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We introduce a problem called the Sustainable Vehicle Routing Problem (SVRP) in which the sustainabil-
ity notion is considered in terms of economic, environmental and social impacts. Inspired by real-world
problems that large cargo companies face for their delivery decisions, we introduce a new facet to the
classical vehicle routing problem by considering the welfare of all three stakeholders of the problem:
an environmentally conscious company, the drivers, and the indistinguishable customers, as our setting
assumes that all customers belong to the same delivery class. Thus, the proposed problem consists of
three objective functions. The first one is to minimize the total fuel consumption and emission to rep-
resent the companies’ main economic and environmental concerns. The second one is to maximize total
welfare of the drivers through a function that encourages equitable payment across drivers while encour-
aging low total driver cost and the third one is to maximize total welfare of the customers through a
function that encourages fairness in terms of delivery times. The last two objectives are measured using
slots for tour lengths and delivery times. We implement an efficient solution approach based on the e-
constraint scalarization to find the nondominated solutions of our triobjective optimization problem and
present computational analysis that provide insights on the trade-off between the objectives. Our experi-
ments demonstrate the potential of the suggested framework under the customer anonymity assumption
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to help decision makers make effective plans that all parties involved would give consent to.
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1. Introduction and background

Vehicle routing problems (VRPs) have been around for decades
and many variations have been defined. However, most of these
studies only focus on the economic consequences of transporting
goods from one point to another. Although in theory, logistics com-
panies seem to have the only lead role in this problem, in prac-
tice, two significant supporting roles; customers and drivers also
would like to protect their own interest. Therefore, companies have
started to consider a more holistic point of view on their delivery
operations by paying attention to other consequences such as envi-
ronmental and social at the expense of additional economic burden
(DHL, 2015), which extends the classical single objective setting to
a multiobjective one.

Our research proposes a new sustainable routing system that
focuses on economic, environmental and social impacts of freight
transportation activities that can be adapted by real world cargo
delivery companies that serve indistinguishable customers. In our
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setting, the customers are considered as entities that are entitled
to equitable service from the perspective of the company. They are
delivery points, mostly individuals that the items have to delivered.
We assume anonymity for customers in such an application, which
can be also adapted by cargo companies that have delivery classes
such as “Regular”, “Prime”, “Express” and “Over-Night” delivery.
We assume that customers that we consider belong to one of the
aforementioned delivery classes. Then, the service times to these
customers are categorized in time slots and the company aims to
finalize the deliveries at the earliest possible slot. Once the plan-
ning is finalized the company notifies the customers about their
delivery slot. Here, avoiding extreme inequality in delivery times
is a significant concern due to its effects on customer satisfaction.
Hence, the overall aim is being efficient and fair in delivery time
planning, which is ensured by serving as less customers as possible
in the latest slots. Time slots/windows concepts have been previ-
ously used in VRP (Perugia, Moccia, Cordeau, & Laporte, 2011) in-
cluding the dial-a-ride problem (Matl, Hartl, & Vidal, 2018) to en-
sure that equity between customers is considered. Several logis-
tics companies around the world pay their drivers based on their
mileage (Rodriguez, Rocha, Khattak, & Belzer, 2003) and perform
deliveries to their customers with a motivation to serve them as

Please cite this article as: O. Dukkanci, O. Karsu and B.Y. Kara, Planning sustainable routes: Economic, environmental and welfare con-
cerns, European Journal of Operational Research, https://doi.org/10.1016/j.ejor.2021.09.036



https://doi.org/10.1016/j.ejor.2021.09.036
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
mailto:dukkanci@europa-uni.de
https://doi.org/10.1016/j.ejor.2021.09.036
https://doi.org/10.1016/j.ejor.2021.09.036

JID: EOR

0. Dukkanci, O. Karsu and B.Y. Kara

soon as possible. The measure utilizing drivers mileage is consid-
ered via the mileage slots that the drivers are serving to. Since
the payments are based on these slots, the company wants to en-
sure fairness among the drivers and determine an equitable allo-
cation of mileage while keeping the total payment low. Thus, the
proposed system is actually planning the routing decisions while
considering three different performance measures: being econom-
ically sound and environmentally friendly; being fair to the drivers
in terms of payments; and being fair to the customers in terms of
delivery times (that are declared and notified after planning).

For the main objective, we use a fuel consumption function,
which implicitly encourages (fuel) cost minimization for the com-
pany, hence both economic and environmental concerns are incor-
porate. In the last 10 years, due to raising concerns about the cli-
mate change and the global warming, environmental impacts of
the transportation related activities have been considered in sev-
eral VRPs. In these studies, environmental impacts are measured
in terms of the amount of fuel consumed, which is directly pro-
portional to CO, emissions (Demir, Bektas, & Laporte, 2014b). The
resulting functions do not only consider travelled distance but also
include other factors such as vehicle payload and vehicle speed
that affect the fuel consumption (Sbihi & Eglese, 2010). Demir et al.
(2014b) categorized these factors as vehicle, environment, traffic,
driver and operations related factors and also presented different
types of fuel consumption models in the literature. While estimat-
ing the amount of fuel consumed, including these factors increases
the accuracy of the estimation, but it also increases the complexity
of the fuel consumption model. Each actor mentioned above has an
incentive to pay attention to economic and environmental impacts
as it is crucial for everyone to have a sustainable environment in
the future.

The first study that considers fuel consumption minimization in
a routing problem is Kara, Kara, & Yetis (2007), which introduced
the “Green routing” concept by minimizing a cost function depend-
ing on both the distance traveled and also the load of the vehicle.
Bektas & Laporte (2011) introduced the Pollution Routing Problem
(PRP) with a more accurate fuel consumption model that considers
speed and load as decisions. Variants of the “Green routing” prob-
lems or PRPs have since been studied, with efforts to address var-
ious factors observed in real-life such as time-dependency (Jabali,
Woensel, & de Kok, 2012), heterogeneous fleets (Kog, Bektas, Ja-
bali, & Laporte, 2014), more than one objectives (Demir, Bektas, &
Laporte, 2014a), pickup and delivery (Zachariadis, Tarantilis, & Ki-
ranoudis, 2015), inventory consideration (Mirzapour Al-e hashem
& Rekik, 2014), and location decisions (Dukkanci, Kara, & Bektas,
2019b). For comprehensive surveys on green routing and green
network design problems, we refer the reader to Demir et al.
(2014b) and Dukkanci, Bektas, & Kara (2019a).

Fairness concerns have been considered in many OR applica-
tions recently since they naturally arise in real life problems in dif-
ferent domains (Karsu & Morton, 2015; Matl et al., 2018). Fairness
concerns can be incorporated into mathematical models in a num-
ber of ways: One can use an inequality index and ensure that the
index is optimized in an objective function, or bounded in a con-
straint to avoid extreme inequality. The classical minmax objectives
or minmax type constraints is a typical example of this approach.
Another method would be formulating the problem as a multiob-
jective optimization problem (MOP) in which the amount allocated
to each entity is minimized (or maximized if a good is distributed).
This approach is relatively unpopular since the corresponding MOP
may be too difficult to handle in reasonable time. If there are n
entities and a single commodity, then a n-objective model will be
formulated.

The third method would be defining a social welfare function
(an equitable aggregation function) that encourages fair allocations
over entities. In this work, we take this approach to ensure that
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the customer delivery times and driver payments are equitably dis-
tributed. Note that for a function to be an equitable aggregation
function, it should be in line with an equitable preference model
and hence satisfy some well-defined properties (Argyris, Ozlem
Karsu, & Yavuz, 2021; Karsu, Morton, & Argyris, 2018; Kostreva,
Ogryczak, & Wierzbicki, 2004). First of all, it should be symmet-
ric (this is a direct result of the anonymity assumption over the
entities.). Recall that customers in the same delivery class is con-
sidered in our problem. Second, it should be in line with Pigou-
Dalton principle of transfers, which dictates that a transfer from a
worse-off entity to a better-off one, which does not change the
relative positions of these entities, should be preferred. Moreover,
since such a function will encompass both efficiency and fairness
concerns, it should be a nonincreasing function of the allocated
amounts.

In line with the trend of acknowledging fairness in OR settings,
more studies have started to consider social impacts of transporta-
tion activities in VRPs, fairness among drivers being one of them.
As is the case with our proposed problem, to avoid any injustice
between drivers who are usually paid by the distance that they
need to travel, balancing the routes has been observed as an im-
portant challenge. Matl et al. (2018) presented a comprehensive
survey and analysis for workload equity in VRPs. This study pro-
vided not only an extensive review on the related literature but
also theoretical and numerical analysis on vehicle routing prob-
lems with equity objectives. The authors classified the literature
based on the types of equity function, equity metric, optimization
model and method. In terms of the equity function, the literature
is divided into three categories; range, min-max and other.

