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This  paper  introduces  and  tests  a novel  methodology  for measuring  networks.  Rather  than  collecting
data  to observe  a network  or several  networks  in  full,  which  is  typically  costly  or  impossible,  we ran-
domly  sample  a portion  of individuals  in the network  and  estimate  the network  based  on the  sampled
ocial networks
individuals’  perceptions  on  all possible  ties.  We  find  the  methodology  produces  accurate  estimates  of
social  structure  and  network  level  indices  in five  different  datasets.  In  order  to  illustrate  the  performance
of our  approach  we  compare  its  results  with the  traditional  roster  and  ego  network  methods  of  data
collection.  Across  all five  datasets,  our  methodology  outperforms  these  standard  social  network  data  col-
lection  methods.  We  offer  ideas  on  applications  of our  methodology,  and  find  it especially  promising  in
cross-network  settings.
“For the last thirty years, empirical social research has been
dominated by the sample survey. But as usually practiced, . . .,
the survey is a sociological meat grinder, tearing the individ-
ual from his social context and guaranteeing that nobody in the
study interacts with anyone else in it.”
Allen Barton, 1968 (quoted in Freeman, 2004)

. Introduction

Most cross-group or cross-organizational research studies rely
n random sampling for the collection of data on economic and
rganizational variables. Such an approach precludes the mea-
urement of the network within each organization as complete
r near complete participation rates are needed (Wasserman
nd Faust, 1994). We  offer advances in data collection methods
o enable researchers to maintain a random sample framework
hile also collecting network data on the relationships among

he individuals in the organizations under study. Our method
egins by randomly sampling a portion of individuals in the

etwork and then estimates the complete network based on the
ampled individuals’ perceptions of all possible ties, which are
eferred to as cognitive slices. Thus, rather than collecting data
rom each actor in the organization to observe the network in full,
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which is typically costly or impossible in a cross-organizational
setting involving multiple networks, we  provide a methodology to
aggregate sampled individuals’ perceptions of the full network.

There are two interrelated areas of methodological research
on networks associated with our current agenda: network sam-
pling (Butts, 2003; Frank, 2005; Heckathorn, 1997) and network
measurement under conditions of missing data (see for instance
Butts, 2003; Costenbader and Valente, 2003; Borgatti et al., 2006).
This study speaks to these ongoing research areas but addresses
them from a distinctly different angle as our goal is to recreate an
accurate network representation from a small sample of network
members.

The following section will offer a brief justification of our meth-
ods. Section 3 provides an overview of cognitive social structures
and combination methods to deal with three-way data. Section 4
will discuss our estimation and aggregation methods for sampling
and combining cognitive slices to produce accurate representations
of the “true” network. Section 5 will introduce the datasets we
analyze and provide the results of our analysis involving a compar-
ison of our methodology’s performance against the standard roster
approach and the ego network approach. Section 6 offers thoughts
on implementation and potential limitations.

2. Rationale
Perhaps the most challenging step for researchers wishing to
measure a network is data collection. The data collection phase is
especially difficult in a cross-network study as one has to measure
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http://www.sciencedirect.com/science/journal/03788733
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  Knowl edge

  Perceptio n 

A A  B  C  D  E 

A 0 0 1 0 1 

B  0  0  1  0 0 

C  1  1  0  0 0 

D  0  0  0  0 0 

an organization (Krackhardt, 1990) as well as the structural and/or
psychological reason for variations in cognitive accuracy (Pattison,
1994; Casciaro, 1998).
86 M.D. Siciliano et al. / Socia

 number of networks. Typically network researchers employ
ne of two approaches to data collection. The first is to attempt
o sample every individual in the organization and collect data
n the direct network ties. The second is to sample a subset of
ndividuals and collect ego network data (i.e. direct ties as well as
he ties among the alters). Each method presents a different set of
roblems.

The first method, utilizing a standard roster survey, requires the
uestionnaire to be distributed to each actor in each network. This

s a time consuming process for the researcher and one reason why
etwork studies with a comparative or cross-network framework
end to incorporate only a few networks. The traditional roster

ethod also requires high participation rates in order to produce
alid network data (Wasserman and Faust, 1994). Recent meta-
nalyses on survey response rates indicate organizational research
chieves an average response rate of just over 50% (Baruch and
oltom, 2008; Anseel et al., 2010). Issues of missing data potentially
reate statistical power issues by reducing the total sample size as
ome organizations with low response rates will be unsuitable for
nalysis given concerns over the validity of the network structure.
or instance, Sparrowe et al. (2001) had to eliminate nearly 20% of
he groups in their analysis due to low response rates within those
roups. In terms of the accuracy of the network for a single group,
tork and Richards (1992) note that in network of 60 actors a 75%
esponse rate provides complete data for only 55% of the relation-
hips in the network. The remaining relationships have only partial
ata or no data at all and therefore determining the existence or

nexistence of a social tie becomes problematic. The accuracy of
oth the whole network and individual level measures in the ros-
er method are completely dependent on the response rate. As the
esponse rate increases the accuracy and validity of the measures
ncrease. Therefore, researchers employing this method must expel
dditional time and resources in sending reminders, offering par-
icipation incentives, and following up with participants to improve
esponse rates.

While the roster method is more suited to organizational
esearch given the bounded network, a second approach, using ego
etwork data, could be employed. For example, one could estimate

 network variable, such as density, in each ego-net and average
cross the values of the egos sampled to produce an estimate of
he global density measure in a particular network. The reliance
n averaging across individuals alleviates some of the problems
ssociated with time and response rates. If one is randomly sam-
ling ego networks within an organization, then demand for a high
esponse rate is reduced and therefore the need for multiple follow-
ps or additional incentives for organizational actors to participate

s lessened. However, the capability of ego network data to pro-
uce accurate whole network or global measures is uncertain, as a
andom sample of ego-networks may  not result in information con-
erning all areas of the network under study. Consequently, an ego
etwork approach does not allow for the estimation of the over-
ll network structure as it does not attempt to gather information
n all actors. That said, in an organizational research setting, one
ould employ a personal network strategy to capture global proper-
ies and therefore we include the ego network approach as another
oint of comparison with the novel methodology we present in this
aper.

The method we propose requires only a small random sam-
le to produce accurate estimates of both network structure and
lobal network measures. The powerful combination of random
ampling and network data collection provide a researcher with
he opportunity to fruitfully explore not only economic and orga-

izational factors related to an outcome of interest, but also the
ocial structure of the human associations under study. Because
ur methodology relies, in part, on perceptions of ties in a network,
e begin with a discussion of cognitive social structures.
E  1  0  0  0 0 

Fig. 1. Cognitive social structure for actor A, knowledge versus perception.

