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Abstract— We present fast and accurate solutions of extremely
large scattering problems involving three-dimensional metallic
objects discretized with hundreds of millions of unknowns.
Solutions are performed by the multilevel fast multipole algo-
rithm, which is parallelized efficiently via a hierarchical partition
strategy. Various examples involving canonical and complicated
objects are presented in order to demonstrate the feasibility of
accurately solving large-scale problems on relatively inexpensive
computing platforms without resorting to approximation tech-
niques.

I. INTRODUCTION

The multilevel fast multipole algorithm (MLFMA) is a
powerful method, which enables the solution of large-scale
electromagnetics problems discretized with large numbers
of unknowns [1]. This method reduces the complexity of
matrix-vector multiplications required by iterative solvers from
O(N2) to O(N logN), where N is the number of unknowns,
without deteriorating the accuracy of results. Nevertheless,
accurate solutions of real-life problems often require dis-
cretizations involving millions of unknowns, which cannot be
handled easily with sequential implementations of MLFMA
running on a single processor. In order to solve such large
problems, it is helpful to increase computational resources by
assembling parallel computing platforms and by parallelizing
MLFMA.

Among various parallelization schemes for MLFMA, the
most popular use distributed-memory architectures by con-
structing clusters of computers with local memories connected
via fast networks [2]–[9]. Unfortunately, parallelization of
MLFMA is not trivial, and simple parallelization strategies
usually fail to provide efficient solutions. Consequently, there
have been many efforts to improve the parallelization of
MLFMA by developing novel strategies. Recently, we pro-
posed a hierarchical parallelization strategy, which is based
on the optimal partitioning at each level of MLFMA [5],[9].
This strategy offers a higher parallelization efficiency than
previous approaches, due to the improved load-balancing and
the reduced number of communication events.

In this paper, we present rigorous solutions of extremely
large scattering problems involving three-dimensional canon-

ical and complicated metallic objects. By employing an ef-
ficient parallel implementation of MLFMA, we are able to
solve electromagnetics problems discretized with hundreds
of millions of unknowns both efficiently and accurately. We
present various examples to demonstrate the feasibility of ac-
curately solving large-scale problems on relatively inexpensive
computing platforms.

II. SIMULATION ENVIRONMENT

MLFMA and its efficient parallelization via the hierarchical
partitioning strategy are extensively discussed in [10],[9]. In
this section, we only summarize the major stages of MLFMA,
as well as its computational requirements, parallelization, and
error sources in the context of developing an efficient and
accurate simulation environment.

A. Major Stages of MLFMA

MLFMA starts with the recursive clustering of the object.
A tree structure of L = O(logN) levels is constructed by
considering nonempty clusters. Before the iterative solution,
near-field interactions are calculated in the setup part and
stored in memory. Those interactions are between basis and
testing functions located in the same cluster or in two touching
clusters at the lowest level of the tree structure. In order
to calculate far-field interactions on the fly in each matrix-
vector multiplication, radiation and receiving patterns of basis
and testing functions, as well as translation operators for
cluster-cluster interactions are also calculated in the setup part.
Finally, the right-hand-side vector and the preconditioner to
accelerate the iterative solution are prepared before iterations.

During the iterative solution part, matrix-vector multiplica-
tions required by the iterative solver are performed efficiently
by MLFMA. Far-field interactions are calculated in a group-
by-group manner in three main stages, namely, aggregation,
translation, and disaggregation, performed on the multilevel
tree structure. In the aggregation stage, radiated fields of clus-
ters are calculated from the bottom of the tree structure to the
highest level. Then, in the translation stage, radiated fields are
translated into incoming fields. Finally, in the disaggregation
stage, total incoming fields at cluster centers are calculated
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from the top of the tree structure to the lowest level. At the
lowest level, incoming fields are received by testing functions
to complete the matrix-vector multiplication.

B. Computational Requirements

In terms of the processing time, the setup part of MLFMA
is dominated by the calculation of near-field interactions.
For accurate solutions, those interactions are calculated care-
fully by employing singularity-extraction techniques [11]–
[13], adaptive integration methods [14], and Gaussian quadra-
tures [15]. Calculation of radiation and receiving patterns of
basis and testing functions, translation operators, and the right-
hand-side vector requires negligible time compared to the
calculation near-field interactions. For all problems presented
in this paper, iterative solutions are accelerated with the block-
diagonal preconditioner (BDP), which can also be constructed
in negligible time.

In our MLFMA implementation, a majority of memory is
used for near-field interactions, radiation and receiving patterns
of basis and testing functions, and aggregation/disaggregation
arrays required during matrix-vector multiplications. As op-
posed to common implementations of MLFMA, we calculate
and store radiation and receiving patterns of basis and testing
functions during the setup of the program, and we use them
efficiently during iterations. Calculating the patterns on the
fly in each matrix-vector multiplication without storing them
would decrease the memory requirement; but the processing
time would increase significantly.

