
ADAPTIVE THREAD AND MEMORY
ACCESS SCHEDULING IN CHIP

MULTIPROCESSORS

a thesis

submitted to the department of computer engineering

and the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

master of science

By

İsmail Aktürk

July, 2013

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Özcan Öztürk(Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Uğur Güdükbay

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Süleyman Tosun

Approved for the Graduate School of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Graduate School

ii

ABSTRACT

ADAPTIVE THREAD AND MEMORY ACCESS
SCHEDULING IN CHIP MULTIPROCESSORS

İsmail Aktürk

M.S. in Computer Engineering

Supervisor: Assoc. Prof. Dr. Özcan Öztürk

July, 2013

The full potential of chip multiprocessors remains unexploited due to architec-

ture oblivious thread schedulers used in operating systems, and thread-oblivious

memory access schedulers used in off-chip main memory controllers. For the

thread scheduling, we introduce an adaptive cache-hierarchy-aware scheduler that

tries to schedule threads in a way that inter-thread contention is minimized. A

novel multi-metric scoring scheme is used that specifies the L1 cache access char-

acteristics of a thread. The scheduling decisions are made based on multi-metric

scores of threads. For the memory access scheduling, we introduce an adaptive

compute-phase prediction and thread prioritization scheme that efficiently cate-

gorize threads based on execution characteristics and provides fine-grained prior-

itization that allows to differentiate threads and prioritize their memory access

requests accordingly.

Keywords: Adaptive scheduling, chip multiprocessors, inter-thread contention,

thread phase prediction, multi-metric scoring.

iii

ÖZET

ÇOK ÇEKİRDEKLİ İŞLEMCİLERDE UYARLAMALI İŞ
PARÇACIĞI VE BELLEK ERİŞİMİ ÇİZELGELEME

İsmail Aktürk

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Özcan Öztürk

Temmuz, 2013

İşletim sistemlerinde kullanılan mimari-kayıtsız iş parçacığı çizelgeleyicileri

ve iş parçacığı-kayıtsız harici ana bellek erişim kontrol birimi çizelgeleyicileri

nedeniyle çok çekirdekli işlemcilerin potansiyelleri tam olarak

değerlendirilememektedir. Bu problemın çözümüne yönelik olarak iş parçacığı

çizelgeleme için, iş parçacıkları arası çekişmeyi en aza indirmeyi amaçlayan ve

bu doğrultuda iş parçacıkları çizelgeleyen uyarlamalı önbellek-sıradüzeni-farkında

iş parçacığı çizelgeleyicisi sunulmuştur. Süreçlerin birinci seviye önbellek kul-

lanım özelliklerini belirten yeni çok-metrikli puanlama tekniği geliştirilmiş ve

kullanılmıştır. Sunulan çizelgeleyicide, çizelgeleme iş parçacıkların çok-metrikli

puanlamaları esas alınarak gerçekleştirilir. Harici ana bellek erişim çizelgelemesi

için ise, iş parçacıkları etkin olarak yürütme özelliklerine göre gruplandıran ve iş

parçacıkları hassas olarak önceliklendirebilen uyarlamalı işlem fazı tahmini ve iş

parçacığı önceliklendirme yöntemi sunulmuştur.

Anahtar sözcükler : Uyarlamalı çizelgeleme, çok çekirdekli işlemciler, iş

parçacıkları-arası çekişme, iş parçacığı fazı öngörüsü, çok-metrikli puanlama.

iv

All praise is due to God alone, the Sustainer of all the worlds,

the Most Gracious, the Dispenser of Grace

v

Acknowledgement

I would like to express my appreciation to my advisor Assoc. Prof. Dr. Özcan

Öztürk for his support, invaluable advices, suggestions and steadfast guidance

during my study at Bilkent University.

Also, I would like to thank Assoc. Prof. Dr. Uğur Güdükbay and Assoc.

Prof. Dr. Süleyman Tosun for their time to be a part of my thesis committee.

Finally, I would like to express my heartfelt gratitude to my family for their

patience and support, especially to Ayşegül.

vi

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Document Organization . 3

2 Related Work 5

2.1 Thread Scheduling . 5

2.1.1 Replacement and Partitioning 6

2.1.2 Cache-sharing-aware Scheduling 7

2.1.3 Phase Prediction and Thread Classification 8

2.1.4 Coscheduling . 9

2.2 Memory Access Scheduling . 11

3 Adaptive Cache-Hierarchy-Aware Thread Scheduling 14

3.1 Introduction . 14

3.2 Problem Statement . 16

3.3 Motivation . 18

vii

CONTENTS viii

3.4 Contributions . 20

3.5 Chip Multiprocessors of Simultaneous Multithreading 21

3.6 Inter-thread Contention and Slowdown 22

3.7 Performance Counters and Monitoring 22

3.8 Phase Detection and Prediction 23

3.9 Multi-metric Scoring Scheme . 24

3.9.1 Scalability of Mutli-metric Scoring Scheme 26

3.10 Adaptive Thread Scheduling . 26

4 Adaptive Compute-phase Prediction and Thread Prioritization 33

4.1 Introduction . 33

4.2 Problem Statement . 34

4.3 Motivation . 35

4.4 Contributions . 35

4.5 Memory Model . 36

4.6 Adaptive Compute-phase Prediction 38

4.7 Adaptive Thread Prioritization 44

5 Evaluations 46

5.1 Adaptive Cache-hierarchy-aware Thread Scheduling 46

5.1.1 Simulation Environment 46

5.1.2 The Effect of Scheduling on System Performance 49

CONTENTS ix

5.1.3 Slowdown of Benchmarks 51

5.1.4 The Effect of Scheduling on Cache Performance 54

5.1.5 Sensitivity of Performance to the Thread Quantum 59

5.1.6 Sensitivity of Performance to the Weights of Thread At-

tributes . 60

5.1.7 Sensitivity of Performance to the Resolution of Thread At-

tributes . 61

5.1.8 Sensitivity of Performance to Scoring Thresholds 62

5.2 Adaptive Compute-phase Prediction and Thread Prioritization . . 63

5.2.1 Simulation Environment 63

5.2.2 Workloads . 64

5.2.3 The Effect of Scheduling on Sum of Execution Times . . . 65

5.2.4 The Effect of Scheduling on Power Consumption 69

6 Conclusions and Future Work 72

Bibliography 76

Appendix 82

A Extended Evaluations for Adaptive Cache-Hierarchy-Aware

Thread Scheduling 82

A.1 L1 Hits/Misses Variations . 83

A.2 L1 Hit Ratio Variations . 88

CONTENTS x

A.3 L2 Hits/Misses Variations . 93

A.4 L2 Hit Ratio Variations . 95

A.5 Performance Variations of Benchmarks 97

Vita 113

List of Figures

3.1 The L2 miss variation of four threads running on two cores under

different scheduling schemes. 16

3.2 The IPC variation of four threads running on two cores under

different scheduling schemes. 17

3.3 Typical chip multiprocessor architecture and its memory subsystem. 21

3.4 Attribute vector expresses execution characteristics of a thread. . 24

3.5 Attribute vector that expresses execution characteristics of a

thread in higher resolution. 26

3.6 The flow of adaptive cache-hierarchy-aware thread scheduling. . . 27

3.7 Coscheduling score calculation. 28

3.8 Cache-hierarchy-unaware scheduling. The number of L2 hits is

four, while the number of L2 misses is 17. 31

3.9 Cache-hierarchy-aware scheduling. The number of L2 misses re-

duced to 14. 32

4.1 Typical memory bank architecture found in a DRAM rank. 37

4.2 Default compute-phase prediction. 41

xi

LIST OF FIGURES xii

4.3 Adaptive compute-phase prediction. 42

4.4 Updating a threshold in adaptive compute-phase prediction. . . . 43

5.1 Performance of benchmarks under different scheduling schemes. . 50

5.2 Comparison of overall system performance under different schedul-

ing schemes. 51

5.3 Slowdowns of benchmarks under different scheduling schemes. . . 54

5.4 Miss per kilo instructions vs. L2 cache size for the benchmarks. . 55

5.5 L2 miss per kilo instruction of benchmarks under different schedul-

ing schemes. 56

5.6 L2 miss ratio of benchmarks under different scheduling schemes. . 57

5.7 L1 miss per kilo instruction under different scheduling schemes. . 58

5.8 L1 miss ratio of benchmarks under different scheduling schemes. . 59

5.9 System performance for different thread quantum lengths. 60

5.10 System performance changes with respect to relative weights of

thread attributes. 61

5.11 System performance with respect to the number of bits used to

represent each attribute in an attribute vector. 62

5.12 Comparison of CP-WO and ACP schedulers for the given work-

loads. Sum of execution times is normalized with respect to FR-

FCFS. 67

5.13 Comparison of CP-WO and ATP schedulers for the given work-

loads. Sum of execution times is normalized with respect to FR-

FCFS. 67

LIST OF FIGURES xiii

5.14 Comparison of CP-WO and ACP-TP schedulers for the given work-

loads. Sum of execution times is normalized with respect to FR-

FCFS. 67

5.15 Total sum of execution times for the given workloads. 68

5.16 Comparison of total memory system power of CP-WO and ACP-

TP schedulers for the given workloads. The total memory system

power is normalized with respect to FR-FCFS. 69

5.17 Comparison of total system power of CP-WO and ACP-TP sched-

ulers for the given workloads. The total system power is normalized

with respect to FR-FCFS. 70

5.18 Sum of total memory system power for the given workloads. . . . 70

5.19 Sum of total system power consumption for the given workloads. . 71

A.1 L1 hits and misses under static schedule 1. 83

A.2 L1 hits and misses under static schedule 2. 83

A.3 L1 hits and misses under static schedule 3. 84

A.4 L1 hits and misses under static schedule 4. 84

A.5 L1 hits and misses under static schedule 5. 85

A.6 L1 hits and misses under static schedule 6. 85

A.7 L1 hits and misses under static schedule 7. 86

A.8 L1 hits and misses under dynamic-offline schedule. 86

A.9 L1 hits and misses under adaptive cache-hierarchy-aware scheduling. 87

A.10 L1 hit ratio under static schedule 1. 88

LIST OF FIGURES xiv

A.11 L1 hit ratio under static schedule 2. 88

A.12 L1 hit ratio under static schedule 3. 89

A.13 L1 hit ratio under static schedule 4. 89

A.14 L1 hit ratio under static schedule 5. 90

A.15 L1 hit ratio under static schedule 6. 90

A.16 L1 hit ratio under static schedule 7. 91

A.17 L1 hit ratio under dynamic-offline schedule. 91

A.18 L1 hit ratio under adaptive cache-hierarchy-aware scheduling. . . 92

A.19 L2 hits and misses under static scheduling schemes. 93

A.20 L2 hits and misses under dynamic offline and adaptive cache-

hierarchy-aware scheduling schemes. 94

A.21 L2 hit ratio under static scheduling schemes. 95

A.22 L2 hit ratio under dynamic offline and adaptive cache-hierarchy-

aware scheduling schemes. 96

A.23 IPC of blackscholes under static scheduling schemes. 97

A.24 IPC of blackscholes under dynamic offline and adaptive cache-

hierarchy-aware scheduling schemes. 98

A.25 IPC of vips under static scheduling schemes. 99

A.26 IPC of vips under dynamic offline and adaptive cache-hierarchy-

aware scheduling schemes. 100

A.27 IPC of canneal under static scheduling schemes. 101

LIST OF FIGURES xv

A.28 IPC of canneal under dynamic offline and adaptive cache-

hierarchy-aware scheduling schemes. 102

A.29 IPC of dedup under static scheduling schemes. 103

A.30 IPC of dedup under dynamic offline and adaptive cache-hierarchy-

aware scheduling schemes. 104

A.31 IPC of facesim under static scheduling schemes. 105

A.32 IPC of facesim under dynamic offline and adaptive cache-

hierarchy-aware scheduling schemes. 106

A.33 IPC of x264 under static scheduling schemes. 107

A.34 IPC of x264 under dynamic offline and adaptive cache-hierarchy-

aware scheduling schemes. 108

A.35 IPC of fluidanimate under static scheduling schemes. 109

A.36 IPC of fluidanimate under dynamic offline and adaptive cache-

hierarchy-aware scheduling schemes. 110

A.37 IPC of freqmine under static scheduling schemes. 111

A.38 IPC of freqmine under dynamic offline and adaptive cache-

hierarchy-aware scheduling schemes. 112

List of Tables

4.1 Prioritization policy for the read requests. 45

5.1 Chip multiprocessor and memory configuration for evaluations. . . 47

5.2 PARSEC benchmarks used in evaluations. 47

5.3 Static schedules used in evaluations. 48

5.4 Slowdown of a thread when scheduled with another thread on the

same core. 52

5.5 Slowdown of a thread when scheduled with another thread under

the static scheduling scheme. 52

5.6 Slowdown of a thread when scheduled with another thread under

the dynamic-offline scheduling scheme. 53

5.7 Slowdown of a thread when scheduled with another thread under

the cache-hierarchy-aware scheduling. 53

5.8 System performance with respect to the attribute thresholds for

threads. 63

5.9 System configurations used in evaluations. 64

5.10 Workloads used in evaluations. 66

xvi

Chapter 1

Introduction

1.1 Overview

The number of transistors available on a die is no longer increasing according

to Moore’s Law [1] due to power constraints and diminishing returns. However,

the demand for increased performance and higher throughput is still in place.