3. Network data and cognitive social structures

Our methods utilize cognitive social structures (defined below)
as an alternative means of data collection to address issues of time,
response rate, and accurate measurement that arise when collect-
ing network data for a large number of groups or organizations.
Specifically we  ask, can we randomly sample a small subset of
individual perceptions of the network to produce an accurate rep-
resentation of the overall network those individuals are embedded
in? If accurate network representations can be produced from only
a few individuals, then data collection can be more easily con-
ducted by interviewing only a handful of randomly selected actors
within an organization, and, under any research settings, issues of
response rate can be minimized.

3.1. Cognitive social structures

Cognitive social structures (CSS) are three dimensional network
structures, which represent each individual actor’s perception of
the entire network (Krackhardt, 1987). Thus, unlike traditional data
collection methods asking an actor to indicate only his/her ties
with other actors in the network, when collecting CSS data the
actor needs to provide information on all of the possible ties in the
network. These structures are represented as Ri,j,m, where i is the
sender of the relation, j is the receiver of the relation, and m is the
perceiver of the relation (Krackhardt, 1987). Here Ri,j,m = 1 means
that person m perceives a relation to exist from actor i to actor j. If
Ri,j,m = 0 then person m perceives the relation to not exist. Therefore,
a full CSS network of size N, would be an N × N × N array containing
0 or 1 entries representing the existence of possible ties.1

In a directed network consisting of 5 actors, CSS data collection
would require each actor to make a judgment about 20 possible
ties. So in any CSS matrix, say for actor A, there are two  types of
data. The first type involves information concerning the ties that
involve actor A, which we  call knowledge.  The second type involves
actor As opinion of the ties between the other actors in the network,
which we call perception.  For example, Fig. 1 represents a cognitive
social structure for actor A in a 5 actor network, also referred to
as As cognitive slice. As noted, the knowledge data provided by A
is in the shaded row and column and the perception data is in the
non-shaded areas.

To date, the study of CSS has focused primarily on the psy-
chological aspects of perception and cognitive accuracy. Cognitive
accuracy has been defined as “the degree of similarity between
an individual’s perception of the structure of informal relation-
ships in a given social context and the actual structure of those
relationships” (Casciaro et al., 1999, p. 286). Research on CSS has
explored the connections between cognitive accuracy and power in
1 It is possible to have valued CSS, but for our current purposes we are only
interested in binary networks.
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A A  B  C  D  E     B A  B  C  D  E 

A 0 0 1 0  1      A  0 1 0 0 0

  B  0  0  1  0  0      B  1 0 1 0 1

  C  1  1  0  0  0      C 0 1 0 0 1

  D  0  0  0  0  0      D 0 0 0 0 0

  E  1  0  0  0  0      E  0 0 0 0 0

C A  B  C  D  E     D A  B  C  D  E 

  A  0 0  0  0  0      A  0 0 1 0 1

  B  1 0  1  0  0      B  0 0 1 1 0

C 1 1 0 0  0      C 1 1 0 0 0

  D  0 0  0  0  0      D 0 1 0 0 1

  E  0 0  0  0  0      E  1 0 0 1 0

E A  B  C  D  E     

  A  0  0  0 1  0      Knowledg e 

  B  0  0  0 0  1     

  C  0  0  0 0  0      Perception 

  D  1  0  0 0  1     

cerning the existence of a tie are the members of the dyad under
question. Thus, truth is based on an ideal situation, where we  have
information about each directional tie from both actors in the dyad.
M.D. Siciliano et al. / Socia

Of importance for the context of this paper, is the fact that
esearch on CSS has shown that individuals have large variations in
heir ability to accurately perceive the network. Individuals make
rrors of omission (claiming a tie does not exist when it does)
nd errors of commission (claiming a tie exists when it does not).
hus, any single individual’s reconstruction of the network will be
awed and will generally provide a poor representation of the true
etwork. Our hypothesis guiding the research objective is that by
ombining a small number of flawed cognitive social structures the
rrors of omission and commission uniquely associated with a sin-
le individual can be washed away through aggregation with other
ndividuals’ flawed perceptions.

.2. CSS reduction/aggregation methods

In order to work with cognitive social structures, because they
re three-dimensional datasets, one needs to engage in some form
f data reduction or data aggregation. Krackhardt (1987) provided
hree methods of aggregating cognitive social structures in order to
ransform three-dimensional data into two-dimensional data. The
hree methods discussed were slices, locally aggregated structures,
nd consensus structures. Slices are defined as one individual’s per-
eption of the network. Thus, it indicates all ties between i and j,
olding the perceiver constant.

′
i,j = Ri,j,m

here m is a constant, indicating the perceiver. Locally aggregate
tructures (LAS) are traditional means of network data collection
elying only on information provided by the receiver or sender of a
articular tie. The rationale being that the individuals best suited to
etermine if a tie exists are the members of the dyad under ques-
ion. Such structures are termed locally aggregated because “the
esulting relation between i and j depends on information provided
y the most local members in the network, namely i and j them-
elves” (Krackhardt, 1987, p. 116). Because the CSS data contains
nformation on both i’s and j’s knowledge of their individual ties
o others in the network, it is possible to combine their knowledge
hrough an intersection rule

′
i,j = {Ri,j,i ∩ Ri,j,j}

r a union rule

′
i,j = {Ri,j,i ∪ Ri,j,j}.

Based on the preceding, for a tie from actor i to actor j to exist in
he aggregated network under the LAS intersection rule, both actor

 and actor j must agree on its existence. Alternatively, under the
AS union rule, a tie can exist in the aggregate network if either i
r j claim the tie to exist. Thus, the LAS intersection rule is a more
onservative rule requiring mutual agreement by both actors in a
yad. Note, however, that such methods use only knowledge data
nd ignore all of the perception data provided by the respondent.

Consensus structures rely on information provided by every
ndividual’s perception of the tie between i and j in the network.
hus, as noted by Krackhardt, a practical implementation of a con-
ensus structure is to set a threshold value, where a tie is defined
o exist once a certain percentage of network members claim a tie
xists between i and j. The threshold function can be defined as:

′
i,j =

⎧⎨ 1, if
∑

m

Ri,j,m < Threshold
⎫⎬

.
⎩
0, otherwise

⎭

Other methods of aggregation for three-way data have been
sed, see for instance Batchelder et al. (1997).
E 0 1 0 1  0     

Fig. 2. Sample cognitive slices for a 5 actor network.