C. Parallelization

MLFMA can be parallelized efficient by using a hierarchical
partitioning strategy, which is based on the simultaneous
partitioning of clusters and their fields at all levels [5],[9].
We adjust the partitioning in both directions, i.e., clusters
and samples of radiated and incoming fields, appropriately
by considering the number of clusters and the number of
samples at each level. The hierarchical partitioning strategy
provides two important advantages, compared to previous
parallelization techniques for MLFMA. First, partitioning both
clusters and samples of fields leads to an improved load-
balancing of the workload among processors at each level.
Second, communications between processors are reduced, i.e,
average package size is enlarged, the number of commu-
nication events is reduced, and the communication time is
significantly shortened.

D. Error Sources

In MLFMA implementations, there are various error
sources, which must be controlled carefully for accurate solu-
tions. Basically, the simultaneous discretization (triangulation)
of surfaces and integral-equation formulations constitutes the
major error source in numerical solutions. Using the Rao-
Wilton-Glisson (RWG) functions [16] for the discretization,
triangles should be much smaller than the wavelength. Typi-
cally, in order to obtain less than 1% error, the largest triangle
should be smaller than λ/10, where λ is the wavelength.

TABLE I
SOLUTIONS OF EXTREMELY LARGE SCATTERING PROBLEMS INVOLVING

CANONICAL AND COMPLICATED OBJECTS DEPICTED IN FIG. 1

Object Rectangular Box
Size 875λ

Number of Unknowns 174,489,600
Polarization φ θ

Illumination Angle 30◦ 60◦ 90◦ 30◦ 60◦ 90◦

Number of Iterations 15 17 36 16 36 36
Total Time (minutes) 269 291 493 280 493 493

Object NASA Almond
Size 915λ

Number of Unknowns 203,476,224
Polarization φ θ

Illumination Angle 30◦ 60◦ 90◦ 30◦ 60◦ 90◦

Number of Iterations 20 17 17 27 24 28
Total Time (minutes) 442 515 515 676 628 693

Object Flamme
Size 880λ

Number of Unknowns 204,664,320
Polarization φ θ

Illumination Angle 30◦ 60◦ 90◦ 30◦ 60◦ 90◦

Number of Iterations 37 42 88 46 80 154
Total Time (minutes) 869 951 1753 1019 1611 2922

Accurate solutions also require accurate computations of
matrix elements. Using adaptive integration methods [14], we
calculate near-field interactions with a maximum of 1% error.
Far-field interactions are also calculated with a maximum of
1% error using the excess bandwidth formula to determine
truncation numbers and sampling rates for radiated and in-
coming fields [17]. Interpolation and anterpolation operations
constitute another error source in MLFMA. We use various
techniques in order to suppress those additional errors without
deteriorating the efficiency of the implementation [18],[19].
Finally, the relative residual error for the iterative convergence
is typically set to 10−3 in all solutions.

III. RESULTS

In this paper, we present solutions of scattering problems
involving three metallic objects depicted in Fig. 1, namely, a
1 m × 3.5 m × 0.1 m rectangular box, the NASA Almond [20]
of length 25.23 cm, and the complicated stealth airborne target
Flamme [21] with a maximum dimension of 0.6 m. All three
objects involve closed conducting surfaces, which can be for-
mulated with the combined-field integral equation (CFIE) [22].

The rectangular box is investigated at 75 GHz. At this
frequency, the size of the box corresponds to 875λ, and its
discretization with the RWG functions on λ/10 triangles leads
to matrix equations involving 174,489,600 unknowns. The
NASA Almond is discretized with 203,476,224 unknowns
and investigated at 1.1 THz. The maximum dimension of the
NASA Almond corresponds to 915λ at this frequency. Finally,
the Flamme is discretized with 204,664,320 unknowns and
investigated at 440 GHz. The scaled size of the Flamme is
0.6 m, which corresponds to 880λ at this frequency.

The rectangular box is illuminated by three plane waves
propagating on the x-z plane at 30◦, 60◦, 90◦ angles from
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Fig. 1. Large metallic objects, whose scattering problems are solved by the
parallel MLFMA implementation.

the z axis with the electric field polarized in the θ direction.
The NASA Almond and the Flamme are illuminated by three
plane waves propagating on the x-y plane at 30◦, 60◦, and
90◦ angles from the x axis (from the nose) with the electric
field polarized in the φ direction. Solutions are performed on
a cluster of Intel Xeon Dunnington processors with 2.40 GHz
clock rate. The cluster consists of 16 computing nodes, and
each node has 48 GB of memory and multiple processors.
For all solutions, we employ four cores per node (a total
of 64 cores). Iterative solutions are performed by using the
biconjugate-gradient-stabilized algorithm [23] accelerated via
BDP.

Table I lists the number of iterations and the total processing
time for each solution. For the Flamme, the number of iter-
ations significantly increases with the increasing illumination
angle, due to the resonant characteristics of the cavity at the
back of the target. This is not observed for the NASA Almond,
which has a convex surface with a more regular shape. In the
case of the rectangular box, solutions require more iterations
for oblique incidences. Using a total of 768 GB memory of
the Dunnington cluster, rectangular-box problems are solved
in 4.5–8.5 hours, NASA-Almond problems are solved in 7.5–
11.5 hours, and Flamme problems are solved in 14.5–49.0
hours.

