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a b s t r a c t 

We introduce a problem called the Sustainable Vehicle Routing Problem (SVRP) in which the sustainabil- 

ity notion is considered in terms of economic, environmental and social impacts. Inspired by real-world 

problems that large cargo companies face for their delivery decisions, we introduce a new facet to the 

classical vehicle routing problem by considering the welfare of all three stakeholders of the problem: 

an environmentally conscious company, the drivers, and the indistinguishable customers, as our setting 

assumes that all customers belong to the same delivery class. Thus, the proposed problem consists of 

three objective functions. The first one is to minimize the total fuel consumption and emission to rep- 

resent the companies’ main economic and environmental concerns. The second one is to maximize total 

welfare of the drivers through a function that encourages equitable payment across drivers while encour- 

aging low total driver cost and the third one is to maximize total welfare of the customers through a 

function that encourages fairness in terms of delivery times. The last two objectives are measured using 

slots for tour lengths and delivery times. We implement an efficient solution approach based on the ε- 

constraint scalarization to find the nondominated solutions of our triobjective optimization problem and 

present computational analysis that provide insights on the trade-off between the objectives. Our experi- 

ments demonstrate the potential of the suggested framework under the customer anonymity assumption 

to help decision makers make effective plans that all parties involved would give consent to. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction and background 

Vehicle routing problems (VRPs) have been around for decades 

nd many variations have been defined. However, most of these 

tudies only focus on the economic consequences of transporting 

oods from one point to another. Although in theory, logistics com- 

anies seem to have the only lead role in this problem, in prac- 

ice, two significant supporting roles; customers and drivers also 

ould like to protect their own interest. Therefore, companies have 

tarted to consider a more holistic point of view on their delivery 

perations by paying attention to other consequences such as envi- 

onmental and social at the expense of additional economic burden 

 DHL, 2015 ), which extends the classical single objective setting to 

 multiobjective one. 

Our research proposes a new sustainable routing system that 

ocuses on economic, environmental and social impacts of freight 

ransportation activities that can be adapted by real world cargo 

elivery companies that serve indistinguishable customers. In our 
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etting, the customers are considered as entities that are entitled 

o equitable service from the perspective of the company. They are 

elivery points, mostly individuals that the items have to delivered. 

e assume anonymity for customers in such an application, which 

an be also adapted by cargo companies that have delivery classes 

uch as “Regular”, “Prime”, “Express” and “Over-Night” delivery. 

e assume that customers that we consider belong to one of the 

forementioned delivery classes. Then, the service times to these 

ustomers are categorized in time slots and the company aims to 

nalize the deliveries at the earliest possible slot. Once the plan- 

ing is finalized the company notifies the customers about their 

elivery slot. Here, avoiding extreme inequality in delivery times 

s a significant concern due to its effects on customer satisfaction. 

ence, the overall aim is being efficient and fair in delivery time 

lanning, which is ensured by serving as less customers as possible 

n the latest slots. Time slots/windows concepts have been previ- 

usly used in VRP ( Perugia, Moccia, Cordeau, & Laporte, 2011 ) in- 

luding the dial-a-ride problem ( Matl, Hartl, & Vidal, 2018 ) to en- 

ure that equity between customers is considered. Several logis- 

ics companies around the world pay their drivers based on their 

ileage ( Rodriguez, Rocha, Khattak, & Belzer, 2003 ) and perform 

eliveries to their customers with a motivation to serve them as 
g sustainable routes: Economic, environmental and welfare con- 
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oon as possible. The measure utilizing drivers mileage is consid- 

red via the mileage slots that the drivers are serving to. Since 

he payments are based on these slots, the company wants to en- 

ure fairness among the drivers and determine an equitable allo- 

ation of mileage while keeping the total payment low. Thus, the 

roposed system is actually planning the routing decisions while 

onsidering three different performance measures: being econom- 

cally sound and environmentally friendly; being fair to the drivers 

n terms of payments; and being fair to the customers in terms of 

elivery times (that are declared and notified after planning). 

For the main objective, we use a fuel consumption function, 

hich implicitly encourages (fuel) cost minimization for the com- 

any, hence both economic and environmental concerns are incor- 

orate. In the last 10 years, due to raising concerns about the cli- 

ate change and the global warming, environmental impacts of 

he transportation related activities have been considered in sev- 

ral VRPs. In these studies, environmental impacts are measured 

n terms of the amount of fuel consumed, which is directly pro- 

ortional to CO 2 emissions ( Demir, Bekta ̧s , & Laporte, 2014b ). The 

esulting functions do not only consider travelled distance but also 

nclude other factors such as vehicle payload and vehicle speed 

hat affect the fuel consumption ( Sbihi & Eglese, 2010 ). Demir et al.

2014b) categorized these factors as vehicle, environment, traffic, 

river and operations related factors and also presented different 

ypes of fuel consumption models in the literature. While estimat- 

ng the amount of fuel consumed, including these factors increases 

he accuracy of the estimation, but it also increases the complexity 

f the fuel consumption model. Each actor mentioned above has an 

ncentive to pay attention to economic and environmental impacts 

s it is crucial for everyone to have a sustainable environment in 

he future. 

The first study that considers fuel consumption minimization in 

 routing problem is Kara, Kara, & Yetis (2007) , which introduced 

he “Green routing” concept by minimizing a cost function depend- 

ng on both the distance traveled and also the load of the vehicle. 

ekta ̧s & Laporte (2011) introduced the Pollution Routing Problem 

PRP) with a more accurate fuel consumption model that considers 

peed and load as decisions. Variants of the “Green routing” prob- 

ems or PRPs have since been studied, with effort s to address var- 

ous factors observed in real-life such as time-dependency ( Jabali, 

oensel, & de Kok, 2012 ), heterogeneous fleets ( Koç, Bekta ̧s , Ja- 

ali, & Laporte, 2014 ), more than one objectives ( Demir, Bekta ̧s , &

aporte, 2014a ), pickup and delivery ( Zachariadis, Tarantilis, & Ki- 

anoudis, 2015 ), inventory consideration ( Mirzapour Al-e hashem 

 Rekik, 2014 ), and location decisions ( Dukkanci, Kara, & Bekta ̧s , 

019b ). For comprehensive surveys on green routing and green 

etwork design problems, we refer the reader to Demir et al. 

2014b) and Dukkanci, Bekta ̧s , & Kara (2019a) . 

Fairness concerns have been considered in many OR applica- 

ions recently since they naturally arise in real life problems in dif- 

erent domains ( Karsu & Morton, 2015; Matl et al., 2018 ). Fairness 

oncerns can be incorporated into mathematical models in a num- 

er of ways: One can use an inequality index and ensure that the 

ndex is optimized in an objective function, or bounded in a con- 

traint to avoid extreme inequality. The classical minmax objectives 

r minmax type constraints is a typical example of this approach. 

nother method would be formulating the problem as a multiob- 

ective optimization problem (MOP) in which the amount allocated 

o each entity is minimized (or maximized if a good is distributed). 

his approach is relatively unpopular since the corresponding MOP 

ay be too difficult to handle in reasonable time. If there are n 

ntities and a single commodity, then a n -objective model will be 

ormulated. 

The third method would be defining a social welfare function 

an equitable aggregation function) that encourages fair allocations 

ver entities. In this work, we take this approach to ensure that 
2 
he customer delivery times and driver payments are equitably dis- 

ributed. Note that for a function to be an equitable aggregation 

unction, it should be in line with an equitable preference model 

nd hence satisfy some well-defined properties ( Argyris, Özlem 

arsu, & Yavuz, 2021; Karsu, Morton, & Argyris, 2018; Kostreva, 

gryczak, & Wierzbicki, 2004 ). First of all, it should be symmet- 

ic (this is a direct result of the anonymity assumption over the 

ntities.). Recall that customers in the same delivery class is con- 

idered in our problem. Second, it should be in line with Pigou- 

alton principle of transfers , which dictates that a transfer from a 

orse-off entity to a better-off one, which does not change the 

elative positions of these entities, should be preferred. Moreover, 

ince such a function will encompass both efficiency and fairness 

oncerns, it should be a nonincreasing function of the allocated 

mounts. 

In line with the trend of acknowledging fairness in OR settings, 

ore studies have started to consider social impacts of transporta- 

ion activities in VRPs, fairness among drivers being one of them. 

s is the case with our proposed problem, to avoid any injustice 

etween drivers who are usually paid by the distance that they 

eed to travel, balancing the routes has been observed as an im- 

ortant challenge. Matl et al. (2018) presented a comprehensive 

urvey and analysis for workload equity in VRPs. This study pro- 

ided not only an extensive review on the related literature but 

lso theoretical and numerical analysis on vehicle routing prob- 

ems with equity objectives. The authors classified the literature 

ased on the types of equity function, equity metric, optimization 

odel and method. In terms of the equity function, the literature 

s divided into three categories; range, min-max and other. 

The studies where equity is measured based on the range 

the difference between the shortest and the longest tour) of the 

ours generally consider multi-objective optimization models by 

ncluding equity as a new objective into the problem. Jozefowiez, 

emet, & Talbi (2002) introduce the route balancing concept into 

he VRP and evaluate the performance of several heuristic algo- 

ithms on the resulting bi-objective problem. To solve this prob- 

em, several heuristic algorithms are proposed ( Jozefowiez, Semet, 

 Talbi, 20 07; 20 09; Lacomme, Prins, Prodhon, & Ren, 2015; Oyola 

 Løkketangen, 2014 ). The studies using the min-max criterion as 

n equity function usually take the length of the longest (cost of 

he most expensive) tour as the primary objective and formulate a 

ingle objective optimization problem. Golden, Laporte, & Taillard 

1997) is the first study that considers the min-max objective in 

he VRP and the authors developed a tabu search based adaptive 

emory heuristic algorithm. Bertazzi, Golden, & Wang (2015) com- 

ared different variants of the classical VRP and the min-max VRP 

nd provided a worst-case analysis. 