The studies where equity is measured based on the range
(the difference between the shortest and the longest tour) of the
tours generally consider multi-objective optimization models by
including equity as a new objective into the problem. Jozefowiez,
Semet, & Talbi (2002) introduce the route balancing concept into
the VRP and evaluate the performance of several heuristic algo-
rithms on the resulting bi-objective problem. To solve this prob-
lem, several heuristic algorithms are proposed (Jozefowiez, Semet,
& Talbi, 2007; 2009; Lacomme, Prins, Prodhon, & Ren, 2015; Oyola
& Lokketangen, 2014). The studies using the min-max criterion as
an equity function usually take the length of the longest (cost of
the most expensive) tour as the primary objective and formulate a
single objective optimization problem. Golden, Laporte, & Taillard
(1997) is the first study that considers the min-max objective in
the VRP and the authors developed a tabu search based adaptive
memory heuristic algorithm. Bertazzi, Golden, & Wang (2015) com-
pared different variants of the classical VRP and the min-max VRP
and provided a worst-case analysis.

Huang, Smilowitz, & Balcik (2012) studied a relief routing prob-
lem for a humanitarian setting. The authors analyse the impact
of efficiency, efficacy and equity objectives on vehicle routes. For
the latter objective, they define three different equity functions
including a piecewise disutility function for unsatisfied deliveries.
Halvorsen-Weare & Savelsbergh (2016) is the first study that anal-
yses the impacts of different equity functions on a bi-objective
problem. The authors presented a bi-objective mixed capacitated
general routing problem that minimizes the total cost and four dif-
ferent equity objectives. Lehuédé, Péton, & Tricoire (2020) inves-
tigated a lexicographic minimax approach to solve a bi-objective
vehicle routing problem with route balancing. Mancini, Gansterer,
& Hartl (2021) analysed multi-period collaborations between car-
riers in a vehicle routing problem where time and service con-
sistency, and workload balance are considered. The workload bal-
ance among carriers is achieved by ensuring that the number of
customer assigned to a carrier cannot be less than a minimum
value set by the carrier. Campbell, Vandenbussche, & Hermann
(2008) studied two variants of the VRP for a post-disaster appli-
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Table 1
Studies related to the SVRP.
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General Fairness Fuel Consumption

Equity Function

References # of Obj. Sol. A. Cust. Dri. Range Min-max Other Emission Model

Kara et al. (2007) One E v Factor

Bektas & Laporte (2011) One E v Micro

Demir et al. (2014a) Two E&H v Micro

Jozefowiez et al. (2002) Two H v v

Golden et al. (1997) One H v v

Bertazzi et al. (2015) One - v v

Huang et al. (2012) One E v v

Halvorsen-Weare & Savelsbergh (2016) Two E v v v '

Lehuédé et al. (2020) Two H v v

Mancini et al. (2021) One E&H v

Campbell et al. (2008) One E&H v v v

Eisenhandler & Tzur (2019) One E&H v '

Abdullahi et al. (2021) Three H v Factor

Our study Three E v v v v Micro

cation where the first one minimizes the maximum arrival time
of critical supplies and the second one minimizes the average ar-
rival time. Eisenhandler & Tzur (2019) studied a routing and allo-
cation problem for a humanitarian application that includes col-
lecting food donations and delivering them to food relief agencies.
The problem aims to maximize the total amount food distributed
and also be fair in the allocation of food. The authors aggregate
these two concerns by using an objective function, in which the
total amount is multiplied by a measure of equity (namely 1 mi-
nus the Gini index of the allocation) (Blackorby & Donaldson, 1978;
Ebert, 1987). In addition to several humanitarian applications, the
studies that consider real-life problems with a fairness objective
are waste collection (Kim, Kim, & Sahoo, 2006), school bus rout-
ing (Li & Fu, 2002), and home-to-work bus service (Perugia et al.,
2011).

Abdullahi, Reyes-Rubiano, Ouelhadj, Faulin, & Juan (2021) stud-
ied a sustainable VRP where they also consider the economic, en-
vironmental and social impacts of freight transportation. In par-
ticular, the economic impacts include the fixed, variable and fuel
cost of vehicles; the environmental impacts account for the fuel
consumption based on a factor emission model and social impacts
cover the risk related to traffic accidents instead of a fairness ob-
jective as in our problem. As a solution approach, the authors im-
plemented a Biased-Randomised Iterated Greedy with Local Search
algorithm.

For comprehensive surveys on vehicle routing problems and
multi-objective routing problems, we refer the reader to Vidal, La-
porte, & Matl (2020) and Zajac & Huber (2021), respectively.

Table 1 presents a summary of the related literature and cate-
gorizes the studies based on the following factors: (i) the number
of objective functions (# of Obj.), (ii) the proposed solution ap-
proaches (Sol. A.); exact (E) and/or heuristics (H), (iii, iv) having
an equity function for customers (Cust.) and drivers (Dri.), respec-
tively, (v, vi, vii) the type of equity function (Range, Min-max or
Other), (viii) including environmental impact (Emission) and (ix)
the type of fuel consumption model used (Model). The table also
demonstrates how our study fits into the current literature and
shows that the proposed problem aims to fill a gap in the VRP
literature by considering three objectives that cover economic, en-
vironmental and social impacts of transportation activities.

In this study, we introduce the Sustainable Vehicle Routing
Problem (SVRP), an extension of the classical VRP, in which eco-
nomic (fuel and driver cost), environmental (CO, emission) and so-
cial impacts (fairness to drivers and customers) are considered. The
proposed SVRP consists of three objective functions; (i) to mini-
mize the total amount of fuel consumption (CO, emissions), (ii) to

maximize welfare of the drivers and (iii) to maximize welfare of
the customers.

As we elaborate in the upcoming sections, economic impacts
are inherently addressed in the first and second objective func-
tions as fuel and driver cost, respectively. We quantify the en-
vironmental impacts as CO, emission by using a fuel consump-
tion model. The fairness concern for the drivers is motivated by
the observation that they are generally paid by the distance they
travel. Any imbalance between tour lengths leads to unequal pay-
ments to the drivers. In order to ensure a fair and economically
efficient payment system among drivers, we propose a profit func-
tion that awards shorter and balanced tours. Welfare of customers
is measured using a function that favors quick and fair deliveries
among customers in the same delivery class. The proposed welfare
function is chosen as an equitable aggregation function of delivery
time allocations to customers. Motivated by the observation that
unhappy customers are more likely to remember this experience
and take action, we lexicographically minimize the number of cus-
tomers who receive their delivery in the late delivery slots of the
day.

The contributions of this paper are as follows: (i) we define
novel welfare functions for both customers and drivers that en-
courage both fairness and efficiency, (ii) we present the first multi-
objective approach that considers economic, environmental and so-
cial impacts simultaneously from perspectives of all parties includ-
ing companies, drivers and customers for a routing problem, (iii)
we implement an efficient exact algorithm to find the nondomi-
nated solutions of this problem and conduct computational exper-
iments on real road networks to analyse the trade-offs between
three objectives.

The remainder of this paper is constructed as follows:
Section 2 presents the problem definition including the descrip-
tion of emission model, customer and driver welfare functions.
Section 3 provides a multi-objective mathematical model of the
SVRP. Section 4 presents an exact solution approach to solve the
SVRP and an illustration of this solution approach on an example.
Computational results are discussed in Section 5, and conclusions
and future research directions are given in Section 6.

2. Formal problem definition

The SVRP is defined on a complete directed graph G = (N, A),
where N = {0,1, .., n} denotes the set of customers (nodes), in-
cluding the depot (0) and A = {(i, j) : i, j € N, i # j} is the set
of arcs. A fleet of m identical vehicles, each with capacity C serves
the customers. The distance on arc (i, j) € A is denoted by d;;. Each
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customer i € N has a nonnegative demand g;. The vehicle speed is
denoted by v.

The set of time slots for customers is denoted by L€ and we let
Ic be the number of time slots considered for customers (i.e., the
cardinality of set LC). Similarly, LP and I denote the set and num-
ber of route length slots for drivers. For instance, let us assume
that the time slots for customers are as follows: 0 to 3, 3 to 6 and
6 to 9 hours. Then, the set LC can be defined as I¢ = {1, 2, 3} and
Ic equals to 3.