4. The adaptive threshold method

As indicated in the brief discussion on cognitive social struc-
tures, much of the current research in cognitive network theory
focuses on perception as the phenomena to be explained and com-
pares individual perceptions to reality. This paper seeks to combine
a small subset of individual perceptions to construct an approxi-
mation of reality by estimating the “true” network structure from
a sample of cognitive slices. The methods to produce a single net-
work from a random sample of cognitive slices will be discussed in
detail below. There are two general steps: (i) sampling individuals
to obtain cognitive slices and (ii) aggregating cognitive slices. Once
the sampling and aggregation of slices have been discussed, details
on the performance of our methods using actual datasets will be
provided in Section 5.

4.1. Sampling and aggregating cognitive slices

Given our desire to maintain a random sampling framework,
every actor in the network has an equal probability of being selected
and upon being selected would be asked to provide his or her cog-
nitive social structure. Once data has been gathered from a random
sample of size n, aggregation of the cognitive slices relies on a two
part procedure utilizing both types of data available in an actor’s
cognitive social structure: knowledge and perception. As a simple
example of aggregation, assume there are 5 actors in a network:
A, B, C, D, and E. Each actor’s cognitive social structure is given in
Fig. 2. Note that there is no requirement that the CSS be symmetric.

Following Krackhardt (1990),  we derive the “true” network
through LAS intersection.2 For affective relations, that cannot be
observed or verified objectively, the most informed actors con-
2 There are other ways to construct the “true” network given a set of informant
reports. Butts (2003) and Romney et al. (1986) argue that truth can be approximated
via  consensus methods.
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TRUE A  B  C  D  E     EST. A B C D E

A  0  0  0  0  0     A 0 0 1 0 0

B  0  0  1  0  1     B 0 0 1 0 0

C  1  1  0  0  0     C 1 1 0 0 0

D  0  0  0  0  1     D 0 0 0 0 1

E  0  0  0  1  0     E 0 0 0 1 0
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hen determining whether the Ri,j tie exists, we can assess the
nformation provided by i and j. For example, i may  claim to hold

 friendship tie with j, but j may  not confirm is claim. In this case
i,j,i = 1, Ri,j,j = 0. There is no way to objectively determine who  is cor-
ect. As Krackhardt (1990, 1996) claims, if both i and j agree on the
–j tie then it is more likely to be true than if they do not agree. This
pproach of defining a friendship tie only when both parties agree
hat it exists has obvious face validity (Krackhardt, 1990, p. 349).
urthermore, the use of LAS intersection offers another advantage.
hen comparing our method with the traditional roster method

n Section 5, LAS intersection produces a criterion graph that can
e reproduced by both methodologies. Because the LAS approach
mimics the typical form in which network data are collected”
Krackhardt, 1990, p. 349), if the informants in the traditional

ethod are accurate, then the row-dominated roster method and
he LAS intersection method will produce similar results. Thus, the
AS intersection approach to the true network provides an achiev-
ble criterion state for both methodologies and therefore offers a
alid point of comparison.

The goal of our methodology is to produce an accurate repre-
entation of this “true” network when only sampling a few of the
ndividuals in the network. In other words, if we were only able to
urvey 3 actors of this 5 person network, how accurately could we
ombine the knowledge and perception data contained in each of
heir cognitive slices to approximate the “true” network as defined
y LAS intersection?

When a sample is drawn, the primary issue is how to deter-
ine the proper means of aggregating the sampled cognitive slices.

ecause we are sampling actors we are forced to deal with both
nowledge and perception as many of the dyads in the network
ontain actors who were not sampled and thus have no local knowl-
dge to bear on their relations. Under our sampling conditions,
hree different scenarios for the determination of a potential tie
n the aggregated network exist. The first is when knowledge data
s present for both actors involved in the tie (i.e. both actors were
ampled). The second is when no knowledge exists for a tie, and
hus there is only perception about the tie’s existence (i.e. neither
f the two actors involved in the tie under question were sam-
led). The third is when knowledge exists for only one of the actors

nvolved in the dyad (i.e. only one of the two actors involved in the
ie were sampled).

In order to illustrate these three scenarios, consider the case
here A, D, and E are selected as a sample. Each actor, exclud-

ng the diagonal, provides eight pieces of knowledge and twelve
ieces of perception data. In the first scenario when both actors in
he dyad under question are sampled, we combine the knowledge
omponents of each of the sampled actors using the LAS intersec-
ion rule. Thus, for instance: (i) the D–E tie was both claimed by D
nd E, so the tie exists in the aggregate network, (ii) A–E tie was
laimed by A, but denied by E, so the tie does not exist in aggregate
etwork, and (iii) the A–D tie was denied by both A and D, so the
ie does not exist in aggregate network. According to our method,
o perceptions can change the existence or non-existence of these
ies.

In the second scenario, neither of the actors was  sampled and
o the existence of the tie can only be determined by the percep-
ion of others. Thus, in our sample of A, D, and E, the existence of a
ie between B–C in the aggregated network relies on the sampled
ctors’ perception that such a tie exists because neither actor B nor
ctor C were sampled. The critical question in these instances is
ow much perception evidence must be brought to bear on a par-
icular tie before we claim that it exists in the aggregate network.

his requires us to set an evidence threshold, k, where if k or more
ampled actors perceive a tie to exist, then the tie will be created
n the aggregate network. Discussion about how k is determined is
etailed in Section 4.2.
Fig. 3. True network derived via LAS intersection (TRUE) and the estimated network
(EST).

In the third scenario, where only one individual of a possible tie
is sampled, we must also rely on perception. For example, A claims
a tie with C, but C was not sampled. We  cannot treat this as the A–E
case, since C was  not sampled, so C did not have a chance to accept
or deny this tie. Therefore, we treat this as perception, and the exis-
tence of the A–C tie has one piece of perception evidence indicating
that the tie exists. In such a case, if our perception threshold is k,
then k − 1 additional perceptions from the other sampled actors
must be present to conclude that A–C tie exists.

Following this approach, the network estimated from sample A,
D, and E, and the “true” network obtained by the CSS intersection of
all five slices are given in Fig. 3. The estimated network in Fig. 3 was
determined by setting a simple evidence threshold, k, to a value of
2.

