anti-cancer drug)
(Figure 8).>! The strategic bond formation in morphine can be also done by Heck

coupling.®

Taxol

Anti-cancer drug
N\ v,

Figure 8. Taxol, as anti-cancer drug
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As mentioned under the title of Nitrogen containing Heterocyclic Compounds in Drug
Discovery, 12 top-selling drugs contain nitrogenous heterocycles. To emphasize the
common usage of coupling reactions in drug syntheses, two of top-selling drugs are
given as examples below, the synthesis of which were accomplished via Pd-catalyzed C-

N coupling reactions.

Aripiprazole, discovered by Otsuka Pharmaceutical, is ranked first among top-selling 25
pharmaceuticals. The synthesis of this medicine is carried out by a Pd-catalyzed
amination reaction.® The reaction between aryl bromide (1) and piperazine (1) is
performed by using Pd,(dba); as the Pd(0) source and BINAP as the ligand. Compound
Il1a can give Aripiprazole, while I11b should be converted to 1V in 2 steps. Ultimately,

Aripiprazole can be obtained via coupling reaction (Scheme 19).

e N
Cl H . Cl
3 Cl R N 2% sz(dba)3 Cl R _
Ia R=H 4 [ j 6% BINAP IIIa R=H
Ib R=0Bn IIIb R=0Bn
Br N NaOrBu N
H Toluene HN\)
I I 11| l
R=0Bn
H
O MO a "
eI oRasey.
Aripiprazole w K/N\@Cl
v OH

Scheme 19. Synthesis of Aripiprazole by Pd-catalyzed amination reaction

Imatinib, developed by Novartis, was the 14" top-selling drug in the world in 2014. In a
similar way, this can be also synthesized by taking advantage of a Pd catalyzed cross-

coupling reaction.>® First, aminopyrimidine (V) and aryl bromide (V1) are reacted in the
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presence of Pd-BINAP catalyst to give the C-N coupling product. With the help of
NaOtBu, HBr byproduct can be quenched. With the final coupling reaction, Imatinib is

synthesized (Scheme 20).

r | ~
|
N
NH, [Nj [ ]
\r Br N 1.3% Pd,(dba);CHCl,4 N
+ 5% BINAP
NaOr7Bu, xylene HN
HN 140 °C, 5h
o) O
A\ VI Imatinib
4 J

Scheme 20. Synthesis of Imatinib by Pd catalyzed cross-coupling reaction

Although cross-coupling reactions are commonly used methodologies for drug
development, they can bear certain disadvantages. The origin of these drawbacks can be
divided into two classes; geometrical and environmental. In 2009, a conceptually
important article entitled “Escape from Flatland: Increasing Saturation as an Approach
to Improving Clinical Success” was published by Lovering. As stated in this article,
cross-coupling reactions between two aryls have become the preferred method in drug
discovery due to their robustness and reliability. However, this situation resulted in
having libraries of “flat” compounds that are rich in sp? hybridized carbons rather than
sp®.>* In fact, active sites of proteins have 3-dimensional structures and it is claimed that
2-dimensional small molecules cannot interact with 3-dimensional active sites of
proteins well enough. Therefore, it is argued that clinical success may increase if
molecules whose biological activity is to be tested should have more sp* hybridized

carbons. As a result, the development of new synthetic methods for derivatization of
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heterocyclic compounds with carbons having sp* hybridization is expected to attract

more attention in the upcoming years.

Besides geometrical drawbacks of cross-coupling reactions, there are some
environmental issues. For cross coupling reactions, toxic heavy metals, especially Pd,
are used as catalysts. Even though these types of reactions provide target products in
high yields, using transition metals usually requires harsh conditions such as high
temperatures. In addition to this, toxic or hazardous solvents are often needed to obtain
desired products. Moreover, in some cases, excess amount of starting material is used to
get higher yields. To surmount these drawbacks, synthetic organic chemists have

focused on developing new safer and environmentally milder synthetic methodologies.*

1.9 One-Pot Synthesis

Recently, one-pot synthesis of target products, which avoid tedious purification
procedures of reaction intermediates, is considered as a better way in synthetic organic
and process chemistry due to minimization of waste. As a general term, one-pot
synthesis includes sequential transformations or formation of bonds in a single reaction
vessel. Basically, multi-step reactions can utilize from one-pot synthesis. There are two
main subclasses of one-pot synthesis which are domino and consecutive reactions,

respectively.”®>’

In domino reactions, more than one transformations or bond formations take place in
one-pot under the same reaction conditions without addition of other components. Thus,

each step occurs as a result of a transformation in the previous step. After all
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transformations are followed, desired product is obtained in a single reaction vessel

(Figure 9).>’

Consecutive reaction is also composed of a sequence of individual steps. In a
consecutive reaction, following the first transformation another component such as
reagent, catalyst or mediator is added to the reaction environment causing that a new
step takes place. Remarkably, each individual step can be carried at different
temperature. After the sequence of these individual steps, target product can be obtained

(Figure 9).%°

r ~N
Domino Reaction

Consecutive Reaction

J

Figure 9. Visualization of domino and consecutive reactions

In this context, the important thing to take into consideration is to design a reaction
method such that each reaction in the sequence has to be high yielding because the
formation of by products or side-products can lower the overall yield of the final
product. In this way, the amounts of such byproducts and side-products can be

minimized and the target product can be obtained in high yield.

In the literature, there are many examples including synthesis of organic compounds or
some hybrid materials via metal-free one-pot synthesis.®® Shindoh and co-workers
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developed a procedure to synthesize imidazopyrrolo-quinolines in one-pot by using
triflic imide and triflic acid catalysts.>® In the presence of Tf,NH as Bronsted acid
catalyst, V11 is reacted with V111 at 60 °C in dichloromethane for 24 h. Then, transfer of
hydrogen from X to VII takes place. With the help of Tf,NH, 1X is oxidized and X is

formed at the end of multi-steps (Scheme 21).

p \
1 ~ _
R\\ Tf,NH,
L N rEDG 60 °C, 24h
N | \—R2 | Povarov Reaction
A2 11 Z VIII
. EDG
15 examples R|\\ Hydrogen Transfer
19-64% Z 5 Oxidative Aromatization
R
X
L /

Scheme 21. Synthesis of imidazopyrrolo-quinolines in one-pot by using triflic imide and
triflic acid catalysts

Another example that demonstrates the efficiency of one-pot synthesis is by Cameron
and co-workers. 7-hyrdoxyquinoline was synthesized in one-pot procedure that operates
in four steps. At the first stage, intermediate XI was formed upon an aza-Michael
reaction, and stable acetal XII was obtained from conversion of intermediate XI by
EtOH. After this transformation, Friedel-Craft reaction, dehydration, oxidation and
detosylation reactions take place sequentially resulting in the formation of the target

product, 7-hydroxyquinoline (Scheme 22).°%%°
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Scheme 22. Synthesis of 7-hydroxyquinoline in one-pot

Compared to traditional methods, one-pot synthetic procedures constitute a more
efficient approach to obtain desired products by reducing the number of intermediate
steps. With the aid of one-pot strategy, costs of process, chemicals or equipment can be
reduced, energy and labor can be saved and most importantly, reaction times can be
shortened. In this way, more environmentally friendly, cleaner and safer methodologies
can be developed by minimizing chemical waste. As a result of all these factors,
drawbacks of traditional processes can be eliminated. Hence, complex target products
can be synthesized more economically and ecologically via one-pot methods in a short

period of time.>"®*

1.10 The Aim of This Work

The aim of this work is to develop a new synthetic methodology for the benzylic
amination reactions of 2-methyl azine N-oxide compounds under mild conditions. Given

the importance of such heterocyclic compounds in medicinal and agricultural chemistry
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as well as in organometallic chemistry as nitrogen-based ligands, an operationally-
simple and high-yielding method that works in a single step is expected to be of high
utility to organic chemists. This designed synthetic transformation has several
advantages compared to traditional methods. Firstly, this synthetic method supports the
transformation from azine N-oxide to functionalized form in one-pot, which is
economically and environmentally more favorable and feasible. Additionally, via
umpolung strategy, this method can be applied to nucleophiles which cannot be used in
other methods. It is expected that this developed strategy provide new opportunities for

organic synthetic chemists, especially medicinal chemists.

The initially designed mechanism of the benzylic amination reaction is given in Scheme
23. PyBroP is given in this scheme as a representative activating agent. According to
this design, first the activating agent is proposed to react with the azine N-oxide
derivative and activate it via transforming it into a more electrophilic species. In
addition, this activation would render the -CHj; protons more acidic such that a
moderately strong base would be able to deprotonate it. Afterwards, the nucleophilic
attack of a primary or secondary amine is expected to give the desired benzylic
amination product. This whole sequence has been designed to operate in a one-pot

manner so that the product would be obtained in pure form after single purification.