We maximize an equity-encouraging welfare function for the
customers, where the welfare contribution received when deliv-
ery is made on time slot | is denoted by plc for a customer. This
could be seen as the amount of utility received by a customer
when her delivery is made on time slot [. Similarly, in our equity-
encouraging welfare function for the drivers, the welfare contribu-
tion when route length of a driver is in a route length slot [ is p?.
This welfare contribution can be seen as the amount of utility that
the central planner has when the length of the route of a driver is
in slot I.

In the next sections, we explain the ways we define economic,
environmental, and social impacts in terms of fuel consumption,
CO, emissions and fairness, respectively.

2.1. Fuel consumption and CO, emissions

The model that we use to estimate the amount of fuel con-
sumption and CO, emissions is called Comprehensive Modal Emis-
sion Model (CMEM) proposed by Scora & Barth (2006), Barth,
Younglove, & Scora (2005), Barth & Boriboonsomsin (2008).

Based on the CMEM model, the fuel consumption rate F- in
liters/second (L/s) can be calculated as,

F =&KYV +P/n)/k,

where £ is the fuel-to-air mass ratio, K is the engine friction factor,
Y is the engine speed, V is the engine displacement (in L), n is the
efficiency parameter for diesel engines and « is the heating value
of a typical diesel fuel. Finally, P is the second-by-second engine
power output (in kW) and it can be calculated as follows.

P= Ptract/ntf + Pacc,

where n; £ is the vehicle drive train efficiency and Py is the engine
power demand associated with running losses of the engine and
the operation of vehicle accessories such as air conditioning usage.
Prrace is the total tractive power requirement (in kW) and it can be
calculated as follows.

Prract = (Ma + Mgsin8 + 0.5C,;0Sv? + MgC; cos 0)v/1000,

where M is the total weight of the vehicle (in kg) including the
empty vehicle weight w and weight of the goods carried, a is the
instantaneous acceleration (in m/s?), g is the gravitational constant
(in m/s?), 6 is the road angle, C, is the coefficient of aerodynamic
drag, p is the air density (in kg/m3), S is the frontal surface area
(in m2), v is the vehicle speed (in m/s) and C; is the coefficient of
rolling resistance.

We introduce some new parameters in order to simplify the
above formulation: A = &/ky where 1 is the conversion factor
of fuel, y = 1/1000n;sn, a = a+gsin® + g cos@ is a vehicle-arc
specific constant and 8 = 0.5C;S is a vehicle-specific constant. By
using the new parameters, the total fuel consumption F (in L) for a
vehicle traveling on a road segment of d units (in m) at a constant
speed v (in m/s) can be given as follows:

F = AKYVd/v + AydMa + Ly dBr?.

The emission model related parameter values are given in Ap-
pendix A.
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Fig. 1. A concave down decreasing utility function for customers.

2.2. Fairness

This section introduces welfare functions that we use in order
to incorporate the welfare concerns for the customers and drivers.
Here, we assume that there is anonymity among customers, hence
all customers will be treated the same without prioritization of
some over the others. This is indeed the case where all customers
considered belong to the same delivery class e.g., over-night deliv-
ery. With a similar approach, we assume that drivers, which are
assigned to the same delivery class, have the same capabilities, so
there is anonymity between drivers, as well.

2.2.1. Incorporating customer welfare

We use a welfare function for the customers, which is of the
following form: WFC = Y"I'; u(T;), where T; is the delivery time
of customer i. We let u = uC for all i, since this utility function is
determined by a central decision maker. In that sense we are tak-
ing a central planning point of view (Karsu, 2016; Kaynar & Karsu,
2018). We also assume that u€(.) is concave down decreasing as
seen in Fig. 1.

Since u€(.) is monotonic in the sense that increasing the deliv-
ery time of a customer (everything else being the same) decreases
her utility, the welfare function WFC = Y"1 ; u®(T;) is monotonic.
Such a function would also satisfy the Pigou-Dalton principle of
transfers since the utility is decreasing in an increasing manner as
the delivery time increases. To see why, consider Ty, T, as the de-
livery times of two customers 1 and 2. Any convex combination of
the delivery times would have larger utility. For example, when the
delivery times are both ((T; + T;)/2), the overall welfare will in-
crease as the decrease in uq (the utility of the better-off customer
1) will be smaller than the increase in u, (the utility of the worse-
off customer 2).

One can incorporate such concave functions into the model
via piecewise linear approximation. In our setting, since the plan-
ning is made considering time slots, we use a step function as

follows: u(T;) = p?,j : Tﬁ] <Ti< T]C, where p§ > pgﬂ and p? -
pgﬂ < pgﬂ - p§+2 Vj=1,...,lc — 2. That is, we divide the range

of possible delivery times into I slots using thresholds and assign
utility scores such that the customers in the same slot receive the
same utility (Fig. 2). Since the utility scores decrease as slot in-
creases, u(.) (and hence the total welfare WFC) is a nondecreasing
function of delivery times (i.e., satisfies weak monotonicity).

Any delivery time distribution vector over customers is asso-
ciated with a vector showing the number of customers served at
each slot of the day. Let n; be the number of customers served at
slot j (Customer i is served at slot j if T]€1 <T < TJ.C).

Recall that I is the number of time slots. Given a solution with
an allocation vector (nq, . ..,n,c) transferring one customer from a
worse slot to a better slot can be considered as an efficiency en-
couraging transfer.
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Fig. 2. Utility function of a customer for three slot case.

Definition 1. A welfare function WF is efficiency encouraging if
for n e Rlc, WF(n) < WF(n+e; —e;), where i,j:i< j and ¢; and
e; are the ith and jth unit vectorsil (Note that n is the parameter
showing the total number of customers. Here, with a slight abuse
of notation we also denote the allocation vector by n. Which one
is meant will be clear from the context).

We also ensure that the welfare function encourages equity in-
creasing transfers. Consider for example two allocation vectors for
a setting with 10 customers: (3,2,5) and (2,4,4). The second solu-
tion is obtained by transferring one customer from the best and
worst slots to the middle one. Which solution is fairer is context
specific, in this work, we take the view that decreasing the num-
ber of customers in the worst slots should be prioritized, hence
consider the second one as more equitable. This is in line with a
Rawlsian approach to fairness as it focuses on the worst-off mem-
bers of a society (Rawls, 1971).

Definition 2. A customer welfare function WF is equity encourag-
ing if for n e Rlc, WF(n) < WF(n — ¢ + 2e; — ), where i, j and k
ti<j<k

The definition implies that the utility gain from a unit trans-
fer from k to j is larger than the utility loss from the trans-
fer to i to j. To encourage fair allocations of customers to time
slots, we lexicographically minimize the number of customers as-
signed to time slots, starting from the worst one. That is, we
solve the lexmin(ny_, ..., ny,nq) problem. We ensure this by letting

pg = Z;f;qu nf" 4 1. The motivation behind this lexicographic mini-

mization approach is the observation that customers can take more
action in providing negative feedback when the delivery times are
unacceptably high compared to other customers in the same de-
livery class as opposed to the case where they are lower since all
customers are entitled to be treated equally. Our approach can be
interpreted as avoiding the risk of losing these customers by pre-
venting them from facing high delivery times as much as possible.

Proposition 1. Let WFC = Y"1 u€(T;) where u®(T;) = p?,j : Tﬁl <
T < T].C, and pg = Zlc’z n" + 1. The following holds: i) WFC is effi-

h=j—1
ciency and equity encouraging. ii) A solution maximizing WFC is an
optimal solution to Iexmin(n,c, ..., Ny, ny) problem.

Proof. See Appendix B. O

Corollary 1. In a three slot case, a solution maximizing WFC such
that pS=n+2;pS=n+1;p =1, is an optimal solution to the
lexmin(ns, ny, ny) problem.

2.2.2. Incorporating driver welfare

Similarly, we define a welfare function for drivers WFP =
>, uP(rl;), where rl; is the route length of driver i. uP is a step

1 jth unit vector in Rk has a value of 1 in ith dimension and 0 everywhere else.
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function whose form is similar to u€. Note that the function has a
nonincreasing form as in the customer case since the utility of the
central planner decreases as the route length of a driver increases.
This is a direct result of the drivers being paid by the mileage
they cover. The central planner would have economic concerns and
hence prefer shorter routes, which is incorporated into the model
through this nonincreasing welfare function for drivers. The struc-
ture of the welfare function WFP and the uP is analogous to the
case discussed for customers. Dividing the possible route lengths
into Ip intervals once can define: uP(rl;) = p?,j : T].D_] <l < T]D,
p]D >ij+1 V]: ],...,lD—l.