In this simple example, the estimated network produced both
an error of omission (B–E tie) and an error of commission (A–C tie).
It is evident that determining the threshold k becomes the most
important factor for our aggregation methods to produce an accu-
rate representation of the “true” network. In this example, k was
arbitrarily defined to be 2. This means that if two  or more sampled
individuals claim a tie existed between any two unsampled individ-
uals, then the tie will be established in the aggregate network. This
is a naive way to determine k. As sample sizes drawn from different
networks will vary, a static level of k will tend to perform poorly
(see Section 5). In addition, each sample will contain actors with
varying capacity to accurately perceive the network and thus vary-
ing propensities to commit errors. A more sophisticated approach
to defining and adapting the threshold level for a particular sample
should take into account both the size and error rate.

4.2. Setting an adaptive threshold

From previous research on cognitive social structures it is
known that individuals vary in the amount of errors of omission
and errors of commission they make. Because of this, any sample
of cognitive slices may  be more or less prone to error and hence
more or less trustworthy as a whole. It would be helpful to provide
a measure of the accuracy of the sample drawn and use the mea-
sure of accuracy to set the most appropriate threshold for k. This
would allow k to be adjusted as a means of controlling the amount
of error that occurs when aggregating a sample of cognitive slices.
Borrowing terminology from statistics, two  error types are possi-
ble when determining the existence of ties: Type 1 errors or errors
of commission and Type 2 errors or errors of omission. Then for a
given threshold k, we have

P(Type 1 error)

= P(Perception says there is a tie|There is no tie) = ˛k, (1)

P(Type 2 error)
= P(Perception says there is no tie|There is a tie) = ˇk, (2)

where P denotes probability. We  will estimate these probabilities
from the observed frequencies. Because each sample of cognitive
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lices contains both knowledge and perception, we are able to esti-
ate the probability of error from the sample itself without the

eed for a full dataset. In our adaptive threshold method we  focus
n Type 1 errors due to the lack of knowledge about the origins of
ype 2 errors. A Type 2 error can occur because either an actor does
ot believe that a tie exists between two individuals or because
he actor is simply unaware of whether a tie exists and the default
ecision when unaware of a tie may  be to claim its inexistence. This
reates problems when attempting to measure and reduce Type

 errors during the aggregation of cognitive slices. Type 1 error is
lso more important for aggregating cognitive slices as the evidence
hreshold in the consensus methods for cognitive social structures
s based on those who perceive a tie to exist, and thus errors of
ommission are potentially more costly.

For an example of a Type 1 error in the context of a single cog-
itive slice, return to Fig. 2 and view the sampled slices of A, D,
nd E. Note that A claims to not send a tie to D and D claims to not
eceive a tie from A. Thus, based only the sampled slices we know
hat the directional tie A–D does not exist in the “true” network.
n example of a Type 1 error occurs in the sampled cognitive slices
ecause actor E perceives that a tie exists from A to D when in fact
e know that it does not. Thus, actor E committed a Type 1 error

nd we can acknowledge this error based solely on the sampled
ognitive slices. This is a crucial point. We  can locate and count the
umber of Type 1 errors committed by a cognitive slice based only
n information from individuals who were sampled. With larger
etworks, the opportunities to create Type 1 errors increase and
hus it is possible to develop a reasonable estimate of the overall
ccuracy of the sampled actors’ perceptions. This allows k to be
etermined by setting a tolerable level of Type 1 error and then
alculating the threshold value of k that is necessary to meet the
re-defined tolerance level.

Hence, k can adjust based on the measure of the accuracy of each
ample drawn. Formally, our estimator of a Type 1 error rate, ˆ̨ k, is
imply3:

ˆ k = number of Type 1 errors commited by the sample
number of possible Type 1 errors in the sample

,  (3)

here n is the sample size. Type 1 errors or the number of per-
eption ties canceled by knowledge can be increased or decreased
ased on the value of k. For instance, in a sample of 8 actors (say per-
on A through person H) from a larger network we would directly
bserve 56 interactions among those sampled individuals. These
nteractions are pieces of knowledge or ties that are known based
n local interaction and thus known to exist or not exist in the “true”
etwork. We  can then observe how each of the sampled actors per-
eives those ties to be distributed among the other sampled actors.
or instance, assume there is no tie from actor A to actor B. Under
AS intersection rules, this would mean that actor A denied sending

 tie to B and actor B denied receiving a tie from A. We  can look to see
ow many of the remaining six sampled actors (C through H) per-
eived a tie to exist. The six other sampled actors would collectively
ake a Type 1 error if k or more of them perceived the tie to exist.

y adjusting k we can adjust the number of Type 1 errors commit-
ed by any particular sample of actors. Because we  can determine

he accuracy of each sample, we can determine how high or low
ur threshold level of k needs to be set to keep that sample’s Type

 error below some pre-defined level.

3 If we  assume that all known ties between sampled actors (i.e., the local knowl-
dge of the ties in the sample) are all zero, then in a sample of n actors there are
(n  − 1)(n − 2) opportunities to make a Type 1 error. This is because each of the n
ampled actors is not involved in (n − 1)(n − 2) of the ties and therefore is capable
f making a Type 1 error for these dyads only.
orks 34 (2012) 585– 600 589

Given that the actors are randomly sampled, the error rate cal-
culated from the sample of cognitive slices is assumed to be an
accurate representation of the overall error rate the sampled actors
would make for the entire network. Thus, for a given sample we can
set a tolerable Type 1 error rate and let the accuracy or account-
ability of the sample determine the threshold level k necessary for
the sample to not exceed the Type 1 error rate. The algorithm to
determine the exact k for a given sample operates as follows:

Step 1. Set ˛, the tolerable error rate. Typical values are 0.05, 0.10,
0.15.
Step 2. Draw a random sample of size n.
Step 3. Find the smallest k such that ˆ̨ k < ˛, and denote this by k*.
Step 4. Compute the estimated network using the aggregation
method with threshold k*.

In  what follows we  will refer to this methodology as the adaptive
threshold method. For a formulized handling of the methodology see
Appendix A.

5. Performance of the adaptive threshold method

In this section we illustrate the performance of the adaptive
threshold method through an extended simulation study. The sim-
ulation study consists of repeated sampling from real datasets
where the complete CSS is known for each individual. Section 5.1
describes the datasets, Section 5.2 gives a short review of the global
network measures we assess, Section 5.3 provides some basic prop-
erties of our estimators, and Section 5.4 presents the main findings
comparing the adaptive threshold method with the traditional ros-
ter and ego network methods.

5.1. Data

To test our method of aggregation using the algorithm to adap-
tively define k, we  analyze five datasets. The five datasets are: (i)
High Tech Managers – 21 managers of machinery firm, (ii) Sili-
con Systems – 36 semiskilled production and service workers from
an small entrepreneurial firm, (iii) Pacific Distributors – 33 key
personnel from the headquarters of an electronics components dis-
tributor, (iv) Government Office – 36 government employees at the
federal level, and (v) Italian University – 25 researchers across three
interrelated research centers at a university. Each dataset contains
a CSS for all or nearly all actors in the network for both friendship
and advice relationships. In this study we focus on friendship ties.