Fig. 2 depicts the bistatic radar cross section RCS (dBms)
of the rectangular box on the x-z plane as a function of the
bistatic angle θ. For 30◦ and 60◦ illuminations, RCS values
make peaks at two reflection directions, in addition to the
forward-scattering direction. For the 90◦ illumination, a re-
flection direction coincides with the back-scattering direction.
We note that the cross-polar RCS is significantly lower than
the co-polar RCS of the rectangular box for all illuminations.

Fig. 3 depicts the bistatic RCS (dBms) of the NASA
Almond on the x-y plane as a function of the bistatic angle
φ. We observe that the NASA Almond has a stealth ability
with very low back-scattered RCS compared to the forward-
scattered RCS. Specifically, for the 30◦ illumination, the back-
scattered RCS is 95 dB lower than the forward-scattered
RCS. This large difference decreases to about 77 dB for 60◦

and 90◦ illuminations. We also note that, depending on the
illumination, RCS of the NASA Almond is relatively high in
a range of bistatic directions, i.e., 90◦–210◦, 60◦–240◦, and
30◦–270◦ for 30◦, 60◦ and 90◦ illuminations, respectively.

Finally, Fig. 4 depicts the bistatic RCS (dBms) of the stealth
airborne target Flamme on the x-y plane as a function of
the bistatic angle φ. For 30◦ and 60◦ illuminations, the back-
scattered RCS of the Flamme is very low, i.e., it is 90 dB and
105 dB lower than the forward-scattered RCS, respectively.
For the 90◦ illumination, however, the difference between RCS
values in the back-scattering and forward-scattering directions
decreases to 56 dB. As opposed to the RCS of the NASA
Almond, the Flamme RCS exhibits several peaks in various di-
rections depending on the illumination. In addition, the cross-
polar RCS of the Flamme is quite significant and comparable
to its co-polar RCS for all illuminations.

IV. CONCLUSION

This paper presents rigorous solutions of scattering prob-
lems involving metallic objects discretized with hundreds of
millions of unknowns using a parallel implementation of
MLFMA. Using a hierarchical partitioning strategy, those
large-scale problems can be solved easily on relatively inex-
pensive computing platforms without resorting to approxima-
tion techniques.
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[6] Ö. Ergül and L. Gürel, “Efficient parallelization of the multilevel fast
multipole algorithm for the solution of large-scale scattering prob-
lems,” IEEE Trans. Antennas Propag., vol. 56, no. 8, pp. 2335–2345,
Aug. 2008.

[7] J. Fostier and F. Olyslager, “An asynchronous parallel MLFMA for
scattering at multiple dielectric objects,” IEEE Trans. Antennas Propag.,
vol. 56, no. 8, pp. 2346–2355, Aug. 2008.

[8] X.-M. Pan and X.-Q. Sheng, “A sophisticated parallel MLFMA for
scattering by extremely large targets,” IEEE Antennas Propag. Mag.,
vol. 50, no. 3, pp. 129–138, Jun. 2008.
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pp. 157–164, Apr. 1978.

[23] H. A. van der Vorst, “Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM
J. Sci. Stat. Comput., vol. 13, no. 2, pp. 631–644, Mar. 1992.

30

210

240

90 270

120

300

150

330

180

0

60

30

210

60

240

90 270

120

300

150

330

180

0
θ

θ

R
C

S
 

(dB
m

s)

 50

 0

30

210

60

240

90 270

120

300

150

330

180

0
θ

R
C

S
 

(dB
m

s)

 50

 0

R
C

S
 

(dB
m

s)

 50

 0

Rectangular Box (875λ)

θ

φ

Fig. 2. Bistatic RCS (dBms) of the rectangular box in Fig. 1 at 75 GHz.
RCS values less than −70 dBms are omitted.

22



0

-50

 0

R
C

S
 (dB

m
s)

30

210

240

90 270

120

300

150

330

180

0

60

30

210

60

240

90 270

120

300

150

330

180

0
φ

φ

R
C

S
 (dB

m
s)-50

 0

30

210

60

240

90 270

120

300

150

330

180

0
φ

R
C

S
 (dB

m
s)-50

 0

NASA Almond (915λ)

θ

φ

Fig. 3. Bistatic RCS (dBms) of the NASA Almond in Fig. 1 at 1.1 THz.
RCS values less than −70 dBms are omitted.

-50

 0

R
C

S
 (dB

m
s)

30

210

240

90 270

120

300

150

330

180

0

60

30

210

60

240

90 270

120

300

150

330

180

0
φ

Flamme (880λ)

φ

R
C

S
 (dB

m
s)-50

 0

30

210

60

240

90 270

120

300

150

330

180

0
φ

R
C

S
 (dB

m
s)-50

 0

θ

φ

Fig. 4. Bistatic RCS (dBms) of the Flamme in Fig. 1 at 440 GHz. RCS
values less than −70 dBms are omitted.

23