Huang, Smilowitz, & Balcik (2012) studied a relief routing prob- 

em for a humanitarian setting. The authors analyse the impact 

f efficiency, efficacy and equity objectives on vehicle routes. For 

he latter objective, they define three different equity functions 

ncluding a piecewise disutility function for unsatisfied deliveries. 

alvorsen-Weare & Savelsbergh (2016) is the first study that anal- 

ses the impacts of different equity functions on a bi-objective 

roblem. The authors presented a bi-objective mixed capacitated 

eneral routing problem that minimizes the total cost and four dif- 

erent equity objectives. Lehuédé, Péton, & Tricoire (2020) inves- 

igated a lexicographic minimax approach to solve a bi-objective 

ehicle routing problem with route balancing. Mancini, Gansterer, 

 Hartl (2021) analysed multi-period collaborations between car- 

iers in a vehicle routing problem where time and service con- 

istency, and workload balance are considered. The workload bal- 

nce among carriers is achieved by ensuring that the number of 

ustomer assigned to a carrier cannot be less than a minimum 

alue set by the carrier. Campbell, Vandenbussche, & Hermann 

2008) studied two variants of the VRP for a post-disaster appli- 
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Table 1 

Studies related to the SVRP. 

General Fairness Fuel Consumption 

Equity Function 

References # of Obj. Sol. A. Cust. Dri. Range Min-max Other Emission Model 

Kara et al. (2007) One E � Factor 

Bekta ̧s & Laporte (2011) One E � Micro 

Demir et al. (2014a) Two E&H � Micro 

Jozefowiez et al. (2002) Two H � � 

Golden et al. (1997) One H � � 

Bertazzi et al. (2015) One - � � 

Huang et al. (2012) One E � � 

Halvorsen-Weare & Savelsbergh (2016) Two E � � � � 

Lehuédé et al. (2020) Two H � � 

Mancini et al. (2021) One E&H � 

Campbell et al. (2008) One E&H � � � 

Eisenhandler & Tzur (2019) One E&H � � 

Abdullahi et al. (2021) Three H � Factor 

Our study Three E � � � � Micro 
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ation where the first one minimizes the maximum arrival time 

f critical supplies and the second one minimizes the average ar- 

ival time. Eisenhandler & Tzur (2019) studied a routing and allo- 

ation problem for a humanitarian application that includes col- 

ecting food donations and delivering them to food relief agencies. 

he problem aims to maximize the total amount food distributed 

nd also be fair in the allocation of food. The authors aggregate 

hese two concerns by using an objective function, in which the 

otal amount is multiplied by a measure of equity (namely 1 mi- 

us the Gini index of the allocation) ( Blackorby & Donaldson, 1978; 

bert, 1987 ). In addition to several humanitarian applications, the 

tudies that consider real-life problems with a fairness objective 

re waste collection ( Kim, Kim, & Sahoo, 2006 ), school bus rout- 

ng ( Li & Fu, 2002 ), and home-to-work bus service ( Perugia et al.,

011 ). 

Abdullahi, Reyes-Rubiano, Ouelhadj, Faulin, & Juan (2021) stud- 

ed a sustainable VRP where they also consider the economic, en- 

ironmental and social impacts of freight transportation. In par- 

icular, the economic impacts include the fixed, variable and fuel 

ost of vehicles; the environmental impacts account for the fuel 

onsumption based on a factor emission model and social impacts 

over the risk related to traffic accidents instead of a fairness ob- 

ective as in our problem. As a solution approach, the authors im- 

lemented a Biased-Randomised Iterated Greedy with Local Search 

lgorithm. 

For comprehensive surveys on vehicle routing problems and 

ulti-objective routing problems, we refer the reader to Vidal, La- 

orte, & Matl (2020) and Zajac & Huber (2021) , respectively. 

Table 1 presents a summary of the related literature and cate- 

orizes the studies based on the following factors: (i) the number 

f objective functions (# of Obj.), (ii) the proposed solution ap- 

roaches (Sol. A.); exact (E) and/or heuristics (H), (iii, iv) having 

n equity function for customers (Cust.) and drivers (Dri.), respec- 

ively, (v, vi, vii) the type of equity function (Range, Min-max or 

ther), (viii) including environmental impact (Emission) and (ix) 

he type of fuel consumption model used (Model). The table also 

emonstrates how our study fits into the current literature and 

hows that the proposed problem aims to fill a gap in the VRP 

iterature by considering three objectives that cover economic, en- 

ironmental and social impacts of transportation activities. 

In this study, we introduce the Sustainable Vehicle Routing 

roblem (SVRP), an extension of the classical VRP, in which eco- 

omic (fuel and driver cost), environmental (CO 2 emission) and so- 

ial impacts (fairness to drivers and customers) are considered. The 

roposed SVRP consists of three objective functions; (i) to mini- 

ize the total amount of fuel consumption (CO 2 emissions), (ii) to 
t  

3 
aximize welfare of the drivers and (iii) to maximize welfare of 

he customers. 

As we elaborate in the upcoming sections, economic impacts 

re inherently addressed in the first and second objective func- 

ions as fuel and driver cost, respectively. We quantify the en- 

ironmental impacts as CO 2 emission by using a fuel consump- 

ion model. The fairness concern for the drivers is motivated by 

he observation that they are generally paid by the distance they 

ravel. Any imbalance between tour lengths leads to unequal pay- 

ents to the drivers. In order to ensure a fair and economically 

fficient payment system among drivers, we propose a profit func- 

ion that awards shorter and balanced tours. Welfare of customers 

s measured using a function that favors quick and fair deliveries 

mong customers in the same delivery class. The proposed welfare 

unction is chosen as an equitable aggregation function of delivery 

ime allocations to customers. Motivated by the observation that 

nhappy customers are more likely to remember this experience 

nd take action, we lexicographically minimize the number of cus- 

omers who receive their delivery in the late delivery slots of the 

ay. 

The contributions of this paper are as follows: (i) we define 

ovel welfare functions for both customers and drivers that en- 

ourage both fairness and efficiency, (ii) we present the first multi- 

bjective approach that considers economic, environmental and so- 

ial impacts simultaneously from perspectives of all parties includ- 

ng companies, drivers and customers for a routing problem, (iii) 

e implement an efficient exact algorithm to find the nondomi- 

ated solutions of this problem and conduct computational exper- 

ments on real road networks to analyse the trade-offs between 

hree objectives. 

The remainder of this paper is constructed as follows: 

ection 2 presents the problem definition including the descrip- 

ion of emission model, customer and driver welfare functions. 

ection 3 provides a multi-objective mathematical model of the 

VRP. Section 4 presents an exact solution approach to solve the 

VRP and an illustration of this solution approach on an example. 

omputational results are discussed in Section 5 , and conclusions 

nd future research directions are given in Section 6 . 

. Formal problem definition 

The SVRP is defined on a complete directed graph G = ( N, A ),

here N = {0,1, ..., n } denotes the set of customers (nodes), in- 

luding the depot (0) and A = {( i , j ) : i , j ∈ N, i � = j} is the set

f arcs. A fleet of m identical vehicles, each with capacity C serves 

he customers. The distance on arc (i, j) ∈ A is denoted by d i j . Each
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Fig. 1. A concave down decreasing utility function for customers. 
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ustomer i ∈ N has a nonnegative demand q i . The vehicle speed is 

enoted by v . 
The set of time slots for customers is denoted by L C and we let

 C be the number of time slots considered for customers (i.e., the 

ardinality of set L C ). Similarly, L D and l D denote the set and num-

er of route length slots for drivers. For instance, let us assume 

hat the time slots for customers are as follows: 0 to 3, 3 to 6 and

 to 9 hours. Then, the set L C can be defined as L C = {1, 2, 3} and

 C equals to 3. 

We maximize an equity-encouraging welfare function for the 

ustomers, where the welfare contribution received when deliv- 

ry is made on time slot l is denoted by p C 
l 

for a customer. This

ould be seen as the amount of utility received by a customer 

hen her delivery is made on time slot l. Similarly, in our equity- 

ncouraging welfare function for the drivers, the welfare contribu- 

ion when route length of a driver is in a route length slot l is p D 
l 

.

his welfare contribution can be seen as the amount of utility that 

he central planner has when the length of the route of a driver is 

n slot l. 

In the next sections, we explain the ways we define economic, 

nvironmental, and social impacts in terms of fuel consumption, 

O 2 emissions and fairness, respectively. 

.1. Fuel consumption and CO 2 emissions 

The model that we use to estimate the amount of fuel con- 

umption and CO 2 emissions is called Comprehensive Modal Emis- 

ion Model (CMEM) proposed by Scora & Barth (2006) , Barth, 

ounglove, & Scora (2005) , Barth & Boriboonsomsin (2008) . 