Each route length distribution over the m drivers is associated
with a vector showing the number of drivers with route lengths in
specific slots. Let m; be the number of drivers with route lengths
in slot j. One can use two structures for uP depending on whether
lexmin(m,D,...,mz,m1) or lexmax(m1,m2,...,mlD) is desired as
follows:

Case 1: Lexicographically minimizing the number of drivers
assigned to slots, starting from the maximum length slot
lexmin(my,, ..., my, my). This is analogous to the case described

for customers hence the coefficients can be set as follows: pﬁ.’ =

Ip-2 h
ZhD:F] m?+ 1.

Proposition 2. Let WFP =Y"" uP(rl;) where uP(rl;) = p?,j :

rl?_1 <rl < rl;?, and p’]? = ZE:J.L mh +1. The following holds: i)

WEFP is efficiency and equity encouraging. ii) A solution maximizing
WEFP is an optimal solution to lexmin(my,, ..., my, my) problem.

The proof is omitted as it has the same structure as the proof
of Proposition 1.

Case 2: Lexicographically maximizing the number of drivers as-
signed to slots, starting from the best slot lexmax(mq, my, ..., myp).

In this case, the coefficients can be set as follows: p’]?:

22’3;01 I m" + 1 (See Proposition 1 in Appendix C).

Note that in the lexmax case (Case 2), the welfare function
does not satisfy the equity encouraging transfers principle in
Definition 2. This is because the priority changes from minimizing
the number in the worst slots to maximizing the number in the
best slots. Here, by worse, we mean longer length tour slots as we
solve this problem for a central decision maker. Given two alloca-
tions (3,2,5) and (2,4,4) for an instance with 10 drivers, the second
one will not be considered better since the number of drivers in
the best slot decreases. This time, the welfare loss from decreasing
the number of drivers in the best slot is larger than the gain from
decreasing the number of drivers in worst slot. We investigate the
implications of this alternative approach, i.e. lexmax approach in
Section 5.2.1, and how to set the coefficients such that lexmax
function is ensured in Appendix C. A similar lexmax approach can
also be used regarding customers, i.e. maximizing the number of
customers in the better slots can be prioritized over minimizing
the ones in worse slots. We provide our main discussion using the
lexmin approach since it is more preferred to achieve equitable
distributions in various settings (Nace & Orlin, 2007). We, however,
also provide an example that shows how the solutions change in
such an efficiency-oriented approach by implementing lexmax for
customers in Section 5.2.2.

For the drivers’ welfare function whether to use lexmax or
lexmin is problem specific. If the payment made to the drivers
is increasing with an increasing rate, then lexmin is a better ap-
proach. If the payment increases with a decreasing rate then lex-
max should be preferred. To see why, one can check the difference
in payment in the two allocations given in Definition 2.

Note that regardless of which approach is used, even if all tours
are in the same mileage zone, that does not necessarily mean that
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lengths of tours will be equal to each other. In a setting, where
drivers are categorized as “better” and “worse” based on their ca-
pabilities, the decision maker can decide which driver will be as-
signed to which tour. That is, she for example can reward bet-
ter drivers by assigning them longer tours with more payment.
However, driver categorization does not deem our approach unim-
plementable, the decision maker can easily make such a post-
assignment.

3. Problem formulation

In this section, we present a multi-objective mixed integer pro-
gramming formulation for the SVRP. The decision variables are de-
fined as follows: A binary variable x;; equals 1 if a vehicle travels
on arc (i, j) € A, and 0 otherwise. A continuous nonnegative vari-
able f;; represents the flow on arc (i, j) € A. Another continuous
nonnegative variable t;; represents the total time covered by a ve-
hicle up to node j € N when the vehicle travels from node i € N to
j € N. Finally, a binary variable w; equals 1 if the total time of a
tour (driver time) where customer i € C is the last customer vis-
ited is on time slot [ € L?; 0 otherwise and another binary variable
yi equals 1 if the delivery for customer i € C is made on time slot
[ € I€; 0 otherwise.

A multi-objective mathematical model of the SVRP is as fol-
lows:

Minimize z;(x) = Y [(@yAdijwx;) + (ay Adifij)

(i,j)eA
X
+ (,Bykdijvzxij) + (KTV)\dU%)] (1)
Maximize z,(x) = Z ZP?WH ()
ieC lelP
Maximize z3(x) = Y > plyy (3)
ieC lel€
subject to
D Xoj=m “)
jeC
ZXU:] VlEC (5)
JjeN\{i}
inj:l V]EC (6)
ieN\{j}
S fi- Y fi=q VieC (7)
JjeN\{i} JjeN\{i}
qixijgf,-jg(C—qj)xij Vl,]GN];ﬁl (8)

d;; .
Z tij_ Z tji: Z (7])(,'_") VIGC (9)

JjeN\{i} JjeN\{i} JjeN\{i}
toi = %Xo,' VieC (10)
l','ijXij VLJEN];IEI (11)

TP wy <tjo < TPwy +M(1 —wy) VieClelPl (12)
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TEyn< Y. i <Toyy+ M1 —yy) VieNlelf (13)
JjeN\{i}

> wy=1VieC (14)
lelP

Zy” =1 VieN (15)
lelC

xij€{0,1} Vi,jeN:j#i (16)
fij=0 Vi,jeN:j#i (17)
tijZO Vl,]GN];ﬁl (18)
wy; €{0,1} VieClelP (19)
yi€{0,1} VieNIel. (20)

The first objective function (1) minimizes the total amount of fuel
consumption and emission calculated by the emission model. The
second (2) and the third (3) objective functions maximize the to-
tal welfares of the drivers and customers, respectively. Constraint
(4) ensures that a fleet of m vehicles leaves the depot. With con-
straint (5) and (6), it is guaranteed that every customer will be
visited exactly once by only one vehicle. Constraint (7) ensures
flow conservation between customers. Constraint (8) provides a
lower bound on flow variable and also it imposes vehicle capac-
ity constraint. Constraints (9)-(11) calculate the arrival time at cus-
tomers in a tour. Constraints (12)-(13) allocate the driver time and
customer delivery time into the predetermined time slots, respec-
tively. Constraints (14)-(15) ensure that the driver time and the
customer delivery time are allocated to only one predetermined
time slot, respectively. Here, we remark that in the problem de-
scription, we state that fairness objective for drivers will be eval-
uated based on the tour lengths. Since vehicle speed is constant
in our problem and to avoid any additional auxiliary variables, we
consider the total time that driver spent instead of the total dis-
tance that driver travelled in a tour in the formulation. Constraints
(16)-(20) are the domain constraints.

4. Solution approach

Consider the following multiobjective integer programming
problem

maximize z(x) (P)
subject to x € X.

where z: R" — R3 is a vector valued function and X c R is the
feasible region. In particular we assume that Z :=z(X) = {z(x)| x €
X'} consists of vectors with at least two integer components. The
aim is finding the set of nondominated points (Zy c Z) of problem
P.

The solution algorithm we implement is provided in
Algorithm 1. It works on the projected space where each point
ze Z is projected onto R% with respect to its second and third
components. In that sense, it is a variant of the solution algorithm
discussed in Kirlik & Sayin (2014), which we modified considering
the specifics of the SVRP. The proposed algorithm searches pre-
defined sub-regions in this projected space. The sub-regions yet
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Algorithm 1 Algorithm to solve (P).

1: Let Zl =m x p’l; and zJ =n x plcc, feasible =1, 2y =9, IS = 4,
NS=0, R=0,€=1.
2: Solve M(2), zY). If the model is infeasible, feasible = 0.
3: while feasible do
Let an optimal solution be x. Zy < ZyU{z(x)}. Set I, =
z,(x) + €. Solve M(lp, Z).
if The model is infeasible then
feasible = 0.
end if
: end while
: Sort Zy with respect to z,(.) in decreasing order. Let Z :=
{(z2,23) : (21,22, 23) € 2N}
10: fori=1,...,|Z| -1 do
1 R=RU@E +e.2, +e)
12: end for
13: R=RU (2,27 +¢)
14: while |R| > 1 do
15:  Take the first element in R. Let it be (I5,13). R =R\ (I3, [3).
flagsolve=1.
16: fori=1,..., |IS| do

R

© % N9

17: if IS(G,1) <, & IS(i,2) < I3 then
18: flagsolve=0. BREAK;
19: end if

20: end for
21: fori=1,...,|NS| do

22: if NS(i, 1) < I, < NS(i,3) & NS(i,2) < I3 < NS(i,4) then

23: flagsolve=0. R = {(NS(i,3) +¢€.l3), (I, NS(i,4) +€)} U
‘R, BREAK;

24: end if

25:  end for_
26:  for (I, 3) e R do

27: ifl, <l and 5 <I; then
28: flagsolve=0. BREAK;
29: end if

30:  end for
31:  if flagsolve=1 then

32: Solve M(ly, I3).
33: if The model is feasible then
34: Let an optimal solution be x. Zy=ZyuUz(x).

