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The current study deals with a bicriteria scheduling problem arising in an
m-machine robotic cell consisting of CNC machines producing identical parts.
Such machines by nature possess the process flexibility of altering processing
times by modifying the machining conditions at differing manufacturing costs.
Furthermore, they possess the operational flexibility of being capable of
processing all the operations of these identical parts. This latter flexibility in
turn introduced a new class of robot move cycles, called pure cycles, to
the literature. Within the restricted class of pure cycles, our task is to find the
processing times on machines so as to minimise the cycle time and the
manufacturing cost simultaneously. We characterise the set of all non-dominated
solutions for two specific pure cycles that have emerged as prominent ones in the
literature. We prove that either of these pure cycles is non-dominated for
the majority of attainable cycle time values. For the remaining regions, we
provide the worst case performance of one of these two cycles.

Keywords: robotic cell; CNC; scheduling; bicriteria optimisation; controllable
processing times

1. Introduction

Robots are extensively used in many diverse industries ranging from semiconductor
manufacturing to electroplating (Dawande et al. 2005). The current study has an
underlying focus restricted to the metal cutting applications in which the machines are
usually CNC machines. Robots are primarily used as material handling instruments.
A robotic cell is defined as a manufacturing cell composed of a number of machines and a
material handling robot. Figure 1 depicts the m-machine robotic cell considered in this
study. We assume that there are no buffers at or between the machines; thus, at any time
epoch, a part is either on one of the machines, at the input, or at the output buffer, or on
the robot being transported. Note that relaxing this assumption and placing input and
output buffers next to each machine can lead to different and more efficient cell structures.

Within the scope of this study lies a set of robot move sequences introduced as pure
cycles by Gultekin et al. (2009) to the literature. Such cycles simply arose as consequences
of the inherent operational flexibility of the underlying machines being capable of handling
all of the operations of a part. Pure cycles are defined in Gultekin et al. (2009) as the robot
move sequences in which the robot loads and unloads all of the m machines with a
different part during one repetition of the cycle and the initial and the final states are the
same so that the cycle can be repeated. Therefore, for each repetition a pure cycle
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produces m parts. In such a cell, the cycle time of a pure cycle is defined as the long run
average time required to produce m parts. Each part is completely performed by only one
machine and no part is transferred from one machine to another one. Since pure cycles are
practical and elementary, they are widely used in industry. Under the assumption of
processing times being fixed and identical for all the machines, Gultekin et al. (2009)
proved that the set of pure cycles dominates all flowshop type robot move cycles with
respect to cycle time and showed that two specific pure cycles outperform the remaining
pure robot move cycles in a wide range of potential cycle time values. They also derived the
worst case performances of these two specific cycles.

Though the single objective of minimising the cycle time is a fundamental one in the
existing literature, as far as the authors know, there is only one study, namely that of
Gultekin et al. (2008), that considers the more realistic bicriteria optimisation problem of
minimising the cycle time and the manufacturing cost in robotic cells.

In a flexible manufacturing cell, the processing times can be altered or controlled
(albeit at higher cost) by changing machining conditions such as cutting speed and feed
rate. Controllable processing times provide additional flexibility in finding solutions to the
scheduling problem with improved overall performance of the robotic cell. Most of the
studies on scheduling with controllable processing times assume that the processing time is
a linear function of the amount of resource allocated to the processing of the job.
A summary of such results is presented in the recent survey of Shabtay and Steiner (2007).
Since the analysis of linear cost functions is tractable, most of the current literature on
controllable processing time problems focus on such functions (e.g. Vickson 1980, Cheng
et al. 1998). However, using linear cost functions does not reflect the law of diminishing
returns. There are some papers that relax the linearity assumption by using either a specific
or a general type of convex decreasing resource consumption function (e.g. Lee and
Lei 2001, Shakhlevich and Strusevich 2006, Gurel and Akturk 2007, Yedidsion et al. 2007).
Our study also relaxes the common linear cost assumption and only assumes that the cost
function is a monotonically decreasing function.

Dawande et al. (2005) present an extensive literature on robotic cell scheduling
problems. Crama et al. (2000) survey cyclic scheduling problems in robotic flowshops,
whereas Galante and Passannanti (2006) study the use of dual gripper robots in a robotic
flowshop. In a robotic flowshop, each part must go through all of the m machines in the
same sequence. In these systems, it is generally assumed that processing times and
allocations of operations to the machines are fixed. We believe this is a critical assumption
that limits the flexibility of the expensive CNC machines unnecessarily. Research on

Input buffer Output buffer

Robot

Linear track

Machine 1 Machine 2 Machine
m–1

Machine
m

Figure 1. m-Machine inline robotic cell.
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robotic cells focuses on minimising the cycle time; in other words, maximising the
throughput. Since 1-unit cycles are easy to implement and easy to analyse theoretically,
studies on robotic cells focus on these cycles. Sethi et al. (1992) proved that 1-unit cycles
give optimal solutions in two machine robotic cells producing identical parts. Nevertheless,
1-unit cycles are not always the optimal cycles for maximising the throughput for a higher
number of machines. In this study, we consider a scheduling problem of an m-machine
flexible robotic cell with m-unit cycles producing identical parts. For a more detailed
discussion on identical parts in cyclic robotic cells, we refer the interested reader to
Brauner (2008).

The organisation of this paper is as follows. In the next section, the notation and basic
definitions to be used throughout the paper are presented. In Section 3, m-machine cells
are analysed and the bicriteria optimisation problem of simultaneously minimising the
cycle time and the manufacturing cost is tackled. Finally, Section 4 includes some
conclusions and future research directions.