To provide higher throughput and increased performance without bumping into

physical limits of Moore’s Law, novel multiprocessor architectures have emerged,

including chip multiprocessors that contains multiple cores on a single chip [2].

Another way to provide higher throughput and increased performance is to run

more than one thread on each core with multithreading, namely simultaneous

multithreading [3]. The choice of threads to be scheduled on the same core has

signicant impact on overall system performance. Inter-thread contention occurs

since coscheduled threads are competing for shared resources. The primary shared

resource that influence the performance is the cache. An efficient scheduling

should minimize the contention for shared caches to maximize utilization and

system performance. Since the execution characteristics of threads varies over

time, the scheduling decision has to be remade based on provisioned behaviors of

threads for the near future.

The frequency and power walls have forced chip manufacturers to change their

1

design philosophy from uniprocessors to chip multiprocessors. While multicore

architectures provide higher aggregated throughput, the underlying memory sub-

system remains a performance bottleneck. The memory subsystems operate in

lower frequencies and they have to serve to multiple threads running on different

cores simultaneously. This creates a contention on memory subsystem and has a

significant impact on the overall system performance. Traditional memory access

scheduling algorithms designed for uniprocessors are inadequate for chip multi-

processors. For this reason, an efficient memory access scheduler is required to

exploit the performance promises of chip multiprocessors.

In response to increased pressure on memory subsystem due to the memory

requests generated by multiple threads, an efficient memory access scheduler has

to fulfill the following goals:

• serve memory requests in a way that cores are kept as busy as possible

• organize the requests in a way that the memory bus idle-time is reduced

The work done in the scope of this thesis is given in two parts. In the first

part of the thesis, we focus on thread scheduling and introduce an adaptive cache-

hierarchy-aware scheduling algorithm. The proposed algorithm uses hardware

counters that provide statistics regarding cache access pattern of each thread

and employs an intelligent scheduling decision mechanism that tries to schedule

threads in a way that inter-thread contention is minimized. The originality of

this work is the use of multi-metric scoring scheme that specifies the L1 cache

access characteristics of a thread. The scheduling decisions are made based on

these characteristics. While previous studies are focused on the performance of

last-level cache (LLC) to optimize scheduling decisions, our evaluations indicate

that the eventual performance of LLC is dependent on how the upper levels

of cache hierarchy are used. Thus, adaptive cache-hierarchy-aware scheduling

effectively utilizes upper levels of cache, and thereby improves the throughput

and maximizes the system performance.

In the second part of the thesis, we focus on memory access scheduling and

2

introduce an adaptive compute-phase prediction and thread prioritization algo-

rithm. The necessity of distinguishing threads based on their execution character-

istics is addressed by recent studies. In such studies, threads are categorized into

two groups, namely memory-non-intensive (i.e., threads in compute phase), and

memory-intensive (i.e., threads in memory-phase). Saturation counters provide

effective metrics to determine the execution phase of a thread. However, they

become slower to react (i.e., classifying threads in a timely manner) when fix

thresholds are used. Adaptive compute-phase prediction scheme determines the

proper thresholds on the fly, leading to better classification of threads in a timely

manner. Although, distinguishing threads of different groups and prioritizing one

group over another improve the performance, the potential performance gain is

missed due to the inability to differentiate threads in the same group. Adaptive

thread prioritization scheme provides fine-grained prioritization that allows to

differentiate the threads in the same group and prioritize them accordingly.

1.2 Document Organization

The organization of the thesis is as follows. The related work is given in Chapter 2.

We discuss about related work on thread scheduling in Section 2.1, including cache

replacement and partitioning algorithms, coscheduling methods. In Section 2.2,

we discuss about related work on thread classification and prioritization, and

memory access scheduling.

We introduce our proposed adaptive cache-hierarchy-aware scheduling algo-

rithm and give the implementation details in Chapter 3. We discuss multi-metric

scoring scheme and adaptive thread scheduling in Sections 3.9 and 3.10, respec-

tively. Then, we introduce our proposed adaptive compute-phase prediction and

thread prioritization algorithm in Chapter 4.

We provide extensive evaluations in Chapter 5 to present and analyze the

effectiveness of proposed thread and memory access schedulers. In Section 5.1, we

provide experimental results regarding adaptive cache-hierarchy-aware scheduler.

3

We analyze the effectiveness of adaptive compute-phase prediction and thread

prioritization in Section 5.2.

We conclude the thesis and provide future work in Chapter 6. Appendix A

provides extended evaluations for adaptive cache-hierarchy-aware thread sched-

uler.

4

Chapter 2

Related Work

2.1 Thread Scheduling

Tremendous research efforts have been made on scheduling over the last several

decades. Although its long history, scheduling is still relevant and it is one of

the most important aspects of computing. The shift from single chip processor

to chip multiprocessor made scheduling problem even interesting and compelling.

Jiang et al. [4] proved that scheduling in chip multiprocessors where the core

number is grater than two is an NP-complete problem. For this reason, there are

numerous heuristics developed for scheduling in chip multiprocessors.

There are three main concerns regarding scheduling. The first one is to im-

prove the computing efficiency (e.g., [5], [6]). The second concern is fairness

(e.g., [7]) and the last one is performance isolation (e.g., [8]). There are vast

amount of studies targeted these concerns.

Deciding threads to be coscheduled is one part of the story. In addition

to that, there is also need to decide the amount of resource to be allocated to

each thread. To this end various replacement and cache partitioning strategies

have been proposed. Notice that, scheduling algorithms are not alternatives to

replacement and cache partitioning strategies; however, they all have impact on

5

each other and overall system performance.

2.1.1 Replacement and Partitioning

The threads scheduled on the same core compete for shared cache resources. A

request from a thread can conflict with a request from another one. A thread may

need to evict data that belongs to a different threads to bring its own data into

shared cache without considering whether the evicted data will be used by other

threads, or not. Likewise, the benefits obtained through cache usage may differ

among threads. Thus, allowing a thread to use more cache resources although

it does not obtain much benefit from it, may prohibit the possible benefit that

could be obtained by other threads. Such interference and evictions reduce the

performance of multiple threads. If they are not coordinated appropriately, such

evictions can be destructive for the overall system performance. There are vari-

ous eviction and replacement strategies such as Least-Recently-Used (LRU) [9],

LRU-based replacement methods [10], [11], sampling-based adaptive replacement

(SBAR) [12]. In addition to replacement policies, there are various partitioning

strategies such as way-partitioning [13] and cache partitioning [7], [11], [12].

It is difficult for operating system scheduler to ensure a faster progress for

a high-priority thread on a chip multiprocessor, because the performance of a

thread could be arbitrarily decreased by a high-miss-rate thread that is running

concurrently with high-priority thread. Fedorova et al. [8] proposed an operating

system scheduler to ensure performance isolation. In their proposal, threads end

up with equal cache allocations, if threads that are running concurrently have

similar cache miss rates. The shared cache is allocated based on demand; so, if

the threads have similar demands they will have similar cache allocations.

Despite the abundance of replacement and partitioning strategies, they all

come with certain limitations. For example, LRU cannot differentiate the requests

from different threads. This causes LRU to blindly and unfairly evict the cache

blocks to be used soon by another thread. When this thread tries to access the

6

cache blocks needed, it will end up with a cache miss. On the other hand, way-

partitioning schemes differentiate threads and their requests. For this reason,

the eviction decisions can be made properly without penalizing other threads

blindly. However, way-partitioning schemes have limited scalability. If there are

more threads than the number of cache ways, then the scheme would not work

as intended.

To improve the cache access efficiency and system performance both replace-

ment and scheduling strategies should be in place. LRU or way-partitioning

schemes are orthogonal to the proposed cache-hierarchy-aware scheduling. Any

replacement policy can be used along with cache-hierarchy-aware scheduler. It

is beyond the scope of this work to tune replacement policy that would work

best with the proposed cache-hierarchy-aware scheduler. Rather, we focus on the

cache access characteristics of threads and try to come up with the best schedul-

ing in which scheduled threads have the least interference and the number of

evictions is minimized.

2.1.2 Cache-sharing-aware Scheduling

Cache-sharing-aware scheduling in operating systems can mitigate the cache con-

tention among scheduled threads by assigning threads that can benefit from run-

ning on the same core by sharing data. Such cache-sharing-aware scheduling

schemes can improve cache usage efficiency and program performance consid-

erably in an environment where data sharing among threads is considerable.

However, Zhang et al. [14] claimed that cache sharing has insignicant impact

on performance of modern applications. This is due to the fact that there is very

limited sharing of the same cache block among different threads in such applica-

tions. These applications are highly parallelized, where each thread is working

on independent cache different block that are independent from each other. For

this reason, it is very unlikely that they will access the same data block, so

cache-sharing-aware schedulers have limited applicability.

Tam et al. [15] proposed a scheduling scheme to schedule threads based on data

7

sharing patterns that are detected online through hardware performance counters.

The proposed scheme detects data sharing patterns and clusters threads based on

the data sharing patterns. Then, the scheduler tries to map threads that belong

to the same cluster onto the same processor, or as close as possible to reduce the

number of remote cache accesses for shared data.

Settle et al. [16] developed a memory monitoring framework providing statis-

tics in simultaneous multithreaded processors. Statistics regarding memory ac-

cesses of threads gathered from the proposed framework can be used to build a

scheduler that minimizes capacity and conflict misses. For each thread, L2 cache

accesses are monitored on a set basis to generate per-thread cache activity vec-

tors. These vectors indicate the sets that are accessed most of the time. The

intersection of these vectors specifies the sets that are likely to be conflicting.

This information is used in scheduling decision.

2.1.3 Phase Prediction and Thread Classification

Sherwood et al. [17] introduced phase prediction method based on basic block

vectors. Basic block vector represents the code blocks executed during a given

interval of execution.

Chandra et al. [18] focused on L2 cache contention on dual-core chip multi-

processors. They proposed analytical model to predict number of L2 cache misses

due to contention of threads on L2 cache.

Cazorla et al. [19] introduced a dynamic resource control mechanism and

allocation policy in simultaneous multithreaded processors. The policy monitors

the usage of resources by each thread and tries to allocate a fair amount of

resources to each thread to avoid monopolization. It classifies threads into the

groups based on cache access patterns as fast and slow. Then, it allocates the

resources to these groups accordingly. Threads with pending L1 data misses are

classified as member of the slow group and the ones without any pending L1 data

misses are classified as member of the fast group. Another classification is made

8

as active and inactive based on the usage of certain resources. This classification

allows borrowing resources from an inactive thread for the sake of another one

that is active and looking for resources. Although they also used pending L1

data misses as a classification method, our approach differs in variety of ways.

First, we use multiple L1 access characteristics such as number of accesses, miss

ratio and number of evictions that provides better representation of execution

characteristics of threads. Second, they do not rely on L1 access statistics for

scheduling, instead they use it for clustering threads. Third, the main aim of

the paper is not to develop a scheduler, but it is to develop a dynamic allocation

policy for shared resources.

El-Moursy et al. [5] introduced a scheduling algorithm in which threads are

assigned to processors based on the number of ready and in-flight instructions.

The number of ready and in-flight instructions are strong indicators of different

execution phases. The algorithm tries to schedule threads that are in compatible

phases. They also used hardware performance counters to gather information

required to assess the compatibility of thread phases.

Kihm et al. [20] proposed a memory monitoring framework that makes use

of activity vectors that allow scheduler to estimate and predict cache utilization

and inter-thread contention dynamically. However, they do not propose any

scheduling algorithm that actually employs activity vectors.

2.1.4 Coscheduling

Tian et al. [21] proposed an A*-search-based algorithm to accelerate the search

for optimal schedules. They formulated optimal co-scheduling as a tree-search

problem and developed A*-based algorithm to find optimal schedule. The au-

thors reduced constraints on finding optimal scheduling such that they allowed

threads of different lengths. Further, they developed and evaluated two approxi-

mation algorithms, namely A*-cluster and local matching. A*-cluster algorithm

is a derivative of A*-search-based algorithm that employs online adaptive clus-

tering. It trades accuracy for scalability. The local-matching algorithm applies

9

graph theory to find the best schedule at a given time without any provision

for the upcoming schedules. Although optimal scheduling algorithms are costly

and inefficient for practical purposes, they can provide insights to enhance the

practical scheduling algorithms and associated complexities with them.