26



PF

|
S, 0
/ Z
fI.\I CH; N
o: O

PyBroP

P\Q@pm

CN—P—NG
N
PF,

-

B

R,NH'Br

R\\ A
O\/\fl&\_/ R?
CN—P—NG

Q P,
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As will be explained in detail in the Results & Discussions section, benzylic amination
reactions of azine N-oxide derivatives have been investigated in this study and a new
one-pot methodology has been developed. For this purpose, azine N-oxide compounds
were initially synthesized according to a literature procedure (Scheme 24). Then, an in-
depth optimization study was carried out screening a broad range of activating agents,
bases, solvents and temperatures. After the successful determination of optimal reaction
conditions, the substrate scope and functional group tolerance of the developed benzylic

amination reaction has been examined.

R\ R\ Activating Agent, Rl\ R2
XN m -CPBA NN Base | XN |
+_ > — P Ny
N CH, CH2C12 N CH3 then R?NHR? N R

Scheme 24. Two main sequential steps of this work
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CHAPTER 2

RESULTS & DISCUSSION

2.1 Internal Standard Method

During the optimization studies, reaction yields were determined by the application of
internal standard method via *H-NMR spectroscopy. This method is preferred among
synthetic chemists because it is a faster method compared to column chromatography
and there is no need for any individual experimental procedure for isolation or
purification. Hence, time can be saved effectively which is crucial for tedious
optimization studies. Without purification, yields after each reaction can be determined
by comparing peak areas of target product and the internal standard in the NMR

spectrum.®?

A typical procedure for the determination of reaction yield by internal standard method
is as follows: At the end of test reaction given in Scheme 26, an aqueous work-up is
carried out and after the removal of the organic solvent in vacuo, and 1,3,5-
trimethoxybenzene as the internal standard whose amount is equal to the starting
material 1 in terms of mmol was then added to the extracted crude mixture. The
resulting mixture was completely dissolved in CDCls. It should be noted that for the H-
NMR measurement, relaxation delay (D1) parameter was set to 10 sec to ensure accurate
integration values. At the end of the NMR measurement, the integral of singlet signal at

6.07 ppm that belongs to 1,3,5-trimethoxybenzene was adjusted as 3.00. Thus, the
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integral of doublet signal at 8.10 ppm belonging to benzylic amination product 8

provides the determination of the NMR yield of the targeted product.

In order to check the accuracy and reproducibility of this applied internal standard
method, purified product after amination reaction Compound 8 and 1,3,5-
trimethoxybenzene were mixed in 1:1 ratio in mmol. After *H-NMR measurement, the
integration of two determined signals (6.07 ppm and 8.10 ppm) satisfied the expected

values. Thus, the accuracy and reproducibility of this method was confirmed.

2.2 Optimization of Benzylic Amination Reaction

Initially, the benzylic amination reaction of quinaldine N-oxide with morpholine was
optimized. In this context, parameters such as activating agent, base, solvent, and
temperature were systematically investigated. Afterwards, parameters which resulted in
the highest yield under the mildest and economically most feasible conditions were
determined by using internal standard method via *H-NMR spectroscopy. At the end of
optimization studies, a new synthetic methodology was developed. With this new
methodology, azine N-oxide compounds including methyl group at the 2-position can be
transformed to functionalized azine compounds via umpolung (polarity inversion)
strategy in a single step. The targeted reaction for amination at benzylic position is given

below (Scheme 25).

|
Temperature (°C) 2N N
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1
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Scheme 25. The targeted reaction for amination at benzylic position
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2.2.1 Investigation of Activating Agents

Among parameters that were investigated for optimized conditions, activating agents
were considered first. Different types of commercially available activating agents were
examined comprehensively. Within this concept, reaction between quinaldine N-oxide
(1) and morpholine was chosen as the test reaction (Scheme 26). This reaction was
expected to give Compound 8 as the product in case of success. Morpholine was chosen
as nucleophile for two reasons. First, it is a common structural motif encountered in
medicinal chemistry. Second, since the -CH, groups attached to nitrogen and oxygen
atoms of morpholine have distinct chemical shifts, *H-NMR analysis of the targeted

product Compound 8 would be facilitated.

N
X 0 Activating Agent,

COL. o+ () 0™ ey 09
N "CH; N7 N
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8 J

Scheme 26. The benzylic amination reaction of quinaldine N-oxide with morpholine as

the test reaction for optimization

In accordance with this purpose, quinaldine N-oxide as the starting material of this test
reaction was synthesized from commercially available quinaldine (2-methylquinoline)
using m-CPBA. Initially, PyBroP was used as an activating agent in the test reaction
(Scheme 27), while various types of solvents, different bases and temperature values
from room temperature to 80°C were examined. Unfortunately, the formation of
Compound 8 could not be observed in any of these experiments. In each trial, unreacted

starting material quinaldine N-oxide (1) was recovered.
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Since PyBroP was not a successful activating agent for benzylic amination reaction,
other activating agents were systematically investigated (Table 1). Meanwhile, base,
solvent and temperature were kept constant as K,COs, MeCN and 80°C, respectively
(Scheme 27). Similar to the case of PyBroP, no target product formation was observed
when PhsPBr, was tested as activating agent (Table 1, Entry 2). This result is not
unexpected when the structural similarity of PhsPBr, to PyBroP is considered. On the
other hand, Compound 8 as the benzylic amination product was obtained in 81% yield
when TsCl was used as activating agent (Entry 3). It was observed that reaction yield
decreased to 71% with the use of MsCI rather than TsCl (Entry 4). When N-oxide
compound reacts with TsCl or MSsCI, chloride (CI_) anion is formed. In order to
investigate the effect of the counter anion on reaction yield, Ts,O and Ms,O were also
tested as activating agents in the optimization studies. When the reaction was tested
using Ts,0 and Ms;0, the amination product 8 was obtained in 70% and 67% vyield,
respectively (Entries 5 and 6). These results show us that, while still active, Ts,O and
Ms,0 have slightly lower performance compared to TsCl and MsCI. In addition to these
experiments, Tf,0, which is more electron deficient, was investigated but only 7% yield

was achieved (Entry 7).

Although the reactions mentioned above were carried out under an inert atmosphere of
nitrogen, to ensure the absence of unwanted water vapor or moisture, the test reaction
was conducted using 4A molecular sieves and TsCl was used as activating agent. The
yield of this reaction was found to be 80% yield which means that the presence of
molecular sieves did not provide additional advantage (Table 1, Entry 8). Consequently,

TsCl was selected to be the activating agent for benzylic amination reaction because of
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the fact that it gave the highest yield among the ones investigated. It is economically

more feasible than others as well.

0)
~ Activating Agent A (\0
N“>cH, T g AN
3 N K,CO;, MeCN, N

B 80°C

- O-

Scheme 27. The test reaction for screening of activating agents

Table 1. Screening of various activating agents

Entry ® Activating Agent Yield (%)°
1 PyBroP No product formation
2 PhsPBr; No product formation
3 TsClI 81
4 MsCI 71
5 Ts,0 70
6 Ms,0O 67
7 T1,0 7
8 TsCI © 80

% In these experiments, 0.31 mmol of quinaldine N-oxide (1.0 equiv.), 0.37 mmol of activating agent (1.2
equiv.), 0.68 mmol of K,CO; (2.2 equiv.), 0.47 mmol of morpholine (1.5 equiv.) and 2.0 ml of MeCN were
used.

b Yields were determined by internal standard method via "H-NMR spectroscopy. 1,3,5-trimethoxybenzene was
used as internal standard.

c . . . .
In this experiment, activated 4A molecular sieves were used.
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2.2.2 Investigation of Base, Solvent and Temperature

After determining TsCl as the activating agent, base, solvent and temperature parameters
were also investigated. First of all, different organic amine bases and inorganic bases
were tested for the targeted reaction (Scheme 28). Among K,CO3, Na,CO3 and K3POy as
the inorganic bases tested, K,CO3 gave the highest yield, 81% vyield, when solvent and
temperature were kept constant as MeCN and 80°C, respectively (Table 2, Entries 1-3).
When CH,CIl, was used as solvent rather than MeCN, reaction was carried out at 35°C.
As compared to reaction in MeCN at 80°C, yield was observed to rise from 81% to 90%

(Entry 4).

Following this successful outcome, TsCl and K,COj3 were kept constant and the effects
of several solvents on the yield of targeted reaction were examined. THF, toluene,
PhCF;, 2-MeTHF and TBME were screened as reaction solvents, and all gave lower
yields compared to CH,Cl, (Table 2, Entries 5-10). Thus, CH,Cl, was chosen as optimal

solvent. With this choice, temperature was also determined as 35°C.