2. Notation and definitions

In this section, we adopt the standard terminology from the robotic cell literature and
present the distinguishing features pertinent to the current study.

The current study focuses on robot move sequences defined by Gultekin et al. (2009) as
pure cycles which simply arose as consequences of the inherent flexibility of the cells
considered. More specifically, each machine is capable of performing all of the operations
making up any one of the identical parts. Gultekin et al. (2009) use the following
definitions to characterise pure cycles.

Definition 2.1: Li is the robot activity in which the robot takes a part from the input
buffer and loads machine i, i¼ 1, 2, . . . ,m. Similarly, Ui, i¼ 1, 2, . . . ,m, is the robot activity
in which the robot unloads machine i and drops the part to the output buffer. Let
A¼ {L1, . . . ,Lm, U1, . . . ,Um} be the set of all activities.

Definition 2.2: Under a pure cycle, starting with an initial state of the cell, the robot
performs each of the 2m activities (Li,Ui, i¼ 1, . . . ,m) exactly once and returns to the
initial state of the cell.

In other words, any permutation of the m load and the m unload activities results in a
pure cycle. For example, in a 2-machine robotic cell, the robot activity set is
A¼ {L1,L2,U1,U2} and the robot move sequence L1U1L2U2 is a pure cycle. Since there
are m machines in the robotic cell under consideration, each pure cycle produces m parts
and is consequently an m-unit cycle in the classification of Dawande et al. (2005). It is
important to note that there is not necessarily a single efficient pure cycle. In this study, we
shall let Cm

i define the ith pure cycle in an m-machine robotic cell and TCm
i
denote its

corresponding cycle time. All the operations of any one of the identical parts are to be
processed solely on one of the identical machines. We let the decision variable Pi denote
the processing time of any one of the identical parts on machine i such that the processing
times are the same on each machine, but they can vary between machines. We assume that
a feasible processing time on any machine is bounded from above by an upper
bound denoted as PU. We denote by a processing time vector P¼ (P1,P2, . . . ,Pm) the
processing times on individual machines. In a feasible processing time vector, all of
the processing times have to obey the non-negativity and upper bound restrictions.
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In particular, the set of feasible processing time vectors is defined as
Pfeas¼ {(P1,P2, . . . ,Pm)2R

m: 0�Pi�PU, 8i}.
We adopt the following nomenclature:

" are the load/unload times of machines by the robot which are the same for all
machines;

� is the time taken by the robot to travel between two consecutive machines, which is
additive such that the travelling time from machine i to machine j is equal to ji� jj�;

f (Pi) is the manufacturing cost incurred from processing time on machine i; this cost is
assumed to be monotonically decreasing for increasing processing times.

There are two objectives:

(1) F1ðPÞ ¼
Pm

i¼1 f ðPiÞ is the total manufacturing cost depending only on the
processing times;

(2) F2ðC
m
i ,PÞ is the cycle time corresponding to processing time vector P and the pure

cycle Cm
i , i.e. the total time required to complete the m-unit pure cycle Cm

i .

Although there are (2m)! possible pure cycles, some of them correspond to the same move
sequences. For instance, in a 2-machine cell, L1U1L2U2 and L2U2L1U1 are different
permutations representing the same cycle. As observed in Gultekin et al. (2009), there are
(2m� 1)! distinct pure cycles in an m-machine cell. Let � be the set of all (2m� 1)! pure
cycles, i.e.

� ¼ [
ð2m�1Þ!
i¼1 Cm

i :

Finding a pure cycle among this group which outperforms the rest in terms of, say,
the objective of minimisation of the cycle time, does not appear to be an easy task.
The constituents of the cycle time are the time involved during robot activities, such as
load, unload and part transfer operations, and the time spent during the waiting periods
of the robot in front of machines for unloading operations. As such, finding a pure cycle
with the minimum cycle time entails choosing a load and unload sequence of the machines
by the robot in a way that the two aspects of the cycle time balance each other. Though
without an accompanying proof, it is a strong belief of the authors that such a task is
computationally quite cumbersome. However, the computational complexity status of this
problem is an interesting open question. With this in mind, in this paper we focus on the
following two particular cycles, which have emerged as favourable ones in Gultekin et al.
(2009).

Definition 2.3: Cm
1 is the robot move cycle in an m-machine robotic cell with the activity

sequence L1LmUm�1Lm�1Um�2Lm�2 . . .U2L2U1Um.

Definition 2.4: Cm
2 is the robot move cycle in an m-machine robotic cell with the activity

sequence L1UmLmUm�1Lm�1. . .U2L2U1.

In the initial state of the cycle Cm
1 , machines 1 and m are idle and the rest of the

machines are each loaded with a part. In the initial state of the cycle Cm
2 , only machine 1 is

idle and the rest of the machines are loaded.
The total manufacturing cost is the sum of tooling and machining costs. As the

processing times increase, the machining cost increases and the tooling cost decreases.
Conversely, reducing the processing times decreases the machining cost, but increases the
tooling cost. In this paper, we have defined the processing time upper bound PU as the
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processing time value that minimises the manufacturing cost function for each part

without considering its impact on the cycle time objective. Since cycle time is a regular

scheduling measure, increasing the processing time of any part beyond PU will not

improve the cycle time value. Consequently, any processing time value greater than PU will

lead to an inferior solution because both objectives will get worse. As a result, we assume

that the manufacturing cost is a monotonically decreasing function of the processing times.