Because the datasets we  use contain cognitive slices for all indi-
viduals in the network, we  are able to run multiple trials. Each trail
pulls various random samples and creates an approximation of the
network from the sampled individuals’ cognitive data. Every ran-
dom sample produces a different estimation of the network and we
evaluate the variability from sample to sample. More importantly,
because the datasets contain cognitive slices for all actors, we  are
able to generate the “true” network, or criterion graph. By establish-
ing the “true” network, we can dependably assess the performance
of our methodology. Obviously, when employing our methodology
in practice, as with any sampling methodology, one will never have
data on the full population under study and thus never know the
true value of the variable of interest. In our case, this means that
a cognitive slice will not be available for every actor as the goal of
the methodology is to rely on a small random sample of cognitive
slices to estimate the overall network. The primary objective of this

paper is to demonstrate the behavior of our methods under vari-
ous sampling conditions when the “true” structure is known. This
allows us to understand how such procedures will behave in the
field.
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.2. Global network measures

We evaluate our performance through the correlation of the esti-
ated network with the true network, and through our ability to

stimate several global network measures, namely, density,  clus-
ering coefficient,  and average path length.  We  give a short review
f all these concepts, but refer the reader to Wasserman and Faust
1994) for a general treatment of network concepts.

Following Krackhardt (1990),  we utilize a correspondence mea-
ure to assess the accuracy of the aggregated network with the
rue network. The correspondence measure, labeled as S14 by
ower and Legendre (1986),  calculates the accuracy of the aggre-
ated network. Given that the matrices of relationships in the
ve datasets contain only ones and zeros, there are four possible
tates of relationship between the aggregated network and the true
etwork:

a – matching zeros, meaning the ij cell in the true network is zero
and the corresponding ij cell in the aggregated network is zero.
b – omission error, meaning the ij cell in the true network is 1 but
the corresponding ij cell in the aggregated network is zero.
c – commission error, meaning the ij cell in the true network is
zero but the corresponding ij cell in the aggregated network is
one.
d – matching ones, meaning the ij cell in the true network is one
and the corresponding ij cell in the aggregated network is one.

Given these definitions, correlation is calculated as follows4:

14 = ad − bc√
(a + c)(b + d)(a + b)(c + d)

.

Network density is a measure of the connectedness of the overall
etwork. Density of a network is the ratio of existing ties to the
umber of possible ties. For directed graphs the formula for density

s:
l/n(n − 1), where l is the number of existing ties, and n(n − 1) is

he number of possible directed ties among the n actors.
The clustering coefficient,  also referred to as transitivity, is

he probability that two  neighbors of a randomly chosen node
re themselves connected. In other words, looking at a partic-
lar node in the network, the clustering coefficient measures
he interconnectedness among the alters of that node. The
ormula for the clustering coefficient of a single node i is
efined as:

i = Ai

mi(mi − 1)

here Ai is the number of ties between node is mi adjacent nodes
Kilduff et al., 2008).5 The global clustering coefficient is simply the
verage of the individual clustering coefficients for all nodes.

The shortest path length between two nodes, known as the
eodesic distance, is defined as the smallest number of ties needed

o connect two nodes in a network. If two nodes can be connected
ia existing ties in the network they are said to be reachable. The

4 As noted by Krackhardt (1990), S14 provides a value that is equal to what one
ould obtain if the matrices were vectorized and a simple Pearson’s correlation

oefficient was  calculated.
5 Note the formula for transitivity for a graph is often written differently. It is

alculated as 3 × the number of triangles/number of connected triples of nodes. The
umerator is the number of subgraphs of 3 nodes all of which are connected. The
enominator is the number of connected and non-connected subgraphs of 3 nodes.
orks 34 (2012) 585– 600

average path length is simply the mean path length of all pairs of
reachable nodes, which is defined as:

2
n(n − 1)

n∑
i=1

n∑
j=1

Lmin(i, j),

where Lmin(i, j) is the geodesic distance between node i and node j
(Kilduff et al., 2008).6

5.3. Performance of adaptive threshold method and effect of ˛

We now illustrate the performance and characteristics of the
proposed estimation method through graphs summarizing our
simulation results. For each graph in this section and in Section
5.4, the horizontal axis represents the sample size taken from the
network under study, and the vertical axis represents the value
of an estimated network measure. A horizontal line in each graph
displays the true network measure. The colored lines in the graphs
correspond to the 95% empirical confidence intervals (CI) for every
sample size considered. For a given sample size, say n, an empiri-
cal 95% confidence interval is obtained by randomly drawing 1000
samples of size n, estimating the network measure of interest using
the indicated method for each sample, and reporting the 2.5th and
97.5th percentiles of the estimates.

For an initial assessment, we  begin by comparing a static thresh-
old approach with our adaptive threshold method. We  use the High
Tech Managers data and consider all sample sizes between 4 and
21. In the simulation we draw 1000 random samples for each sam-
ple size, and estimate the network density for every sample. Fig. 4a
displays the results of a simulation study for static k = 2, static k = 5,
and static k = 8. Fig. 4b displays the results of the adaptive threshold
method using 3 different levels of ˛.

We can see from Fig. 4a that selection of a static threshold k
is crucial, as small k leads to overestimation and large k leads to
underestimation of the network measure. The threshold of k = 2 is
too low when sampling, say, 12 individuals. If just 2 of those 12 indi-
viduals make the same error of commission then an erroneous tie
is placed in the network. The k = 2 curve begins to decrease after the
half waypoint because more and more ties are determined by local
knowledge and thus there are fewer chances for errors of commis-
sion to occur. We  find a very different effect for the k = 5 and the k = 8
lines, as these threshold tend to be too high. This sensitivity is not
present for the adaptive threshold method as seen in Fig. 4b, as the
threshold method specifies  ̨ as opposed to k, giving the researcher
control of the probability of a Type 1 error. Accordingly, with a low ˛
level of 0.05, the threshold values are the highest and therefore the
distribution of density estimates is slightly lower when compared
with the other  ̨ levels. As the  ̨ value moves to 0.10 and 0.15 the
threshold values drop, resulting in density measures with slightly
larger predicted values. Regardless of the  ̨ level, the true density
is consistently covered within the confidence intervals, and as the
sample size increases, the variability decreases and the estimated
density converges to the true value. These results provide a strong
motivation for utilizing the adaptive threshold method.