Finally, the effect of different bases on the yield was checked again with the determined
conditions which are TsCl as activating agent, CH,Cl, as solvent and 35°C as
temperature. Among the organic amine bases, the yield of amination product using EtsN
was 60%, while Hiinig’s base and DBU performed poorly, <5% and 13% yield,
respectively (Table 2, Entries 11-13). This way, it was decided that K,CO3 would be the

preferred base for optimized conditions.

33



N Base, Solvent,
Temperature (°C)

X O

L, + ) — ™ O Y
N“CH; NN
O_
1 8

Scheme 28. The test reaction for screening of bases, solvents and temperatures

Table 2. Screening of bases, solvents and temperatures

Entry 2 Base Solvent  Temperature(°C)  Yield(%)"
1 K>CO3 MeCN 80 81
2 Na,COs MeCN 80 61
3 K3POy4 MeCN 80 76
4° K>CO3 CH,Cl, 35 90
5 K>CO3 THF 35 64
6 K,COs3 Toluene 35 27
7 K>,CO3 PhCF; 35 62
8 K>,CO3 PhCF; 60 53
9 K>,CO3 2-MeTHF 60 34
10 K>,CO3 TBME 35 27
11 EtsN CH,CI, 35 60
12 Hiinig’s Base CH,Cl, 35 <5
13 DBU CH,CI, 35 13

% In these experiments, 0.31 mmol of quinaldine N-oxide (1.0 equiv.), 0.37 mmol of activating agent (1.2
equiv.), 0.68 mmol of base (2.2 equiv.), 0.47 mmol of morpholine (1.5 equiv.) and 2.0 ml of solvent were used.
b Yields were determined by internal standard method via "H-NMR spectroscopy. 1,3,5-trimethoxybenzene was
used as internal standard.

“In this experiment, 0.31 mmol of quinaldine N-oxide (1 equiv.), 0.43 mmol of activating agent (1.4 equiv.),

0.78 mmol of K,CO; (2.5 equiv.), 0.62 mmol of morpholine (2.0 equiv.) and 2.0 ml of CH,CI, were used.
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During these optimization studies, equivalents of reagents were also modified depending
on which conditions gave the highest yield. At the end, optimized conditions with
modified equivalents were determined as 0.31 mmol of quinaldine N-oxide (1.0
equivalent), 0.43 mmol of activating agent (1.4 equivalent), 0.78 mmol of K,CO3 (2.5

equivalent), 0.62 mmol of morpholine (2.0 equivalent) and 2.0 ml of CH,Cl..

When the reaction was carried out under the optimized conditions, benzylic amination
product 8 was obtained in pure form in 82% vyield after column chromatography
(Scheme 29). Detailed characterization of product was done by using various
spectroscopic techniques such as *H-NMR and *C-NMR spectroscopy, FTIR and
HRMS. The optimized conditions were used in the subsequent section in which the

substrate scope of the reaction was examined.

+

CH,Cl,, 35°C

X )
3 N z
N N
8

= O-Z

Scheme 29. The optimized conditions for the benzylic amination reaction

2.3 Substrate Scope

In this section, a detailed substrate scope research was undertaken for the benzylic
amination reaction the optimized conditions of which were determined as described in
the previous section. (Scheme 29) Both electrophilic azine N-oxide derivatives and

different nucleophilic components of the reaction were studied.
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2.3.1 Preparation of Azine N-Oxide Derivatives

In this part, morpholine was used as the nucleophilic component and various types of
azine N-oxide derivatives were investigated. Initially, different azine N-oxides were
synthesized from commercially available quinaldine derivatives having different
substituents using m-chloroperbenzoic acid (m-CPBA) as the oxidizing agent (Scheme
30). The syntheses of these compounds were explained in detail in the experimental
section and the yields provided are the reaction yields after purification by silica gel
column chromatography. The characterization of all products have been performed by

FTIR, 'H- and **C-NMR spectroscopy and high-resolution mass spectrometry (HRMS).

As indicated in Figure 10, Compound 1 without any substituent was synthesized in 93%
yield starting from the commercially available quinaldine (2-methylquinoline). Also, N-
oxide derivatives having bromine or methoxy groups at the 6- position were obtained in
high yields (95% and 92%, respectively). The importance of Compound 2 is that after
the benzylic amination reaction, Ar-Br moiety of Compound 2 can be used as a
functional handle to be utilized in Suzuki- Miyaura cross coupling reactions for further
functionalization.®® Besides, the aim of the synthesis of Compound 3 is to test whether
the developed amination reaction would be successful with an electron-rich quinaldine
N-oxide derivative as the methoxy substituent is an electron donating group. Moreover,
azine N-oxide product of 4-chloroquinaldine was synthesized in 96% yield. There are
two main reasons for the preparation of 4-chloroquinaldine N-oxide (4). First, chlorine,
being an electron withdrawing substituent, is expected to render the aromatic N-oxide
electron deficient, and this would allow us to test the success of our methodology with

an electron deficient substrate. Second, the benzylic amination product of this substrate
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would be capable of undergoing an SNAr reaction with another nucleophile from the 4-
position and therefore, would have the potential to get functionalized further. 1-
methylisoquinoline N-oxide (5) was synthesized in 85% yield. The doubly Boc protected
of 4-amino quinaldine was also converted successfully to its N-oxide, and Compound 6
was obtained in 81% vyield. Given the importance of dimethylaminopyridine (DMAP)
analogues in organic synthesis, the benzylic amination of Compound 6 can be converted
to quinoline-based DMAP-type analogues after the deprotection of —Boc groups.
Finally, Compound 7 was synthesized starting from 3-methylisoquinoline in 96 yield%.
The investigation of Compound 5 and Compound 7 in the benzylic amination reactions
would allow us to make a comparison in the reactivities of isoquinoline and quinoline

substrates.

R R
E\\ m-CPBA E\j
> +
N” CH, CH,(Cl, N “CH;
-

Scheme 30. The synthesis of different azine N-oxides
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Figure 10. Synthesized azine N-oxides
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In addition to these achievements, there was an unsuccessful attempt to prepare 8-
chloroquinaldine N-oxide (21). Surprisingly, the treatment of the commercially available
8-chloroquinaldine with m-CPBA using the standard conditions did not provide the
desired N-oxide product (21) (Figure 11). This unexpected result can be explained by the
enhanced steric hindrance on the nitrogen imparted by the chlorine at the 8- position and

—CHj3 group at the 2- position so that m-CPBA cannot approach the nitrogen for oxygen




Besides, to widen substrate scope for electrophilic components, 2-methyl pyridine N-
oxide (picoline N-oxide) 22 (Figure 11) was purchased from Alfa Aesar and tested

directly in the benzylic amination reaction.

4 a
AN X
+ - O\
Cl O~ O-
21 22
. J

Figure 11. Chemical structures of 8-chloroquinaldine N-oxide (21) and 2-methyl
pyridine N-oxide (22)

The reaction between azine derivatives and m-CPBA to give azine N-oxide products can
be best described as an oxygen transfer reaction. A plausible mechanism for this
oxidation reaction is shown below (Scheme 31). After the oxygen is transferred from m-
CPBA to azine derivative, m-chlorobenzoic acid is formed as a stoichiometric

byproduct.
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Scheme 31. Oxidation reaction between azine N derivatives and m-CPBA



2.3.2 Screening of Azine N-Oxide Derivatives in the Benzylic Amination

Reaction

After the synthesis of azine N-oxide derivatives to be used as reactants in the benzylic
amination reactions, their reactions with morpholine were carried out under the
optimized conditions (Scheme 32). The results obtained are given in Figure 12.
Compound 8 was obtained as the product of the reaction between quinaldine N-oxide
and morpholine in 82% isolated yield. For azine N-oxide derivatives having —Br and —
OMe substituent at the 6-position, benzylic amination products Compound 9 and
Compound 10 were obtained in 66% and 47%, respectively, after purification by column
chromatography. As a result of these yield values, it can be argued that an electron
donating group on quinoline ring such as methoxy group can slightly reduce the reaction
yield. When chloro-substituted N-oxide derivative (4) was subjected to the reaction
conditions, benzylic amination product Compound 11 was isolated in 69% yield.
Moreover, isoquinoline-based N-oxide reactant (5) afforded the amination product
Compound 12 in 53%. This result shows that the newly developed amination protocol
has the potential to be extended beyond isoquinolines to other heterocyclic ring systems.
Finally, when the doubly Boc-protected aminoquinoline N-oxide derivative (6) was
reacted with morpholine, amination product (13) was isolated successfully, albeit in a

slightly lower yield (40%).
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Scheme 32. Benzylic amination reactions of different azine N-oxides with morpholine
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Figure 12. Products of different azine N-oxides after benzylic amination reactions with

morpholine

As explained above, quinaldine N-oxide derivatives and 1-methylisoquinoline N-oxide
gave successful results with newly developed benzylic amination reaction. However,
when 3-methylisoquinoline N-oxide (7) was subjected to the same reaction conditions,
no amination product was obtained. Afterwards, pyridine based N-oxide compounds

were desired to be investigated within the substrate scope. For this purpose,
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commercially available 2-methylpyridine N-oxide 22 (Scheme 33) was reacted with
morpholine under optimized conditions. However, targeted product could not be
obtained under the optimized conditions and starting N-oxide was recovered intact
(Scheme 33). Although different solvents and temperatures were tested to overcome this
issue, Compound 23 could not be formed. These results show the limitations of the

current methodology.