R ={(NS(@i,3) +¢€,13), (I,,NS(i,4) +€)} UR.
NS =NSU (lz,lg,Zz(X),Z3(x)):

35: else

36: IS=1SuU (L, l3)
37: end if

38:  end if

39: end while

to be explored is kept as a list R, which is initialized as a region
that is guaranteed to include the projections of all elements of
Zy. At an arbitrary iteration, the algorithm explores a sub-region
in R for new nondominated points. If new points are found, the
set of sub-regions to be explored (R) is updated accordingly.
A sub-region R € R can be defined by two numbers, which are
thresholds for the second and third objective function values as
follows: R(ly,13) :={z€R3:zy > 15,23 > I3). We search for new
points in R(l5, I3) by solving the following scalarization:

maximize z;(x) + azy(x) + Bz3(X)
subject to xe X

()= h

23(x) = Is.

(M(L2, 13))
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z3(x)

(l2,13)

z9(z)

Fig. 3. Region that can be eliminated when x* is an optimal solution to M(ly, I5).

This scalarization is the well-known (augmented) epsilon con-
straint scalarization. The optimal solution of this scalarization
problem is an efficient solution of problem P and its image in the
objective space is a nondominated point. If a new nondominated
point is found in a given region R(l,,l3), we exclude subregions
that are guaranteed not to include a nondominated point (i.e. its
projection) based on Proposition 3.

Proposition 3. Let x* be an optimal solution of M(l,,13). 1z € Zy :
h <z <2(x*),l3 <23 <z3(x").

Proof. To the contrary assume that Ix € X' : z(x) € Zy, L, < z3(x) <
Z5(x*), I3 < z3(x) < z3(x*). For z(x) to be nondominated, z;(x) >
z1(x*) should hold (Since x is at most as good as x* with respect
to z5(.) and z3(.)). Since x is feasible for M(l,, [3), this contradicts
the optimality of x*. See Fig. 3. O

We provide the pseudocode of the algorithm in Algorithm 1.
The algorithm starts with finding lower bounds for the second and
third objective function values by assigning their possible lowest
values which are m x pf; and n x plcc, respectively. Throughout the

algorithm a number of sets are utilized as follows: Set of regions
yet-to-be explored R; set of regions explored before, for which
a non-dominated point is found NS; set of regions explored be-
fore, for which no nondominated point is found (i.e. the scalar-
ization model is infeasible) IS. The first epsilon-constraint scalar-
ization model (at line 2) is solved using the overall lower bounds
for z; (x) and z3(x), which guarantees that the nondominated point
with the best z;(.) value is returned. Starting from this solution,
the algorithm first “sweeps” the search region by putting bounds
only on z,(.) in the scalarization model (lines 3-8). After line 8,
we obtain points that are nonincreasing with respect to z;(.) and
increasing with respect to z(.). The points do not have any order
with respect to z3(.).

After finding an initial set of solutions, the algorithm deter-
mines regions yet-to-be explored, making use of these solutions.
These regions are defined such that their union is guaranteed to
contain projections of all the remaining nondominated points. To
sweep the image set Z this time in the opposite direction, the ini-
tial solution set is sorted in decreasing order with respect to z,(.).
The regions are defined accordingly and in line 13, an additional
region having the lowest possible value for z,(.) is added. At each
iteration of the main loop (starting at line 14), the first element in
set R is chosen to be explored. We first check some filtering rules
to make use of information obtained from the previous iterations
relying on the following results:
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Proposition 4. For two regions (I, 13) and (I, 55) : [, <l and I3 <
13.'

o If there are no nondominated points in (I, l3), then there are no
nondominated points in (I, 13).

o If the optimal solution of M(l,, I3) is feasible for M(l,l3) then it
is optimal for M(l, I3).

Both statements are a direct result of the feasible region of
M(ly, I3) being a subset of that of M(l, I3). Similar rules are dis-
cussed in other studies see e.g. Kirlik & Sayin (2014) and Klamroth,
Lacour, & Vanderpooten (2015). If the first case is observed for
a region R(ly,[3), since no solution is found, no new regions are
added to the list. In the second case, the region is divided into two
smaller sub-regions and these regions are added to the yet-to-be
explored list.

Finally, we do not explore a region if a super set of it is yet-to-
be explored (see lines 26-30).

If for a region R(l,, I3) none of the above cases apply, then the
scalarization problem M(l,, [3) is solved so as to find nondomi-
nated points with projections in the region. If found, new regions
are defined and added and set NS is updated; if not, set IS is up-
dated.

Proposition 5. The algorithm finds all nondominated points in a fi-
nite number of iterations (i.e. solving a finite number of models). The
number of models solved is bounded by (|Zy|+ 1)2.

The proof is provided in Appendix D. Our computational experi-
ments show that the actual values of the number of models solved
is well below this bound.

We illustrate the algorithm on an example problem in Appendix
E.

5. Computational study

This section presents the computational analysis on the SVRP.
We first describe the data set used in the computational exper-
iments and the settings of the parameters. We then analyse the
solutions of problem instances of different sizes, which we obtain
by varying number of customers (|N|) and number of vehicles (m),
for the setting where we lexicographically minimize the number
of drivers assigned to slots, starting from the worst slot. We per-
form further experiments to see the effect of time slot lengths on
the results and also the settings, where a lexmax approach is used
to assess total welfare of the drivers. Finally, we provide results
on how the solutions change when the planner is assumed to be
only efficiency-oriented and implement lexmax approach for the
customers.

All computational experiments are implemented in Java plat-
form and solved by Cplex 12.7.1 on a Linux OS environment with
Dual Intel Xeon E5-2690 v4 14 Core 2.6 GHz processors with 128
GB of RAM.

5.1. Data set and parameter setting

The computational experiments are conducted over the in-
stances of PRP Library by Demir, Bektas, & Laporte (2012). The data
set is based on real road networks of randomly selected cities of
the United Kingdom where demands are randomly generated. We
consider instances with 10, 15, 20, 25 customers (|N|) and 2, 3, 4,
5 (m) drivers. For each problem size, we solve five randomly gen-
erated instances.

The fixed vehicle speed (v) is set as approximately 55km/h,
which is the optimal vehicle speed that minimizes the amount of
fuel consumption and emission for the specific parameter values in
Appendix A, when there are no time related constraints.
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The number of time slots (Ic) is set to three for customers and
threshold values (TJ.C) for time slots (customers) are three, six and
nine hours. The welfare function coefficients for customers are set
as in Corollary 1, as p{=n+2; p§=n+1; p§ = 1. Similarly, the
number of route length slots (Ip) is set to three for drivers. Re-
call that the vehicle speed is assumed to be constant; hence us-
ing route length slots is equivalent to using time slots for the
drivers. We, therefore, use time slots for drivers with threshold val-
ues (TJ?J ) of three, six and nine. The welfare function coefficients for

drivers are set as p? = m+2; p? = m+1; pY = 1 when the lexmin
approach is utilized and they are set as p? =m+3; p§ =2; p =1
when the lexmax approach is used as described in Corollary 1 in
Appendix C.

The coefficients « and B in M(l,, I3) are set as small numbers
(to ensure that minimizing cost is prioritized) but not too small
(in order not to lead to weakly nondominated solutions). In the
experiments we set « and B as 0.01/((m+ 1)m) (0.01/((m + 2)m)
for lexmax approach) and 0.01/((n + 1)n), respectively. Since the
objective function values for the second and third objectives are
integer-valued, in the proposed algorithm, the step size value (¢)
is taken as one in order to ensure that all nondominated solutions
are found.