Jiang et al. [22] proposed a reuse-distance based [23] locality model that pro-

vides proactive prediction of the performance of scheduled processes. The predic-

tion is used in run-time scheduling decisions. They employed the proposed local-

ity model in designing cache-contention-aware proactive scheduling that assigns

processes to the cores according to the predicted cache-contention sensitivities.

However, predictive model has to be constructed for each application through an

offline profiling and learning process.

Snavely et al. [6] introduced a symbiotic scheduler, called SOS (Sample, Op-

timize, Symbios) simultaneous multithreaded processors. It identifies the charac-

teristics of threads that are scheduled through sampling. SOS runs in two distinct

phases: sample phase and symbiosis phase. It gathers information about threads

running together in different schedule permutations during the sample phase. Af-

ter this sample phase, SOS picks the schedule that is predicted to be optimal and

proceeds to run this schedule in the symbiosis phase. The performance metrics

of a schedule is gathered through hardware counters. SOS employs many predic-

tors to identify the best schedule. One interesting result provided by Snavely et

al. is that IPC alone is not a good predictor. It may happen that threads with

higher IPCs monopolize system resources and can be detrimental to threads with

lower IPCs. The limitation of this work is that it tries many schedules during

sample phase to predict the best schedule to be executed in symbiosis phase. For

workloads that are composed of many threads that exceed the available hard-

ware resources, the sample phase would be much longer. In such a case, threads

can change their characteristics that would not be reflected during the symbiosis

phase. It is very limiting that symbiosis phase would be inaccurate due to the

change of execution characteristics of threads during sample phase. Limited num-

ber of samples can be used to avoid longer sample phase; however, the probability

of missing better schedules is increased in this case.

10

Suh et al. [24] proposed online memory monitoring scheme that uses hardware

counters as well. The use of hardware counters provides estimates for isolated

cache hits/misses with respect to the cache size. The estimation does not require

to change cache configuration. This is achieved by employing single pass simula-

tion method introduced by Sugumar and Abraham [25]. The provided estimation

is used in designing memory-aware scheduling that schedules processes based on

the cache capacity requirements. The marginal gains in cache hits for different

sizes of cache for each process are monitored. Then a process that has low cache

capacity requirement is scheduled with a process that has high cache capacity

requirement to minimize the overall miss ratio.

DeVuyst et al. [26] proposed a scheduling policy for chip multiprocessors that

allows unbalanced schedules (i.e., uneven distribution of threads among the avail-

able cores) if they provide higher performance and energy efficiency. The main

challenge of allowing unbalanced schedules is to have an increased search space

with a great extent.

2.2 Memory Access Scheduling

Rixner et al. proposed a First-Ready First-Come First-Serve memory access

scheduler (FR-FCFS) [27] that prioritizes the requests that will be row-buffer

hit. If there is no request that will be row-buffer hit, then the scheduler issues

the oldest request first.

Mutlu and Moscibroda introduced a stall-time fair memory scheduler [28]

that aims to balance the slowdown experienced by each thread. To do that, the

scheduler gives priority to the requests of threads that are slowed down the most.

In a similar effort [29], authors introduced a parallelism-aware batch scheduler

that batches the requests based on their arrival time and their owners. The batch

having the oldest request is given higher priority. In addition, the requests of a

certain thread is serviced in parallel in different banks of ranks.

Kim et al. proposed a thread cluster memory scheduling [30] that divides

11

threads into two separate clusters and employs different scheduling policies for

each cluster. The threads are clustered based on their memory access patterns.

The first cluster consists of memory-non-intensive threads and the second clus-

ter consists of memory-intensive threads. The scheduler prioritizes the requests

of memory-non-intensive threads to improve throughput. Periodically, it priori-

tizes memory-intensive threads to provide fair access to the underlying memory

subsystem.

Ipek et al. introduced a self-optimizing memory controller [31] that employs

reinforcement learning to optimize the scheduling policy on the fly. They ob-

served that the fixed schedulers are designed for average cases. For this reason,

they can not perform well with dynamic workloads with changing memory ac-

cess patterns. They employed machine learning techniques to make the memory

controller capable of adapting and optimizing the scheduling policy based on the

change in the memory access pattern of the workload.

There are a few studies that target reducing energy consumption of the mem-

ory subsystem. Hur and Lin proposed a power-aware memory scheduler [32] that

is based on adaptive history-based scheduler. It uses the history of recent mem-

ory commands to select the memory command that will be issued next. The

scheduling goals are represented as states in a finite state machine. Power saving

is one of the goals along with minimizing latency and finding a balance between

read and write requests.

Mukundan and Martinez proposed a self-optimizing memory scheduler [33]

that targets to achieve different goals including reducing energy consumption.

Their scheduler is based on reinforcement learning technique introduced by Ipek

et al. [31]. They employed genetic algorithm to select the appropriate objective

function automatically based on the current state of the system.

Ishii et al. proposed a memory access scheduler that employs phase prediction

and thread prioritization. It predicts the execution phase of threads and priori-

tizes the threads in compute phase [34]. They also proposed a writeback-refresh

overlap that refreshes one rank at a time and issues pending write commands

of the ranks that are not refreshing. Instead of refreshing all ranks at the same

12

time, refreshing one rank at a time and issuing pending write commands of other

ranks reduces the idle time of the memory bus and enhance the performance of

the memory subsystem. The memory controller can issue the refresh commands

similar to the Elastic Refresh, presented by Stuecheli et al. [35], such that it issues

the refresh commands when the refresh quantum is exceeded, or when the read

queue is empty.

13

Chapter 3

Adaptive Cache-Hierarchy-Aware

Thread Scheduling

3.1 Introduction

Typical workloads running on chip multiprocessors are composed of multiple

threads. These threads may exhibit different execution characteristics. In other

words, they may run in different phases (e.g., memory phase, compute phase).

Besides different threads, even a particular thread’s execution characteristics may

change over its life time. When threads are scheduled together that are running in

phases that exacerbates contention for shared resources, the system performance

decreases and throughput reduces due to conflicts. On the other hand, when

threads running in cooperative phases are scheduled together, the contention for

shared resources is diminished that yields to better resource utilization and higher

throughput and improved system performance.

The choice of threads to be scheduled on the same core has signicant impact

on overall system performance. Inter-thread contention occurs since coscheduled

threads are competing for shared resources. The primary shared resource that

influence the performance is the cache. An efficient scheduling should minimize

the contention for shared caches to maximize utilization and system performance.

14

Since the execution characteristics of threads varies over time, the scheduling

decision has to be remade based on provisioned behaviors of threads for the near

future.

Other shared resources include functional units, instruction queues, mem-

ory, interconnections between resources, the translation look-aside buffer (TLB),

renaming registers, and branch prediction tables. While threads share these re-

sources to improve utilization, they also compete for these resources that may

reduce efficiency. The utilization is enhanced when a thread uses a resource that

would otherwise have gone unused. On the other hand, the efficiency of a shared

resource may be reduced due to conflicting behaviors of threads. Shared cache

is such a resource that is sensitive to interactions among threads. Our focus in

this part of the thesis will be on scheduling of threads based on interactions on

shared caches.

The way of making good use of shared caches is to understand underlying chip

multiprocessor’s cache architecture and to schedule multithreaded applications

accordingly. For this reason, we briefly discuss chip multiprocessor architecture

and underlying cache hierarchy. From the operating point of view, scheduling

decisions have to be made based on the measures that affect the performance the

most. Thus, we make a detailed survey on possible measures and evaluate their

effects on performance. We observe that, contrary to the common thought, L1

cache access pattern of threads has a great impact on performance. To elaborate,

we focused on L1 cache access patterns of threads and formulate a score for each

thread that reflects execution characteristics of threads. The score of a thread

specifies the intensity to compete for shared resources, or namely the friendliness

of the thread. A thread that uses decent shared cache tends to be friendly, namely

it causes less degradation to its co-runners, and it suffers less from its co-runners.

Although the notion of friendliness is widely used in recent studies; we observed

that they consider just a particular metric to determine friendliness, such as

IPC of each thread or miss ratio. Such metrics are well indicators for particular

cases; however, they become insufficient for general cases where great diversity

is expected. Due to lack of adequate measure of friendliness, we developed a

multi-metric scoring scheme to specify the execution characteristics of threads

15

Core 0 Core 1 Core 0 Core 1 Core 0 Core 1
0.00

0.02

0.04

0.06

0.08

0.10

0.12

fluidanimate
facesim
canneal
blackscholes

 schedule 1 schedule 2 schedule 3

L
2

 m
is

s
ra

te

Figure 3.1: The L2 miss variation of four threads running on two cores under
different scheduling schemes.

and make scheduling decisions on this multi-metric score.

3.2 Problem Statement

The conflicts among threads are difficult to predict due to their unrepeatable

nature [36]. The behavior of a thread changes over time. For example, a thread

may have high memory demands during the initialization and data loading, and

following that it may have high CPU demand while processing loaded data. Load-

ing and processing may occur several times that eventually changes behavior of a

thread over time. Thus, static scheduling schemes are likely to fail on minimizing

conflicts among threads.

An intuitive scheduling would be to group memory intensive threads with

threads that are non-memory intensive. However, it is not always possible to find

such pairs (e.g., all threads may be memory intensive in a particular time). Also,

threads may be memory intensive; however, their memory access pattern may

change drastically that affects the overall performance. For example, streaming

threads may generate more memory requests; however, they do not get any benefit

from cache hierarchy, since they have limited (or no) locality. Also, streaming

16

Core 0 Core 1 Core 0 Core 1 Core 0 Core 1
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

fluidanimate
facesim
canneal
blackscholes

 schedule 1 schedule 2 schedule 3

IP
C

Figure 3.2: The IPC variation of four threads running on two cores under different
scheduling schemes.

behavior of such threads are detrimental to other threads which are memory

intensive. They evict the cache lines of other threads without gaining any benefit

in return.

Figures 3.1 and 3.2 show the variances in L2 miss ratio and instruction

per cycle (i.e., IPC) of threads under different scheduling, respectively. Four

benchmarks are running on two cores where two threads share private L1 cache

and all threads share unified L2 cache as LLC.

Existing schedulers used in operating systems are unaware of multi-level cache

hierarchies and access/sharing pattern of threads running on chip multiprocessors.

For this reason, traditional schedulers are oblivious to the access patterns of

threads and they may schedule threads in a way that their memory accesses

contradict with each other. This, in turn, hurts the cache performance leading

to high miss ratios, high number of evictions and longer time to serve memory

requests because data has to be brought from lower levels of memory hierarchy.

In addition, the use of profiling provided by compiler-directed approaches can

not exploit the full potential of chip multiprocessors, since such profiling may not

reflect the dynamically changing inputs and execution characteristics of threads.

17

Similarly, schedulers used in simultaneous multithreaded processors try to sched-

ule threads based on each thread’s expected resource utilization to maximize,

but do not consider variances and changes in thread execution characteristics

over time.

Scheduling of threads has to be made based on the measures that affect the

performance the most. Thus, it is essential to figure out possible measures and

evaluate their effects on performance. As a primary shared resource, caches and

their performance measures are in focus. Most of the research is focused on

the interaction between threads and their effects on the last-level cache (LLC).

Currently, there is little understanding about their effects on higher levels of

cache hierarchy that eventually affect the lower levels of cache hierarchy. For

this reason, they pass over the primary source of demand for LLC accesses that

are caused by cache misses on the upper levels of cache hierarchy. If the higher

level cache accesses are scheduled wisely, the efficiency of shared resources can

be improved and pressure on LLC can be reduced. The potential benefits of

scheduling higher level cache accesses wisely are in two folds. First, higher level

caches will be used efficiently and there will be less number of misses, thus latency

will be reduced. Second, the probability of eviction of a block will be reduced due

to the less number of misses in higher levels of the cache hierarchy. This reduces

the penalty for lower level cache accesses.

Based on these observations, we conclude that, cache-hierarchy-aware schedul-

ing for chip multiprocessors, which adopts dynamically changing execution char-

acteristics of threads, is inevitable.

3.3 Motivation

Numerous research efforts have been made on minimizing cache conflicts and

capacity misses of shared LLC (in most cases L2) for both multiprocessors and

chip multiprocessors. Although such efforts are effective (i.e., minimizing cache

conflicts and capacity misses of LLC), they ignore the effects of higher levels of

18

cache hierarchy on eventual LLC performance. Typically, each core has L1 that

is shared by multiple threads in chip multiprocessors. Being oblivious to L1 cache

conflicts and misses eventually creates more pressure on lower level caches (e.g.,

L2) and results in high latency lower level cache accesses.