Based on the CMEM model, the fuel consumption rate F r in 

iters/second (L/s) can be calculated as, 

 r = ξ (KϒV + P/η) /κ, 

here ξ is the fuel-to-air mass ratio, K is the engine friction factor, 

is the engine speed, V is the engine displacement (in L), η is the 

fficiency parameter for diesel engines and κ is the heating value 

f a typical diesel fuel. Finally, P is the second-by-second engine 

ower output (in kW) and it can be calculated as follows. 

 = P tract /n t f + P acc , 

here n t f is the vehicle drive train efficiency and P acc is the engine 

ower demand associated with running losses of the engine and 

he operation of vehicle accessories such as air conditioning usage. 

 tract is the total tractive power requirement (in kW) and it can be 

alculated as follows. 

 tract = (Ma + Mg sin θ + 0 . 5 C d ρSv 2 + MgC r cos θ ) v / 10 0 0 , 

here M is the total weight of the vehicle (in kg) including the 

mpty vehicle weight w and weight of the goods carried, a is the 

nstantaneous acceleration (in m/s 2 ), g is the gravitational constant 

in m/s 2 ), θ is the road angle, C d is the coefficient of aerodynamic 

rag, ρ is the air density (in kg/m 

3 ), S is the frontal surface area 

in m 

2 ), v is the vehicle speed (in m/s) and C r is the coefficient of

olling resistance. 

We introduce some new parameters in order to simplify the 

bove formulation: λ = ξ/κψ where ψ is the conversion factor 

f fuel, γ = 1 / 10 0 0 n t f η, α = a + g sin θ + gC r cos θ is a vehicle-arc

pecific constant and β = 0 . 5 C d ρS is a vehicle-specific constant. By 

sing the new parameters, the total fuel consumption F (in L) for a 

ehicle traveling on a road segment of d units (in m) at a constant 

peed v (in m/s) can be given as follows: 

 = λKϒV d/ v + λγ dMα + λγ dβv 2 . 

The emission model related parameter values are given in Ap- 

endix A. 
4 
.2. Fairness 

This section introduces welfare functions that we use in order 

o incorporate the welfare concerns for the customers and drivers. 

ere, we assume that there is anonymity among customers, hence 

ll customers will be treated the same without prioritization of 

ome over the others. This is indeed the case where all customers 

onsidered belong to the same delivery class e.g., over-night deliv- 

ry. With a similar approach, we assume that drivers, which are 

ssigned to the same delivery class, have the same capabilities, so 

here is anonymity between drivers, as well. 

.2.1. Incorporating customer welfare 

We use a welfare function for the customers, which is of the 

ollowing form: W F C = 

∑ n 
i =1 u 

C 
i 
(T i ) , where T i is the delivery time 

f customer i . We let u C 
i 

= u C for all i , since this utility function is

etermined by a central decision maker. In that sense we are tak- 

ng a central planning point of view ( Karsu, 2016; Kaynar & Karsu, 

018 ). We also assume that u C (. ) is concave down decreasing as 

een in Fig. 1 . 

Since u C (. ) is monotonic in the sense that increasing the deliv- 

ry time of a customer (everything else being the same) decreases 

er utility, the welfare function W F C = 

∑ n 
i =1 u 

C (T i ) is monotonic. 

uch a function would also satisfy the Pigou-Dalton principle of 

ransfers since the utility is decreasing in an increasing manner as 

he delivery time increases. To see why, consider T 1 , T 2 as the de-

ivery times of two customers 1 and 2. Any convex combination of 

he delivery times would have larger utility. For example, when the 

elivery times are both ( (T 1 + T 2 ) / 2 ), the overall welfare will in-

rease as the decrease in u 1 (the utility of the better-off customer 

) will be smaller than the increase in u 2 (the utility of the worse- 

ff customer 2). 

One can incorporate such concave functions into the model 

ia piecewise linear approximation. In our setting, since the plan- 

ing is made considering time slots, we use a step function as 

ollows: u (T i ) = p C 
j 
, j : T C 

j−1 
≤ T i < T C 

j 
, where p C 

j 
> p C 

j+1 
and p C 

j 
−

p C 
j+1 

< p C 
j+1 

− p C 
j+2 

∀ j = 1 , . . . , l C − 2 . That is, we divide the range

f possible delivery times into l C slots using thresholds and assign 

tility scores such that the customers in the same slot receive the 

ame utility ( Fig. 2 ). Since the utility scores decrease as slot in-

reases, u (. ) (and hence the total welfare W F C ) is a nondecreasing

unction of delivery times (i.e., satisfies weak monotonicity). 

Any delivery time distribution vector over customers is asso- 

iated with a vector showing the number of customers served at 

ach slot of the day. Let n j be the number of customers served at 

lot j (Customer i is served at slot j if T C 
j−1 

≤ T i < T C 
j 

). 

Recall that l C is the number of time slots. Given a solution with 

n allocation vector ( n 1 , . . . , n l C ) transferring one customer from a 

orse slot to a better slot can be considered as an efficiency en- 

ouraging transfer. 
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Fig. 2. Utility function of a customer for three slot case. 
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efinition 1. A welfare function WF is efficiency encouraging if 

or n ∈ R 

l C , W F (n ) < W F (n + e i − e j ) , where i, j : i < j and e i and

 j are the ith and jth unit vectors 1 (Note that n is the parameter

howing the total number of customers. Here, with a slight abuse 

f notation we also denote the allocation vector by n . Which one 

s meant will be clear from the context). 

We also ensure that the welfare function encourages equity in- 

reasing transfers. Consider for example two allocation vectors for 

 setting with 10 customers: (3,2,5) and (2,4,4). The second solu- 

ion is obtained by transferring one customer from the best and 

orst slots to the middle one. Which solution is fairer is context 

pecific, in this work, we take the view that decreasing the num- 

er of customers in the worst slots should be prioritized, hence 

onsider the second one as more equitable. This is in line with a 

awlsian approach to fairness as it focuses on the worst-off mem- 

ers of a society ( Rawls, 1971 ). 

efinition 2. A customer welfare function WF is equity encourag- 

ng if for n ∈ R 

l C , W F (n ) < W F (n − e i + 2 e j − e k ) , where i, j and k

 i < j < k . 

The definition implies that the utility gain from a unit trans- 

er from k to j is larger than the utility loss from the trans- 

er to i to j. To encourage fair allocations of customers to time 

lots, we lexicographically minimize the number of customers as- 

igned to time slots, starting from the worst one. That is, we 

olve the lexmin (n l C , . . . , n 2 , n 1 ) problem. We ensure this by letting

p C 
j 
= 

∑ l C −2 

h = j−1 
n h + 1 . The motivation behind this lexicographic mini- 

ization approach is the observation that customers can take more 

ction in providing negative feedback when the delivery times are 

nacceptably high compared to other customers in the same de- 

ivery class as opposed to the case where they are lower since all 

ustomers are entitled to be treated equally. Our approach can be 

nterpreted as avoiding the risk of losing these customers by pre- 

enting them from facing high delivery times as much as possible. 

roposition 1. Let W F C = 

∑ n 
i =1 u 

C (T i ) where u C (T i ) = p C 
j 
, j : T C 

j−1 
≤

 i < T C 
j 

, and p C 
j 
= 

∑ l C −2 

h = j−1 
n h + 1 . The following holds: i) W F C is effi-

iency and equity encouraging. ii) A solution maximizing W F C is an 

ptimal solution to lexmin (n l C , . . . , n 2 , n 1 ) problem. 

roof. See Appendix B. �

orollary 1. In a three slot case, a solution maximizing W F C such 

hat p C 
1 

= n + 2 ; p C 
2 

= n + 1 ; p C 
3 

= 1 , is an optimal solution to the

exmin (n 3 , n 2 , n 1 ) problem. 

.2.2. Incorporating driver welfare 

Similarly, we define a welfare function for drivers W F D = 

 m 

i =1 u 
D (r l i ) , where r l i is the route length of driver i . u D is a step
1 ith unit vector in R l C has a value of 1 in ith dimension and 0 everywhere else. 

i

a

5 
unction whose form is similar to u C . Note that the function has a 

onincreasing form as in the customer case since the utility of the 

entral planner decreases as the route length of a driver increases. 

his is a direct result of the drivers being paid by the mileage 

hey cover. The central planner would have economic concerns and 

ence prefer shorter routes, which is incorporated into the model 

hrough this nonincreasing welfare function for drivers. The struc- 

ure of the welfare function W F D and the u D is analogous to the 

ase discussed for customers. Dividing the possible route lengths 

nto l D intervals once can define: u D (rl i ) = p D 
j 
, j : T D 

j−1 
< rl i < T D 

j 
,

p D 
j 

> p D 
j+1 

∀ j = 1 , . . . , l D − 1 . 

Each route length distribution over the m drivers is associated 

ith a vector showing the number of drivers with route lengths in 

pecific slots. Let m j be the number of drivers with route lengths 

n slot j. One can use two structures for u D depending on whether 

exmin (m l D 
, . . . , m 2 , m 1 ) or lexmax (m 1 , m 2 , . . . , m l D 

) is desired as

ollows: 

Case 1: Lexicographically minimizing the number of drivers 

ssigned to slots, starting from the maximum length slot 

exmin (m l D 
, . . . , m 2 , m 1 ) . This is analogous to the case described

or customers hence the coefficients can be set as follows: p D 
j 

= 

 l D −2 

h = j−1 
m 

h + 1 . 

roposition 2. Let W F D = 

∑ m 

i =1 u 
D (rl i ) where u D (rl i ) = p D 

j 
, j :

 l D 
j−1 

≤ r l i < r l D 
j 

, and p D 
j 

= 

∑ l D −2 

h = j−1 
m 

h + 1 . The following holds: i)

 F D is efficiency and equity encouraging. ii) A solution maximizing 

 F D is an optimal solution to lexmin (m l D 
, . . . , m 2 , m 1 ) problem. 