The total manufacturing cost of a repetition of a cycle is defined as the sum of the

manufacturing costs incurred by the processing times of all machines and hence depends

only on the processing times but not on the robot move cycle. In contrast, the cycle time is

the time required to complete the activities in the cycle and finally return back to the initial

state, which depends on both the robot move cycle and processing times.
Against this background, our resulting problem deals with the following bicriteria

optimisation of minimising the cycle time and the total manufacturing cost

simultaneously:

Minimise Total manufacturing cost

Minimise Cycle time

Subject to P 2 Pfeas:

There are different strategies, such as those classified in Hoogeveen (2005), to tackle

optimisation problems of a multicriteria nature. Typically, one seeks to find

non-dominated solutions, where a solution is defined as a non-dominated one if no

other solution is as good as it is for all the objectives and is better for at least one objective.

Since it is hard to determine which performance measure is more important, it is useful to

present an extensive list of non-dominated solutions and give the decision maker the

opportunity to select the most appropriate solution. Ideally, any feasible solution of the

above bicriteria optimisation problem corresponds to a feasible robot move sequence and

a feasible processing time vector. In our approach, we shall solve the above bicriteria

optimisation problem independently for each robot move sequence under consideration.

In order to generate the non-dominated points, we shall resort to the epsilon-constraint

approach as presented in Hoogeveen (2005). The epsilon constraint formulation of the

problem for pure cycle Cm
i is denoted as �(F1(PÞjF2ðC

m
i ,P)) where one finds the processing

time vector minimising the total manufacturing cost F1(P) for a given level of cycle time

F2ðC
m
i ,P). Thus, given any cycle Cm

i and cycle time level K, the following

epsilon-constraint problem (ECP) is solved to find the corresponding non-dominated

processing time vector:

(ECP) Minimise F1ðPÞ

Subject to F2ðC
m
i ,PÞ � K

Subject to P 2 Pfeas:

More formally, we seek to find the set of all the non-dominated processing time vectors

for an m-unit robot move cycle Cm
i and for a given cycle time level K as defined below.

Definition 2.5: For a robot move sequence Cm
i and a given cycle time level K, the set of

non-dominated points is defined as P�ðCm
i jK Þ ¼ fP2Pfeas : there is no other P 0 2 Pfeas

such that F1(P
0)5F1(P) where F2ðC

m
i ,P)�K and F2ðC

m
i ,P

0)�K }.

International Journal of Production Research 573
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In the next section, this set of efficient processing time vectors, i.e. the efficient frontier,
is presented for each of the considered pure cycles. Moreover, it has been shown that one
of these cycles will be non-dominated for the majority of attainable cycle time values.

3. Solution procedure

With the following theorems and lemmas we shall proceed to find the cycle times and the
efficient frontiers corresponding to the aforementioned two pure cycles. The performances
of these two prominent cycles are then compared to the other pure cycles in Theorems 3.8
and 3.9, and sufficient conditions under which one of these two cycles is efficient are
characterised.

Given a processing time vector P¼ (P1, . . . ,Pm), we let P1
max ¼ max

i¼2,...,m�1
Pi.

Theorem 3.1: The cycle time of Cm
1 for a given processing time vector P is TCm

1
¼

4m�þ2mðmþ1Þ�þmaxf0,P1�½ð4m�6Þ�þ2ðm2�2Þ��, Pm�½ð4m�6Þ�þ2ðm2�2Þ��,
P1
max�½ð4m�4Þ�þ2ðm2�1Þ��g:

Proof: The proof is presented in Appendix A. h

When there is a given processing time vector, Theorem 3.1 determines the
corresponding cycle time obtained from cycle Cm

1 . Conversely, with the result of this
theorem, for a specified cycle time level, the largest individual processing times on
machines (ultimately the least manufacturing cost alternative) that obey this cycle time
level can be found as well.

Given P, let P2
max ¼ max

i¼1,...,m
Pi, then we have the following theorem.

Theorem 3.2: The cycle time of Cm
2 for a given processing time vector P is

TCm
2
¼ 4m�þ 2½ðmþ 1Þ2 � 2��þmaxf0,P2

max � ½ð4m� 4Þ�þ 2ðm� 1Þðmþ 2Þ��g:

Proof: For the proof, we refer the reader to Appendix B. h

The next theorem provides a lower bound for the cycle time of any pure cycle.

Theorem 3.3: For an m-machine robotic cell with given processing time vector P, the cycle
time of any pure cycle is no less than

Tcontr ¼ maxf4m�þ 2mðmþ 1Þ�, 4�þ ð2mþ 2Þ�þ P2
maxg: ð1Þ

Proof: The cycle time of any pure cycle has to be greater than or equal to two lower
bounds. The first lower bound is obtained from the robot activity time and the second one
is obtained from the given processing time vector. First, a part is taken from the input
buffer (�) then loaded to one of the machines (�) after the processing on the machine is
finished, the part is unloaded (�) and dropped to the output buffer (�). This makes a total
of 4m� for any pure cycle. For any part, the robot takes the part from the input buffer to
the output buffer (mþ 1)�. Then, the robot travels from the output buffer to the input
buffer to take a new part or to complete the cycle (mþ 1)�. This makes a total of
2m(mþ 1)� time units for any cycle. Consequently, the first lower bound, which is the total
time required to complete the set of robot activities, evaluates to 4m�þ 2m(mþ 1)�.