The fundamental motivation behind focusing on LLC in previous research

efforts is that a miss on LLC requires high latency main memory access. Although

this is a valid argument, it does not justify to underestimate the effect of L1 (or

any cache level above LLC) on memory access latency. Contrary, we claim that

L1 cache access pattern (i.e., number of accesses, misses, evictions, etc.) has great

impact on overall memory access performance. This is our main motivation to

build cache-hierarchy-aware scheduler.

In recent study, Zhang et al. [14] pointed out that there is very limited sharing

of the same cache block among different threads. Modern applications are highly

parallelized, where each thread is working on independent cache block. For this

reason, it is very unlikely that they will access the same data block, so there is

limited or no data sharing. For example, threads of data-parallel programs may

process different sections of data. Similarly, threads of pipeline programs may

execute different tasks that may not use the same data set. In both cases, there is

no concern of shared data among multiple threads; however, the way the threads

use shared cache has an influence on performance. This observation is important,

since programs show different characteristics in different phases of the execution

so that no particular mapping work well for all the phases. With this motivation,

we propose adaptive cache-hierarchy-aware scheduler. More specifically, adaptive

cache-aware-hierarchy scheduling aims to adopt changing execution characteris-

tics of threads and tries to find best scheduling that improves the performance

by reducing the cache contention and conflicts among coscheduled threads.

19

3.4 Contributions

In this part of the thesis, we present a detailed study to show the importance of

cache-hierarchy-aware scheduling for applications running on chip multiproces-

sors. We investigate the impact of scheduling threads with different execution

characteristics and observe that the best scheduling for a given thread varies

depending on other threads that are scheduled along with it.

We introduce a fine-grained, multi-metric scoring scheme to classify threads

with respect to their execution characteristics. We use this fine-grained, multi-

metric scoring scheme to predict threads that get along with each other and

schedule them on the same core. The metrics used in scoring scheme are gathered

from L1 cache, as opposed to LLC as in the most of the previous works.

We propose a novel cache-hierarchy-aware scheduler that schedules threads in

a way that it minimizes the number of accesses to the lower level of cache/memory

hierarchy and reduces the number of evictions required on shared caches that

eventually limits the interference. Such a strategy leads to higher system through-

put and improved performance.

The proposed cache-hierarchy-aware scheduler is adaptive, such that it takes

dynamically changing execution characteristics of threads into account. We ob-

serve that by employing our adaptive cache-hierarchy-aware scheduling, the per-

formance (i.e., instruction per cycle) of the benchmarks used in this work are

improved by up to 12.6% and an average of 7.3% over the static schedules. The

improvements are due to reduced interference among coscheduled threads, lead-

ing to reduced number of evictions/misses and balanced number of accesses that

minimizes capacity conflicts.

20

3.5 Chip Multiprocessors of Simultaneous Mul-

tithreading

Chip multiprocessors [2] and simultaneous multithreading [3, 37, 38] are two ap-

proaches that have been proposed to increase processor efficiency. Chip multipro-

cessors have multiple cores that share a number of caches and buses. Figure 3.3

show typical chip multiprocessor architecture and its memory subsystem. It has

four cores and each core can host two threads concurrently.

Figure 3.3: Typical chip multiprocessor architecture and its memory subsystem.

While each core has private L1 cache, all cores share a common on-chip L2

cache. Typically, L1 caches have a latency of 1 to 4 cycles, while L2 caches have

a latency of 10 to 20 cycles. On the other hand, off-chip main memories have a

latency of 100 to 200 cycles. Since off-chip memory access is extremely expensive

in terms of cycles and power, it is essential to utilize provided on-chip cache

hierarchy and minimize the number of off-chip memory accesses.

21

3.6 Inter-thread Contention and Slowdown

When there are multiple threads running on chip multiprocessors concurrently,

there will be interference among all the threads. Threads running on the same

core compete for L1 cache, while they compete with all other threads running

on chip multiprocessor for shared L2 cache. To assess the interference among

threads and make a good scheduling evaluation, it is necessary to formulate the

slowdown of a thread when running along with other threads.

To avoid the distractions from other complexities, such as difference between

program execution times and context switches in operating system, we consider

the following simplified scenario. There are N threads of the same number of in-

structions to be executed. The average slowdown of all threads can be calculated

as geometric mean of slowdowns of threads. The scheduler that minimizes the

average slowdown as given in Expression 3.1 is more desirable.

min N

√∏N
i

IPC(i)stand alone

IPC(i)coscheduled

(3.1)

There is a trade-off between minimizing the average slowdown and maximizing

the overall system performance (i.e., IPC). It is possible to have schedules that

have lower average slowdown, but they also result in lower performance. On the

other hand, it is possible to have schedules that provide higher performance, but

they also have higher average slowdown. Therefore, a good scheduler should find

a balance between slowdown and performance.

3.7 Performance Counters and Monitoring

The chip multiprocessors have performance monitoring units (PMUs) with in-

tegrated hardware performance counters. The statistics that are needed to op-

erate proposed scheduling algorithm can be collected through PMUs. PMUs

22

can provide fine-grained statistics with relatively low overhead [15]. Parekh et

al. [39] used hardware performance counters that provide cache miss and related

information to schedule threads wisely in simultaneous multithreaded processors.

Similarly, Bulpin and Pratt [40] used performance counters to develop symbiotic

coscheduling approach on simultaneous multithreaded processors.

For our proposed cache-hierarchy-aware scheduler, we focus on L1 cache access

pattern of threads and classify them based on their propensity to compete for L1

cache and their relative effectiveness of L1 cache usage. Although classification of

threads is widely adopted in scheduling research, we observed that they consider

a particular metric to classify threads, such as IPC of each thread and miss rate.

Such metrics are well indicators for certain cases; however, they do not work

well for other cases. Thus, there is no silver-bullet metric that provides the best

for all cases. With this in mind, we developed a multi-metric scoring scheme to

specify execution characteristics of threads. Then, the score obtained through

multi-metric scoring scheme is used to make scheduling decisions.

3.8 Phase Detection and Prediction

The prediction of thread’s cache access behavior for the next interval is essential

to obtain desired performance. Simply, predicting thread’s cache access behavior

for the next interval will be the same as the previous interval provides reasonable

accuracy (e.g., between 84% and 95% [16]). Although the accuracy of the predic-

tion can be increased by using more complex prediction methods, we believe that

using last interval behavior as a prediction model for the next interval is sufficient

for our purpose. It is a fair trade-off to have decent prediction accuracy with less

complexity, compared to marginal gain in accuracy with high complexity.

23

3.9 Multi-metric Scoring Scheme

The behavior of a thread can be generalized by expressing three attributes for a

given interval. These attributes are aggressiveness, density and inefficacy. These

attributes are represented in a binary vector, called attribute vector. The illus-

tration of attribute vector is given in Figure 3.4.

Figure 3.4: Attribute vector expresses execution characteristics of a thread.

Each attribute corresponds to different characteristics of a thread. These char-

acteristics have impact on the overall performance, eventually. The description

of attributes are as follows.

Aggressiveness determines the degree of acrimony of a thread, specifying how

much a thread interfere with other threads running concurrently on the same

core. Aggressiveness of a thread is related to its propensity of evicting cache

blocks of other threads. A thread that has higher eviction rate is considered as

aggressive, while the one with lower eviction rate is considered as complaisant.

Density determines the relative intensity of cache accesses of a thread with

respect to the sum of cache accesses of all threads. If a thread has higher number

of cache accesses, then it is considered as dense. On the other hand, it is con-

sidered as sparse if a thread has lower number of cache accesses relative to the

number of overall cache accesses made during the given interval.

Inefficacy determines the degree of efforts of a thread that goes unrewarded.

24

If a thread has high cache miss ratio, then it is considered as sterile. On the other

hand, it is considered as prolific if a thread has high cache hit ratio.

Although the attributes are related, they are considered as orthogonal to each

other. Note that, a thread may be sterile, but not aggressive if its misses do not

cause evictions.

These attributes are represented as bits in the attribute vector. The following

formulas are used to determine whether a thread has certain attribute or not.

Aggressiveness(Ti) =

{
1 if number of L1 evictions(Ti)

number of L1 accesses(Ti)
≥ τa,

0 else

Density(Ti) =

 1 if number of L1 accesses(Ti)∑N
j=0 L1 accesses(Tj)

≥ τ d,

0 else

Inefficacy(Ti) =

{
1 if number of L1 misses(Ti)

number of L1 accesses(Ti)
≥ τ i,

0 else

where τa, τ d and τ i are thresholds for aggressiveness, density and inefficacy, re-

spectively. They are determined empirically. N is the number of threads running

on the chip multiprocessor.

Each attribute vector corresponds to a decimal value that specifies a multi-

metric score of a thread. This value is calculated as:

Score =
2∑

i=0

2i × AVi

where AVi represents ith bit of attribute vector of a thread (AVi represents the

least significant bit when i = 0, and AVi represents the most significant bit when

i = 2).

25

3.9.1 Scalability of Mutli-metric Scoring Scheme

In case of having large number of threads running on chip multiprocessors with

extensive number of cores, the 3-bit attribute vector and scoring scheme may

not differentiate execution characteristics of threads in a desired resolution. This

may yield to have coarse-grained schedules. To have higher resolution of execution

characteristics of threads with fine-grained schedules, it is better to expand the

attribute vector. For each attribute, more bits can be used to specify the attribute

in higher resolution. An example of attribute vector with higher resolution is

shown in Figure 3.5.

Figure 3.5: Attribute vector that expresses execution characteristics of a thread
in higher resolution.

3.10 Adaptive Thread Scheduling

Figure 3.6 illustrates the flow of adaptive cache-hierarchy-aware thread scheduling

in chip multiprocessors.

After collecting information regarding L1 cache performance and updating

attribute vectors of threads, the scheduling decision can be made. The scheduling

decision is made based on the multi-metric scores of threads.

26

Figure 3.6: The flow of adaptive cache-hierarchy-aware thread scheduling.

Each candidate schedule has a score expressed as coscheduling score, in short

CoScore. The aim of scheduling is to find a schedule that minimizes CoScore

calculated as:

CoScore(Ti, Tj) = AV (Ti) & AV (Tj)

(3.2)

where Ti and Tj are candidate threads to be coscheduled (i.e., Ti ̸= Tj); and

AV (Ti) and AV (Tj) are attribute vectors of Ti and Tj, respectively. Note that Ti

and Tj are candidate threads, so they are not scheduled, yet.

The CoScore is simply a logical bitwise AND operation between multi-metric

scores of candidate threads. It is simple, yet an effective way to find desired

schedules that improve the performance. This, simple AND operation favors

scheduling threads can get along with each other. Figure 3.7 shows the illustration

of calculating CoScore and finding the schedule that minimizes CoScore.

CoScore’s most significant bits are dominant in selecting the schedule. Our

approach tends to prefer a CoScore 011 over 100. Hence, metrics can be prioritized

according to their positions in the CoScore.

27

Figure 3.7: Coscheduling score calculation.

A schedule that has the lowest CoScore is selected as candidate. If there are

more candidates, then the one that preserves locality is selected (i.e., no thread

migration is required).

The calculation of CoScore starts with a thread that has the lowest multi-

metric score. Then, a thread that will minimize the scheduling score when sched-

uled with the current thread is found. If there are multiple threads with lowest

multi-metric score, a preference is given to the thread that has the higher IPC.

If still there are multiple threads that have the same multi-metric score and the

same IPC, then a thread is chosen randomly.

When all threads are scheduled to appropriate cores, the performance coun-

ters are reset. With the new scheduling period, attribute vectors of threads are

reconstructed, multi-metric scores of threads are reevaluated and scheduling is re-

executed as discussed. The details of this adaptive cache-hierarchy-aware thread

scheduling algorithm is given in Algorithm 1.

When a thread is scheduled to execute on a different core than it was running

on before, the cache blocks required by this thread have to be reloaded from L2 or

lower level of cache hierarchy. While this comes with an overhead, we determined

28

Algorithm 1: Cache-hierarchy-aware thread scheduling algorithm.

UnSched T → unscheduled threads;
UnMapped T → matched but not mapped threads;
S,C → set of threads to be scheduled;
Ts, Tc → threads to be scheduled;
Ps, Pc → cores on which Ts and Tc run during the last interval, respectively;

while UnSched T ̸= empty do
Ts ← a thread that has the lowest score;
if S has multiple threads then /* with the lowest score */

Ts ← select thread ∈ S that has the highest IPC;
if S has multiple threads then /* with the highest IPC */

Ts ← select a thread ∈ S randomly;
end

end

C ← a thread ∈ UnSched T that minimizes CoScore;
if C has multiple threads then /* with the lowest CoScore */

Tc ← select thread ∈ C that run on Ps recently;
else

Tc ← select a thread ∈ C with the highest IPC;
if C has multiple threads then /* with the highest IPC */

Tc ← select a thread ∈ C randomly;
end

end

if Ps is available then
map Ts and Tc to Ps;

end
else if Pc is available then

map Ts and Tc to Pc;
end
else

UnMapped T ← Ts and Tc

end

end

while UnMapped T ̸= empty do
Ts and Tc ← select matched threads from UnMapped T ;
map Ts and Tc to the available(free) cores;

end

29

that it is amortized over long execution intervals. This is due to the fact that the

number of cache misses will be reduced as a result of reduced interventions in the

scheduled thread.