The proof is omitted as it has the same structure as the proof 

f Proposition 1 . 

Case 2: Lexicographically maximizing the number of drivers as- 

igned to slots, starting from the best slot lexmax (m 1 , m 2 , . . . , m l D 
) .

n this case, the coefficients can be set as follows: p D 
j 

= 

 l D −1 − j 

h =0 
m 

h + 1 (See Proposition 1 in Appendix C). 

Note that in the lexmax case (Case 2), the welfare function 

oes not satisfy the equity encouraging transfers principle in 

efinition 2 . This is because the priority changes from minimizing 

he number in the worst slots to maximizing the number in the 

est slots. Here, by worse, we mean longer length tour slots as we 

olve this problem for a central decision maker. Given two alloca- 

ions (3,2,5) and (2,4,4) for an instance with 10 drivers, the second 

ne will not be considered better since the number of drivers in 

he best slot decreases. This time, the welfare loss from decreasing 

he number of drivers in the best slot is larger than the gain from 

ecreasing the number of drivers in worst slot. We investigate the 

mplications of this alternative approach, i.e. lexmax approach in 

ection 5.2.1 , and how to set the coefficients such that lexmax 

unction is ensured in Appendix C. A similar lexmax approach can 

lso be used regarding customers, i.e. maximizing the number of 

ustomers in the better slots can be prioritized over minimizing 

he ones in worse slots. We provide our main discussion using the 

exmin approach since it is more preferred to achieve equitable 

istributions in various settings ( Nace & Orlin, 2007 ). We, however, 

lso provide an example that shows how the solutions change in 

uch an efficiency-oriented approach by implementing lexmax for 

ustomers in Section 5.2.2 . 

For the drivers’ welfare function whether to use lexmax or 

exmin is problem specific. If the payment made to the drivers 

s increasing with an increasing rate, then lexmin is a better ap- 

roach. If the payment increases with a decreasing rate then lex- 

ax should be preferred. To see why, one can check the difference 

n payment in the two allocations given in Definition 2 . 

Note that regardless of which approach is used, even if all tours 

re in the same mileage zone, that does not necessarily mean that 
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engths of tours will be equal to each other. In a setting, where 

rivers are categorized as “better” and “worse” based on their ca- 

abilities, the decision maker can decide which driver will be as- 

igned to which tour. That is, she for example can reward bet- 

er drivers by assigning them longer tours with more payment. 

owever, driver categorization does not deem our approach unim- 

lementable, the decision maker can easily make such a post- 

ssignment. 

. Problem formulation 

In this section, we present a multi-objective mixed integer pro- 

ramming formulation for the SVRP. The decision variables are de- 

ned as follows: A binary variable x i j equals 1 if a vehicle travels 

n arc (i, j) ∈ A , and 0 otherwise. A continuous nonnegative vari-

ble f i j represents the flow on arc (i, j) ∈ A . Another continuous 

onnegative variable t i j represents the total time covered by a ve- 

icle up to node j ∈ N when the vehicle travels from node i ∈ N to

j ∈ N. Finally, a binary variable w il equals 1 if the total time of a

our (driver time) where customer i ∈ C is the last customer vis- 

ted is on time slot l ∈ L D ; 0 otherwise and another binary variable

 il equals 1 if the delivery for customer i ∈ C is made on time slot

 ∈ L C ; 0 otherwise. 

A multi-objective mathematical model of the SVRP is as fol- 

ows: 

inimize z 1 (x ) = 

∑ 

(i, j) ∈ A 
[(αγ λd i j ωx i j ) + (αγ λd i j f i j ) 

+ (βγ λd i j v 2 x i j ) + (KϒV λd i j 

x i j 

v 
)] (1) 

aximize z 2 (x ) = 

∑ 

i ∈ C 

∑ 

l∈ L D 
p D l w il (2) 

aximize z 3 (x ) = 

∑ 

i ∈ C 

∑ 

l∈ L C 
p C l y il (3) 

subject to 

 

j∈ C 
x 0 j = m (4) 

∑ 

j∈ N\{ i } 
x i j = 1 ∀ i ∈ C (5) 

∑ 

 ∈ N\{ j} 
x i j = 1 ∀ j ∈ C (6) 

∑ 

j∈ N\{ i } 
f i j −

∑ 

j∈ N\{ i } 
f ji = q i ∀ i ∈ C (7) 

 i x i j ≤ f i j ≤ (C − q j ) x i j ∀ i, j ∈ N : j � = i (8) 

∑ 

j∈ N\{ i } 
t i j −

∑ 

j∈ N\{ i } 
t ji = 

∑ 

j∈ N\{ i } 
( 

d i j 

v 
x i j ) ∀ i ∈ C (9) 

 0 i = 

d 0 i 
v 

x 0 i ∀ i ∈ C (10) 

 i j ≤ Mx i j ∀ i, j ∈ N : j � = i (11) 

 

D 
l−1 w il ≤ t j0 ≤ T D l w il + M(1 − w il ) ∀ i ∈ C, l ∈ L D (12) 
6 
 

C 
l−1 y il ≤

∑ 

j∈ N\{ i } 
t ji ≤ T C l y il + M(1 − y il ) ∀ i ∈ N, l ∈ L C (13) 

 

∈ L D 
w il = 1 ∀ i ∈ C (14) 

 

∈ L C 
y il = 1 ∀ i ∈ N (15) 

 i j ∈ { 0 , 1 } ∀ i, j ∈ N : j � = i (16) 

f i j ≥ 0 ∀ i, j ∈ N : j � = i (17) 

 i j ≥ 0 ∀ i, j ∈ N : j � = i (18) 

 il ∈ { 0 , 1 } ∀ i ∈ C, l ∈ L D (19) 

 il ∈ { 0 , 1 } ∀ i ∈ N, l ∈ L C . (20) 

he first objective function (1) minimizes the total amount of fuel 

onsumption and emission calculated by the emission model. The 

econd (2) and the third (3) objective functions maximize the to- 

al welfares of the drivers and customers, respectively. Constraint 

4) ensures that a fleet of m vehicles leaves the depot. With con- 

traint (5) and (6) , it is guaranteed that every customer will be 

isited exactly once by only one vehicle. Constraint (7) ensures 

ow conservation between customers. Constraint (8) provides a 

ower bound on flow variable and also it imposes vehicle capac- 

ty constraint. Constraints (9) –(11) calculate the arrival time at cus- 

omers in a tour. Constraints (12) –(13) allocate the driver time and 

ustomer delivery time into the predetermined time slots, respec- 

ively. Constraints (14) –(15) ensure that the driver time and the 

ustomer delivery time are allocated to only one predetermined 

ime slot, respectively. Here, we remark that in the problem de- 

cription, we state that fairness objective for drivers will be eval- 

ated based on the tour lengths. Since vehicle speed is constant 

n our problem and to avoid any additional auxiliary variables, we 

onsider the total time that driver spent instead of the total dis- 

ance that driver travelled in a tour in the formulation. Constraints 

16) –(20) are the domain constraints. 

. Solution approach 

Consider the following multiobjective integer programming 

roblem 

aximize z(x ) (P) 

ubject to x ∈ X . 

here z : R 

n → R 

3 is a vector valued function and X ⊂ R 

n is the

easible region. In particular we assume that Z := z(X ) = { z(x ) | x ∈
 } consists of vectors with at least two integer components. The 

im is finding the set of nondominated points ( Z N ⊂ Z) of problem 

 . 

The solution algorithm we implement is provided in 

lgorithm 1 . It works on the projected space where each point 

 ∈ Z is projected onto R 

2 with respect to its second and third 

omponents. In that sense, it is a variant of the solution algorithm 

iscussed in Kirlik & Sayın (2014) , which we modified considering 

he specifics of the SVRP. The proposed algorithm searches pre- 

efined sub-regions in this projected space. The sub-regions yet 
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Algorithm 1 Algorithm to solve (P) . 

1: Let z N 2 = m × p D 
l D 

and z N 3 = n × p C 
l C 

, f easible = 1 , Z N = ∅ , IS = ∅ , 
NS = ∅ , R = ∅ , ε = 1. 

2: Solve M(z N 
2 
, z N 

3 
) . If the model is infeasible, f easible = 0 . 

3: while f easible do 

4: Let an optimal solution be x . Z N ← Z N ∪ { z(x ) } . Set l 2 = 

z 2 (x ) + ε. Solve M(l 2 , z 
N 
3 
) . 

5: if The model is infeasible then 

6: f easible = 0 . 

7: end if 

8: end while 

9: Sort Z N with respect to z 2 (. ) in decreasing order. Let Z := 

{ (z 2 , z 3 ) : (z 1 , z 2 , z 3 ) ∈ Z N } . 
10: for i = 1 , . . . , | Z| − 1 do 

11: R = R ∪ (z i +1 
2 

+ ε, z i 
3 

+ ε) 

12: end for 

13: R = R ∪ (z N 
2 
, z 

| Z| 
3 

+ ε) 

14: while |R| ≥ 1 do 

15: Take the first element in R . Let it be (l 2 , l 3 ) . R = R \ (l 2 , l 3 ) . 

f l agsol v e =1. 