N
A Q)
| + 4 [ j TSCI, K2C03 . Q/(\O
H
I(I\)I C 3 N/ N
23

N CH,Cl,, 35°C

L not-observed y

Scheme 33. Benzylic amination reaction of 2-methylpyridine N-oxide with morpholine

2.3.3 Screening of Nucleophilic Amines in the Benzylic Amination Reaction

In the previous section, different azine N-oxide derivatives were reacted with
morpholine to investigate electrophilic components of the substrate scope. In this part,
different nucleophilic components were investigated in depth. Firstly, quinaldine N-
oxide was kept constant as the electrophilic component and amine-based nucleophiles
were tested. Various amine bases were reacted with quinaldine N-oxide for benzylic
amination under the optimized conditions (Scheme 34). The results obtained are given in
Figure 13. In the first stage of this part, piperidine and N-Boc piperazine which have
both 6- membered rings were investigated as nucleophilic amines in order to make a
direct comparison with morpholine. Gratifyingly, the product of piperidine addition to
quinaldine N-oxide (14) was obtained in pure form in 76% yield. N-Boc piperazine was

synthesized starting from as described in a literature procedure.®* Reaction of N-Boc
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piperazine with quinaldine N-oxide using the standard reaction conditions gave
amination product 17 in 72% vyield. Imidazole was tested as a heteroaromatic
nucleophile in the amination reaction. We were pleased to obtain the desired amination
product 16 in 61% vyield after purification. Other than these, pyrrolidine and diethyl
amine which are also secondary amines were tested in benzylic amination reaction. The
yields after column chromatography were determined as 62% (15) and 73% (18),
respectively. While cyclohexyl amine, which is cyclic and a primary amine performed
with 46% yield (19), benzylic amination product of a-methyl benzyl amine (20) was
obtained in 64% yield. From these observations, it can be concluded that secondary
amines are higher yielding substrates compared to primary amines due to their higher

nucleophilicity.

+_~ » _ N

CH,Cl,, then R'INHR?
0 35°C

4

Scheme 34. Benzylic amination reactions of quinaldine N-oxide with different amines
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Figure 13. Products of quinaldine N-oxide after benzylic amination reactions with

various amines

2.4 Scalability of Benzylic Amination Reaction

Within the last few years, special attention is given to the scalability of newly developed
synthetic methodologies. Following the successful investigation of the substrate scope of
the benzylic amination reaction, we next opted to investigate the scalability of this
method. To this end, reaction scale was increased up to 10.0 mmol. Benzylic amination
reaction between quinaldine N-oxide (1.59 g) and morpholine (1.80 ml) was carried out

under the optimized conditions (Scheme 29).
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Scheme 35. The optimized conditions for the benzylic amination reaction

After purification by column chromatography, amination product 8 was obtained in 64%
yield (1.46 g). In order to ensure the reproducibility of this reaction at large scale, it was
conducted a second time. Similarly, yield of the product was determined as 63% (1.44 g)
after column chromatography. Even though the yield at large scale was lower (64%) as
compared to yield at small scale (82%, 0.31 mmol scale), these results demonstrate that
the newly developed method can be successfully applied in gram scale in a reproducible

manner.
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CHAPTER 3

EXPERIMENTAL

3.1 Experimental Details

3.1.1 Methods and Materials

All the experiments in this work were conducted under nitrogen atmosphere with the use
of Schlenk line. Glassware were dried in oven before the experiment. Chemicals for the
experiments were purchased from Acros, Merck, TCI, Sigma-Aldrich, Alfa Aesar, and
Carlo Erba and they used without further purification. Reactions were monitored by thin
layer chromatography (TLC) using Merck TLC silica gel 60 A F254. For TLC
visualization, either KMnO4 solution or UV lamp (254 nm) was used. Purification was

done by flash column chromatography using GemChem 40-63 um silica gel. All organic

extracts were dried over Na,SO,4 and concentrated under reduced pressure.

'H-NMR and *C-NMR spectra were recorded on Bruker DPX 400 spectrometer in
CDCls. For calibration of *H-NMR spectra, either the signal of internal standard which
is tetramethylsilane (TMS) as 0 ppm or the signal of CDCl3 as 7.26 ppm was used. The
signal resulting from CDCl; was calibrated as 77.16 ppm for *C-NMR spectra.
Chemical shifts (8) were reported in parts per million (ppm) and the coupling constants
(J) were in Hertz (Hz). Spin multiplicities were indicated as the following: s (singlet), d
(doublet), t (triplet), m (multiplet), quint (quintet), dd (doublet of doublet), dt (doublet of
triplet), and ddd (doublet of doublet of doublet). HRMS data were acquired on Agilent

Technologies 6224 TOF LC/MS. For FTIR spectra, Bruker ATR spectrometer was used.
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3.2 Synthesis of Azine N-Oxides

3.2.1 General Procedure |

R R
E\ﬁ\ m-CPBA E\ﬁ\

N”CH;

Scheme 36. The synthesis of different azine N-oxides

Quinaldine (2-methylquinoline) or methylisoquinoline derivative (1.50 mmol) was
dissolved in 10 ml of CH,Cl,. It was cooled down to 0°C and stirred for 15 minutes.
Then, m-CPBA (1.65 mmol, 70-75% pure) was added as solid as carefully. The resulting
solution was stirred for 22 hours at room temperature. After 22 hours, 10 ml of saturated
NaHCO;3 solution was added to the reaction mixture and the aqueous solution was
extracted three times with CH,Cl,. The combined organic phase was washed once with
brine (15 ml). It was then dried over Na,SO,, filtered and concentrated under reduced
pressure. Purification of the product was performed by flash column chromatography

using silica gel.®

Compound 1

X
+/
N”>CH,

| -
O

N-oxide derivative 1 was prepared according to General Procedure | using quinaldine
(2.00 g, 14.0 mmol), m-CPBA (3.656 g, 15.4 mmol) and 100 ml of CH,Cl,. Purification

by flash column chromatography (5% MeOH in EtOAc, 7.5% MeOH in EtOAc, 10%
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MeOH in EtOAc and then 12.5% MeOH in EtOAc) gave pure N-oxide product 1 as a

pale yellow solid (2.064 g, 93% yield).

R¢ = 0.20 (MeOH: EtOAc, 1:19)

'H NMR (400 MHz; CDCl;) &: 8.68 (L H, d, J = 8.8 Hz), 7.70 (1 H, d, J = 8.1 Hz), 7.62
(1 H, ddd, J = 8.4, 7.0 and 1.4 Hz), 7.51 (1 H, d, J = 8.5 Hz), 7.46 (1L H, dt, J = 7.0 and
1.1 Hz), 7.16 (L H, d, J = 8.5 Hz), 2.61 (3 H, 5)

13C NMR (100 MHz; CDCl3) §: 145.5, 141.4, 130.0, 129.1, 127.9, 127.5, 124.8, 122.8,
119.3, 18.6

IR vmax, (ATR, solid)/cm™ 3064, 3045, 3001, 2986, 2953, 2919, 1565, 1512, 1554, 1425,
1333, 1271, 1240, 1214, 1202

HRMS (ESI) calculated C1gH10NO [M+H]* 160.0757, observed 160.0763

Compound 2
RSO
II\+I/ CH,
O

N-oxide derivative 2 was prepared according to General Procedure | using 6-
bromoquinaldine (1.00 g, 4.5 mmol), m-CPBA (1.179 g, 4.95 mmol) and 50 ml of
CH,Cl,. Purification by flash column chromatography (5% MeOH in EtOAc, then 7.5%
MeOH in EtOAc) gave pure N-oxide product 2 as a pale yellow solid (1.023 g, 95%

yield).