The second lower bound is derived from the minimum time between two consecutive
loadings of any machine. The minimum time needed to unload machine i after loading it
is Pi time units. After processing on the part is finished, it is unloaded (�), the part is
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transferred to output buffer (mþ 1� i)�, and the part is dropped (�). After that, the robot

travels to the input buffer to take a new part to make the consecutive loading of machine i

((mþ 1)�), takes a new part, part (�), brings the new part to machine i (i�) and finally loads

the machine (�). Hence, the minimum time required between two consecutive loadings of

machine i is 4�þ (2mþ 2) �þPi. However, there are m machines and the processing times

on these machines may be different from each other, due to controllability. Thus, the cycle

time has to be at least equal to the minimum time required between two consecutive

loadings of the machine having the worst such time. So, the second lower bound of

the cycle time becomes 4�þ ð2mþ 2Þ�þ P2
max. h

A non-dominated processing time vector provides the minimum cost for a given cycle

time level. The total manufacturing cost is a function of only the processing times on

machines. Recall that the manufacturing cost of a machine decreases as the processing

time increases on that machine and that a feasible processing time must satisfy 0�Pi�PU.
For a given cycle time level, say K, satisfying the lower bound of Theorem 3.3, we can

find the upper bounds of processing times for pure cycles that do not violate this cycle time

level. Since this processing time vector is an upper bound for the processing time vectors

obtained from pure cycles for a cycle time level K, it also results in the lower bound of total

manufacturing cost that a pure cycle can result in. Let PðK Þ ¼ ðP1ðK Þ, . . . ,PmðK ÞÞ denote

the upper bound of processing time vectors. Now, PðK Þ for a given cycle time level K is

found as follows.

Lemma 3.4: For a given cycle time level K, the upper bound of processing time vectors for

pure cycles is:

PðK Þ ¼ ðP1ðK Þ, . . . ,PmðK ÞÞ,

where PiðK Þ ¼ minfPU,K� ½4�þ ð2mþ 2Þ��g, 8i.

Proof: The two bounds constraining processing time vectors are found in the following

cases.

(1) The PU value cannot be exceeded by any feasible processing time on a machine.

This leads to PiðK Þ � PU, 8i.
(2) The processing times on the machines are additionally bounded from above since

otherwise the cycle time level K would be exceeded. Theorem 3.3 determines the

lower bound for the cycle time when a processing time vector is given. In other

words, we must have

Tcontr ¼ maxf4m�þ 2mðmþ 1Þ�, 4�þ ð2mþ 2Þ�þmaxfPi, i : 1, . . . ,mgg � K:

(3) Therefore, max{Pi, i : 1, . . . ,m}�K� [4�þ (2mþ 2)�].
(4) This implies that PiðK Þ � K� ½4�þ ð2mþ 2Þ��, 8i.

Consequently, PðK Þ is the upper bound of processing time vectors satisfying the two

bounds described above for a given cycle time level. h

In order to compare the total manufacturing costs obtained from cycles Cm
1 and Cm

2 to

the remaining pure cycles, we construct with Lemmas 3.5 and 3.7 the efficient frontiers

(the set of non-dominated processing time vectors) corresponding to these two cycles,

respectively.
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In the following lemma, we determine P�ðCm
1 jK Þ, the set of non-dominated processing

time vectors for cycle Cm
1 . Theorem 3.1 implies that the minimum cycle time value for Cm

1

is [4m�þ 2m(mþ 1)�], thus the ECP problem is solved for cycle time level K satisfying this

bound to construct the efficient frontier.

Lemma 3.5: For the cycle Cm
1 given any feasible cycle time level K, i.e. K� 4m�þ

2m(mþ 1)�, there exists a unique non-dominated processing time vector ðP�1,
P�2, . . . ,P�mÞ 2 P�ðCm

1 jK Þ defined as

P�ðCm
1 jK Þ ¼

P�1
P�2
..
.

P�m�1
P�m

2
666664

3
777775
¼

minfPU,K� ½6�þ ð2mþ 4Þ��g
minfPU,K� ½4�þ ð2mþ 2Þ��g

..

.

minfPU,K� ½4�þ ð2mþ 2Þ��g
minfPU,K� ½6�þ ð2mþ 4Þ��g

2
666664

3
777775
:

Proof: Now we determine the non-dominated vector by describing the upper bounds

constraining the processing time vector P�ðCm
1 jK Þ. There are two obvious upper bounds

the processing times must obey:

(1) any feasible processing time is at most equal to PU, i.e. P�i � PU, 8i;
(2) additionally, the processing times on individual machines must ensure the cycle

time of Theorem 3.1 does not exceed the value K. A simple inspection of this
formula reveals the following largest possible individual processing times on each

machine without exceeding the given cycle time:

P�1
P�2
..
.

P�m�1
P�m

2
666664

3
777775
�

K� ½6�þ ð2mþ 4Þ��
K� ½4�þ ð2mþ 2Þ��

..

.

K� ½4�þ ð2mþ 2Þ��
K� ½6�þ ð2mþ 4Þ��

2
666664

3
777775
:

h

The following example is beneficial in conveying the contribution of controllable

processing times. The total manufacturing cost of cycle Cm
1 with controllable processing

times, as discussed in this study, is compared to the total manufacturing cost of Cm
1 in

Gultekin et al. (2009), where the processing times on machines are assumed to be fixed and
the same for all machines.