16: for i = 1 , . . . , | IS| do 

17: if IS(i, 1) ≤ l 2 & IS(i, 2) ≤ l 3 then 

18: f l agsol v e =0. BREAK; 

19: end if 

20: end for 

21: for i = 1 , . . . , | NS| do 

22: if NS(i, 1) ≤ l 2 ≤ NS(i, 3) & NS(i, 2) ≤ l 3 ≤ NS(i, 4) then 

23: f l agsol v e =0. R = { (NS(i, 3) + ε, l 3 ) , (l 2 , NS(i, 4) + ε) } ∪ 

R , BREAK; 

24: end if 

25: end for 

26: for ( ̄l 2 , l̄ 3 ) ∈ R do 

27: if l̄ 2 ≤ l 2 and l̄ 3 ≤ l 3 then 

28: f l agsol v e =0. BREAK; 

29: end if 

30: end for 

31: if f l agsol v e =1 then 

32: Solve M(l 2 , l 3 ) . 

33: if The model is feasible then 

34: Let an optimal solution be x . Z N = Z N ∪ z(x ) . 

R = { (NS(i, 3) + ε, l 3 ) , (l 2 , NS(i, 4) + ε) } ∪ R . 

N S = N S ∪ (l 2 , l 3 , z 2 (x ) , z 3 (x )) ; 

35: else 

36: I S = I S ∪ (l 2 , l 3 ) 

37: end if 

38: end if 

39: end while 
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Fig. 3. Region that can be eliminated when x ∗ is an optimal solution to M(l 2 , l 3 ) . 
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o be explored is kept as a list R , which is initialized as a region

hat is guaranteed to include the projections of all elements of 

 N . At an arbitrary iteration, the algorithm explores a sub-region 

n R for new nondominated points. If new points are found, the 

et of sub-regions to be explored ( R ) is updated accordingly. 

 sub-region R ∈ R can be defined by two numbers, which are 

hresholds for the second and third objective function values as 

ollows: R (l 2 , l 3 ) := { z ∈ R 

3 : z 2 ≥ l 2 , z 3 ≥ l 3 ) . We search for new

oints in R (l 2 , l 3 ) by solving the following scalarization: 

aximize z 1 (x ) + αz 2 (x ) + βz 3 (x ) 

ubject to x ∈ X ( M(l 2 , l 3 ) ) 

z 2 (x ) ≥ l 2 

z 3 (x ) ≥ l 3 . 
r

7 
his scalarization is the well-known (augmented) epsilon con- 

traint scalarization. The optimal solution of this scalarization 

roblem is an efficient solution of problem P and its image in the 

bjective space is a nondominated point. If a new nondominated 

oint is found in a given region R (l 2 , l 3 ) , we exclude subregions

hat are guaranteed not to include a nondominated point (i.e. its 

rojection) based on Proposition 3 . 

roposition 3. Let x ∗ be an optimal solution of M(l 2 , l 3 ) . � z ∈ Z N :

 2 ≤ z 2 ≤ z 2 (x ∗) , l 3 ≤ z 3 ≤ z 3 (x ∗) . 

roof. To the contrary assume that ∃ x ∈ X : z(x ) ∈ Z N , l 2 ≤ z 2 (x ) ≤
 2 (x ∗) , l 3 ≤ z 3 (x ) ≤ z 3 (x ∗) . For z(x ) to be nondominated, z 1 (x ) >

 1 (x ∗) should hold (Since x is at most as good as x ∗ with respect

o z 2 (. ) and z 3 (. ) ). Since x is feasible for M(l 2 , l 3 ) , this contradicts

he optimality of x ∗. See Fig. 3 . �

We provide the pseudocode of the algorithm in Algorithm 1 . 

he algorithm starts with finding lower bounds for the second and 

hird objective function values by assigning their possible lowest 

alues which are m × p D 
l D 

and n × p C 
l C 

, respectively. Throughout the 

lgorithm a number of sets are utilized as follows: Set of regions 

et-to-be explored R ; set of regions explored before, for which 

 non-dominated point is found NS; set of regions explored be- 

ore, for which no nondominated point is found (i.e. the scalar- 

zation model is infeasible) IS. The first epsilon-constraint scalar- 

zation model (at line 2) is solved using the overall lower bounds 

or z 2 (x ) and z 3 (x ) , which guarantees that the nondominated point

ith the best z 1 (. ) value is returned. Starting from this solution, 

he algorithm first “sweeps” the search region by putting bounds 

nly on z 2 (. ) in the scalarization model (lines 3–8). After line 8, 

e obtain points that are nonincreasing with respect to z 1 (. ) and 

ncreasing with respect to z 2 (. ) . The points do not have any order

ith respect to z 3 (. ) . 

After finding an initial set of solutions, the algorithm deter- 

ines regions yet-to-be explored, making use of these solutions. 

hese regions are defined such that their union is guaranteed to 

ontain projections of all the remaining nondominated points. To 

weep the image set Z this time in the opposite direction, the ini- 

ial solution set is sorted in decreasing order with respect to z 2 (. ) .

he regions are defined accordingly and in line 13, an additional 

egion having the lowest possible value for z 2 (. ) is added. At each 

teration of the main loop (starting at line 14), the first element in 

et R is chosen to be explored. We first check some filtering rules 

o make use of information obtained from the previous iterations 

elying on the following results: 
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roposition 4. For two regions ( l 2 , l 3 ) and ( ̄l 2 , l̄ 3 ) : l̄ 2 ≤ l 2 and l̄ 3 ≤
 3 : 

• If there are no nondominated points in ( ̄l 2 , l̄ 3 ), then there are no

nondominated points in ( l 2 , l 3 ). 
• If the optimal solution of M( ̄l 2 , l̄ 3 ) is feasible for M(l 2 , l 3 ) then it

is optimal for M(l 2 , l 3 ) . 

Both statements are a direct result of the feasible region of 

(l 2 , l 3 ) being a subset of that of M( ̄l 2 , l̄ 3 ) . Similar rules are dis-

ussed in other studies see e.g. Kirlik & Sayın (2014) and Klamroth, 

acour, & Vanderpooten (2015) . If the first case is observed for 

 region R (l 2 , l 3 ) , since no solution is found, no new regions are

dded to the list. In the second case, the region is divided into two 

maller sub-regions and these regions are added to the yet-to-be 

xplored list. 

Finally, we do not explore a region if a super set of it is yet-to-

e explored (see lines 26–30). 

If for a region R (l 2 , l 3 ) none of the above cases apply, then the

calarization problem M(l 2 , l 3 ) is solved so as to find nondomi- 

ated points with projections in the region. If found, new regions 

re defined and added and set NS is updated; if not, set IS is up-

ated. 

roposition 5. The algorithm finds all nondominated points in a fi- 

ite number of iterations (i.e. solving a finite number of models). The 

umber of models solved is bounded by (|Z N | + 1) 2 . 

The proof is provided in Appendix D. Our computational experi- 

ents show that the actual values of the number of models solved 

s well below this bound. 

We illustrate the algorithm on an example problem in Appendix 

. 

. Computational study 

This section presents the computational analysis on the SVRP. 

e first describe the data set used in the computational exper- 

ments and the settings of the parameters. We then analyse the 

olutions of problem instances of different sizes, which we obtain 

y varying number of customers ( | N| ) and number of vehicles ( m ),

or the setting where we lexicographically minimize the number 

f drivers assigned to slots, starting from the worst slot. We per- 

orm further experiments to see the effect of time slot lengths on 

he results and also the settings, where a lexmax approach is used 

o assess total welfare of the drivers. Finally, we provide results 

n how the solutions change when the planner is assumed to be 

nly efficiency-oriented and implement lexmax approach for the 

ustomers. 

All computational experiments are implemented in Java plat- 

orm and solved by Cplex 12.7.1 on a Linux OS environment with 

ual Intel Xeon E5-2690 v4 14 Core 2.6 GHz processors with 128 

B of RAM. 

.1. Data set and parameter setting 

The computational experiments are conducted over the in- 

tances of PRP Library by Demir, Bekta ̧s , & Laporte (2012) . The data

et is based on real road networks of randomly selected cities of 

he United Kingdom where demands are randomly generated. We 

onsider instances with 10, 15, 20, 25 customers ( | N| ) and 2, 3, 4,

 ( m ) drivers. For each problem size, we solve five randomly gen-

rated instances. 

The fixed vehicle speed ( v ) is set as approximately 55 km/h, 

hich is the optimal vehicle speed that minimizes the amount of 

uel consumption and emission for the specific parameter values in 

ppendix A, when there are no time related constraints. 
8 
The number of time slots ( l C ) is set to three for customers and

hreshold values ( T C 
j 

) for time slots (customers) are three, six and 

ine hours. The welfare function coefficients for customers are set 

s in Corollary 1 , as p C 
1 

= n + 2 ; p C 
2 

= n + 1 ; p C 
3 

= 1 . Similarly, the

umber of route length slots ( l D ) is set to three for drivers. Re-

all that the vehicle speed is assumed to be constant; hence us- 

ng route length slots is equivalent to using time slots for the 

rivers. We, therefore, use time slots for drivers with threshold val- 

es ( T D 
j 

) of three, six and nine. The welfare function coefficients for 

rivers are set as p D 
1 

= m + 2 ; p D 
2 

= m + 1 ; p D 
3 

= 1 when the lexmin

pproach is utilized and they are set as p D 1 = m + 3 ; p D 2 = 2 ; p D 3 = 1

hen the lexmax approach is used as described in Corollary 1 in 

ppendix C. 