R¢ = 0.23 (MeOH: EtOAc, 1:19)
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'H NMR (400 MHz; CDCl3) 8: 8.62 (1 H, d, J = 9.2 Hz), 7.96 (1 H, d, J = 2.0 Hz), 7.77
(1H,dd, J=9.3and 2.1 Hz), 7.52 (L H, d, J = 8.6 Hz), 7.31 (1 H, d, J = 8.6 Hz), 2.67 (3
H, s)

BC NMR (100 MHz; CDCls3) &: 146.2, 140.5, 133.6, 130.5, 130.1, 124.3, 123.7, 122.2,
121.7,18.8

IR vmax. (ATR, solid)/cm'1 3057, 3034, 1557, 1504, 1446, 1324, 1303, 1238, 1144, 910,
885, 807

HRMS (ESI) calculated C1gHgBrNO [M+H] * 237.9862, observed 237.9869

Compound 3

H,CO N
L
N“>CH,

| _
O

N-oxide derivative 3 was prepared according to General Procedure | using 6-
methoxyquinaldine (300 mg, 1.7 mmol), m-CPBA (452 mg, 1.9 mmol) and 19 ml of
CH,Cl,. Purification by flash column chromatography (5% MeOH in EtOAc, 7.5%
MeOH in EtOAc and then 10% MeOH in EtOAc) gave pure N-oxide product 3 as a pale

yellow solid (302 mg, 92% vyield).

Rf = 0.17 (MeOH: EtOAc, 1:19)

'"H NMR (400 MHz; CDCls) &: 8.65 (1 H, d, J = 9.5 Hz), 7.49 (1 H, d, J = 8.5 Hz), 7.32
(1H,dd, J=9.5and 2.7 Hz), 7.22 (L H, d, J = 8.6 Hz), 7.04 (1 H, d, J = 2.7 Hz), 3.89 (3
H, s), 2.64 (3H,s)

3C NMR (100 MHz; CDCls) §: 158.8, 143.7, 137.4, 130.6, 124.2, 123.5, 122.3, 121.3,
106.0, 55.7, 18.5
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IR vimax. (ATR, solid)/cm™ 3056, 2964, 2931, 1615, 1571, 1513, 1474, 1434, 1332, 1317,
1221, 1202, 1031, 1009

HRMS (ESI) calculated C1;H1,NO, [M+H] * 190.0863, observed 190.0863

Compound 4

N-oxide derivative 4 was prepared according to General Procedure | using 4-
chloroquinaldine (266 mg, 1.5 mmol), m-CPBA (393 mg, 1.65 mmol) and 10 ml of
CH,Cl,. Purification by flash column chromatography (5% MeOH in EtOAc, then 7.5%
MeOH in EtOAc) gave pure N-oxide product 4 as a pale yellow solid (279 mg, 96%

yield).

Rf = 0.21 (2% MeOH in EtOAC)

'H NMR (400 MHz; CDCl3) é: 8.77 (L H, d, J = 8.7 Hz), 8.14 (1 H, d, J = 8.4 Hz), 8.78
(L1H,t,J=8.4Hz),7.67 (1H,t,J=82Hz),7.39 (1H,s),2.67 (3H,5)

3C NMR (100 MHz; CDCls) 8: 145.7, 142.3, 131.1, 129.1, 128.6, 126.9, 125.1, 122.9,
120.2, 18.7

IR vmax. (ATR, solid)/cm™ 3033, 3021, 1584, 1561, 1505, 1331, 1267, 1229, 1138, 1101

HRMS (ESI) calculated C1oHgCINO [M+H] * 194.0367, observed 194.0376
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Compound 5

A
/+N\O_

CH,4

N-oxide derivative 5 was prepared according to General Procedure | using 1-
methylisoquinoline (127 mg, 0.887 mmol), m-CPBA (232 mg, 0.976 mmol) and 10 ml
of CHCl,. Purification by flash column chromatography (10% MeOH in EtOAc, 12.5%
MeOH in EtOAc and then 15% MeOH in EtOAc) gave pure N-oxide product 5 as a pale

yellow solid (119 mg, 85% yield).

R = 0.20 (MeOH: EtOAc, 1:19)

'H NMR (400 MHz; CDCls) &: 8.19 (1 H, d, J = 7.1 Hz), 7.91 (1 H, d, J = 8.5 Hz), 7.73
(1H,d, J=79Hz),7.61(1H,dtJ=7.0and 1.4 Hz), 7.54 (1 H, ddd, J = 8.1, 7.1 and
1.2 Hz), 7.50 (L H, d, J = 7.2 Hz), 2.86 (3 H, )

13C NMR (100 MHz; CDCl3) &: 145.7, 136.5, 129.1, 129.0, 128.8, 128.5, 127.4, 124.1,
121.9, 13.0

IR vmax, (ATR, solid)/cm™ 3046, 2923, 2852, 1601, 1557, 1503, 1394, 1325, 1270, 1212,
1145

HRMS (ESI) calculated C1o0H10NO [M+H] * 160.0757, observed 160.0758

Compound 6

Boc Boc

Z<r /;—Z

CH,

o_
1



Before the synthesis of N-oxide derivative 6, tert-butyl (2-methylquinolin-4-yl)
carbamate was synthesized according to a procedure given in the literature.® To a
solution of 4-amino-2-methylquinoline (1.00 g, 6.32 mmol) in THF (30 ml) was added
(Boc),0 (2.759 g, 12.64 mmol), triethylamine (2.12 ml, 15.16 mmol) and DMAP (4-
dimethylaminopyridine) (77 mg, 0.632 mmol). The reaction mixture was stirred at room
temperature overnight then quenched with water (50 ml) and extracted with EtOAc
(3x50 ml). The combined organic phase was washed with brine, dried over Na,SO,,
filtered and concentrated under vacuum. Double protected 4-aminoquinaldine (24)
(1.5861 ¢, 70% vyield) was purified by silica gel column chromatography (1:2

EtOAc:Hexane).

Boc\N,Boc

5@l
N7 CH,

24

N-oxide derivative 6 was prepared according to General Procedure | using double
protected 4-aminoquinaldine 24 (400 mg, 1.12 mmol), m-CPBA (292 mg, 1.23 mmol)
and 20 ml of CH,Cl,. Purification by flash column chromatography (only EtOAc) gave

pure N-oxide product 6 as a yellow solid (338 mg, 81% yield).

Rt = 0.35 (1% MeOH in EtOAc)

'H NMR (400 MHz; CDCls) &: 8.78 (1 H, dd, J = 8.9 and 0.8 Hz), 7.79-7.74 (2 H, m),
7.63 (1 H, ddd, J= 8.4, 6.8 and 1.2 Hz), 7.17 (1L H, s), 2.72 (3 H, s), 1.32 (18 H, 5)

BC NMR (100 MHz; CDCls3) 8: 150.8, 146.1, 142.3, 133.4, 130.6, 128.4, 126.9, 122.9,

122.7,120.2, 84.0, 27.9, 19.0
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IR vimax. (ATR, solid)/cm™ 3074, 2978, 2935, 1780, 1395, 1366, 1326, 1279, 1254, 1225,
1154, 1099, 961, 850, 777, 454

HRMS (ESI) calculated CyoH27N,05 [M+H] * 375.1914, observed 375.1911

Compound 7

~-CHs

+
/N\ -

O

N-oxide derivative 7 was prepared according to General Procedure | using 3-
methylisoquinoline (300 mg, 2.1 mmol), m-CPBA (549 mg, 2.31 mmol) and 20 ml of
CH,Cl,. Purification by flash column chromatography (10% MeOH in EtOAc, then
12.5% MeOH in EtOAc) gave pure N-oxide product 7 as a pale yellow solid (320 mg,

96% yield).