The choice of  ̨ is important in the adaptive threshold method.
For each dataset and for each measure, different  ̨ levels will
produce different results. As with setting a Type 1 error rate in tradi-
tional statistics, there are no hard rules to finding the optimal level.

While the results are not shown here, our investigation of various

 ̨ levels across the datasets and across network measures revealed
that an  ̨ set between 0.08 and 0.12 produced the most reliable

6 For two nodes that are unreachable, their values are ignored in the calculation
of  the shortest path length. Thus, the average path length calculation only considers
distances between reachable nodes in the network.
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error as the existence of this tie does not take into account actor j’s
Fig. 4. Static ver

esults. The final choice of an  ̨ rate is ultimately the researcher’s
nd depends on the importance placed on errors of commission
nd errors of omission.

.4. Comparing the adaptive threshold method to standard SNA
ethods

In this section we incorporate all five datasets and analyze how
he adaptive threshold method performs at estimating various net-
ork level indices. For each of the five networks, simulation studies
ere carried out in order to produce the 95% empirical confi-
ence intervals for each of the network measures. We  report the
5% empirical confidence intervals for the graph correlation with
he true network, density, clustering coefficient, and average path
ength. In order to assess how well the adaptive threshold method
erforms we compare it’s performance with two other standard
pproaches. These approaches are the traditional roster method,
hich collects data on each actor in the network about his or her
irect ties, and the ego network approach, which collects data on
he focal actor’s direct ties as well as the ties among his/her alters.

For the traditional roster approach, the network at each sample
ize was generated by combining the self-reports of the sampled
ctor’s ties. In cases where some individuals were not sampled,
issing data was imputed through symmetrization. For example,

f actor i was sampled but actor j was not, then initially the row for
ctor j would be empty. To estimate the structure of js ties we used a
imple strategy commonly employed by network researchers when
ealing with (what are believed to be) logically symmetric relations

 the missing j–i tie is set to the same value as non-missing i–j
ie.7 Because we intend to compare our method to the traditional
oster method when the roster method achieves moderate to high
esponse rate, imputing missing data only affects a small proportion
f ties in these ranges.

For the ego network approach, global measures were estimated

y calculating the value of the measure in each sampled actor’s
go-network and then averaging those values across all n sampled
ctors. Note, that because the ego network approach does not

7 In results not shown here, we aggregated the roster approach data without using
ymmetrization to impute the missing relations. Such an approach leaves missing
ctor’s rows blank and thus does a very poor job of estimating structure. With no
ther information to determine non-sampled actors’ ties, symmetrizing provides the
ost informed approach for estimating structure. There are other ways to impute
issing data, including the use of exponential random graph models, which are

eyond the scope of this paper.
aptive methods.

produce an approximation of the network structure it is not dis-
played in the graphics comparing graph correlation. Additionally,
because the ego network approach asks individuals to identify
their alters and the connections among their alters, by definition,
all individuals in the ego network must be a distance of no greater
than 2 steps away from each other. Therefore, average path length
measures were not calculated for ego network samples.

The results of our comparison between the adaptive threshold
approach with  ̨ = 0.1, the traditional roster approach, and the ego
network approach are displayed in Figs. 5 and 6. Fig. 5 presents
the confidence intervals for correlation and Fig. 6 presents the
confidence intervals and mean square error (MSE) plots for global
network measures. Mean square error is a standard tool in evaluat-
ing the performance of an estimator in terms of bias and variability.
For a given n, mean square error for a network measure is simply
computed as MSE = variance + bias2, where variance is the observed
variance of the estimated network measure, and bias is the dif-
ference between the true value of the network measure and the
average of the estimated network measure, based on 1000 repe-
titions. As stated before, horizontal line in the confidence interval
graphs indicates the true value. For the MSE  graphs, the horizontal
dashed yellow line is provided as a point of comparison, and indi-
cates the MSE  of the roster method when a 70% response rate is
achieved.

In Fig. 5, both methods of estimating network structure have an
upwardly sloping trend as sample size increases indicating a closer
approximation to the true network. However, the traditional roster
approach does not achieve 100% correlation in our trials, as it does
not converge to the true network. The main reason for this lack of
convergence is that under the traditional roster method, actor i is
only asked about those individuals with whom he/she is friends.
Therefore, if actor i claims to be tied to actor j then the i–j tie is said
to exist in the network. This presents a significant opportunity for
belief of the i–j tie. Hence, the existence of a tie is never verified;
its existence solely relies on actor is individual claim.8 While it is

8 The fact that i and j may differ in their perception of the i–j friendship tie may
appear unintuitive. We refer the reader to Carley and Krackhardt (1996), which
details the processes by which non-symmetry and non-reciprocation occur with
interaction based behaviors. Because of this, we  would advise researchers interested
in employing the traditional roster approach to always ask about directed relation-
ships in both directions. While this often takes place with instrumental ties, such
as  advice seeking/advice providing, such an approach is also necessary for affective
ties that appear logically symmetric.
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heoretically possible for the roster method to perfectly reproduce
he true network, in practice, due to the rosters methods reliance on
ow data, the resulting network tends to be biased due to inaccurate
elf reports.
rrelations.
In Fig. 6, one should view n as representing sample size for
adaptive threshold and ego-net methods, and response rate for
traditional roster method. Thus, one can compare the performance
of the roster method with a 70% response rate to the adaptive
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hreshold method and ego-net method using a 30% sample size.

ig. 6 clearly indicates that the adaptive threshold method provides
etter coverage of the true network measure than either of the two
tandard SNA approaches. Even with very small sample sizes, we
nd that the adaptive threshold method produces a 95% confidence

Fig. 6. Global netwo
orks 34 (2012) 585– 600 593

interval which consistently captures the true global measure with

a reasonable interval width. In fact, across all datasets and all global
measures, except for the path length estimate in the Government
Office, the true value is within the confidence bands at all sample
sizes. We  can also compare the different methods’ performance

rk measures.
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Fig. 6. 

hrough MSE  plots. By comparing the MSE  plots, one can determine
he point at which the adaptive threshold method outperforms the

ther methods. For example, the MSE  plot for High Tech Managers
etwork density indicates that, no matter how small the sample
ize used with the adaptive threshold method, it performs better
han the traditional method with 70% response rate, in terms
inued )

of MSE. When we  look at the MSE  graphs for the five datasets
and three network measures, we  see that overall the adaptive

threshold method outperforms the two traditional methods in
terms of MSE, especially for density and average path length.