The coefficients α and β in M( l 2 , l 3 ) are set as small numbers

to ensure that minimizing cost is prioritized) but not too small 

in order not to lead to weakly nondominated solutions). In the 

xperiments we set α and β as 0.01/( (m + 1) m ) (0.01/( (m + 2) m )

or lexmax approach) and 0 . 01 / ((n + 1) n ) , respectively. Since the

bjective function values for the second and third objectives are 

nteger-valued, in the proposed algorithm, the step size value ( ε) 

s taken as one in order to ensure that all nondominated solutions 

re found. 

.2. Analysis 

In this section, we first analyse the trade-off between the three 

bjectives of minimizing fuel consumption and emission and max- 

mizing customer and driver welfare. To do so, we observe how 

he best solution of an objective function performs with respect to 

he other objectives. Table 2 presents the absolute percent devia- 

ions of the best solution of an objective function from the best at- 

ainable levels of the other two objective functions. We report the 

verage and maximum deviations over five different 15-customer 

nstances with two, three and four drivers. As it can be seen in 

able 2 , we report two different average and maximum values for 

he best solutions of the second and third objectives. The reason is 

hat for the corresponding objective function, there are two solu- 

ions with the highest (for maximization) objective function value. 

or example, for m = 2 instances, there are two solutions maxi- 

izing driver welfare ( z 2 ), one is better with respect to emission 

nd the other is better with respect to customer welfare. To ensure 

 fair and meaningful comparison, we show the deviations of all 

uch maximizers, separately in two rows. The extra column titled 

Comp.” indicates the solution for which the deviations are calcu- 

ated. For example, for m = 2 instances, z 1 indicates that deviations 

re reported for the ones that are better with respect to emission, 

mong the solutions maximizing driver welfare ( z 2 ). 

The results on Table 2 suggest that for smaller number of ve- 

icles ( m = 2 ), minimizing fuel consumption and emission leads 

o more reduction in the welfare of the customers compared to 

rivers. Overall, using more vehicles leads to an increase in the 

ustomer welfare, however the driver welfare gets relatively worse, 

s expected. The results also indicate that maximizing the welfare 

f the drivers has a larger impact on the emission amount com- 

ared to the customer welfare, especially for higher number of ve- 

icles. A similar observation can be made for solutions maximiz- 

ng customer welfare: when m > 2 , the trade-off between emis- 

ion and customer welfare is more notable than the one between 

river and customer welfares. This is due to the fact that maxi- 

izing driver and customer welfare encourages tour length (dis- 

ance) minimization: the former directly and the latter through 

elivery time minimization, as the vehicle speed is constant. Min- 

mizing fuel consumption, however, considers the load-based total 

istance rather than the total distance, due to the emission model 

sed. 
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Table 2 

Deviations between best solutions for each objective function. 

| N| = 15 Min z 1 Max z 2 Max z 3 

z 2 z 3 z 1 z 3 z 1 z 2 

m Avg Max Avg Max Comp. Avg Max Avg Max Comp. Avg Max Avg Max 

2 0.00 0.00 13.42 19.60 z 1 0.00 0.00 13.42 19.60 10.05 16.84 37.50 50.00 

z 3 6.05 7.84 4.51 6.05 

3 8.10 16.67 5.13 19.76 z 1 3.14 11.88 1.42 1.97 z 1 6.64 17.61 5.00 25.00 

z 3 8.65 17.61 0.00 0.00 z 2 8.65 17.61 0.00 0.00 

4 8.27 18.18 1.57 1.96 z 1 4.36 11.39 1.65 1.96 z 1 7.81 16.19 4.55 9.09 

z 3 8.79 19.91 0.55 1.57 z 2 9.33 19.91 2.73 9.09 

Table 3 

Driver and customer distributions for the best solution of each objective function. 

| N| = 15 Min z 1 Max z 2 Max z 3 

m I D. Dist. C. Dist. Comp D. Dist. C. Dist. Comp. D. Dist. C. Dist. 

2 1 (0,1,1) (6,6,3) z 1 (0,1,1) (6,6,3) (0,0,2) (10,5,0) 

z 3 (0,1,1) (10,4,1) 

2 (0,2,0) (7,8,0) z 1 (0,2,0) (7,8,0) (0,2,0) (13,2,0) 

z 3 (0,2,0) (13,2,0) 

3 (0,1,1) (6,6,3) z 1 (0,1,1) (6,6,3) (0,0,2) (10,5,0) 

z 3 (0,1,1) (10,4,1) 

4 Infeasible 

5 (0,1,1) (8,5,2) z 1 (0,1,1) (8,5,2) (0,0,2) (8,7,0) 

z 3 (0,1,1) (8,6,1) 

3 1 (1,1,1) (8,4,3) z 1 (0,3,0) (9,6,0) (0,3,0) (13,2,0) 

z 3 (0,3,0) (13,2,0) 

2 (1,2,0) (9,6,0) z 1 (2,1,0) (10,5,0) (2,1,0) (14,1,0) 

z 3 (2,1,0) (14,1,0) 

3 (0,3,0) (11,4,0) z 1 (0,3,0) (11,4,0) (0,3,0) (14,1,0) 

z 3 (0,3,0) (14,1,0) 

4 (0,3,0) (9,6,0) z 1 (0,3,0) (9,6,0) (0,3,0) (14,1,0) 

z 3 (0,3,0) (14,1,0) 

5 (1,1,1) (10,5,0) z 1 (0,3,0) (10,5,0) z 1 (0,2,1) (12,3,0) 

z 3 (0,3,0) (12,3,0) z 2 (0,3,0) (12,3,0) 

4 1 (2,1,1) (11,4,0) z 1 (1,3,0) (10,5,0) z 1 (0,4,0) (15,0,0) 

z 3 (1,3,0) (15,0,0) z 2 (1,3,0) (15,0,0) 

2 (2,2,0) (10,5,0) z 1 (3,1,0) (12,3,0) z 1 (2,2,0) (15,0,0) 

z 3 (3,1,0) (15,0,0) z 2 (3,1,0) (15,0,0) 

3 (1,3,0) (11,4,0) z 1 (1,3,0) (11,4,0) (1,3,0) (15,0,0) 

z 3 (1,3,0) (15,0,0) 

4 (1,3,0) (13,2,0) z 1 (2,2,0) (10,5,0) (1,3,0) (15,0,0) 

z 3 (2,2,0) (12,3,0) 

5 (2,1,1) (10,5,0) (2,2,0) (11,4,0) (0,4,0) (15,0,0) 
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in column m . 
Although the results reported in Table 2 give us an idea on the 

evel of impact of considering just one objective on the others, the 

xact figures for the second and third objectives may not show 

he real trade-off due to the fact that these percentage deviations 

ainly depend on the welfare function coefficients ( p D and p C ). 

o present a more accurate analysis, we also provide the driver 

nd customer distributions for the best solutions in Table 3 , for 

ach of the five instances solved. The results in this table are in 

ine with the observations made above. We see that an increase in 

he number of vehicles leads to more customers being served in 

he earlier slots, increasing performance with respect to customer 

elfare. On the other hand, as the number of vehicles increases, 

inimizing fuel consumption and emission results in reduction in 

airness between drivers: the driver distributions deviate from the 

river welfare maximizing solution, which tends to assign similar 

oute lengths to drivers while avoiding very long routes. We also 

bserve that maximizing customer welfare leads to a less impact 

n drivers’ welfare compared to its impact on pollution; indeed, in 

ost instances with m > 2 the same driver distributions are seen 

n the best solutions of z 3 and z 2 . This indicates that if only two

bjectives can be handled, the ones to be chosen should be fuel 

onsumption minimization and one of the social-impact based ob- 
9 
ectives; driver welfare maximization or customer welfare maxi- 

ization. 

Further analysis on the first instance ( I = 1) with 15 customers 

nd three drivers show that allowing a 0.38% increase in the emis- 

ion increases the customer welfare around 16% by completing ser- 

ices of two more customers within first time slot (10,4,1) instead 

f the last one (8,4,3). An additional 0.72% increase in the emission 

eads to an approximately 23% increase in the customer welfare 

aving all 15 customers served within first two time slot (9,6,0) 

nd also a 20% increase in the driver welfare having all three 

rivers completing their deliveries in the second route length slot 

0,3,0) instead of having each of them in different slots (1,1,1). 

Table 4 summarizes the main results for the SVRP, where 

exmin approach is used for the drivers. For each problem size ( | N| ,
 combination) we report the average and the minimum values of 

he number of nondominated vectors found, and the average and 

aximum values of the number of (single objective) mathematical 

odels solved. We also report the average and maximum solution 

imes per nondominated solution over the five instances solved. 

e use a time limit of 7200 seconds and report the number of in- 

tances that could not be solved due to infeasibility in parentheses 
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Table 4 

Summary of the results. 

| N| m |Z N | # models CPU/ |Z N | 
Avg Min Avg Max Avg Max 

10 2 4.20 3 7.80 10 1.92 3.59 

10 3 3.80 2 7.40 11 0.86 1.55 

10 4 3.40 2 6.40 8 0.72 1.97 

15 2 (1) 9.75 7 14.25 22 404.01 658.38 

15 3 7.60 3 11.40 18 282.83 844.29 

15 4 7.60 5 11.80 15 575.75 1643.65 

20 3 7.40 4 11.20 14 1747.92 2859.54 

20 4 11.40 6 16.20 29 1690.71 2341.45 

20 5 12.00 8 16.80 26 1900.89 3276.88 

25 3 (2) 9.00 8 12.67 14 3653.11 5400.96 

25 4 9.80 5 14.00 21 4694.22 6230.38 

25 5 9.80 5 14.00 21 4815.70 6692.22 

Fig. 4. Nondominated solutions found by different step size values ( | N| = 25, 

m = 3, I = 4). 
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Table 5 

Z N for the instance ( | N| = 15, m = 3). 