Example 3.6: Consider a 4-machine robotic cell. We will show that the cycle C 4
1 with

controllable processing times results in less cost than C 4
1 with fixed processing times for the

same cycle time level. Let �¼ 0.2, �¼ 0.1, PU
¼ 6.5, and assume that the required cycle time

level is K¼ 8.0.
By using Lemma 3.5, for cycle time level K, the non-dominated processing time vector,

ðP�1,P
�
2,P
�
3,P
�
4Þ 2P

�ðC 4
1 Þ, giving the minimum total manufacturing cost found as follows:

P�1
P�2
P�3
P�4

2
664

3
775 ¼

minfPU,K� ½6�þ ð2mþ 4Þ��g
minfPU,K� ½4�þ ð2mþ 2Þ��g
minfPU,K� ½4�þ ð2mþ 2Þ��g
minfPU,K� ½6�þ ð2mþ 4Þ��g

2
664

3
775 ¼

minf6:5, 5:6g
minf6:5, 6:2g
minf6:5, 6:2g
minf6:5, 5:6g

2
664

3
775 ¼

5:6
6:2
6:2
5:6

2
664

3
775:
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The cycle time corresponding to a fixed processing time P on each machine, as
presented in Gultekin et al. (2009) is

TCm
1
¼ 4m�þ 2mðmþ 1Þ�þmaxf0,P� ½ð4m� 6Þ�þ 2ðm2 � 2Þ��g:

After a simple calculation, we obtain P � TCm
1
� 6�� ð2mþ 4Þ�.

For the given set of data in this example, P� 5.6 for all machines, therefore
P�fixedðC

4
1 j8:0Þ ¼ ð5:6, 5:6, 5:6, 5:6Þ. Since

P�fixedðC
4
1 j8:0Þ ¼

P
P
P
P

2
664

3
775 ¼

5:6
5:6
5:6
5:6

2
664

3
775 �

5:6
6:2
6:2
5:6

2
664

3
775 ¼

P�1
P�2
P�3
P�4

2
664

3
775 ¼ P�ðC 4

1 j8:0Þ,

by comparing the processing times of P �fixedðC
4
1 j8:0Þ and P �ðC 4

1 j8:0Þ, we see that
P ¼ P�1 ¼ P�4 and P5P�2 ¼ P�3. Thus, the non-dominated processing time vector of C 4

1

with controllable processing times results in lower total manufacturing cost when
compared against the fixed processing time alternative.

In the following lemma, we determine P�ðCm
2 jK Þ, the set of non-dominated processing

time vectors for cycle Cm
2 that simultaneously minimise the cycle time and the total

manufacturing cost. It can be seen from Theorem 3.2 that the minimum cycle time value
for Cm

2 is {4m�þ 2[(mþ 1)2� 2]�}, thus the ECP problem is solved for cycle time level K
respecting this boundary to construct the efficient frontier.

Lemma 3.7: For the cycle Cm
2 given any feasible cycle time level K, i.e.

K� 4m�þ 2[(mþ 1)2� 2]�, there exists a unique non-dominated processing time vector
ðP�1,P

�
2, . . . ,P�mÞ 2 P�ðCm

2 jK Þ defined as

P�ðCm
2 jK Þ ¼

P�1
..
.

P�m

2
64

3
75 ¼

minfPU,K� ½4�þ ð2mþ 2Þ��g

..

.

minfPU,K� ½4�þ ð2mþ 2Þ��g

2
64

3
75:

Proof: The proof follows closely that of Lemma 3.5 and hence is omitted here. h

With Theorems 3.8 and 3.9 we prove that, in terms of manufacturing cost, one of the
two prominent pure cycles is efficient over the majority of the feasible cycle time region of
pure cycles obtained from Theorem 3.3, i.e. the region where 4m�þ 2m(mþ 1)��K.
We analyse this cycle time region in two parts. The first region is where Cm

2 is feasible and
the second region is where Cm

2 is not feasible but Cm
1 is feasible. We can see from Theorems

3.1 and 3.2 that Cm
2 is feasible whenever the cycle time satisfies 4m�þ 2[(mþ 1)2� 2]��K

and infeasible when 4m�þ 2m(mþ 1)��K5 4m�þ 2[(mþ 1)2� 2]� where Cm
1 is feasible.

Theorem 3.8: If Cm
2 is feasible, then it is also efficient.

Proof: The non-dominated processing time vector obtained from Cm
2 for the cycle time

level K is determined in Lemma 3.7 as follows:

P�ðCm
2 jK Þ ¼ ðP

�
1,P
�
2, . . . ,P�mÞ,

where

P�i ¼ minfPU, K� ½4�þ ð2mþ 2Þ��g, 8i:
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The upper bound of processing time vectors is determined in Lemma 3.4 as follows:

PðK Þ ¼ ðP1ðK Þ, . . . ,PmðK ÞÞ,

where

PiðK Þ ¼ minfPU,K� ½4�þ ð2mþ 2Þ��g, 8i:

Hence, the processing time vector obtained from Cm
2 is equal to the upper bound of

processing time vectors for any cycle time level K. Consequently, the total manufacturing
cost of P�ðCm

2 jK Þ is equal to the lower bound of the total manufacturing cost obtained
from PðK Þ. h

In the next theorem, we prove that Cm
1 is efficient in the remaining region under the

specified condition.

Theorem 3.9: If 4m�þ 2m(mþ 1)��K5 4m�þ 2[(mþ 1)2� 2]�, and PU
�K� [6�þ

(2mþ 4)�], then Cm
1 is efficient.

Proof: The non-dominated processing time vector for cycle Cm
1 is found by Lemma 3.5.