5.2. Analysis

In this section, we first analyse the trade-off between the three
objectives of minimizing fuel consumption and emission and max-
imizing customer and driver welfare. To do so, we observe how
the best solution of an objective function performs with respect to
the other objectives. Table 2 presents the absolute percent devia-
tions of the best solution of an objective function from the best at-
tainable levels of the other two objective functions. We report the
average and maximum deviations over five different 15-customer
instances with two, three and four drivers. As it can be seen in
Table 2, we report two different average and maximum values for
the best solutions of the second and third objectives. The reason is
that for the corresponding objective function, there are two solu-
tions with the highest (for maximization) objective function value.
For example, for m =2 instances, there are two solutions maxi-
mizing driver welfare (z;), one is better with respect to emission
and the other is better with respect to customer welfare. To ensure
a fair and meaningful comparison, we show the deviations of all
such maximizers, separately in two rows. The extra column titled
“Comp.” indicates the solution for which the deviations are calcu-
lated. For example, for m = 2 instances, z; indicates that deviations
are reported for the ones that are better with respect to emission,
among the solutions maximizing driver welfare (z;).

The results on Table 2 suggest that for smaller number of ve-
hicles (m = 2), minimizing fuel consumption and emission leads
to more reduction in the welfare of the customers compared to
drivers. Overall, using more vehicles leads to an increase in the
customer welfare, however the driver welfare gets relatively worse,
as expected. The results also indicate that maximizing the welfare
of the drivers has a larger impact on the emission amount com-
pared to the customer welfare, especially for higher number of ve-
hicles. A similar observation can be made for solutions maximiz-
ing customer welfare: when m > 2, the trade-off between emis-
sion and customer welfare is more notable than the one between
driver and customer welfares. This is due to the fact that maxi-
mizing driver and customer welfare encourages tour length (dis-
tance) minimization: the former directly and the latter through
delivery time minimization, as the vehicle speed is constant. Min-
imizing fuel consumption, however, considers the load-based total
distance rather than the total distance, due to the emission model
used.
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Table 2
Deviations between best solutions for each objective function.
IN] =15 Min z; Max z, Max z3
23 23 21 Z3 Z1 23
m Avg Max Avg Max Comp. Avg Max Avg Max Comp. Avg Max Avg Max
2 0.00 0.00 13.42 19.60 z 0.00 0.00 13.42 19.60 10.05 16.84 37.50 50.00
z3 6.05 7.84 4.51 6.05
3 8.10 16.67 5.13 19.76 z 3.14 11.88 1.42 1.97 z 6.64 17.61 5.00 25.00
z3 8.65 17.61 0.00 0.00 Z 8.65 17.61 0.00 0.00
4 8.27 18.18 1.57 1.96 z 4.36 11.39 1.65 1.96 z 7.81 16.19 4.55 9.09
Z3 8.79 19.91 0.55 1.57 Z 9.33 19.91 2.73 9.09
Table 3
Driver and customer distributions for the best solution of each objective function.
IN| =15 Min z; Max z, Max z3
m I D. Dist. C. Dist. Comp D. Dist. C. Dist. Comp. D. Dist. C. Dist.
2 1 (0,1,1) (6,6,3) z (0,1,1) (6,6,3) (0,0,2) (10,5,0)
z3 (0,1,1) (10,4,1)
2 (0,2,0) (7,8,0) z (0,2,0) (7,8,0) (0,2,0) (13,2,0)
Z3 (0,2,0) (13,2,0)
3 (0,1,1) (6,6,3) z (0,1,1) (6,6,3) (0,0,2) (10,5,0)
z3 (0,1,1) (10,4,1)
4 Infeasible
5 (0,1,1) (8,5,2) z (0,1,1) (8,5,2) (0,0,2) (8,7,0)
z3 (0,1,1) (8,6,1)
3 1 (1,1,1) (8,4,3) z (0,3,0) (9,6,0) (0,3,0) (13,2,0)
Z3 (0,3,0) (13,2,0)
2 (1,2,0) (9,6,0) z (2,1,0) (10,5,0) (2,1,0) (14,1,0)
z3 (2,1,0) (14,1,0)
3 (0,3,0) (11,4,0) z; (0,3,0) (11,4,0) (0,3,0) (14,1,0)
z3 (0,3,0) (14,1,0)
4 (0,3,0) (9,6,0) z (0,3,0) (9,6,0) (0,3,0) (14,1,0)
z3 (0,3,0) (14,1,0)
5 (1,1,1) (10,5,0) z (0,3,0) (10,5,0) z (0,2,1) (12,3,0)
z3 (0,3,0) (12,3,0) Z (0,3,0) (12,3,0)
4 1 (2,1,1) (11,4,0) z (1,3,0) (10,5,0) z (0,4,0) (15,0,0)
Z3 (1,3,0) (15,0,0) Z (1,3,0) (15,0,0)
2 (2,2,0) (10,5,0) z (3,1,0) (12,3,0) z (2,2,0) (15,0,0)
z3 (3,1,0) (15,0,0) Z (3,1,0) (15,0,0)
3 (1,3,0) (11,4,0) z (1,3,0) (11,4,0) (1,3,0) (15,0,0)
z3 (1,3,0) (15,0,0)
4 (1,3,0) (13,2,0) z (2,2,0) (10,5,0) (1,3,0) (15,0,0)
z3 (2,2,0) (12,3,0)
5 (2,1,1) (10,5,0) (2,2,0) (11,4,0) (0,4,0) (15,0,0)

Although the results reported in Table 2 give us an idea on the
level of impact of considering just one objective on the others, the
exact figures for the second and third objectives may not show
the real trade-off due to the fact that these percentage deviations
mainly depend on the welfare function coefficients (pP and p©).
To present a more accurate analysis, we also provide the driver
and customer distributions for the best solutions in Table 3, for
each of the five instances solved. The results in this table are in
line with the observations made above. We see that an increase in
the number of vehicles leads to more customers being served in
the earlier slots, increasing performance with respect to customer
welfare. On the other hand, as the number of vehicles increases,
minimizing fuel consumption and emission results in reduction in
fairness between drivers: the driver distributions deviate from the
driver welfare maximizing solution, which tends to assign similar
route lengths to drivers while avoiding very long routes. We also
observe that maximizing customer welfare leads to a less impact
on drivers’ welfare compared to its impact on pollution; indeed, in
most instances with m > 2 the same driver distributions are seen
in the best solutions of z3 and z. This indicates that if only two
objectives can be handled, the ones to be chosen should be fuel
consumption minimization and one of the social-impact based ob-

jectives; driver welfare maximization or customer welfare maxi-
mization.

Further analysis on the first instance (I = 1) with 15 customers
and three drivers show that allowing a 0.38% increase in the emis-
sion increases the customer welfare around 16% by completing ser-
vices of two more customers within first time slot (10,4,1) instead
of the last one (8,4,3). An additional 0.72% increase in the emission
leads to an approximately 23% increase in the customer welfare
having all 15 customers served within first two time slot (9,6,0)
and also a 20% increase in the driver welfare having all three
drivers completing their deliveries in the second route length slot
(0,3,0) instead of having each of them in different slots (1,1,1).

Table 4 summarizes the main results for the SVRP, where
lexmin approach is used for the drivers. For each problem size (|N|,
m combination) we report the average and the minimum values of
the number of nondominated vectors found, and the average and
maximum values of the number of (single objective) mathematical
models solved. We also report the average and maximum solution
times per nondominated solution over the five instances solved.
We use a time limit of 7200 seconds and report the number of in-
stances that could not be solved due to infeasibility in parentheses
in column m.
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Table 4
Summary of the results.
|N| m | Zn| # models CPU/| 2y |
Avg Min Avg Max Avg Max
10 2 4.20 3 7.80 10 1.92 3.59
10 3 3.80 2 7.40 11 0.86 1.55
10 4 3.40 2 6.40 8 0.72 1.97
15 2 (1) 9.75 7 14.25 22 404.01 658.38
15 3 7.60 3 11.40 18 282.83 844.29
15 4 7.60 5 11.80 15 575.75 1643.65
20 3 7.40 4 11.20 14 1747.92 2859.54
20 4 11.40 6 16.20 29 1690.71 2341.45
20 5 12.00 8 16.80 26 1900.89 3276.88
25 3(2) 9.00 8 12.67 14 3653.11 5400.96
25 4 9.80 5 14.00 21 4694.22 6230.38
25 5 9.80 5 14.00 21 4815.70 6692.22
. Table 5
<;\'> Uistep S,lze =1 Zy for the instance (|N| = 15, m = 3).
1104 A step size = 2
= step size = 3 Index z1(x) Z5(x) (D. Dist.) z3(x) (C. Dist.)
o D 1 126.67 10 (1,1,1) 250 (10,5,0)
S 2 129.94 9(0,2,1) 251 (11,4,0)
E: 3 130.14 12 (0,3,0) 250 (10,5,0)
g 105 - 0 4 130.48 12 (0,3,0) 251 (11,4,0)
© 5 134.48 9(0,2,1) 252 (12,3,0)
0 @ 6 147.22 12 (0,3,0) 252 (12,3,0)
Gl
O
- £
670 g 13

12 122 124 12.6 12.

customer wel fare driver welfare

Fig. 4. Nondominated solutions found by different step size values (|N| = 25,
m=3,1=4)

Note that even the cost minimizing variant of VRP is difficult
to solve, making the triobjective variant even harder. As expected,
increasing the number of customers results in a notable increase
in the solution times. Increasing the number of drivers does not
have a foreseeable effect on the solution time. For example, for
IN| = 15 instances, increasing the number of drivers from 2 to 3,
reduces the solution time, while a further increase of m from 3
to 4, increases the solution time. On the other hand, we see that
the solution time increases as m increases for |N| = 25 instances.
We should note here that the total solution time is determined
by two factors: the number of nondominated points (and hence
the number of models solved) and the time required to solve each
model. It is seen that the single objective models become increas-
ingly harder to solve as problem size increases. Nevertheless, the
solution algorithm is able to return solutions for problems up to
25 customers and 5 drivers.