The graphs reveal that the ego network and the roster
method approach tend to overestimate the density and clustering
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Fig. 6. 

oefficients. One reason for the overestimation of density is that
espondents tend to over-report the number of friends they have

Kumbasar et al., 1994). While this tendency is still present with
he adaptive threshold method when determining ties based on
nowledge, its influence is diminished by checking the validity if

’s claim of the i–j tie with j’s claim of the i–j tie. In instances where
inued )

neither i nor j are sampled, respondents’ inclination to claim more
ties than are actually present is eliminated due to the reliance on

the perception of others.

Increases in density tend to lead to increases in clustering simply
due to the larger number of ties. Heider (1958) provides an addi-
tional, psychological reason, why the clustering coefficient may
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e inflated for the ego network method. Based on Heider’s (1958)

alance theory, individuals tend to view relationships as being
ransitive. If actor J is friends with actor A and actor B, but unaware
f the relationship between A and B, actor J will tend to assume a
ie exists between A and B to form a balanced triad. Freeman (1992)
inued )

discovered that a large number of the errors in a respondent’s recall

of a previously observed network could be attributed to his/her
inclination to correct intransitivity. With regard to calculating path
length, the overestimation of density results in an underestimation
of the average distance between actors.
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Fig. 6. 
Overall, the comparisons strongly indicate that the adaptive
hreshold method outperforms the traditional SNA approaches to
ata collection. In addition to the improved accuracy in estimat-

ng the network structure, the adaptive threshold method also
nued ).
provides the researcher with the benefits of random sampling and a
reduced need for high participation rates. These benefits can greatly
enhance comparative research grounded in the network perspec-
tive. There are two  cases in which the adaptive threshold method
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oes not perform as well. Both the clustering coefficient and the
verage path length in the Government Office dataset are poorly
stimated at small sample sizes relative to the other methods. A
rimary reason for the poor performance is the large confidence

ntervals arising from the variation in the actors’ perception of the
etwork. The incorporation of a significant number of additional
atasets would be necessary to better understand the contextual
onditions that may  give rise to large variation in actor perception.
owever, it is also possible that the results are simply idiosyncratic

o the Government Office. Regardless of the factors influencing
erception, a researcher seeking to a measure a network would, on
verage, be best served by using the adaptive threshold method.

. Thoughts on implementation and limitations

Research utilizing a network perspective (Brass, 1995; Cross
t al., 2003) is seen as an improvement upon traditional econo-
etric or statistical models as it investigates social influence,

nd not solely individual attributes, as explanation of social phe-
omena (Burt, 1992, p. 4). Previous research has demonstrated
hat informal social structures facilitate communication, collabo-
ation, knowledge transfer, and innovation within an organization
Kilduff and Tsai, 2003; Kilduff and Krackhardt, 2008). Exper-
mental work dating back to the 1950s has demonstrated the
mportance of communication patterns for group performance
Bavelas, 1950; Guetzkow and Simon, 1955; Leavitt, 1951; Shaw,
964). The effect of network structure on collective outcomes has
een demonstrated for bank profitability (Krackhardt and Hanson,
993), work groups of a telecommunications firm (Cummings and
ross, 2003), mental health networks (Provan and Milward, 1995;
rovan and Sebastian, 1998), artistic groups (Uzzi and Spiro, 2005),
nd electronic product development projects (Hansen, 1999). Such
ross-network research could be enhanced through the adaptive
hreshold method by facilitating the researcher’s ability to gather
ata on a larger number of networks. Furthermore, there are several
urrent research areas that could benefit by comparing structure
nd performance across multiple networks.

One example is the role of social networks in teacher and
chool performance. Daly et al. (2010, p. 363) state that “teach-
rs working in collaboration tend to have a wider skill variety, be
ore informed about their colleagues’ work and student perfor-
ance, report increased instructional efficacy, and are more likely

o express higher levels of satisfaction”. Schools with higher levels
f social capital have been show to have higher performance (Leana
nd Pil, 2006). However, the relationship between social capital and
chool performance has not been rigorously tested using network
ethods. A comparative study could test the relationship between

he actual structure of a social network in a school that gives rise
o social capital and the collective performance of the teacher’s in
he school. Gathering data in the 50–100 schools necessary for sta-
istical analysis may  be prove difficult for the researcher using a
tandard roster approach. With the adaptive threshold method,

 small random sample of teachers in each school could provide
ll of the necessary structural information. In addition, because
daptive threshold uses a random sample, additional information
oncerning the school climate, organizational commitment, and
ther important school level factors can be estimated from the
articipating teachers.

When researchers look to employ the adaptive threshold
ethod in a study such as the one described above, two key deci-

ions must be made. One is determining the  ̨ rate and the other

s determining the sample size needed from each organization or
etwork under study. As noted above,  ̨ rates in the 0.08–0.12
ange tended to perform the best for our measures and for our net-
orks. Based on the results in Section 5, it appears that sampling
orks 34 (2012) 585– 600

percentages as low as 25–40% can produce accurate results and
provides the researcher with a large enough sample to deal with
several non-respondents. Clearly, in any given instance, the neces-
sary sample size is dependent upon the accuracy of the actors in the
network. If individuals in a particular network have higher quality
perceptions about the relations around them, then even smaller
sample sizes will produce an accurate picture of the network.
Cases like the Government Office, where the clustering coefficient
and average path length were poorly estimated at low sample
sizes, provide a perfect example indicating that our methods are
sensitive to the quality of perception slices. When the correlations
between the slices are low, the variances of our estimators may
be large for small sample sizes as the few ‘knowledge’ ties are not
able to correct the false ‘perception’ ties yet. This is illustrated by
the large MSE  values for small sample sizes in the Government
Office dataset. The researcher should be aware of this sensitivity
issue when selecting a sample size and a threshold value alpha.

This paper represents only a first attempt at probing the appli-
cability of these methods. Future work on this topic can attempt to
improve upon the current performance of our estimator. A poten-
tial means of improvement would be to measure the accuracy for
each individual in the sample rather than the accuracy of the overall
sample. Given that individuals have varying propensities to com-
mit  Type 1 and Type 2 errors, such information could be used to
weight the perception of each individual. One could identify the
individuals who  tend to make errors of commission and those who
tend to make errors of omission and use this information to bet-
ter determine the existence of ties based on perception data. These
methods may  also be adapted to aid researches with needs that
extend beyond a random sample or wish to utilize other sampling
techniques to improve estimate accuracy. For example, research
has shown that people with higher level positions in companies
tend to have poorer cognitive accuracy (Casciaro, 1998). Given this,
a researcher may  choose to over sample individuals in the lower
ranks. An alternative approach would be to apply an adaptive sam-
pling framework where once an initial actor’s CSS is given, the
researcher can determine the next individual in the network to
sample by selecting an individual who is not friends with the ini-
tial respondent. Such a method would provide greater coverage
in all areas of a network that may  not be achieved through ran-
dom sampling alone. The current research could also be broadened
by looking beyond network level measures to track the accuracy
of network representation on an individual level (i.e. how often is
the most central person in the network correctly identified; see for
instance the work by Borgatti et al., 2006).