Under the extra condition that PU
�K� [6�þ (2mþ 4)�], it is easy to verify that

ðP�1,P
�
2, . . . ,P�mÞ ¼ ðP

U,PU, . . . ,PUÞ ¼ PðK Þ

using Lemmas 3.4 and 3.5.
Since all the processing times on the machines take their maximum value, there is no

other pure cycle that can result in smaller total manufacturing cost. h

We now proceed to determine the worst case performance of Cm
1 with respect to the

total manufacturing cost. The region considered in Lemma 3.10 is the only region where
neither Cm

1 nor Cm
2 is guaranteed to be efficient. Since Cm

1 is feasible and Cm
2 is not feasible

in this region, only Cm
1 is considered. The term F1ðP

�ðCm
1 jK ÞÞ denotes the total

manufacturing cost incurred by the non-dominated processing time vector of Cm
1 for the

given cycle time level K. Similarly, the term FLB
1 ðPðK ÞÞ denotes the lower bound of the

total manufacturing cost of pure cycles for the given cycle time level K. We present the
performance analysis below in which f(�) gives the manufacturing cost on a machine when
the processing time is equal to �.

Lemma 3.10: If 4m�þ 2m(mþ 1)��K5 4m�þ 2[(mþ 1)2� 2]� and K� [6�þ
(2mþ 4)�]5PU, the worst case performance of Cm

1 is bounded as

F1ðP
�ðCm

1 jK ÞÞ � FLB
1 ðPðK ÞÞ � o̧,

where

o̧ ¼ 1�
2

m
þ

2f ½ð4m� 6Þ�þ 2ðm2 � 2Þ��

mf ½ð4m� 4Þ�þ 2ðm2 � 1Þ��

� �
:

Proof: Take the non-dominated processing time vector ðP�1,P
�
2, . . . ,P�mÞ ¼ P�ðCm

1 jK Þ.
Using Lemma 3.5 and the fact that K� [6�þ (2mþ 4)�]5PU, it is easy to conclude that

P�ðCm
1 jK Þ ¼

P�1
P�2
..
.

P�m�1
P�m

2
666664

3
777775
¼

K� ½6�þ ð2mþ 4Þ��
minfPU,K� ½4�þ ð2mþ 2Þ��g

..

.

minfPU,K� ½4�þ ð2mþ 2Þ��g
K� ½6�þ ð2mþ 4Þ��

2
666664

3
777775
:
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We compare the total manufacturing cost of P�ðCm
1 jK Þ to the lower bound of total

manufacturing cost which corresponds to the upper bound of processing time vectors for

cycle time level K. PðK Þ can be found by using Lemma 3.4 as follows:

PðK Þ ¼ ðP1ðK Þ, . . . ,PmðK ÞÞ,

where

PiðK Þ ¼ minfPU, K� ½4�þ ð2mþ 2Þ��g, 8i:

The total manufacturing cost obtained from P�ðCm
1 jK Þ is calculated as follows:

F1ðP
�ðCm

1 jK ÞÞ ¼ ðm� 2Þ f minfPU, K� ½4�þ ð2mþ 2Þ��g
� �

þ 2f K� ½6�þ ð2mþ 4Þ��
� �

:

The lower bound of total manufacturing cost for cycle time level K is found as

FLB
1 ðPðK ÞÞ ¼

Xm
i¼1

f ðPiÞ ¼ mf minfPU, K� ½4�þ ð2mþ 2Þ��g
� �

:

Now, we can calculate the worst case performance by dividing the total manufacturing

cost obtained from cycle Cm
1 to the lower bound of total manufacturing cost.

F1ðP
�ðCm

1 jK ÞÞ

FLB
1 ðPðK ÞÞ

¼
ðm� 2Þ f minfPU, K� ½4�þ ð2mþ 2Þ��g

� �
þ 2f K� ½6�þ ð2mþ 4Þ��

� �
mf minfPU,K� ½4�þ ð2mþ 2Þ��gð Þ

¼ 1�
2

m
þ

2f K� ½6�þ ð2mþ 4Þ��
� �

mf minfPU,K� ½4�þ ð2mþ 2Þ��gð Þ
:

Since f{K� [4�þ (2mþ 2)�]}� f (min{PU, K� [4�þ (2mþ 2)�]}),

f K� ½6�þ ð2mþ 4Þ��
� �

f minfPU,K� ½4�þ ð2mþ 2Þ��gð Þ
�

f ðK� ½6�þ ð2mþ 4Þ��
� �
f K� ½4�þ ð2mþ 2Þ��
� � :

We have assumed that 4m�þ 2m(mþ 1)��K, so we can easily show that

f K� ½6�þ ð2mþ 4Þ��
� �
f K� ½4�þ ð2mþ 2Þ��
� � � f ð4m� 6Þ�þ 2ðm2 � 2Þ�

� 	
f ð4m� 4Þ�þ 2ðm2 � 1Þ�½ �

,

thus

F1ðP
�ðCm

1 jK ÞÞ

FLB
1 ðPðK ÞÞ

� 1�
2

m
þ

2f ð4m� 6Þ�þ 2ðm2 � 2Þ�
� 	

mf ð4m� 4Þ�þ 2ðm2 � 1Þ�½ �
:

h

As can be seen from the statement in Lemma 3.10, the number of machines directly

affects the difference in total manufacturing cost between the total manufacturing cost of

Cm
1 and the lower bound. The following result, which states that the worst case

performance of Cm
1 gets better as the number of machines increases, immediately follows

from Lemma 3.10.