R¢ = 0.10 (2% MeOH in EtOAc)

'H NMR (400 MHz; CDCls) &: 8.68 (1 H, s), 7.54-7.48 (2 H, m), 7.45 (1 H, s), 7.37-
7.35 (2 H, m), 2.49 (3 H, s)

13C NMR (100 MHz; CDCls) §: 145.0, 135.4, 128.3, 127.9, 127.7, 127.5, 125.1, 123.7,
122.4,17.0

IR vmax, (ATR, solid)/cm™ 3220, 3050, 2923, 2851, 1670, 1636, 1604, 1450, 1315, 1097,
891, 758, 679, 470, 434

HRMS (ESI) calculated C10H1o0NO [M+H]* 160.0757, observed 160.0758

53



3.3 Benzylic Amination of Azine N-Oxide Derivatives

3.3.1 General Procedure 11

1 1
2
Rﬁ\ﬁ\ K,CO3, TsCl RE\IH‘
NG CH, CH,Cl,, then R*NHR? RSN N\R3

O- 35°C

Scheme 37. Benzylic amination reactions of different azine N-oxides with different

nucleophiles

Azine N-oxide derivative (0.31 mmol) was dissolved in anhydrous CH,Cl, (2.0 mL) at
room temperature under nitrogen atmosphere. After the addition of K,COj3 (0.78 mmol),
the reaction mixture was cooled down to 0 °C in an ice-water bath. After five minutes,
TsCl (0.43 mmol) was added, and it was stirred for five more minutes at this
temperature. The cooling bath was removed, and the reaction mixture was stirred at
room temperature for 5 hours. The nucleophilic amine (0.62 mmol) was then added, and
the reaction mixture was stirred at 35 °C for 18 hours. After the mixture was cooled
down to room temperature, water (4 mL) was added and the aqueous phase was
extracted three times with CH,Cl,. The combined organic phase was dried over Na,SQOy,
filtered and concentrated under reduced pressure. Purification of the product was

performed with flash column chromatography using silica gel.
Compound 8
L
NN

Amination product 8 was prepared according to General Procedure Il using quinaldine

N-oxide 1 (200 mg, 1.26 mmol), K,CO3 (428 mg, 3.1 mmol), TsCl (332 mg, 1.74
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mmol), morpholine (224 pl, 2.52 mmol) and 8 ml of CH,Cl,. Purification by flash
column chromatography (MeOH: EtOAc 1:19) gave pure product 8 as a yellow oil (234

mg, 82% yield).

This reaction was also performed in 10.0 mmol scale following General Procedure 1l
using quinaldine N-oxide 1 (1.59 g, 10.0 mmol), K,CO3 (3.46 g, 25.0 mmol), TsCl (2.67
g, 14.0 mmol), morpholine (1.80 ml, 20.0 mmol) and 40 ml of CH,Cl,. Purification by
flash column chromatography (MeOH: EtOAc 1:19) gave pure product 8 as a yellow oil

(1.464 g, 64% vyield).

R¢ = 0.39 (MeOH: EtOAc, 1:19)

'H NMR (400 MHz; CDCl3) &: 8.11 (L H, d, J = 8.5 Hz), 8.07 (1 H, d, J = 8.5 Hz), 7.78
(1H,d,J=8.1Hz),7.68 (1 H, ddd, J =8.4,6.9and 1.4 Hz), 7.62 (L H, d, J = 8.4 Hz),
7.50 (1 H, ddd, J = 8.1, 7.0 and 1.0 Hz), 3.83 (2 H, s), 3.73 (4 H, t, J = 4.7 Hz), 2.55 (4
H, t, J = 4.6 Hz)

13C NMR (100 MHz; CDCls) 8: 159.2, 147.8, 136.5, 129.5, 129.2, 127.6, 127.5, 126.3,
121.2, 67.1, 65.7, 54.0

IR vmax, (ATR, oil)/cm™ 2957, 2852, 2808, 1618, 1599, 1503, 1453, 1425, 1349, 1327,
1265

HRMS (ESI) calculated C14H17N,0 [M+H] " 229.1335, observed 229.1691

Compound 9
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Amination product 9 was prepared according to General Procedure Il using 6-
bromoquinaldine N-oxide 2 (74 mg, 0.31 mmol), K,CO3 (107 mg, 0.78 mmol), TsCl (83
mg, 0.43 mmol), morpholine (56 ul, 0.62 mmol) and 2 ml of CH,Cl,. Purification by
flash column chromatography (only EtOAc, then 2% MeOH in EtOAc) gave pure

product 9 as a pale yellow solid (63 mg, 66% yield).

R¢ = 0.34 (MeOH: EtOAc, 1:19)

'H NMR (400 MHz; CDCl3) &: 8.00 (1 H, d, J = 8.5 Hz), 7.93 (1 H, d, J = 2.0 Hz), 7.91
(1H,d,J=9.0Hz),7.73 (1 H, dd, J= 8.9 and 2.2 Hz), 7.63 (L H, d, J = 8.5 Hz), 3.79 (2
H, ), 3.73 (4 H, t, 4.6 Hz), 2.53 (4 H, t, J = 4.6 Hz)

13C NMR (100 MHz; CDCls) 8: 159.8, 146.4, 135.5, 133.0, 131.0, 129.7, 128.6, 122.1,
120.1, 67.1, 65.6, 54.0

IR vmax, (ATR, solid)/cm™ 2961, 2849, 2813, 1593, 1484, 1452, 1346, 1286, 1262, 1111,
1068, 1011, 828

HRMS (ESI) calculated C14H1BrN,O [M+H] * 307.0441, observed 307.0454

Compound 10

H,CO N o
T

Amination product 10 was prepared according to General Procedure Il using 6-
methoxyquinaldine N-oxide 3 (58.7 mg, 0.31 mmol), K,CO3 (107 mg, 0.78 mmol), TsCl
(83 mg, 0.43 mmol), morpholine (56 pl, 0.62 mmol) and 2 ml of CH,Cl,. Purification by
flash column chromatography (5% MeOH in EtOAc, then 7.5% MeOH in EtOAc) gave

pure product 10 as a dark orange oil (37.4 mg, 47% vyield).
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R¢ = 0.40 (MeOH: EtOAc, 1:19)

'H NMR (400 MHz; CDCl;) &: 8.00 (L H, d, J = 8.5 Hz), 7.96 (1 H, d, J = 9.2 Hz), 7.56
(1H,d,J=84Hz),7.34(1H,dd J=9.2and 2.8 Hz), 7.05 (L H, d, J = 2.8 Hz), 3.91 (3
H,s),3.79 (2 H,s),3.73 (4 H, 1, 4.7 Hz), 254 (4 H, t, J = 4.6 Hz)

13C NMR (100 MHz; CDCls) 8: 157.7, 156.5, 143.9, 135.3, 130.6, 128.5, 122.1, 121.6,
105.3, 67.1, 65.6, 55.6, 54.0

IR vimax. (ATR, oil)/cm™ 2961, 2934, 2854, 2812, 1623, 1600, 1482, 1264, 1229, 1070

HRMS (ESI) calculated C15H10N,0, [M+H] ™ 259.1441, observed 259.1443

Compound 11

Cl
L9
NN

Amination product 11 was prepared according to General Procedure Il using 4-
chloroquinaldine N-oxide 4 (60 mg, 0.31 mmol), K,COj3 (107 mg, 0.78 mmol), TsClI (83
mg, 0.43 mmol), morpholine (56 ul, 0.62 mmol) and 2 ml of CH,Cl,. Purification by
flash column chromatography (2% MeOH in EtOAc) gave pure product 11 as a pale

yellow solid (56 mg, 69% vyield).

R¢ = 0.50 (2% MeOH in EtOACc)

'H NMR (400 MHz; CDCl3) &: 8.20 (1 H, d, J = 8.4 Hz), 8.07 (1 H, d, J = 8.5 Hz),
7.76-7.72 (2 H, m), 7.60 (L H, t, J = 8.2 Hz), 3.79 (2 H, s), 3.75 (4 H, t, J = 4.6 Hz), 2.55
(4 H,t,J =45 Hz)

13C NMR (100 MHz; CDCls) &: 159.5, 148.6, 143.1, 130.5, 129.5, 127.3, 125.7, 124.1,
121.1, 67.1, 65.3, 54.0
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IR vmax. (ATR, solid)/cm™ 2949, 2925, 2856, 1588, 1554, 1492, 1449, 1404, 1138

HRMS (ESI) calculated C14H16CIN,O [M+H] " 263.0946, observed 263.0947

A
_N
N O
—/

Amination product 12 was prepared according to General Procedure Il using 1-

Compound 12

methylisoquinoline N-oxide 5 (49.4 mg, 0.31 mmol), K,CO3 (107 mg, 0.78 mmol), TsCl
(83 mg, 0.43 mmol), morpholine (56 pl, 0.62 mmol) and 2 ml of CH,Cl,. Purification by
flash column chromatography (MeOH: EtOAc 1:19) gave pure product 12 as a pale

yellow oil (37.3 mg, 53% yield).