Figure 3.8 illustrates that how cache-hierarchy-unaware scheduling can penal-

ize the threads that could perform much better. Notice the lower L1 hit ratio

and higher L2 miss ratio. The number of L2 hits is four, while the number of L2

misses is 17.

Figure 3.9 illustrates that how cache-hierarchy-aware scheduling actually re-

duces the number of L2 misses and increases the L1 hit ratio. The same example

is used with Figure 3.8. The pressure due to the L1 misses is reduced that results

in less number of L2 accesses and L2 misses. While the number of L1 hits is

increased from 0 to 4, the number of L2 misses reduced from 17 to 14. Since

this is just an illustration, we do not consider the effects of L1 hits on core 0. In

reality, core 0 is most likely generate more memory requests compared to core 1,

since core 0 can continue issuing instructions in a higher rate due to higher L1

hit ratio.

30

Figure 3.8: Cache-hierarchy-unaware scheduling. The number of L2 hits is four,
while the number of L2 misses is 17.

31

Figure 3.9: Cache-hierarchy-aware scheduling. The number of L2 misses reduced
to 14.

32

Chapter 4

Adaptive Compute-phase

Prediction and Thread

Prioritization

4.1 Introduction

In response to increased pressure on memory subsystem due to the memory re-

quests generated by multiple threads, an efficient memory access scheduler has

to fulfill the following goals:

• serve memory requests in a way that cores are kept as busy as possible

• organize the requests in a way that the memory bus idle-time is reduced

One approach to keep cores as busy as possible is to categorize and prioritize

threads based on their memory requirements. Threads can be categorized into

two groups: memory-non-intensive (i.e., threads in compute phase), and memory-

intensive (i.e., threads in memory phase). Kim et al. [30] proposed a memory

access scheduler that gives higher priority to memory-non-intensive threads, and

gives lower priority to memory-intensive threads. The reason behind such prior-

itization is that memory-non-intensive threads (i.e., threads in compute phase)

33

can make fast progress in their executions, so the cores can be kept busy. On the

other hand, memory-intensive threads (i.e., threads in memory phase) have more

memory operations and they do not use computing resources as often.

Ishii et al. followed the same idea of prioritizing the threads based on their

memory access requirements. They enhanced prioritization mechanism with a

fine-grained priority prediction method. This fine-grained priority prediction

method is based on saturation counters [34]. They do not rely on time quan-

tum (typically some millions of cycles) to categorize threads as memory-non-

intensive and memory-intensive, instead they employ saturation counters to cat-

egorize threads on the fly. In addition, they proposed writeback-refresh overlap

that reduces memory bus idle-time. Writeback-refresh issues pending write com-

mands of the ranks that are not refreshing and refreshes a given rank concurrently.

This means that the issuing write commands (of rank that is not refreshing) and

refreshing a rank are overlapped. This reduces the idle time of the memory bus

and enhances the performance of the memory subsystem.

4.2 Problem Statement

The necessity of distinguishing threads based on their memory access require-

ments is well understood and many research efforts have exploited this fact.

Kim et al. [30] and Ishii et al. [34] provided examples of thread classification

and prioritization mechanisms. They categorize threads into two groups, namely

memory-non-intensive (i.e., threads in compute phase), and memory-intensive

(i.e., threads in memory phase). Although they distinguish threads into differ-

ent groups, they do not differentiate the threads in the same group. We believe

that fine-grained prioritization is required even for the threads in the same group

(i.e., memory-non-intensive or memory-intensive) to maximize the overall sys-

tem performance and utilize the memory subsystem at the highest degree. For

this reason, we introduce a fine-grained thread prioritization scheme that can be

employed by existing state-of-the-art memory access schedulers.

34

In addition to that, the thread classification scheme presented in the work

of Ishii et al. [34] is based on saturation counters. Saturation counters provide

effective metrics to understand threads to be in compute phase or in memory

phase. In determination of this, interval and distance thresholds are used. These

thresholds are predefined and determined empirically. Although they are effec-

tive, they are vulnerable to short distortions and bursts that may result in wrong

classification of threads. We believe that these thresholds have to be updated

appropriately depending on the execution characteristics of the threads to clas-

sify them with higher accuracy. For this reason, we enhanced phase prediction

scheme of Ishii et al. and make it adaptive.

4.3 Motivation

The classification of threads running on chip multiprocessors is essential to im-

prove memory subsystem performance. Since the execution characteristics of the

threads may change during their lifetime, such a classification has to be updated

accordingly. Mainly, a thread can be either in compute phase, or memory phase

for a given time of its execution. For this reason, the detection of a phase that

a thread is currently in and prediction of the phase that a thread is going to

be in have significant importance in scheduling memory accesses. There has to

be a memory access scheduler that can predict the execution phases of threads

efficiently, and prioritize them to access memory. The prioritization has to be

fine-grained and the phase detection has to be accurate, thereby motivating us to

implement fine-grained prioritization and adaptive phase prediction in memory

access scheduler.

4.4 Contributions

In this part of the thesis, we introduce a memory access scheduling algorithm that

is an enhancement to the state-of-the-art memory access scheduler presented by

35

Ishii et al. [34]. We propose a fine-grained thread prioritization scheme that is

performed in two steps. In the first step, threads are categorized as memory-

non-intensive and memory-intensive. Threads that are memory-non-intensive are

given higher priorities than the threads that are memory-intensive. In the second

step, threads that are in the same group are prioritized among themselves based

on how much progress they can make in their executions. We call this approach

as adaptive thread prioritization.

In addition to that, we enhanced compute-phase prediction scheme presented

by Ishii et al. in a way that it detects phase changes in a timely manner. Ishii

et al. used predefined thresholds for saturation counters to predict execution

phases; however, predefined thresholds are inadequate to detect phase changes in

a timely manner. Inadequately defined thresholds may result in certain threads to

be prioritized unfairly longer while preventing others to be prioritized when they

actually should be prioritized. Thus, the efficiency of phase prediction mechanism

is correlated to the accuracy of thresholds used for saturation counters. We

introduced a mechanism that determines the thresholds for each thread on the

fly, considering the recent memory access pattern of a thread. Since the thresholds

are determined at run-time, we call it adaptive compute-phase prediction.

Compared to the prior schedulers First-Ready First-Come First-Serve (FR-

FCFS) and Compute-phase Prediction with Writeback-Refresh Overlap (CP-

WO), our algorithm reduces the execution time of the generated workloads up to

23.6% and 12.9%, respectively.

4.5 Memory Model

The memory model used in our study is based on the architecture specified in

USIMM simulation framework [41]. In the USIMM simulation framework, DRAM

is separated into channels and each channel consists of ranks. Each rank has

multiple banks. The write and read requests are queued in separate queues,

namely write queue and read queue, respectively. The size of write queue is

36

64 for one-channel configuration, and 96 for four-channel configuration. On the

other hand the size of read queue is considered to be infinite.

Figure 4.1: Typical memory bank architecture found in a DRAM rank.

Each rank of a DRAM has multiple banks. Typical memory bank architecture

found in a DRAM rank is shown in Figure 4.1. A bank is a two-dimensional

structure composed of rows and columns. Each bank operates in lockstep fashion.

A row of a bank is accessed as a whole at a given time. When a row is accessed

through activate row command, the entire row is brought into the row-buffer of

that bank. The row-buffer allows to reduce the number of cycles needed to serve

the subsequent requests that access to the same row. When a row is present

in the row-buffer, a set of read/write requests to this row can be performed by

executing column read/write command only. This reduces the total number of

cycles needed to complete the requests made for that bank. When the column

read/write commands are finished, the row-buffer is precharged that restores the

content of the row-buffer into the corresponding row of a bank.

37

4.6 Adaptive Compute-phase Prediction

Ishii et al. [34] proposed a memory access scheduling algorithm that we call

Compute Phase Prediction with Writeback-Refresh Overlap (CP-WO). Compute

Phase Prediction with Writeback-Refresh Overlap scheduler can predict the ex-

ecution phase of a thread on the fly. Typically there are two phases a thread

may be in. A thread may be either in compute phase, or in memory phase.

The threads in compute phase are memory-non-intensive. On the other hand,

the threads in memory phase are memory-intensive. The threads in compute

phase are given higher priorities for memory accesses. The reason behind this is

that the threads in compute phase can make fast progresses and keep cores busy,

thereby improving the performance and enhancing the utilization. On the other

hand, the threads in memory phase spend more time on memory and have less

computation, thus leave cores idle. For this reason, the threads in compute phase

are prioritized.

The idea of prioritizing the threads in compute phase (i.e., memory-non-

intensive) is also used by Kim et al. [30] in their thread cluster memory (TCM)

scheduler. The thread cluster memory scheduler classifies threads into two groups,

namely, memory-non-intensive threads and memory-intensive threads. It priori-

tizes the memory access requests of memory-non-intensive threads over memory-

intensive threads. The prioritized memory-non-intensive threads will spend less

amount of time on memory operations and return back to the execution much

earlier. This way, cores in a chip multiprocessor can be kept as busy as possible,

increasing the throughput and improving the performance.

The thread cluster memory scheduler classifies threads whenever the time

quantum exceeds a certain threshold, typically in the range of million cycles.

Threads are classified at the beginning of each quantum based on memory access

patterns. Due to the dynamic behavior of threads, their execution characteris-

tics (i.e., memory access pattern) may change before the time quantum expires.

If this is the case, threads have to be re-clustered to properly prioritize them.

However, the thread cluster memory scheduler does not have capability of re-

clustering threads before the time quantum expires. Threads are treated as they

38

started, although they may change their execution phase, which in turn, requires

adjustments in priorities of threads. For this reason, the thread cluster memory

scheduler can not respond to the changes in memory access patterns of threads in

a timely manner. Due to this limitation, it blindly misses possible improvements

on performance and fairness.

To overcome the barrier in thread cluster memory scheduler, Ishii et al. em-

ployed saturation counters to classify threads. Saturation counters help to re-

spond to changes in memory access pattern of a thread in a faster manner com-

pared to time quantum approach of thread cluster memory scheduler. Another

difference between thread cluster memory scheduler and the scheduler of Ishii et

al. is that the former uses memory traffic generated by L2 cache miss to cluster

threads, while the latter uses the committed number of instructions to cluster

threads. We believe that the former provides better indication of threads being

in compute phase, or in memory phase.

Ishii et al. used saturation counters to determine if a thread is in compute

phase or in memory phase. These saturation counters are interval counter and

distance counter. The interval counter specifies the number of committed instruc-

tions between the last two cache misses for a thread. If an interval counter (i.e.,

δi) of a thread exceeds the interval threshold (i.e., τ i), then thread is predicted to

be in compute phase and the distance counter (i.e., δd) is set to zero. On the other

hand, the distance counter is incremented if the interval counter stays below the

interval threshold. If there are consecutive accesses whose interval counter stays

below the interval threshold that leads distance counter to exceed the distance

threshold (i.e., τ d), then a thread is considered to be in memory phase. The

distance threshold determines how long a thread is going to be treated as it is in

compute phase; although, it does not satisfy the interval counter constraint. This

allows tolerating short distortions and small bursts that may be seen in compute

phase and thereby, not treating a thread to be in memory phase, immediately.

However, it is important to decide how long to tolerate a thread that does not

satisfy the interval counter constraint before considering it to be in memory phase

and vice versa.

39

The distance threshold (τ d) and the interval threshold (τ i) are predefined

in the original work. The higher distance threshold becomes inappropriate for

most of the cases since it keeps a thread in compute phase longer; although

the thread actually is in memory phase. On the other hand, smaller distance

threshold makes a thread vulnerable to short distortions and bursts, so a thread

is treated as it is in memory phase; although, it is in compute phase. To deal

with such anomalies, we introduced an adaptive compute-phase prediction scheme.

Adaptive compute-phase prediction allows us to determine the distance threshold

on the fly by monitoring memory access characteristics of a thread. The distance

threshold determined adaptively tolerates short distortions and bursts that can be

seen in compute phase, as it is in the original work. More importantly, adaptively

determined distance threshold helps to predict the execution phase changes earlier

compared to predefined distance threshold. The illustration of original compute-

phase prediction is given in Figure 4.2. Similarly, the illustration of adaptive

compute-phase prediction is given in Figure 4.3.