Corollary 3.11: As m tends to1, the total manufacturing cost of Cm
1 approaches the lower

bound of the total manufacturing cost.
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Proof: Clearly, o̧! 1 as m!1 and the result follows. h

The next example presents the efficient frontiers of cycles Cm
1 and Cm

2 for given
parameters and illustrates Theorem 3.8 and Lemma 3.10.

The cost function used in the next example is modified from the cost functions given in
Kayan and Akturk (2005). There is a set of identical parts requiring a single pass turning
operation performed on identical CNC turning machines. The total manufacturing cost is
the sum of the machining and tooling costs on each machine. The machining cost for
machine i is defined as O�Pi, where O is the operating cost which is identical for all
machines. The tooling cost on machine i is defined as T�U� P�i , where T4 0 and �5 0
are constants for identical tools and U4 0 is a specific constant for identical operations
using identical tools. Consequently, the manufacturing cost for machine i is
f (Pi)¼ O� Pi þ T�U� P�i .

Example 3.12: In this example, we consider a flexible robotic cell with four CNC turning
machines. For this turning operation, let the parameters be given as T¼ 0.1, O¼ 0.1,
U¼ 1, �¼�1.6423, �¼ 0.02, �¼ 0.01 and PU

¼ 0.90. The cost function corresponding to
processing times on the CNC machines is described as f (Pi)¼ O� Pi þ T�U� P�i .

The two curves in Figure 2 represent the efficient frontiers of C 4
1 and C 4

2 , which are
constructed by using Lemmas 3.5 and 3.7, respectively. In this figure,
4m�þ 2[(mþ 1)2� 2]�¼ 0.78 is the point found from Theorem 3.2 where C 4

2 becomes
feasible. The curves clearly illustrate the findings in Theorem 3.8 that C 4

2 dominates the
rest of the pure cycles when the cycle time is at least 0.78. In addition,
4m�þ 2m(mþ 1)�¼ 0.72 is the point where C 4

1 becomes feasible. The only region where
C 4

2 is not feasible is the cycle time region 0.72�K5 0.78. In this region, C 4
1 is feasible.

Since K� [6�þ (2mþ 4)�]5PU in this region, we cannot say that C 4
1 dominates the rest of

the pure cycles by using Theorem 3.9. However, by using Lemma 3.10, we can calculate the
worst case performance of C 4

1 in this region as o̧ ¼ 1:08. In other words, the total
manufacturing cost obtained from cycle C 4

1 is at most 8% higher than the lower bound of
the total manufacturing cost in this region.

The next section concludes this study and presents some future research directions.
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Figure 2. Total manufacturing cost with respect to cycle time.
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4. Conclusion

In this study, we considered an m-machine flexible robotic cell composed of CNC
machines producing identical parts. The machines are assumed to be capable of
performing all of the operations for identical parts. Since the machines are highly flexible,
the processing times are assumed to be controllable, in which the machining conditions can
be changed to decrease or increase the processing times. This study is restricted to a new
class of cycles, called pure cycles, which results from the flexibility of the underlying
machines. Given the robot move sequence, we consider finding non-dominated processing
time solutions to the bicriteria problem of minimising the cycle time and the total
manufacturing cost simultaneously.

We analysed two specific pure cycles and determined the non-dominated solutions for
these cycles in Lemmas 3.5 and 3.7. With Theorems 3.8 and 3.9, we proved that one of
these two prominent cycles is efficient in most of the regions. For the remaining region, we
determined the worst case performance. The results show that these two prominent cycles
are not only simple and practical to implement, but also efficient.

Given a fixed processing time vector, whether the problem of finding the pure
cycle with the best cycle time value is NP-hard or not remains an open question. As future
research directions, the results of this study can be extended to cells producing multiple
parts or cells possessing a dual gripper robot. In order to obtain more efficient solutions
for both cycle time and processing time criteria, different robotic cell structures such as
those involving input and output buffers beside individual machines can be considered.
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Appendix A. Proof of Theorem 3.1

Before proceeding with the proof of Theorem 3.1, we first provide the necessary definitions and
results from Gultekin et al. (2009). The time between loading machine i and the arrival time of the
robot in front of the same machine to unload it is denoted as vi. If the processing time on that
machine exceeds this time epoch, then a waiting time will incur at that machine. In other words, the
waiting time on machine i is defined as wi¼max{0,Pi� vi}. The cycle time of Cm

1 is the total time
required for all of the robot activities and the waiting times in front of the machines. A similar
reasoning to the one in Gultekin et al. (2009) reveals the cycle time as follows:

TCm
1
¼ 4m�þ ð2m2 þ 2mÞ�þ w1 þ w2 þ � � � þ wm: ðA1Þ

The robot travel time between consecutive machines (�), the load/unload time of machines (�), and
the number of machines (m) are constant. Thus, we only have to find the total waiting time in front
of the machines to calculate the cycle time. Different from the analysis in Gultekin et al. (2009), the
processing times in each machine could be different. However, the processing time information is
inherent in the waiting time values. Hence, the following system of equations, as derived in Gultekin
et al. (2009) should be solved:

v1 ¼ TCm
1
� ½6�þ ð2mþ 4Þ�þ w1 þ wm� ¼ ð4m� 6Þ�þ ð2m2 � 4Þ�þ w2 þ � � � þ wm�1 ðA2Þ

vm ¼ TCm
1
� ½6�þ ð2mþ 4Þ�þ wm� ¼ ð4m� 6Þ�þ ð2m2 � 4Þ�þ w1 þ w2 þ � � � þ wm�1: ðA3Þ

Finally,

vi ¼ TCm
1
� ½4�þ ð2mþ 2Þ�þ wi� ¼ ð4m� 4Þ�þ ð2m2 � 2Þ�þ w1 þ � � � þ wm � wi ðA4Þ

for every i2 {2, . . . ,m� 1}.
We first prove the following very strong property that waiting times can only occur on machines

having the greatest processing time value among the set of machines {2, . . . ,m� 1}. This property
will considerably simplify our case analysis in the proof of Theorem 3.1.