Rt = 0.30 (2% MeOH in EtOAc)

'H NMR (400 MHz; CDCls) &: 8.20 (1 H, d, J = 8.4 Hz), 8.07 (1 H, d, J = 8.5 Hz),
7.76-7.72 (2H, m), 7.60 (1 H, t, J = 8.2 Hz), 3.79 (2 H, 5), 3.75 (4 H, t, J = 4.6 Hz), 2.55
(4H,t,J=45Hz)

3C NMR (100 MHz; CDCl3) 6: 157.5, 141.7, 136.5, 130.1, 127.9, 127.2, 127.1, 126.3,
120.7, 67.1, 63.8, 54.0

IR vmax. (ATR, oil)/cm'1 3051, 2959, 2815, 1623, 1586, 1563, 1454, 1344, 1244, 1115,
1005

HRMS (ESI) calculated C14H17N,0 [M+H] " 229.1335, observed 229.1340
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Compound 13

Boc\ /Boc
N
CLLC

NN
In order to synthesize Compound 13, General Procedure Il was applied. Due to not
completely consumption of Compound 6, reaction mixture was stirred overnight without
addition of morpholine. As 24 hours were completed, morpholine was added to reaction
mixture and by heating up to 35°C, reaction was started. In this synthesis, double
protected 4-amino quinaldine N-oxide (Compound 6, 116 mg, 0.31 mmol), K,CO3 (107
mg, 0.78 mmol) TsCl (83 mg, 0.43 mmol) and morpholine (56 ul, 0.62 mmol) were

dissolved in 2 ml of CH,Cl,. After purification by using only EtOAc, product 13 was

obtained as dark yellowish oil (54.5 mg, 40% yield).

R¢ = 0.5 (only EtOAC)

'"H NMR (400 MHz; CDCls) &: 8.09 (1 H, ddd, J = 8.5, 0.9 and 0.5 Hz), 7.81 (1 H, ddd,
J=8.3,1.4and 0.5 Hz), 7.70 (1 H, ddd, J = 8.4, 6.8 and 1.6 Hz), 7.55 (1 H, ddd, J = 7.0,
5.8 and 1.2 Hz), 7.51 (1 H, s), 3.86 (2 H, s), 3.73 (4 H, t, J =4.6 Hz), 2.54 (4 H, t, J =
4.6 Hz), 1.29 (18 H, 9)

3C NMR (100 MHz; CDCls) 8: 159.9, 150.9, 149.0, 144.9, 129.8, 129.6, 127.1, 125.2,
122.0, 120.3, 83.5, 67.1, 65.4, 53.9, 27.9

IR vinax. (ATR, oil)/cm™ 3003, 2980, 2934, 2861, 2803, 1736, 1698, 1619, 1452, 1363,
1337, 1271, 1241, 1159, 1112, 1075, 747, 701, 631

HRMS (ESI) calculated Cy4H3sN3Os [M+H] ™ 444.2493, observed 444.2478
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Compound 14

Amination product 14 was prepared according to General Procedure 11 using quinaldine
N-oxide 1 (50 mg, 0.31 mmol), K,CO3 (107 mg, 0.78 mmol), TsCl (83 mg, 0.43 mmol),
piperidine (61 pl, 0.62 mmol) and 2 ml of CH,Cl,. Purification by flash column
chromatography (only EtOAc, then 2% MeOH in EtOAc) gave pure product 14 as a

yellow oil (54 mg, 76% yield).

Rt = 0.30 (MeOH: EtOAc, 1:19)

'H NMR (400 MHz; CDCl5) &: 8.09 (1 H, d, J = 8.8 Hz), 8.06 (1L H, d, J = 8.5 Hz), 7.77
(LH,dd, J=8.1and 1.1 Hz), 7.67 (1L H, ddd, J = 8.4, 6.9 and 1.4 Hz), 7.65 (L H, d, J =
8.5 Hz), 7.48 (1 H, ddd, J = 8.0, 6.9 and 1.1 Hz), 3.79 (2 H, s), 2.47 (4 H, t, J = 4.8 Hz),
1.60 (4 H, quint, J =5.6 Hz), 1.45 (2 H, app quint, J = 5.7 Hz)

BC NMR (100 MHz; CDCls) 8: 160.5, 147.8, 136.3, 129.3, 129.2, 127.6, 127.5, 126.1,
121.3, 66.2, 55.0, 26.2, 24.4

IR vmax. (ATR, oil)/em™ 2931, 2852, 2799, 1599, 1502, 1424, 1298, 1153, 1111, 1038,
988, 828

HRMS (ESI) calculated Ci5H19N, [M+H] ¥ 227.1543, observed 227.1545

Compound 15
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Amination product 15 was prepared according to General Procedure 11 using quinaldine
N-oxide 1 (50 mg, 0.31 mmol), K,CO3 (107 mg, 0.78 mmol), TsCl (83 mg, 0.43 mmol),
pyrrolidine (52 pl, 0.62 mmol) and 2 ml of CHCl,. Purification by flash column
chromatography (only EtOAc, 2% MeOH in EtOAc and then 5% MeOH in EtOAC)

gave pure product 15 as a yellow oil (42 mg, 62% yield).

Rt = 0.18 (MeOH: CHCls, 1:19)

'H NMR (400 MHz; CDCls) 5: 8.09 (2 H, app t, J = 9.6 Hz), 7.78 (L H, d, J = 8.1 Hz),
7.67 (1 H, ddd, J = 8.4, 6.9 and 1.4 Hz), 7.60 (1 H, d, J = 8.4 Hz), 7.49 (1 H, ddd, J =
8.0, 7.0 and 1.1 Hz), 3.96 (2 H, 5), 2.64-2.61 (4 H, m), 1.83-1.79 (4 H, m)

13C NMR (100 MHz; CDCls) 8: 160.3, 147.8, 136.4, 129.4, 129.3, 127.6, 127.5, 126.1,
121.2, 63.1,54.5, 23.8

IR vmax. (ATR, oil)/cm™ 2959, 2788, 1599, 1502, 1424, 1347, 1313, 1120, 997, 951,
875, 827

HRMS (ESI) calculated C14H17N, [M+H] ¥ 213.1386, observed 213.1396

Compound 16

Amination product 16 was prepared according to General Procedure Il using quinaldine
N-oxide 1 (50 mg, 0.31 mmol), K,COj3 (107 mg, 0.78 mmol), TsCl (83 mg, 0.43 mmol),
imidazole (42.2 mg, 0.62 mmol) and 2 ml of CH,Cl,. Purification by flash column
chromatography (10% MeOH in CHCI3) gave pure product 16 as a light pink solid (40

mg, 61% yield).
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R¢ = 0.23 (5% MeOH in CHCI,)

'H NMR (400 MHz; CDCls) &: 8.11 (1 H, d, J = 8.4 Hz), 8.05 (1 H, d, J = 8.5 Hz),
7.79 (1 H, dd, J = 8.2 and 1.0 Hz), 7.73 (1 H, ddd, J = 8.4, 7.0 and 1.5 Hz ), 7.66 (1 H,
s), 7.54 (1 H, ddd, J = 8.1,7.0 and 1.2 Hz), 7.12 (1 H, s), 7.04-7.00 (2 H, m), 5.40 (2 H,
s)

3C NMR (100 MHz; CDCl3) &: 156.2, 147.7, 137.9, 137.7, 130.24, 130.15, 129.2,
127.7,127.5, 127.0, 119.7, 118.7, 53.3

IR vmax. (ATR, solid)/cm™ 3111, 3093, 3043, 2959, 2923, 2851, 1596, 1566, 1504,1424,
1385, 1082, 818, 742, 660, 475.

HRMS (ESI) calculated C13H1,N3 [M+H] ¥ 210.1026, observed 210.1027

Compound 17

Boc

Before the synthesis of the amination product 17, tert-Butyl piperazine-1-carboxylate
(N-Boc piperazine) 24 was synthesized according to a procedure given in the literature.®*
To the mixture of piperazine (2.00 g, 23.22 mmol), MeOH (20 ml) and triethylamine
(4.85 ml, 34.77 mmol) was added Boc anhydride (2.027 g, 9.288 mmol) dropwise and
stirred at room temperature overnight. The reaction mixture was concentrated under
reduced pressure to remove methanol. Then, EtOAc (10 ml) was added to the reaction

mixture and separated solid was filtered off. Filtrate was washed with water (3x2 ml),

dried over Na,SO, and concentrated under vacuum.
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Boc

25

tert-butyl piperazine-1-carboxylate

Amination product 17 was prepared according to General Procedure 11 using quinaldine
N-oxide 1 (50 mg, 0.31 mmol), K,CO3 (107 mg, 0.78 mmol), TsCl (83 mg, 0.43 mmol),
N-Boc piperazine 25 (116 mg, 0.62 mmol) and 2 ml of CH,Cl,. Purification by flash

column chromatography (2% MeOH in EtOAc) gave pure product 17 as a dark orange

solid (73 mg, 72% yield).