In Figure 4.2, the predefined distance threshold (τ d) is set to five. Light

boxes indicate that interval counter constraint is satisfied (i.e δi exceeds τ i).

Dark boxes indicate that interval counter constraint is not satisfied (i.e δi stays

below τ i). The distance counter (δd) is incremented if interval counter constraint

is not satisfied and reset otherwise. When the distance counter (δd) exceeds the

distance threshold (τ d is five in this illustration), the thread is considered to be in

memory phase. The thread is considered to be in compute phase when it satisfies

interval counter constraint again.

On the other hand, in Figure 4.3, our adaptive compute phase prediction

scheme observes that the interval counter constraint is satisfied, except consec-

utive two cache misses. By using this observation, our adaptive compute phase

prediction determines that there is no need to consider a thread in compute

phase if the distance counter (δd) exceeds two. Whenever the third consecu-

tive access that does not satisfy interval counter constraint is occurred, adaptive

compute-phase prediction concludes that a thread exits compute phase and goes

into memory phase. Note that, adaptive compute-phase prediction can detect

40

Figure 4.2: Default compute-phase prediction.

41

Figure 4.3: Adaptive compute-phase prediction.

42

the change in execution phase much earlier. Thus, adaptive compute-phase pre-

diction increases the accuracy of prediction and reduces the time required which

leads to improved overall performance and fairness.

Likewise, if the prediction seems to be wrong (i.e., after observing the third

consecutive access that does not satisfy the interval constraint, the thread is

considered to be in memory phase; although it satisfies the interval constraint

on the fourth access), then the distance threshold (τ d) is updated accordingly.

An illustration of misprediction and updating distance threshold (τ d) is given in

Figure 4.4.

Figure 4.4: Updating a threshold in adaptive compute-phase prediction.

43

Instead of using predefined distance threshold to predict the execution phase

of a thread, adaptive compute-phase prediction uses the upper limit to adaptively

determine distance threshold (τ d). Adaptively determined distance threshold (τ d)

can take a value between 1 and predefined distance threshold.

4.7 Adaptive Thread Prioritization

As described earlier, threads are classified into two groups. Threads in compute

phase are prioritized over threads in memory phase. However, it is possible to

have multiple threads in compute phase. In the scheduler of Ishii et al., the

memory requests of threads in compute phase are serviced in the order they have

received. Although it allows threads to make progress and keep cores busy, it

misses possible performance benefits that could be obtained through fine-grained

prioritization among threads of the same group.

We observed that prioritizing threads based on their potentials of making more

progress on their execution increases the system performance even further. For

this reason, we enhanced prioritization scheme of Ishii et al. in a way that threads

in the same group are prioritized based on their potentials of making progress in

their execution. when their memory requests serviced by the memory controller.

We call this fine-grained prioritization scheme as adaptive thread prioritization

since the priorities of threads are determined on the fly.

The usage of adaptive thread prioritization differs for threads in different

groups (i.e., memory-non-intensive and memory-intensive). Adaptive thread pri-

oritization works for threads in compute phase as follows. Among the threads in

compute phase, the one that has the highest potential to make more progress is

prioritized. On the other hand, threads in memory phase are prioritized based

on whether they exhibit page hit and rank/bank locality. The adaptive thread

prioritization is used as a tie breaker for threads in memory phase when there are

multiple threads that exhibit page hit or rank/bank locality with recent memory

accesses.

44

Priority Reason for Prioritization Command Phase
1 timeout no matter no matter
2 low-MLP no matter no matter
3 adaptive prioritization column access compute
4 adaptive prioritization activate compute
5 adaptive prioritization precharge compute
6 page hit/adaptive prior. column access memory
7 rank/bank locality/adaptive prior. activate memory
8 rank/bank locality/adaptive prior. precharge memory

Table 4.1: Prioritization policy for the read requests.

The reason behind prioritizing threads in compute phase based on the progress

they can make (i.e., employing adaptive thread prioritization) is to keep cores

busy as much as possible. While cores are kept busy to execute threads in compute

phase, the memory controller can service to memory requests of other threads.

Thus, a thread that has more potential to keep a core busy for a longer period of

time is prioritized over others.

On the other hand, if there is no thread in compute phase, then the main

goal becomes to maximize memory throughput and reduce latency. For this

reason, threads that exhibit row-buffer hit or rank/bank locality are given higher

priorities. If there is no row-buffer hit, then the threads accessing the same

bank/rank that was accessed recently are prioritized. When there are multiple

threads that exhibit row-buffer hit, or bank/rank locality with recent memory

access, then the adaptive thread prioritization is used to decide which thread is

going to be prioritized.

We also employ aging in order to provide fair access to the memory. After a

certain period of time, regardless of whether a thread is in compute phase or not, it

is given the highest priority to avoid starvation. Threads that have low memory-

level parallelism are also prioritized over other threads to let them finish their

memory operations and continue on their execution as soon as possible. Table 4.1

summarizes the priority policy for the read requests. The smallest number in the

table indicates the highest priority while the biggest number indicates the lowest

priority.

45

Chapter 5

Evaluations

We provide extensive evaluations to present and analyze the effectiveness of pro-

posed adaptive cache-hierarchy-aware thread scheduling in Section 5.1. Following

that, we evaluate the adaptive compute-phase prediction and thread prioritization

approach in Section 5.2.

5.1 Adaptive Cache-hierarchy-aware Thread

Scheduling

5.1.1 Simulation Environment

We performed our experiments on multi2sim simulation framework that is de-

veloped to evaluate multicore-multithreaded processors [42]. Otherwise specified,

we used the configuration given in Table 5.1 for chip multiprocessor and main

memory.

We used PARSEC benchmarks to evaluate our proposed adaptive cache-

hierarchy-aware thread scheduling algorithm. PARSEC is a set of benchmarks

consists of multithreaded programs. It focuses on emerging workloads and was

46

4 cores
2 threads per core
Private L1 cache (combined), sets = 16, assoc. = 2
Policy = LRU, block size = 64, latency = 1
Shared L2 cache, sets = 64, assoc. = 4
Policy = LRU, block size = 64, latency = 10
Main memory, sets = 128, assoc. = 8, policy = LRU
Block size = 64, latency = 100
L1-L2 bus in/out bandwidth = 72
L2-Main memory bus in/out bandwidth = 264

Table 5.1: Chip multiprocessor and memory configuration for evaluations.

designed to be a representative set of next-generation shared-memory programs

for chip multiprocessors [43]. In our experiments, we used eight benchmarks from

PARSEC suite. Details of the benchmarks are given in Table 5.2.

blackscholes Option pricing with Black-Scholes Partial Differ-
ential Equation (PDE)

canneal Simulated cache-aware annealing to optimize rout-
ing cost of a chip design

dedup Next-generation compression with data deduplica-
tion

facesim Simulates the motions of a human face
fluidanimate Fluid dynamics for animation purposes with

Smoothed Particle Hydrodynamics (SPH) method
freqmine Frequent itemset mining
vips Image processing
x264 H.264 video encoding

Table 5.2: PARSEC benchmarks used in evaluations.

dedup uses the pipeline parallelization model with a dedicated pool of threads

for each pipeline stage. facesim and fluidanimate are streaming programs.

blackscholes, canneal, freqmine, vips and x264 are data-level parallel programs

with different amount and patterns of synchronizations and inter-thread commu-

nications.

At the very beginning of evaluations, we collected profiling regarding all the

benchmarks. We run each benchmark along with other benchmarks one by one

47

on the same core and observed their respective performances. Then, we select the

best schedules that maximize the performance (i.e., IPC) by using this profiling.

At each interval, we scheduled threads in a way that the overall performance of the

IPC is maximized. We referred these schedules as dynamic-offline and we used

them as a baseline to compare against the proposed adaptive cache-hierarchy-

aware thread scheduler. We also compared our adaptive cache-hierarchy-aware

thread scheduler with possible static schedules.

Although IPC of threads obtained during offline profiling do not match the

one obtained on the fly due to interactions of other scheduled threads, it provides

a very good estimate of the highest IPC that can be achieved. Throughout the

experiments, we observed that adaptive cache-hierarchy-aware thread scheduling

outperforms static schedules and it is very close to the IPC achieved by dynamic-

offline schedule.

Sch. Core 0 Core 1 Core 2 Core 3
S1 blackscholes-vips canneal-dedup facesim-x264 fluidanimate-freqmine
S2 blackscholes-canneal vips-dedup facesim-fluidanimate x264-freqmine
S3 blackscholes-dedup vips-canneal facesim-freqmine x264-fluidanimate
S4 blackscholes-facesim vips-fluidanimate canneal-x264 dedup-freqmine
S5 blackscholes-x264 vips-freqmine canneal-facesim dedup-fluidanimate
S6 blackscholes-fluidanimate vips-x264 canneal-freqmine dedup-facesim
S7 blackscholes-freqmine vips-facesim canneal-fluidanimate dedup-x264

Table 5.3: Static schedules used in evaluations.

We have generated seven different static schedules. Since there are eight

benchmarks, we allowed a benchmark to run with different one in each sched-

ule. By doing so, we aimed to cover all possible schedules for eight benchmarks

(running on 4-core chip multiprocessor). We permuted the scheduled threads and

generate distinct thread combinations. Since there are eight benchmarks, each

benchmark can be scheduled with the remaining seven benchmarks at most. Note

that, it does not matter on which core the two threads are scheduled; however,

it matters which threads are scheduled together. The static schedules generated

and corresponding threads running on cores are given in Table 5.3.

48

5.1.2 The Effect of Scheduling on System Performance

In this set of evaluations, we compared the effect of different scheduling schemes

on performance for each benchmark (i.e., IPC). Figure 5.1 shows the IPC of each

benchmark under different schedules.

As it can be seen from Figure 5.1, different schedules increase the performance

for different benchmarks. There is no single schedule that outperforms the others

for all benchmarks. This is also true for our proposed adaptive cache-hierarchy-

aware scheduler. An important observation from this figure is that it is necessary

to understand the main dynamics of the overall performance. Instead of increas-

ing the performance of a particular benchmark, it is more desirable to find a

balance among the performance of all threads. Our adaptive cache-hierarchy-

aware scheduler works towards this goal. It tries to maximize the performance of

overall system, not the performance of a particular thread. So, adaptive cache-

hierarchy-aware scheduler does not favor (unfairly) a particular thread that may

contribute to the overall performance the most (i.e., a thread that has highest

potential to increase IPC in case of more resources are given to it). Instead, it

tries to find a balance among threads where they contribute to the overall system

performance.

In this set of evaluations, we compared the overall system performance pro-

vided by different scheduling schemes. The results are given in Figure 5.2. As

it can be seen, our adaptive cache-hierarchy-aware scheduler outperforms all the

static schedules, and barely left behind the dynamic-offline scheduling. Note that

dynamic-offline provides the highest IPC that can be achieved; however, it re-

quires profiling in advance. For this reason, dynamic-offline is not a practical

scheduler, but it helps us to evaluate our approach against. Figure 5.2 also shows

the effectiveness of adaptive cache-hierarchy-aware scheduler on maximizing over-

all system performance without unfairly favoring certain benchmarks.

49

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400
blackscholes

IP
C

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000
canneal

IP
C

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000
dedup

IP
C

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500
facesim

IP
C

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500
fluidanimate

IP
C

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800

0.2000
freqmine

IP
C

0.0000

0.0500

0.1000

0.1500

0.2000

0.2500

0.3000

0.3500
vips

IP
C

0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800
x264

IP
C

S1
S2
S3
S4
S5
S6
S7
dynamic-offline
adaptive
cache-aware

Figure 5.1: Performance of benchmarks under different scheduling schemes.

50

1.2

1.25

1.3

1.35

1.4

1.45

S1
S2
S3
S4
S5
S6
S7
dynamic-offline
adaptive
cache-aware

IP
C

Figure 5.2: Comparison of overall system performance under different scheduling
schemes.

5.1.3 Slowdown of Benchmarks

It may be misleading to focus solely on IPC when evaluating scheduling schemes.

As we discussed in Section 5.1.2, the overall system performance can be maxi-

mized by unfairly favoring threads that have higher potential to contribute to the

overall system IPC. However, such an approach is not desirable in most cases.

Instead, the system performance has to be maximized such that each thread con-

tributes to the overall system performance as much as possible while interference

with other threads is minimized. In other words, fairness should not be traded for

performance. The schedulers proposed for chip multiprocessors should also take

slowdown of threads into account while trying to maximize system performance.

In this set of evaluations, we analyzed the behavior of a particular benchmark

when it is scheduled with another one. Table 5.4 shows the slowdown of bench-

marks when they run concurrently with another benchmark. Slowdown specifies

the degree of vulnerability of a benchmark to the interference of the other thread.

The slowdowns given in Table 5.4 are observed on a single core that can run

two threads concurrently. There is only one schedule possible, since two threads

exist in this set of evaluations.