Lemma A.1: For every machine i2 {2, . . . ,m� 1} such that Pi 5P1
max, the waiting time value wi is

zero.

Proof: Assume to the contrary that 9 i2 {2, . . . ,m� 1} such that Pi 5P1
max but wi4 0. Since

wi4 0, Pi¼ viþwi. Moreover, using the set of equations (A4), TCm
1
¼ Pi þ ½4�þ ð2mþ 2Þ��. Now, let

k2 arg max{Pi : i2 {2, . . . ,m� 1}}. There are two cases to consider.

Case (i) wk¼ 0

In other words, Pk� vk and from equation set (A4), vk ¼ TCm
1
� ½4�þ ð2mþ 2Þ��. As derived

above, TCm
1
� ½4�þ ð2mþ 2Þ�� ¼ Pi. However, all these conclusions force P1

max ¼ Pk � Pi which is
contradictory to our starting hypothesis.
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Case (ii): wk4 0

In other words, wkþ vk¼Pk and from equation set (A4), wk þ vk ¼ Pk ¼ TCm
1
� ½4�þ ð2mþ 2Þ��.

However, this forces P1
max ¼ Pk ¼ Pi which is again contradictory to our starting hypothesis that

Pi 5P1
max. h

With the following case analysis, we shall find the total waiting time as a function of the
processing times.

. If Pm4 vm or, equivalently, wm¼Pm� vm4 0, then using Equation (A3),
vm¼Pm�wm¼ (4m� 6)�þ (2m2

� 4)�þ
P

i6¼mwi, and therefore,
P

iwi¼Pm� [(4m� 6)�þ
(2m2
� 4)�]

. Else If P14 v1, then using Equation (A2), v1¼P1�w1¼ (4m� 6)�þ (2m2
� 4)�þ

w2þ ��� þwm�1 and since wm¼ 0,
P

iwi¼P1� [(4m� 6)�þ (2m2
� 4)�]

. Else If Pi4 vi for some i2 {2, . . . ,m� 1}, then we know from Lemma A.1 that wk4 0 for
any k2 arg max{Pi : i2 {2, . . . ,m� 1}}. Since w1¼wm¼ 0 in this case, a reasoning similar
to the previous cases results in

P
i wi ¼ P1

max � ½ð4m� 4Þ�þ ð2m2 � 2Þ��
. Else no waiting time occurs on any of the machines and hence

P
iwi¼ 0.

In the worst case, our total waiting time will correspond to the maximum possible of the above
resulting four cases, and consequently, w1 þ w2 þ � � � þ wm ¼ maxf0,P1 � ½ð4m� 6Þ�þ ð2m2 � 4Þ��,
Pm � ½ð4m� 6Þ�þ ð2m2 � 4Þ��,P1

max � ½ð4m� 4Þ�þ ð2m2 � 2Þ��g and the cycle time of Cm
1 is obtained

by replacing the total waiting time in Equation (A1) with this max function.

Appendix B. Proof of Theorem 3.2

In Gultekin et al. (2009), the cycle time of the second pure cycle Cm
2 is derived as

TCm
2
¼ 4m�þ ð2m2 þ 4m� 2Þ�þ w1 þ w2 þ � � � þ wm: ðB1Þ

For this cycle, the vi values are identical for all the machines and are

vi ¼ TCm
2
� ½4�þ ð2mþ 2Þ�þ wi� ¼ ð4m� 4Þ�þ 2ðm� 1Þðmþ 2Þ�þ w1 þ � � � þ wm � wi: ðB2Þ

We first prove that if waiting time occurs on a machine then this machine has to be one of those with
the greatest processing time.

Lemma B.1: If Pi 5P2
max, then wi¼ 0 for any i2 {1, . . . ,m}.

Proof: Assume to the contrary that there exists i2 {1, . . . ,m} such that Pi 5P2
max but wi4 0.

Following a similar line of reasoning as done in the proof of Lemma A.1, we have
wi þ vi ¼ Pi ¼ TCm

2
� ½4�þ ð2mþ 2Þ�� using Equation (B2). Now, let k2 {1, . . . ,m} be a machine

for which Pk ¼ P2
max. There are two cases to consider.

Case (i) wk¼ 0

In other words, Pk� vk and from equation set (B2), vk ¼ TCm
2
� ½4�þ ð2mþ 2Þ��. As derived

above, TCm
2
� ½4�þ ð2mþ 2Þ�� ¼ Pi. However, all these conclusions force P2

max ¼ Pk � Pi which is
contradictory to our starting hypothesis.

Case (ii) wk4 0

In other words, wkþ vk¼Pk and from equation set (B2), wk þ vk ¼ Pk ¼ TCm
2
� ½4�þ ð2mþ 2Þ��.

Again, this forces P2
max ¼ Pk ¼ Pi which contradicts our starting hypothesis. h

A shorter version of the case analysis done for the proof of Theorem 3.1 leads to the conclusion
that, in the worst case, the total waiting time for this cycle, i.e.

P
iwi, is maxf0,P2

max�

ð4m� 4Þ�� 2ðm� 1Þðmþ 2Þ�g and thus the theorem follows.
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