R¢ = 0.55 (MeOH: EtOAc, 1:19)

'H NMR (400 MHz; CDCl3) &: 8.11 (1 H, d, J = 8.5 Hz), 8.06 (1 H, d, J = 8.6 Hz), 7.78
(1H,dd, J=8.2and 1.1 Hz), 7.68 (L H, ddd, J = 8.4, 7.0 and 1.4 Hz), 7.61 (1 H, d, J =
8.5 Hz), 7.50 (1 H, ddd, J = 8.0, 7.0 and 1.1 Hz), 3.84 (2 H, s), 3.45 (4 H, t, J = 5.0 Hz),
2.49 (4H,t,J=4.9Hz), 1.44 (9 H, 3)

13C NMR (100 MHz; CDCl3) §: 159.2, 154.9, 147.7, 136.6, 129.6, 129.1, 127.6, 127.5,
126.4,121.2, 79.7, 65.2, 53.3, 43.5, 28.5

IR vmax. (ATR, solid)/cm™ 2977, 2864, 2810, 1677, 1600, 1502, 1407, 1366, 1236

HRMS (ESI) calculated C19H26N30, [M+H] ™ 328.2020, observed 328.2024

Compound 18
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Amination product 18 was prepared according to General Procedure 11 using quinaldine
N-oxide 1 (50 mg, 0.31 mmol), K,CO3 (107 mg, 0.78 mmol), TsCl (83 mg, 0.43 mmol),
diethylamine (64 pl, 0.62 mmol) and 2 ml of CH,Cl,. Purification by flash column
chromatography (only EtOAc, 5% MeOH in EtOAc and then 7.5% MeOH in EtOAC)

gave pure product 18 as a brown oil (48.4 mg, 73% yield).

R¢ = 0.46 (MeOH: EtOAc, 1:19)

'H NMR (400 MHz; CDCl;) &: 8.08 (1 H, d, J = 8.6 Hz), 8.05 (1 H, d, J = 8.5 Hz), 7.77
(1H, dd, J=8.1and 0.9 Hz), 7.68 (L H, d, J = 8.5 Hz), 7.66 (L H, ddd, J = 8.4, 6.9 and
1.4 Hz), 7.48 (1 H, ddd, J = 8.0, 6.9 and 1.1 Hz), 3.89 (2 H, s), 2.62 (4 H, g, J = 7.2 Hz),
1.06 (6 H, t, J = 7.2 Hz)

13C NMR (100 MHz; CDCls) §: 161.8, 147.7, 136.2, 129.3, 129.1, 127.6, 127.5, 126.0,
121.2, 60.6, 47.7, 12.1

IR vmax, (ATR, oil)/cm™ 2967, 2927, 1619, 1600, 1503, 1453, 1424, 1372, 1203, 1115,
1065

HRMS (ESI) calculated C14H1oN, [M+H] ¥ 215.1543, observed 215.1543

Compound 19

(AN

Amination product 19 was prepared according to General Procedure Il using quinaldine
N-oxide 1 (50 mg, 0.31 mmol), K,COj3 (107 mg, 0.78 mmol), TsCl (83 mg, 0.43 mmol),

cyclohexyl amine (71 pl, 0.62 mmol) and 2 ml of CH,Cl,. Purification by flash column
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chromatography (5% MeOH in EtOAc, 10% MeOH in EtOAc and then 12% MeOH in

EtOAC) gave pure product 19 as a brown oil (34.9 mg, 46% vyield).

R¢ = 0.37 (MeOH: EtOAc, 1:9)

'H NMR (400 MHz; CDCl;) &: 8.08 (L H, d, J = 8.6 Hz), 8.05 (1 H, d, J = 8.5 Hz), 7.77
(1H,d,J=8.1Hz),7.67 (LH,ddd, J =8.4, 6.9 and 1.4 Hz), 7.48 (1 H, ddd, J = 8.0, 7.0
and 1.0 Hz), 7.44 (L H, d, J = 8.4 Hz), 4.12 (2 H, s), 2.58-2.52 (1L H, m), 2.17 (1 H, s),
1.99-1.96 (2 H, m), 1.76-1.73 (2 H, m), 1.31-1.14 (6 H, m)

13C NMR (100 MHz; CDCl3) 8: 160.9, 147.9, 136.4, 129.4, 129.1, 127.6, 127.4, 126.0,
120.8, 57.0, 53.2, 33.8, 26.3, 25.1

IR vimax. (ATR, oil)/cm™ 3043, 2924, 2851, 1618, 1599, 1504, 1448, 1425, 1263, 1113

HRMS (ESI) calculated C1gH,1N, [M+H] ¥ 241.1699, observed 241.1702

Compound 20

N H

Amination product 20 was prepared according to General Procedure 11 using quinaldine
N-oxide 1 (50 mg, 0.31 mmol), K,CO3 (107 mg, 0.78 mmol), TsCl (83 mg, 0.43 mmol),
a-methyl benzyl amine (80 ul, 0.62 mmol) and 2 ml of CH,Cl,. Purification by flash
column chromatography (MeOH: EtOAc 1:19) gave pure product 20 as a yellow oil (52

mg, 64% vyield).

R¢ = 0.55 (MeOH: EtOAc, 1:19)
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'H NMR (400 MHz; CDCls) 8: 8.06 (2 H, t, J = 8.0 Hz), 7.77 (L H, d, J = 8.1 Hz), 7.68
(1H,t J=77Hz),7.48 (L H,,J=80,7.0and 1.2 Hz), 7.44-7.40 (2 H, m), 7.36-7.31
(3H, m), 7.27-7.23 (L H, m) 3.95 (2 H, s), 3.94-3.88 (1 H, m), 1.45 (3 H, d, J = 6.6 Hz)
IR vimax, (ATR, oil)/cm™ 3661, 2966, 2925, 1600, 1564, 1504, 1451, 1425, 1264

HRMS (ESI) calculated C1gH1oN, [M+H] ¥ 263.1397, observed 261.1381
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CHAPTER 4

CONCLUSION

In this work, a new synthetic method for the derivatization of 2-methyl azine N-oxide
compounds was developed. 2-methyl azine N-oxide derivatives could be functionalized
efficiently at benzylic position via amination reactions with a one-pot operation in high
yields. At the first stage of the work, optimization studies for the target reaction between
quinaldine N-oxide and morpholine were carried out. Parameters of activating agent,
base, solvent and temperature were investigated in detail, and optimization studies were
finalized successfully. As a result of this part, TsCl, K,COs, CH,Cl, and 35°C were

determined as the optimized conditions.

In the second part, various types of azine N-oxides, which are electrophilic components
of the target reaction, were evaluated under the optimized conditions. For this purpose,
quinoline and isoquinoline based azine N-oxides were synthesized in high yields using
m-CPBA. These N-oxides gave the corresponding products satisfactorily after the
benzylic amination reactions under the optimized conditions. After screening of azine N-
oxide derivatives, several amines, which were nucleophiles for the target reaction, were
investigated in detail and the targeted amination products were obtained in pure form
successfully. All these results demonstrate that this newly developed synthetic method
can be applied in a wide range of substrate scope. Besides, the reproducibility and
scalability of the benzylic amination reaction were also verified. To sum up, a new one-
pot strategy for transformation of 2-methyl azine N-oxide to functionalized form was

developed.
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Figure 20. *H-NMR spectrum of Compound 4
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Figure 21. *C-NMR spectrum of Compound 4
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Figure 22. *H-NMR spectrum of Compound 5
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Figure 23. *C-NMR spectrum of Compound 5
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Figure 24. *H-NMR spectrum of Compound 6
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Figure 25. *C-NMR spectrum of Compound 6
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Figure 26. *H-NMR spectrum of Compound 7
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Figure 27. *C-NMR spectrum of Compound 7
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Figure 28. *H-NMR spectrum of Compound 8
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Figure 29. *C-NMR spectrum of Compound 8
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Figure 30. *H-NMR spectrum of Compound 9
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Figure 31. *C-NMR spectrum of Compound 9
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Figure 32. *H-NMR spectrum of Compound 10
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Figure 33. *C-NMR spectrum of Compound 10
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Figure 35. *C-NMR spectrum of Compound 11
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Figure 36. *H-NMR spectrum of Compound 12
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Figure 37. **C-NMR spectrum of Compound 12
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Figure 38. *H-NMR spectrum of Compound 13
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Figure 39. *C-NMR spectrum of Compound 13
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Figure 40. *H-NMR spectrum of Compound 14
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Figure 41. *C-NMR spectrum of Compound 14
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Figure 42. *H-NMR spectrum of Compound 15
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Figure 43. *C-NMR spectrum of Compound 15
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Figure 44. *H-NMR spectrum of Compound 16
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Figure 45. *C-NMR spectrum of Compound 16
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Figure 47. *C-NMR spectrum of Compound 17
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Figure 48. *H-NMR spectrum of Compound 18
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Figure 49. *C-NMR spectrum of Compound 18
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Figure 50. *H-NMR spectrum of Compound 19
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Figure 51. *C-NMR spectrum of Compound 19
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Figure 52. *H-NMR spectrum of Compound 20
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