As can be seen from the results in Table 4, for larger-sized
instances with higher number of customers, both solution times
and the number of nondominated solutions found increase, which
limits the computational experiments to relatively small-sized in-
stances. For larger instances, our algorithm can be used to ob-
tain a well-representative subset of the Pareto set with less com-
putational effort compared to finding the whole set. This can be
achieved by setting step size value (¢) to a larger number. In the
original experiments, € is taken as one in order to ensure that
all nondominated solutions are found. Here, we analyse how the
set of nondominated solutions change with larger step size values.
We conduct experiments over one instance with 25 customers and
three drivers, considering three different step size values; one, two
and three. Fig. 4 shows the nondominated solutions found by using
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different step size values. When the step size is set as one (orig-
inal case), the number of nondominated solutions found is ten.
When the step size is increased to two and three, then the num-
ber of nondominated solutions decreases to five and three, respec-
tively. Fig. 4 indicates that the subset of nondominated solutions
obtained with larger stepsizes is well-dispersed. Having a repre-
sentative subset may also be preferred to having the whole set by
the decision maker, as it would reduce the cognitive burden when
choosing the alternative to implement.

To demonstrate how a potential user can use the original
approach where step size is one, we analyse one of the in-
stances with 15 customers and three drivers in more detail. Solv-
ing this instance results in six nondominated solutions reported
in Table 5 and their geographical representations are depicted in
Fig. 5. Table 5 presents the values for each objective function
(z1(x),23(x),z3(x)) and also distributions of drivers (D. Dist.) and
customers (C. Dist.) in the route length and time slots, respectively.
On the maps shown in Fig. 5, the red house image shows the loca-
tion of the depot and routes of the vehicles are differentiated from
each other by the colours of images on the customer locations. We
use letters in alphabetical order to show the visiting sequence of
the vehicles, where depot is labeled as A, the first customer vis-
ited is B and so on.

In the first nondominated solution with the least amount of
emission, drivers are equally distributed among route length slots
and 10 out of 15 customers are served within the first time slot
while remaining five are visited in the second one. As it can be
seen from Fig. 5(a), the (orange) tour located in the lower-right of
the map with only two customers is completed in the first route
length slot and all of the customers visited in this tour are served
within the first time slot. The (green) tour located in the upper-
right of the map with seven customers, two of which are visited
within the second time slot, is finished in the second route length
slot. The last (purple) tour located in the left part of the map
with six customers, three of which are visited within the second
time slot, is completed in the third route length slot. In the sec-
ond nondominated solution (Fig. 5(b)) with the expense of con-
suming three more liters of fuel, one of the customers, who was
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Fig. 5. Nondominated solutions of instance (|[N| = 15, m = 3).

visited in the second time slot in the first nondominated solution,
is now served during the first time slot in the purple tour, which
also causes one more driver to complete his route in the second
route length slot (orange tour) and so worsens the second objec-
tive function. The third nondominated solution (Fig. 5(c)) increases
the amount of fuel consumed by 0.2 L (compared to the second so-
lution) and serves one more customer in the second time slot in-
stead of in the first, but in this solution, all drivers complete their
journeys within the second route length slot resulting a fairer dis-
tribution for drivers. This is achieved by removing a customer from
purple tour and inserting it to orange tour. By looking at Figs. 5(c)
and 5(d), one can say that they are the same, except the visiting
sequence of the customers in the purple tour: the purple tour is re-

1

versed, resulting in 0.34L of more fuel consumption, but one more
customer served within the first time slot compared to the third
nondominated solution. The fifth nondominated solution (Fig. 5(e))
is much more similar to the first nondominated solution compared
to the fourth one in terms of vehicle routes. The only difference
between first and fifth solutions is that two customers, which are
visited at the end of the green tour in the first solution, are served
at the end of the orange tour. This change on routes results in
more fuel consumption (around 8L) and one more driver to fin-
ish his journey during the second time slot instead of the first.
However, now in the fifth solution, two customers, which are now
served in the orange tour, are visited in the first time slot instead
of the second time slot as it is in first solution. In the last nondom-
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Table 6
Lexmin vs. Lexmax analysis for driver utility.
lexmin lexmax
|2n] # models CPU/|2y] | 2n] # models CPU/| 2x|
|N| m Avg Min Avg Max Avg Max Avg Min Avg Max Avg Max
15 2 (1) 9.75 7.00 14.25 22.00 404.01 658.38 12.00 7.00 17.25 22.00 687.71 1010.44
15 3 7.60 3.00 11.40 18.00 282.83 844.29 8.60 5.00 13.00 21.00 796.45 2054.36
15 4 7.60 5.00 11.80 15.00 575.75 1643.65 8.40 6.00 13.20 17.00 1371.03 2913.06
Table 7
Lexmin vs. Lexmax for driver utility (|N| = 15, m = 4).
Index lexmin, (p?, p3. p?)=(6,5.1) lexmax, (p?. p3. p§)=(7.2,1)
Z Z Z3 D. Dist C. Dist Z; Z z3 D. Dist. C. Dist
1 125.24 18 251 (2,1,1) (11,4,0 125.24 17 251 2,1,1) (11,4,0)
2 12535 18 252 (2,1,1) (12,30 125.35 17 252 (2,1,1) (12,3,0)
3 126.36 21 250 (1,3,0) (10,5,0
4 126.65 21 251 (1,3,0) (11,4,0
5 127.12 21 252 (1,3,0) (12,3,0
6 127.23 21 253 (1,3,0) (13,2,0 127.23 13 253 (1,3,0) (13,2,0)
7 127.90 21 254 (1,3,0) (14,1,0 127.90 13 254 (1,3,0) (14,1,0)
8 134.48 20 255 (0,4,0) (15,0,0 134.48 8 255 (0,4,0) (15,0,0)
9 135.00 17 253 (2,1,1) (13,2,0)
10 139.36 21 255 (1,3,0) (15,0,0) 139.36 13 255 (1,3,0) (15,0,0)

inated solution (Fig. 5(f)) compared the fifth one, one of the cus-
tomers, which was visited in the purple tour, is now served in the
orange tour and also both purple and orange tours are reversed re-
sulting in almost 13 more liters of fuel consumption. The customer
distribution to time slots remains the same as in the fifth solution,
but now all drivers complete their routes at the same (second)
time slot leading to more balanced tours for drivers. Through this
analysis, the decision maker can, for example, see that, with 2.58%
increase in fuel cost (emissions), it is possible to improve customer
satisfaction and serve one more customer in the best slot; while an
extra improvement requires a further 3.58% increase in emission
that is around 6.2% increase from the minimum emission solution.

Even this small example illustrates the possibility of obtaining
alternative solutions for the decision maker to choose from, con-
sidering the interests of all stakeholders involved. This multiobjec-
tive framework allows the decision makers analyse the tradeoffs
between the three criteria that reflect these interests and come up
with good compromise solutions to ensure a sustainable system
that will make all parties satisfied.

5.2.1. Lexmin vs. lexmax comparison for drivers

Note that depending on the payment structure, the decision
makers may also use a lexicographic maximization approach to as-
sess driver welfare and hence lexicographically maximize the num-
ber of drivers with routes in the slots, starting with the best slot.
Table 6 compares the average results of lexicographic minimization
(lexmin) and lexicographic maximization (lexmax) approaches for
driver utility functions. The figures given in Table 6 are the aver-
age results over five instances with 15 customers and two, three
and four drivers resulting 15 instances in total, one of which is in-
feasible.