Another promising avenue of potential use for our methodology
is in the area of hard to reach networks. Given the inherent diffi-
culty of accessing a significant number of actors in hidden or hard to
reach networks, network data collection is often impossible. How-
ever, it may  be feasible to locate a few individuals in the hard to
reach network, work with them to bound the network, and then
use our techniques to generate estimates of the actual structure of
the network.

There are limitations to our approach as well. The size of the
network under study controls the applicability of our sampling
methodology as a data collection tool. As noted by Krackhardt
(1987), in cases where the network is reasonably large, having a
respondent provide his or her perception of every tie in the net-
work would be a difficult task. However, for networks of small
to moderate sizes, cognitive structures can and have been used
effectively as a data collection method. However, there is opportu-
nity to expand the adaptive threshold method to larger networks.

Burt and Ronchi (1994) attempted to measure the structure of
a large intra-organizational network using a capture-recapture
method by interviewing only a subset of the population under-
study. Relationships between individuals not directly interviewed



l Netw

w
s
r
b
m
l
w
5
e
d
i
c

t
i
s
t
o
o
s
i
r
s
f

7

s
c
s
r
s
s
d
n
o
i
t

A

c
S
A
t

A
m

i
i
A
w
N
1
w
r
s
w
a
w

S

M.D. Siciliano et al. / Socia

ere determined based on the informant’s perception of the
trength of connection. Burt and Ronchi (1994) found that strong
elations tended to be “recaptured”, meaning they were perceived
y multiple informants in the network as occurring. Therefore, it
ight be possible to map  relationships among individuals in a

arge network using a partial cognitive social structure approach
here not every individual is asked about every tie. In a network of

00 people, a 20% sample size provides 100 pieces of evidence for
very tie. This may  be more evidence than is necessary to accurately
etermine a relationship and clearly the demands on the sampled

nformants would be much too great to actually attempt to gather
ognitive social structure data on a network that size.

One potential solution to the demands placed on a respondent
o a cognitive social structure questionnaire in a larger network
s the link sampling design discussed by Butts (2003).  With a link
ampling design, individuals are not required to provide informa-
ion on all possible relationships in his/her network but rather on
nly a subset of them. Finding the proper balance between the size
f the sample and the size of the subset of links an individual in the
ample would be required to provide information on is an interest-
ng next step for this approach. Locating the balance necessary to
educe respondent burden and maintain accurate network repre-
entations would greatly expand the potential range of application
or our method.

. Conclusion

The adaptive threshold method proposed in this study is well
uited for network research where complete data collection is
ostly or impossible, particularly for cross-network studies. Large
cale cross-network studies are rare due to the time and expense
equired to collect network data on a large number of networks for
tatistical analysis as well as concerns over the validity of network
tructure when missing data is present. Our sampling methods can
rastically reduce researcher time and effort needed to uncover
etwork structures, and, as demonstrated in the paper, are capable
f producing accurate representations of the true network. More
mportantly, our methods proved to be more reliable than either of
he two alternative measures to collect network data.
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ppendix A. Formulation of the adaptive threshold
ethodology

In order to formulize the methodology described in the text, we
ntroduce the following notation and summarize the methodology
n a three-step procedure. Consider an unknown N × N network �.
ssume we randomly selected n N × N CSS slices from this net-
ork, say X1, X2, . . .,  Xn. For a given vector t, let 1(t) denote an

 × N matrix whose row and column entries corresponding to t are
s and the rest are 0s. Similarly, let 1(−t)  denote an N × N matrix
hose row and column entries corresponding to t are 0s and the

est are 1s. Let s denote a vector containing the index numbers of the
ampled slices. For example, in the 5 × 5 × 5 example in Section 4,

here A, D, and E are sampled, s = {1, 4, 5}. We  denote the sampled

nd unsampled portions of the network by S and U respectively,
here

 = 1(s),
orks 34 (2012) 585– 600 599

U = 1(−s),

Let It(A) denote a function which assigns 1s to all the entries of
a matrix A that are greater than a given constant t, and assigns 0s
to all the remaining entries. Let “*” denote the element by element
multiplication of two  matrices. For a given threshold k, we  would
like to find �̂,  an estimate of �, based on the CSS slices X1, X2, . . .,  Xn.

Step 1: Find exact entries of �̂
For all i = 1, . . .,  n, decompose Xi such that

Xi = XK,i + XK,i,

where XK,i denotes the knowledge portion of Xi, and Xp,i denotes
the perception portion of Xi. We have

XK,i = 1(i)  ∗ Xi,

Xp,i = 1(−i) ∗ Xi.

The combined knowledge and combined perception in the
observed sample, denoted by K and P respectively, are given as

K =
n∑

i=1

XK,i,

P =
n∑

i=1

Xp,i

Then the exact entries of �̂, computed from the knowledge and
will not be changed by other perceptions, are contained in the
matrix E given by

E = I1(S ∗ K)

Step 2: Find perception entries of �̂
As we discussed in Section 4, unverified (or undenied) knowl-

edge ties will be treated as a perception. Then the perception
contribution of knowledge from Step 1 is contained in the matrix
C, where

C  = U ∗ K

We  will decompose perception P into two  parts, the active part
(denoted by PA) and the inactive part (denoted by PI). We  will use
PA to find the perception entries of �̂. PI will be used to find ˆ̨ . We
have

PA = U ∗ P,

PI = I1(S ∗ P).

Combining C and PA, we have the final perception matrix PF,
given by
PF = IK (PA + C)

which contains the perception entries of �̂.
Step 3: Combine Steps 1 and 2 to find �̂
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The estimated network is given by

�̂ = E + PF

Recall that in the adaptive threshold method we  estimate the
Type 1 error probability for a given k, and denote this quantity by
ˆ̨ k. Using the above notation we have

ˆ̨ k = sum(PI)
sum(S) − sum(E)

where sum(A) denotes the sum of all entries of a given matrix A.
Note that this is equivalent to Eq. (3) given in Section 4.
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