Index z 1 (x ) z 2 (x ) (D. Dist.) z 3 (x ) (C. Dist.) 

1 126.67 10 (1,1,1) 250 (10,5,0) 

2 129.94 9 (0,2,1) 251 (11,4,0) 

3 130.14 12 (0,3,0) 250 (10,5,0) 

4 130.48 12 (0,3,0) 251 (11,4,0) 

5 134.48 9 (0,2,1) 252 (12,3,0) 

6 147.22 12 (0,3,0) 252 (12,3,0) 
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Note that even the cost minimizing variant of VRP is difficult 

o solve, making the triobjective variant even harder. As expected, 

ncreasing the number of customers results in a notable increase 

n the solution times. Increasing the number of drivers does not 

ave a foreseeable effect on the solution time. For example, for 

 N| = 15 instances, increasing the number of drivers from 2 to 3, 

educes the solution time, while a further increase of m from 3 

o 4, increases the solution time. On the other hand, we see that 

he solution time increases as m increases for | N| = 25 instances. 

e should note here that the total solution time is determined 

y two factors: the number of nondominated points (and hence 

he number of models solved) and the time required to solve each 

odel. It is seen that the single objective models become increas- 

ngly harder to solve as problem size increases. Nevertheless, the 

olution algorithm is able to return solutions for problems up to 

5 customers and 5 drivers. 

As can be seen from the results in Table 4 , for larger-sized 

nstances with higher number of customers, both solution times 

nd the number of nondominated solutions found increase, which 

imits the computational experiments to relatively small-sized in- 

tances. For larger instances, our algorithm can be used to ob- 

ain a well-representative subset of the Pareto set with less com- 

utational effort compared to finding the whole set. This can be 

chieved by setting step size value ( ε) to a larger number. In the 

riginal experiments, ε is taken as one in order to ensure that 

ll nondominated solutions are found. Here, we analyse how the 

et of nondominated solutions change with larger step size values. 

e conduct experiments over one instance with 25 customers and 

hree drivers, considering three different step size values; one, two 

nd three. Fig. 4 shows the nondominated solutions found by using 
10 
ifferent step size values. When the step size is set as one (orig- 

nal case), the number of nondominated solutions found is ten. 

hen the step size is increased to two and three, then the num- 

er of nondominated solutions decreases to five and three, respec- 

ively. Fig. 4 indicates that the subset of nondominated solutions 

btained with larger stepsizes is well-dispersed. Having a repre- 

entative subset may also be preferred to having the whole set by 

he decision maker, as it would reduce the cognitive burden when 

hoosing the alternative to implement. 

To demonstrate how a potential user can use the original 

pproach where step size is one, we analyse one of the in- 

tances with 15 customers and three drivers in more detail. Solv- 

ng this instance results in six nondominated solutions reported 

n Table 5 and their geographical representations are depicted in 

ig. 5 . Table 5 presents the values for each objective function 

 z 1 (x ) , z 2 (x ) , z 3 (x ) ) and also distributions of drivers (D. Dist.) and

ustomers (C. Dist.) in the route length and time slots, respectively. 

n the maps shown in Fig. 5 , the red house image shows the loca-

ion of the depot and routes of the vehicles are differentiated from 

ach other by the colours of images on the customer locations. We 

se letters in alphabetical order to show the visiting sequence of 

he vehicles, where depot is labeled as A, the first customer vis- 

ted is B and so on. 

In the first nondominated solution with the least amount of 

mission, drivers are equally distributed among route length slots 

nd 10 out of 15 customers are served within the first time slot 

hile remaining five are visited in the second one. As it can be 

een from Fig. 5 (a), the (orange) tour located in the lower-right of 

he map with only two customers is completed in the first route 

ength slot and all of the customers visited in this tour are served 

ithin the first time slot. The (green) tour located in the upper- 

ight of the map with seven customers, two of which are visited 

ithin the second time slot, is finished in the second route length 

lot. The last (purple) tour located in the left part of the map 

ith six customers, three of which are visited within the second 

ime slot, is completed in the third route length slot. In the sec- 

nd nondominated solution ( Fig. 5 (b)) with the expense of con- 

uming three more liters of fuel, one of the customers, who was 
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Fig. 5. Nondominated solutions of instance ( | N| = 15, m = 3). 
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o  
isited in the second time slot in the first nondominated solution, 

s now served during the first time slot in the purple tour, which 

lso causes one more driver to complete his route in the second 

oute length slot (orange tour) and so worsens the second objec- 

ive function. The third nondominated solution ( Fig. 5 (c)) increases 

he amount of fuel consumed by 0.2 L (compared to the second so- 

ution) and serves one more customer in the second time slot in- 

tead of in the first, but in this solution, all drivers complete their 

ourneys within the second route length slot resulting a fairer dis- 

ribution for drivers. This is achieved by removing a customer from 

urple tour and inserting it to orange tour. By looking at Figs. 5 (c)

nd 5 (d), one can say that they are the same, except the visiting

equence of the customers in the purple tour: the purple tour is re- 
11 
ersed, resulting in 0.34 L of more fuel consumption, but one more 

ustomer served within the first time slot compared to the third 

ondominated solution. The fifth nondominated solution ( Fig. 5 (e)) 

s much more similar to the first nondominated solution compared 

o the fourth one in terms of vehicle routes. The only difference 

etween first and fifth solutions is that two customers, which are 

isited at the end of the green tour in the first solution, are served 

t the end of the orange tour. This change on routes results in 

ore fuel consumption (around 8 L) and one more driver to fin- 

sh his journey during the second time slot instead of the first. 

owever, now in the fifth solution, two customers, which are now 

erved in the orange tour, are visited in the first time slot instead 

f the second time slot as it is in first solution. In the last nondom-
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Table 6 

Lexmin vs. Lexmax analysis for driver utility. 

lexmin lexmax 

|Z N | # models CPU/ |Z N | |Z N | # models CPU/ |Z N | 
| N| m Avg Min Avg Max Avg Max Avg Min Avg Max Avg Max 

15 2 (1) 9.75 7.00 14.25 22.00 404.01 658.38 12.00 7.00 17.25 22.00 687.71 1010.44 

15 3 7.60 3.00 11.40 18.00 282.83 844.29 8.60 5.00 13.00 21.00 796.45 2054.36 

15 4 7.60 5.00 11.80 15.00 575.75 1643.65 8.40 6.00 13.20 17.00 1371.03 2913.06 

Table 7 

Lexmin vs. Lexmax for driver utility ( | N| = 15, m = 4). 

Index lexmin, ( p D 1 , p 
D 
2 , p 

D 
3 ) = (6,5,1) lexmax, ( p D 1 , p 

D 
2 , p 

D 
3 ) = (7,2,1) 

z 1 z 2 z 3 D. Dist. C. Dist. z 1 z 2 z 3 D. Dist. C. Dist. 

1 125.24 18 251 (2,1,1) (11,4,0) 125.24 17 251 (2,1,1) (11,4,0) 

2 125.35 18 252 (2,1,1) (12,3,0) 125.35 17 252 (2,1,1) (12,3,0) 

3 126.36 21 250 (1,3,0) (10,5,0) 

4 126.65 21 251 (1,3,0) (11,4,0) 

5 127.12 21 252 (1,3,0) (12,3,0) 

6 127.23 21 253 (1,3,0) (13,2,0) 127.23 13 253 (1,3,0) (13,2,0) 

7 127.90 21 254 (1,3,0) (14,1,0) 127.90 13 254 (1,3,0) (14,1,0) 

8 134.48 20 255 (0,4,0) (15,0,0) 134.48 8 255 (0,4,0) (15,0,0) 

9 135.00 17 253 (2,1,1) (13,2,0) 

10 139.36 21 255 (1,3,0) (15,0,0) 139.36 13 255 (1,3,0) (15,0,0) 
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nated solution ( Fig. 5 (f)) compared the fifth one, one of the cus-

omers, which was visited in the purple tour, is now served in the 

range tour and also both purple and orange tours are reversed re- 

ulting in almost 13 more liters of fuel consumption. The customer 

istribution to time slots remains the same as in the fifth solution, 

ut now all drivers complete their routes at the same (second) 

ime slot leading to more balanced tours for drivers. Through this 

nalysis, the decision maker can, for example, see that, with 2.58% 

ncrease in fuel cost (emissions), it is possible to improve customer 

atisfaction and serve one more customer in the best slot; while an 

xtra improvement requires a further 3.58% increase in emission 

hat is around 6.2% increase from the minimum emission solution. 

Even this small example illustrates the possibility of obtaining 

lternative solutions for the decision maker to choose from, con- 

idering the interests of all stakeholders involved. This multiobjec- 

ive framework allows the decision makers analyse the tradeoffs 

etween the three criteria that reflect these interests and come up 

ith good compromise solutions to ensure a sustainable system 

hat will make all parties satisfied. 