The results indicate that using lexmax approach instead of
lexmin approach increases the number of nondominated solutions
found and hence the number of models solved. The solution time
per nondominated solution also increases by around 130% on av-
erage, suggesting that using lexmax approach makes the problem
more difficult to solve.

We also analyse how the set of solutions change when the ap-
proach changes. For four out of 14 instances, the same nondom-
inated solution sets are found by both lexmin and lexmax ap-
proaches. For one of the remaining instances with 15 customers
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and four drivers, we present a detailed comparison between these
two approaches (Table 7). As it can be seen in the table, six non-
dominated solutions are common to both approaches (1,2,6,7,8,10).
Lexmin approach finds three additional solutions (3,4,5), which
cannot be found when lexmax approach is used. Solutions 3, 4
and 5 with driver distribution (1,3,0) are not found by the lex-
max approach because all of them are dominated by solution 2 in
the lexmax sense. On the other hand, lexmax approach finds non-
dominated solution 9, which cannot be found by using lexmin ap-
proach. This is again due to the change in the preference structure
for driver distribution.

5.2.2. Lexmin vs. lexmax comparison for customers

We now consider the case where the decision maker is not
fairness-oriented and implement a lexicographic maximization ap-
proach to maximize the number of customers, starting with the
best slot. We conduct experiments over five instances with 15 cus-
tomers and two, three and four drivers to compare the results of
lexicographic minimization (lexmin) and lexicographic maximiza-
tion (lexmax) approaches for customer welfare functions. Overall,
the results suggest that for small number of drivers, the two ap-
proaches yield different nondominated solutions. When the num-
ber of drivers is increased, similarity between the Pareto frontiers
of both approaches increases.

We further analyse how the nondominated solutions change
when a different (lexmin or lexmax) approach is used to quan-
tify customer welfare. We present a comparison between these
two approaches on one instance with 15 customers and two
drivers (Table 8). The figures given in the table indicate that
there are seven nondominated solutions found by both approaches
(1,2,3,4,5,15,17). Lexmin approach finds eight additional nondomi-
nated solutions (6,7,8,9,11,12,13,16), the first four of which are dom-
inated by solutions 5 and the last four of them are dominated by
solution 10, when lexmax approach is used. On the other hand,
lexmax approach finds three additional nondominated solutions
(10,14,18), which cannot be found when lexmin approach is used
since the first solution (10) is dominated by solution 9 and the last
two solutions (14 and 18) are dominated by solution 13. As ex-
pected, we see more solutions with no (resp. most) customers in
the latest (resp. earliest) slot in lexmin (resp. lexmax) approach.



JID: EOR

0. Dukkanci, O. Karsu and B.Y. Kara

Table 8
Lexmin vs. Lexmax for customer utility (IN| = 15, m = 2).

[m5G;November 1, 2021;12:54]

European Journal of Operational Research xxx (XXxx) Xxx

Index lexmin, (p§, p§. p§)=(17,16,1) lexmax, (p§, p§. p§)=(18,2,1)

Z Z z3 D. Dist. C. Dist Z1 Z z3 D. Dist C. Dist
1 124.69 4 201 (0,1,1) (6,6,3) 124.69 4 123 (0,1,1) (6,6,3)
2 125.00 2 216 (0,0,2) (6,7,2) 125.00 2 124 (0,0,2) (6,7,2)
3 125.11 4 202 (0,1,1) (7,5,3) 125.11 4 139 (0,1,1) (7,5,3)
4 125.29 4 218 (0,1,1) (8,5,2) 125.29 4 156 (0,1,1) (8,5,2)
5 125.72 4 219 (0,1,1) (9,4,2) 125.72 4 172 (0,1,1) (9,4,2)
6 126.26 2 230 (0,0,2) (5,9,1)
7 127.72 4 232 (0,1,1) (7,7,1)
8 127.90 2 233 (0,0,2) (8,6,1)
9 128.15 4 233 (0,1,1) (8,6,1)
10 129.36 4 188 (0,1,1) (10,3,2)
11 129.52 2 245 (0,0,2) (5,10,0)
12 129.72 4 234 (0,1,1) (9,5,1)
13 130.83 2 248 (0,0,2) (8,7,0)
14 131.30 2 189 (0,0,2) (10,4,1)
15 133.63 4 235 (0,1,1) (10,4,1) 133.63 4 189 (0,1,1) (10,4,1)
16 133.68 2 249 (0,0,2) (9,6,0)
17 134.53 2 250 (0,0,2) (10,5,0) 134.53 2 190 (0,0,2) (10,5,0)
18 135.95 2 205 (0,0,2) (11,3,1)

Table 9
Customers from different delivery classes (|N| = 15, m = 2).

Original 10 prime customers 5 prime customers
Z Z zZ3 D. Dist.  C. Dist. Z Z zZ3 D. Dist.  C. Dist C. Dist. (Prime) z; Z Z3 D. Dist.  C. Dist C. Dist. (Prime)
11793 4 201 (0,1,1) (6,6,3) 11793 4 83 (0,0,1) (6,6,3) (3,4,3) 11793 4 28 (0,1,1) (6,63) (3,1,1)
118.11 2 232 (0,0,2) (7,7,1) 11811 2 114 (0,0,2) (7,7,1) (4,6,0) 118.11 2 33 (0,0,2) (7,7,1)  (3,2,0)
11835 2 245 (0,0,2) (5,10,0) 11838 4 84 (0,1,1) (8,4,3) (4,3,3) 12447 4 33 (0,1,1) (8,4,3) (3,2,0)
11838 4 203 (0,1,1) (8,4,3) 11991 2 117 (0,0,2) (10,4,1) (7,3,0) 12751 2 34 (0,0,2) (7,7,1)  (41,0)
120.15 4 204 (0,1,1) (9,3,3) 120.15 4 106  (0,1,1) (9,3,3) (6,3,1) 12958 4 34 (0,1,1) (7,53) (41,0)
120.16 2 248  (0,0,2) (8,7,0) 121.61 4 107 (0,1,1) (104,1)  (7,2,1)
12117 4 233 (0,1,1) (8,6,1) 12537 4 108 (0,1,1) (10,4,1) (8,1,1)
12161 4 235  (0,1,1) (10,4,1) 12548 4 116  (0,1,1) (8,6,1) (6,4,0)
13337 2 249 (0,0,2) (9,6,0) 125.93 4 117 (0,1,1) (104,1)  (7,3,0)
13779 2 250 (0,0,2) (10,5,0) 12968 4 118 (0,1,1) (10,4,1)  (8,2,0)

5.2.3. Customers from different delivery classes

This section analyses a case where we partially relax the as-
sumption of customer anonymity and consider customers from dif-
ferent delivery classes such as “regular” and “prime” customers
together, where the customers within their respective classes are
still indistinguishable. Our model can be trivially modified so as
to consider fairness among “prime” customers only. We conduct
some experiments and Table 9 shows the results for an instance
with two drivers and 15 customers. Here, we consider two dif-
ferent cases; with 10 and five “prime” customers out of 15 total
customers and compare it with the original case, where fairness
is considered for all 15 “prime” customers. Overall results indicate
that in some cases, we find the same nondominated solutions that
is found by the original version of the problem, while new non-
dominated solutions can also be added to the set when the as-
sumption of full customer anonymity is relaxed.

6. Conclusion

In this study, we propose a multiobjective framework that helps
the planners to consider the interests of the main stakeholders in a
logistics setting. Each objective reflects the concerns related to one
of the three parties: the company, the customers served and the
drivers delivering the good. Our problem assumes that customers
are indistinguishable in terms of the service they are entitled to re-
ceive and so they belong to the same delivery class. We reflect the
company’s economic and environmental concern via minimizing a
fuel consumption (emission) function and incorporate the welfare
of the customers, and drivers by suggesting novel welfare function
forms. Our framework is motivated by a real-life problem that a
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large logistics company is facing; hence we formulate the welfare
functions accordingly. The company divides the planning period
(typically one day) into time slots and informs the customers about
which slot their delivery will be performed. In line with this, we
measure the welfare of a customer based on the slot she is served
and define the total welfare function so as to encourage quick and
fair delivery across customers. Observing that the company pays
the drivers based on mileage, we define a welfare function for the
drivers that will ensure quick and balanced routes. We implement
an efficient objective-space based algorithm to solve the resulting
triobjective optimization problem and demonstrate the applicabil-
ity of the framework.

Future research could explore use of heuristic algorithms so as
to find quick solutions to the three objective programming prob-
lem that we introduce in this work. Moreover, alternative welfare
function forms and their effects on the recommended solutions can
be investigated.
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