As noted earlier, a desired scheduler should maximize the system performance

51

running with
blackscholes canneal dedup facesim fluidanimate freqmine vips x264

blackscholes 2.1 3.4 2.5 1.7 2.6 2.9 3.5
canneal 2.8 4.3 2.5 1.5 2.8 2.7 3.0
dedup 2.1 1.6 1.7 1.3 1.9 1.9 2.1
facesim 3.2 2.6 4.4 1.7 2.8 3.2 3.3
fluidanimate 2.9 2.3 6.2 2.4 2.7 2.6 2.9
freqmine 3.3 2.8 4.3 2.7 1.9 3.3 3.4
vips 1.8 1.4 2.2 1.5 1.2 1.6 1.9
x264 3.0 2.0 2.9 2.1 1.5 2.2 2.5

Table 5.4: Slowdown of a thread when scheduled with another thread on the
same core.

while preventing unfairness. Since slowdowns of benchmarks provide a notion of

fairness, we can evaluate the effectiveness of schedulers on maximizing system

performance fairly. Table 5.5 shows the slowdown of benchmarks when scheduled

with another thread on the same core, while the rest of the benchmarks are

running on other cores under the static scheduling. The slowdowns presented in

the rest of the section are observed on a quad-core chip multiprocessor (i.e., the

configuration given in Table 5.1).

running with
blackscholes canneal dedup facesim fluidanimate freqmine vips x264

blackscholes 4.8 5.0 5.6 3.6 6.3 5.7 5.7
canneal 6.1 4.6 3.9 2.9 6.2 4.7 5.7
dedup 5.5 2.4 3.0 1.9 4.9 3.8 4.8
facesim 6.7 3.9 4.6 3.0 6.3 5.2 5.9
fluidanimate 5.6 4.0 6.9 4.6 5.9 4.9 5.2
freqmine 8.0 6.3 5.8 6.6 3.6 6.2 7.7
vips 3.0 2.3 2.3 2.4 1.9 2.7 2.9
x264 4.7 3.8 3.6 4.0 2.8 4.9 4.3

Table 5.5: Slowdown of a thread when scheduled with another thread under the
static scheduling scheme.

Compared to static schedules, threads can be scheduled with different threads

throughout the execution in dynamic-offline scheduling. For this reason, we repre-

sented overall slowdown for each benchmark and difference between the minimum,

maximum and average slowdown observed under the static schedules. Table 5.6

shows the slowdown of benchmarks under dynamic-offline scheduling. The first

column of the table specifies the overall slowdown of benchmarks. The second,

third and fourth columns of the table specify how much overall slowdown of a

thread deviates from minimum, maximum and average slowdown observed under

the static schedules, respectively. In other words, the second column of the table

52

is calculated as the subtraction of the minimum slowdown for a thread under

the static scheduling from the slowdown of a thread under the dynamic-offline

scheduling. The third and fourth columns are calculated in the same manner.

δ from
min. (+/-) max. (+/-) avg. (+/-)

blackscholes 6.0 2.4 -0.3 0.7
canneal 3.9 0.9 -2.3 -1.0
dedup 3.5 1.6 -2.0 -0.3
facesim 3.9 0.9 -2.8 -1.2
fluidanimate 4.1 0.1 -2.8 -1.2
freqmine 7.3 3.6 -0.8 0.9
vips 2.2 0.3 -0.8 -0.3
x264 4.3 1.5 -0.5 0.3

Table 5.6: Slowdown of a thread when scheduled with another thread under the
dynamic-offline scheduling scheme.

Similar to the dynamic-offline scheduling, adaptive cache-hierarchy-aware

scheduling allows threads to be scheduled with different threads throughout the

execution. Table 5.7 shows the slowdown of benchmarks under the adaptive

cache-hierarchy-aware scheduling. Likewise, the first column of the table speci-

fies the overall slowdown of benchmarks. The second, third and fourth columns of

the table specify how much overall slowdown of a thread deviates from minimum,

maximum and average slowdown observed under the static schedules, respectively.

δ from
min. (+/-) max. (+/-) avg. (+/-)

blackscholes 7.3 3.7 1.0 2.0
canneal 4.1 1.1 -2.1 -0.8
dedup 2.7 0.8 -2.8 -1.1
facesim 4.4 1.4 -2.3 -0.7
fluidanimate 4.2 0.2 -2.6 -1.1
freqmine 6.9 3.3 -1.1 0.6
vips 2.3 0.3 -0.7 -0.2
x264 4.0 1.1 -0.9 -0.1

Table 5.7: Slowdown of a thread when scheduled with another thread under the
cache-hierarchy-aware scheduling.

As indicated earlier, a desired scheduler should also try to minimize average

slowdown while trying to increase system performance. To this end, our proposed

adaptive cache-hierarchy-aware scheduler obtains decent slowdown and provides

higher system performance. Figure 5.3 shows the comparison of slowdown of all

the benchmarks running under different scheduling schemes.

53

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

S1
S2
S3
S4
S5
S6
S7
dynamic-offline
adaptive
cache-aware

Figure 5.3: Slowdowns of benchmarks under different scheduling schemes.

Proposed adaptive cache-hierarchy-aware scheduler outperforms all other

scheduling schemes, including dynamic-offline, except the fifth static schedule

(i.e., S5). However, slowdown observed in S5 and adaptive cache-hierarchy-aware

scheduler are very close. In addition, although S5 has lower slowdown, it does

not improve the system performance as much as adaptive cache-hierarchy-aware

scheduler. If we consider both slowdown and system performance, we can con-

clude that the adaptive cache-hierarchy-aware achieves better results compared

to S5.

5.1.4 The Effect of Scheduling on Cache Performance

In this set of evaluations, we analyzed the effect of cache sizes on system per-

formance. The reason behind this analysis is to determine the sensitivity of

benchmarks to the allocated cache resources. Figure 5.4 shows the miss per kilo

instruction with respect to L2 cache size for the benchmarks.

Although, all benchmarks benefit from increased L2 cache sizes, dedup and

x264 benefit more compared to others. However, almost all benchmarks saturate

at 128 KB. Such observations are important for designing cache architecture for

chip multiprocessors.

54

 1/64 1/32 1/16 1/ 8 1/ 4 1/ 2 1 2 4 8 16 32
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00
blackscholes

L2 cache size (MB)

M
is

s
p

e
r

ki
lo

 in
st

ru
ct

io
n

 1/64 1/32 1/16 1/ 8 1/ 4 1/ 2 1 2 4 8 16 32
2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19
canneal

L2 cache size (MB)

M
is

s
p

e
r

ki
lo

 in
st

ru
ct

io
n

 1/64 1/32 1/16 1/ 8 1/ 4 1/ 2 1 2 4 8 16 32
12.7

12.75

12.8

12.85

12.9

12.95
dedup

L2 cache size (MB)

M
is

s
p

e
r

ki
lo

 in
st

ru
ct

io
n

 1/64 1/32 1/16 1/ 8 1/ 4 1/ 2 1 2 4 8 16 32
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4
facesim

L2 cache size (MB)

M
is

s
p

e
r

ki
lo

 in
st

ru
ct

io
n

 1/64 1/32 1/16 1/ 8 1/ 4 1/ 2 1 2 4 8 16 32
0.45

0.46

0.46

0.47

0.47

0.48

0.48

0.49

0.49

0.5

0.5
fluidanimate

L2 cache size (MB)

M
is

s
p

e
r

ki
lo

 in
st

ru
ct

io
n

 1/64 1/32 1/16 1/ 8 1/ 4 1/ 2 1 2 4 8 16 32
0.25

0.35

0.45

0.55

0.65

0.75

0.85
freqmine

L2 cache size (MB)

M
is

s
p

e
r

ki
lo

 in
st

ru
ct

io
n

 1/64 1/32 1/16 1/ 8 1/ 4 1/ 2 1 2 4 8 16 32
3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2
vips

L2 cache size (MB)

M
is

s
p

e
r

ki
lo

 in
st

ru
ct

io
n

 1/64 1/32 1/16 1/ 8 1/ 4 1/ 2 1 2 4 8 16 32
6

7

8

9

10

11

12
x264

L2 cache size (MB)

M
is

s
p

e
r

ki
lo

 in
st

ru
ct

io
n

Figure 5.4: Miss per kilo instructions vs. L2 cache size for the benchmarks.

55

19.000

20.000

21.000

22.000

23.000

24.000

25.000

26.000

S1
S2
S3
S4
S5
S6
S7
dynamic-offline
adaptive
cache-aware

M
is

s
p

e
r

ki
lo

 in
st

ru
ct

io
n

Figure 5.5: L2 miss per kilo instruction of benchmarks under different scheduling
schemes.

An important metric to evaluate the effectiveness of a scheduler is LLC (i.e.,

L2 in our case). In this section, we justify why considering higher level of cache

hierarchy in scheduling decisions will eventually affect the performance of LLC.

We used L2 miss per kilo instruction as a metric to evaluate the effectiveness

of the scheduling schemes. The scheduling scheme that minimizes the L2 miss per

kilo instruction is more desirable than the others. Figure 5.5 shows the number

of L2 misses per kilo instruction for different scheduling schemes. As it can be

seen, our proposed adaptive cache-hierarchy-aware scheduler has the lowest L2

miss per kilo instruction. Therefore, justifying our claim on the importance of

higher level caches on LLC performance.

Figure 5.6 shows the L2 miss ratios of the benchmarks for different scheduling

schemes. Although adaptive cache-hierarchy-aware scheduler does not have the

minimum L2 miss ratio, we believe that it is reasonable. The results of L2 miss

ratio might be misleading if it is considered without taking corresponding system

performance (i.e., IPC) into account. There might be cases where the threads

make slow progress due to the contention on shared resources, thus generating less

number of cache accesses. These cache accesses might have higher hit ratio. On

the other hand, there might be cases where threads make faster progress, thanks

to wise scheduler that reduces the contention on shared resources, thus generate

56

0.150

0.155

0.160

0.165

0.170

0.175

0.180

S1
S2
S3
S4
S5
S6
S7
dynamic-offline
adaptive
cache-aware

M
is

s
R

a
tio

Figure 5.6: L2 miss ratio of benchmarks under different scheduling schemes.

more cache accesses. These accesses might have lower hit ratio compared to the

first case. However, we can not conclude that the scheduling in the first case is

better than the second one, solely it has the lower miss ratio. In fact, we need

to look at what would be the miss ratio when the threads in the first case would

also make the same progress as the threads in the second case. For this reason,

we used L2 miss per kilo instruction as a metric for performance of cache, instead

of L2 miss ratio.

As it can be seen from Figure 5.6, adaptive cache-hierarchy-aware scheduling

has higher L2 miss ratio compared to the second static schedule (i.e. S2). How-

ever, the overall system performance of adaptive cache-hierarchy-aware scheduling

is comparably higher than the performance of S2.

Likewise, the adaptive cache-hierarchy-aware scheduling utilizes the L1 cache

much better compared to other scheduling schemes. Figure 5.7 shows the num-

ber of L1 misses per kilo instruction for different schedules. Adaptive cache-

hierarchy-aware scheduler outperforms other scheduling schemes except the fifth

static scheduling (i.e. S5). Although S5 has lower misses per kilo instruction,

its overall system performance is lower than the adaptive cache-hierarchy-aware

scheduler. Despite it seems awkward, there is a logical reason behind it. The

accesses to L1 that are misses go to L2 cache. Some of these misses are also

57

60.000

62.000

64.000

66.000

68.000

70.000

72.000

74.000

76.000

78.000

80.000

S1
S2
S3
S4
S5
S6
S7
dynamic-offline
adaptive
cache-aware

M
is

s
p

e
r

ki
lo

 in
st

ru
ct

io
n

Figure 5.7: L1 miss per kilo instruction under different scheduling schemes.

misses in L2 cache. Thus, these misses require high latency main memory ac-

cesses. Compared to adaptive cache-hierarchy-aware scheduler, the L1 misses of

S5 are not found in L2, so they have to be fetched from main memory. That is

why S5 has lower IPC than adaptive cache-hierarchy-aware scheduler, although

it has lower L1 miss per kilo instruction.

Figure 5.8 shows the L1 miss ratio of benchmarks under different scheduling

schemes. Similar to the L2 miss ratio, adaptive cache-hierarchy-aware scheduler

does not have the minimum L1 miss ratio. The same argument is also valid in

this case. The results of L1 miss ratio might be misleading if it is considered

without taking corresponding system performance (i.e., IPC) and L2 miss per

kilo instruction into account. Note that, misses on L1 might be misses on L2, as

well. In such cases, high latency memory access reduces the system performance.