.2.1. Lexmin vs. lexmax comparison for drivers 

Note that depending on the payment structure, the decision 

akers may also use a lexicographic maximization approach to as- 

ess driver welfare and hence lexicographically maximize the num- 

er of drivers with routes in the slots, starting with the best slot. 

able 6 compares the average results of lexicographic minimization 

lexmin) and lexicographic maximization (lexmax) approaches for 

river utility functions. The figures given in Table 6 are the aver- 

ge results over five instances with 15 customers and two, three 

nd four drivers resulting 15 instances in total, one of which is in- 

easible. 

The results indicate that using lexmax approach instead of 

exmin approach increases the number of nondominated solutions 

ound and hence the number of models solved. The solution time 

er nondominated solution also increases by around 130% on av- 

rage, suggesting that using lexmax approach makes the problem 

ore difficult to solve. 

We also analyse how the set of solutions change when the ap- 

roach changes. For four out of 14 instances, the same nondom- 

nated solution sets are found by both lexmin and lexmax ap- 

roaches. For one of the remaining instances with 15 customers 
12 
nd four drivers, we present a detailed comparison between these 

wo approaches ( Table 7 ). As it can be seen in the table, six non-

ominated solutions are common to both approaches (1,2,6,7,8,10). 

exmin approach finds three additional solutions (3,4,5), which 

annot be found when lexmax approach is used. Solutions 3, 4 

nd 5 with driver distribution (1,3,0) are not found by the lex- 

ax approach because all of them are dominated by solution 2 in 

he lexmax sense. On the other hand, lexmax approach finds non- 

ominated solution 9, which cannot be found by using lexmin ap- 

roach. This is again due to the change in the preference structure 

or driver distribution. 

.2.2. Lexmin vs. lexmax comparison for customers 

We now consider the case where the decision maker is not 

airness-oriented and implement a lexicographic maximization ap- 

roach to maximize the number of customers, starting with the 

est slot. We conduct experiments over five instances with 15 cus- 

omers and two, three and four drivers to compare the results of 

exicographic minimization (lexmin) and lexicographic maximiza- 

ion (lexmax) approaches for customer welfare functions. Overall, 

he results suggest that for small number of drivers, the two ap- 

roaches yield different nondominated solutions. When the num- 

er of drivers is increased, similarity between the Pareto frontiers 

f both approaches increases. 

We further analyse how the nondominated solutions change 

hen a different (lexmin or lexmax) approach is used to quan- 

ify customer welfare. We present a comparison between these 

wo approaches on one instance with 15 customers and two 

rivers ( Table 8 ). The figures given in the table indicate that 

here are seven nondominated solutions found by both approaches 

1,2,3,4,5,15,17). Lexmin approach finds eight additional nondomi- 

ated solutions (6,7,8,9,11,12,13,16), the first four of which are dom- 

nated by solutions 5 and the last four of them are dominated by 

olution 10, when lexmax approach is used. On the other hand, 

exmax approach finds three additional nondominated solutions 

10,14,18), which cannot be found when lexmin approach is used 

ince the first solution (10) is dominated by solution 9 and the last 

wo solutions (14 and 18) are dominated by solution 13. As ex- 

ected, we see more solutions with no (resp. most) customers in 

he latest (resp. earliest) slot in lexmin (resp. lexmax) approach. 
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Table 8 

Lexmin vs. Lexmax for customer utility ( | N| = 15, m = 2). 

Index lexmin, ( p C 1 , p 
C 
2 , p 

C 
3 ) = (17,16,1) lexmax, ( p C 1 , p 

C 
2 , p 

C 
3 ) = (18,2,1) 

z 1 z 2 z 3 D. Dist. C. Dist. z 1 z 2 z 3 D. Dist. C. Dist. 

1 124.69 4 201 (0,1,1) (6,6,3) 124.69 4 123 (0,1,1) (6,6,3) 

2 125.00 2 216 (0,0,2) (6,7,2) 125.00 2 124 (0,0,2) (6,7,2) 

3 125.11 4 202 (0,1,1) (7,5,3) 125.11 4 139 (0,1,1) (7,5,3) 

4 125.29 4 218 (0,1,1) (8,5,2) 125.29 4 156 (0,1,1) (8,5,2) 

5 125.72 4 219 (0,1,1) (9,4,2) 125.72 4 172 (0,1,1) (9,4,2) 

6 126.26 2 230 (0,0,2) (5,9,1) 

7 127.72 4 232 (0,1,1) (7,7,1) 

8 127.90 2 233 (0,0,2) (8,6,1) 

9 128.15 4 233 (0,1,1) (8,6,1) 

10 129.36 4 188 (0,1,1) (10,3,2) 

11 129.52 2 245 (0,0,2) (5,10,0) 

12 129.72 4 234 (0,1,1) (9,5,1) 

13 130.83 2 248 (0,0,2) (8,7,0) 

14 131.30 2 189 (0,0,2) (10,4,1) 

15 133.63 4 235 (0,1,1) (10,4,1) 133.63 4 189 (0,1,1) (10,4,1) 

16 133.68 2 249 (0,0,2) (9,6,0) 

17 134.53 2 250 (0,0,2) (10,5,0) 134.53 2 190 (0,0,2) (10,5,0) 

18 135.95 2 205 (0,0,2) (11,3,1) 

Table 9 

Customers from different delivery classes ( | N| = 15, m = 2). 

Original 10 prime customers 5 prime customers 

z 1 z 2 z 3 D. Dist. C. Dist. z 1 z 2 z 3 D. Dist. C. Dist. C. Dist. (Prime) z 1 z 2 z 3 D. Dist. C. Dist. C. Dist. (Prime) 

117.93 4 201 (0,1,1) (6,6,3) 117.93 4 83 (0,0,1) (6,6,3) (3,4,3) 117.93 4 28 (0,1,1) (6,6,3) (3,1,1) 

118.11 2 232 (0,0,2) (7,7,1) 118.11 2 114 (0,0,2) (7,7,1) (4,6,0) 118.11 2 33 (0,0,2) (7,7,1) (3,2,0) 

118.35 2 245 (0,0,2) (5,10,0) 118.38 4 84 (0,1,1) (8,4,3) (4,3,3) 124.47 4 33 (0,1,1) (8,4,3) (3,2,0) 

118.38 4 203 (0,1,1) (8,4,3) 119.91 2 117 (0,0,2) (10,4,1) (7,3,0) 127.51 2 34 (0,0,2) (7,7,1) (4,1,0) 

120.15 4 204 (0,1,1) (9,3,3) 120.15 4 106 (0,1,1) (9,3,3) (6,3,1) 129.58 4 34 (0,1,1) (7,5,3) (4,1,0) 

120.16 2 248 (0,0,2) (8,7,0) 121.61 4 107 (0,1,1) (10,4,1) (7,2,1) 

121.17 4 233 (0,1,1) (8,6,1) 125.37 4 108 (0,1,1) (10,4,1) (8,1,1) 

121.61 4 235 (0,1,1) (10,4,1) 125.48 4 116 (0,1,1) (8,6,1) (6,4,0) 

133.37 2 249 (0,0,2) (9,6,0) 125.93 4 117 (0,1,1) (10,4,1) (7,3,0) 

137.79 2 250 (0,0,2) (10,5,0) 129.68 4 118 (0,1,1) (10,4,1) (8,2,0) 
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.2.3. Customers from different delivery classes 

This section analyses a case where we partially relax the as- 

umption of customer anonymity and consider customers from dif- 

erent delivery classes such as “regular” and “prime” customers 

ogether, where the customers within their respective classes are 

till indistinguishable. Our model can be trivially modified so as 

o consider fairness among “prime” customers only. We conduct 

ome experiments and Table 9 shows the results for an instance 

ith two drivers and 15 customers. Here, we consider two dif- 

erent cases; with 10 and five “prime” customers out of 15 total 

ustomers and compare it with the original case, where fairness 

s considered for all 15 “prime” customers. Overall results indicate 

hat in some cases, we find the same nondominated solutions that 

s found by the original version of the problem, while new non- 

ominated solutions can also be added to the set when the as- 

umption of full customer anonymity is relaxed. 

. Conclusion 

In this study, we propose a multiobjective framework that helps 

he planners to consider the interests of the main stakeholders in a 

ogistics setting. Each objective reflects the concerns related to one 

f the three parties: the company, the customers served and the 

rivers delivering the good. Our problem assumes that customers 

re indistinguishable in terms of the service they are entitled to re- 

eive and so they belong to the same delivery class. We reflect the 

ompany’s economic and environmental concern via minimizing a 

uel consumption (emission) function and incorporate the welfare 

f the customers, and drivers by suggesting novel welfare function 

orms. Our framework is motivated by a real-life problem that a 
13 
arge logistics company is facing; hence we formulate the welfare 

unctions accordingly. The company divides the planning period 

typically one day) into time slots and informs the customers about 

hich slot their delivery will be performed. In line with this, we 

easure the welfare of a customer based on the slot she is served 

nd define the total welfare function so as to encourage quick and 

air delivery across customers. Observing that the company pays 

he drivers based on mileage, we define a welfare function for the 

rivers that will ensure quick and balanced routes. We implement 

n efficient objective-space based algorithm to solve the resulting 

riobjective optimization problem and demonstrate the applicabil- 

ty of the framework. 

Future research could explore use of heuristic algorithms so as 

o find quick solutions to the three objective programming prob- 

em that we introduce in this work. Moreover, alternative welfare 

unction forms and their effects on the recommended solutions can 

e investigated. 
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