This is why the seventh static scheduling (i.e., S7) has lower IPC compared to

adaptive cache-hierarchy-aware scheduler, although it has lower L1 miss ratio as

shown in Figure 5.8. The same observation is valid for dynamic-offline. Although

adaptive cache-hierarchy-aware scheduler has lower L1 miss ratio, dynamic-offline

has higher IPC compared to adaptive cache-hierarchy-aware scheduler.

58

0.250

0.260

0.270

0.280

0.290

0.300

0.310

S1
S2
S3
S4
S5
S6
S7
dynamic-offline
adaptive
cache-aware

M
is

s
R

a
tio

Figure 5.8: L1 miss ratio of benchmarks under different scheduling schemes.

5.1.5 Sensitivity of Performance to the Thread Quantum

Threads have a time quantum that is specied as the number of cycles to be

executed. When threads exceed this quantum, the adaptive cache-hierarchy-

aware scheduler updates the scheduling decisions as explained in Section 3.10.

After this update, the quanta of threads are reset and they run on specified cores

until the time quantum is exceeded again.

The number of cycles specified for quanta of threads has an influence on

the performance. When the length of quantum is short (i.e., small number of

cycles), the scheduling decision has to be made more often. The drawback of

short quantum is that the decision of scheduling becomes vulnerable to short

bursts and fluctuations on thread behaviors. In addition, the length of quantum

may not be sufficient to compensate the overhead due to thread migration (in

case a thread is scheduled on a different core).

On the other hand, if the length of quantum is too long, then the scheduling

decision has to be made less often. The drawback of long quantum is that the

execution characteristics of threads may change which may result in with inap-

propriate scheduling. For this reason, the length of quantum has an impact on

the overall system performance.

59

1000 10000 50000 100000 500000 1000000
0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

cycles

IP
C

Figure 5.9: System performance for different thread quantum lengths.

Figure 5.9 shows the effect of quantum length on overall system performance.

As it can be seen, the quantum of 100,000 cycles maximizes the system perfor-

mance. The results reported in this chapter are gathered by using a quantum

with 100,000 cycles.

5.1.6 Sensitivity of Performance to the Weights of Thread

Attributes

The position of a bit (that represents a particular attribute of a thread) in an

attribute vector determines the relative weight of the attribute of interest. The

bit for an attribute with the most significant bit in the attribute vector naturally

obtains the highest weight, while the bit for an attribute with the least significant

bit in the attribute vector obtains the lowest weight. The weights of attributes

(i.e., position of corresponding bits in attribute vector) have an impact on the

overall system performance.

Figure 5.10 shows the effect of changing the position of bits for attributes in

attribute vector. Each column represents different ordering of bits for attributes

in an attribute vector. For example, ADI means that the bit for aggressiveness

is the most significant bit in attribute vector, thus it has the highest weight. On

the other hand, the bit for inefficacy is the least significant bit in the attribute

60

1.360

1.370

1.380

1.390

1.400

1.410

1.420

1.430

AID
ADI
IAD
IDA
DAI
DIA

IP
C

Figure 5.10: System performance changes with respect to relative weights of
thread attributes.

vector, thus it has the lowest weight.

We used DAI (i.e., density being the most important attribute and inefficacy

being the least important attribute) for the results reported in this chapter. The

relative importance of density is comprehensible, since L1 cache is limited in

size and the contention for cache blocks is severe. Thus, giving more weight

to density allows adaptive cache-hierarchy-aware scheduler to have tendency to

schedule threads that reduces such contention.

5.1.7 Sensitivity of Performance to the Resolution of

Thread Attributes

Figure 5.11 shows the effect of the number of bits used for each attribute of a

thread in an attribute vector. Fine-grained scores are possible when higher num-

ber of bits is used. Although one bit for each attribute is fairly enough in case of

a small number of threads, it becomes harder to differentiate candidate schedules

(i.e., deciding which one is better) when the number of threads increases. This

is the case, because there is less number of distinct CoScores possible with less

number of bits. For this reason, increasing the number of bits per attribute in

61

1.280

1.285

1.290

1.295

1.300

1.305

1.310

1-bit
2-bit
3-bitIP

C

Figure 5.11: System performance with respect to the number of bits used to
represent each attribute in an attribute vector.

attribute vector enables fine-grained scores. Figure 5.11 shows the overall sys-

tem performance for 16 threads running on 8 cores. Notice that, increasing the

number of bits results with a higher system performance.

It provides marginal benefit to use more bits for each attribute for our base

simulation environment (i.e., 8 threads running on 4 cores). For this reason, we

use a single bit per attribute for the results reported.

5.1.8 Sensitivity of Performance to Scoring Thresholds

Each thread has a multi-metric score based on its attributes: aggressiveness,

density and inefficacy. The decision of a thread being aggressive/complaisant,

dense/sparse and sterile/prolific is given through respective thresholds. Each

attribute has its own threshold, where these thresholds are determined empiri-

cally. Table 5.8 shows the overall system performance with respect to different

thresholds for the attributes.

The aggressiveness, density and inefficacy of a thread are determined as spec-

ified in Section 3.9. The overall system performance is maximized when thresh-

olds are τa = 1.6, τ d = 0.3 and τ i = 0.4 where τa, τ d and τ i are thresholds for

62

A
D I 0.3 0.4 0.5 0.6

0.2 1.394 1.402 1.392 1.4
1.4 0.3 1.374 1.402 1.394 1.381

0.4 1.388 1.386 1.381 1.394
0.2 1.409 1.412 1.389 1.389

1.5 0.3 1.393 1.393 1.398 1.405
0.4 1.416 1.393 1.391 1.391
0.2 1.422 1.402 1.411 1.416

1.6 0.3 1.407 1.425 1.409 1.409
0.4 1.414 1.395 1.409 1.416
0.2 1.403 1.378 1.382 1.419

1.7 0.3 1.405 1.341 1.393 1.403
0.4 1.404 1.39 1.393 1.393

Table 5.8: System performance with respect to the attribute thresholds for
threads.

aggressiveness, density and inefficacy, respectively. The maximum performance

obtained is specified as bold in the table. We used τa = 1.6, τ d = 0.3 and τ i = 0.4

for the results reported in this chapter.

5.2 Adaptive Compute-phase Prediction and

Thread Prioritization

5.2.1 Simulation Environment

We used the USIMM simulation framework [41] for the evaluations reported in

this part of the thesis. The framework comes with a default memory subsystem

configuration. During the evaluations, we used two different configurations for

the memory subsystem. The first configuration has 1 channel with 2 ranks,

where each rank has 8 banks, so the total number of banks is 16. The second

configuration has 4 channels with 2 ranks in each channel. Every rank has 8 banks,

so the total number of banks is 64. The overview of the system configurations

used in this part of the thesis is given in Table 5.9 where N is the number of

63

Parameter 1-channel configuration 4-channel configuration
core clock speed 3.2 GHz 3.2 GHz
ROB Size 128 160
retire width 2 4
fetch width 4 4
memory bus speed 800 MHz (DDR) 800 MHz (DDR)
ranks per channel 2 2
banks per rank 8 8
rows per bank 32768 × N 32768 × N
columns per row 128 128
cache line size 64 B 64 B
write queue size 64 96
read queue size ∞ ∞

Table 5.9: System configurations used in evaluations.

processing cores.

The number of cores used in simulations is a function of the number of bench-

marks in the workload. Each benchmark is considered to be executed on a dif-

ferent core. Therefore, if there are N benchmarks in the workload, it is assumed

that there are N cores in the system.

5.2.2 Workloads

In the USIMM simulation framework, 24 different benchmarks are provided. The

composition of these benchmarks are as follows. Out of 24 benchmarks, 14 of

them are from PARSEC, 2 of them are from biobench, 2 of them are from Spec

CPU-2006, 5 of them are from commercial transaction processing benchmarks

and 1 of them is from STREAM benchmarks.

To make a fair comparison of the schedulers and to prevent bias, we performed

our evaluations on the same workload set given in USIMM for Memory Schedul-

ing Championship (MSC) held in 3rd JILP Workshop on Computer Architecture

Competitions [44]. Notice that Ishii et al. presented their Compute-phase Pre-

diction with Writeback-Refresh Overlap scheduler (CP-WO) in this workshop.

64

From the given 24 benchmarks, 32 different workloads have been generated. The

workloads generated and corresponding shorthand notations used in evaluations

are given in Table 5.10.

Initially, we evaluate the effectiveness of adaptive compute-phase prediction

(ACP) and adaptive thread prioritization (ATP), separately. Then, we employed

both adaptive compute-phase prediction and adaptive thread prioritization in

Writeback-Refresh Overlap scheduler. The proposed scheduler is a combination

of ACP and ATP, namely adaptive compute-phase prediction and thread prioriti-

zation (ACP-TP). The evaluations in this chapter is divided into two sections. In

the following section, we evaluate the impact of the proposed methods on the sum

of execution times. In the other section, we evaluate the impact of the proposed

methods on power consumption. In our study, the main performance metric of

the schedulers is the sum of execution times.

5.2.3 The Effect of Scheduling on Sum of Execution Times

Figure 5.12 shows the comparison of Compute-phase Prediction with Writeback-

Refresh Overlap (CP-WO), and adaptive compute-phase prediction (ACP). The

sum of execution times are normalized with respect to First-Ready First-Come

First-Serve (FR-FCFS) scheduler. Similarly, Figure 5.13 shows the comparison of

CP-WO and ATP. As it can be seen from these figures, different workloads benefit

from different adaptation. Some of the workloads benefit more from adaptive

compute-phase prediction, such as w23; while others benefit more from adaptive

thread prioritization, such as w31.

Figure 5.14 shows the comparison of CP-WO, and ACP-TP. As it can be

seen from the Figure 5.14, ACP-TP outperforms the FR-FCFS for all workloads,

except the workload 25. For workload 25, FR-FCFS is slightly better than ACP-

TP. In overall, ACP-TP reduces the total sum of execution time up to 23.6%

(on average 10.9%) and 12.9% (on average 1.2%) compared to FR-FCFS and

CP-WO, respectively.

65

name # of ch. benchmarks
w1 1 MT0-canneal, MT1-canneal, MT2-canneal, MT3-canneal
w2 4 MT0-canneal, MT1-canneal, MT2-canneal, MT3-canneal
w3 4 fluidanimate, fluidanimate, swaptions, swaptions, commer-

cial2, commercial2, ferret, ferret
w4 4 fluidanimate, fluidanimate, swaptions, swaptions, commer-

cial2, commercial2, ferret, ferret, blackscholes, blacksc-
holes, freqmine, freqmine, commercial1, commercial1,
stream2, stream2

w5 4 commercial3, commercial3, commercial3, commercial3,
commercial3, commercial3, commercial3, commercial3

w6 4 libquantum, libquantum, libquantum, mummer, mummer,
mummer, tigr, tigr

w7 1 blackscholes, blackscholes, freqmine, freqmine
w8 4 blackscholes, blackscholes, freqmine, freqmine
w9 1 commercial2
w10 1 commercial1, commercial1
w11 1 commercial1, commercial1, commercial2, commercial2
w12 1 fluidanimate, swaptions, commercial2, commercial2
w13 1 facesim, facesim, ferret, ferret
w14 1 stream2, stream2, stream2, stream2
w15 4 commercial2
w16 4 commercial1, commercial1
w17 4 commercial1, commercial1, commercial2, commercial2
w18 4 fluidanimate, swaptions, commercial2, commercial2
w19 4 facesim, facesim, ferret, ferret
w20 4 stream2, stream2, stream2, stream2
w21 1 tigr, tigr
w22 1 libquantum, libquantum
w23 1 libquantum, libquantum, mummer, mummer
w24 1 leslie3d, leslie3d, leslie3d, leslie3d
w25 1 MT0-fluidanimate, MT1-fluidanimate, MT2-fluidanimate,

MT3-fluidanimate
w26 1 commercial4, commercial4, commercial5, commercial5
w27 4 tigr, tigr
w28 4 libquantum, libquantum
w29 4 libquantum, libquantum, mummer, mummer
w30 4 leslie3d, leslie3d, leslie3d, leslie3d
w31 4 MT0-fluidanimate, MT1-fluidanimate, MT2-fluidanimate,

MT3-fluidanimate
w32 4 commercial4, commercial4, commercial5, commercial5

Table 5.10: Workloads used in evaluations.

66

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24 w25 w26 w27 w28 w29 w30 w31 w32
0.75

0.80

0.85

0.90

0.95

1.00

1.05

CP-WO

ACP

S
um

 o
f e

xe
cu

tio
n

tim
e

s

Figure 5.12: Comparison of CP-WO and ACP schedulers for the given workloads.
Sum of execution times is normalized with respect to FR-FCFS.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24 w25 w26 w27 w28 w29 w30 w31 w32
0.75

0.80

0.85

0.90

0.95

1.00

1.05

CP-WO

ATP

S
um

 o
f e

xe
cu

tio
n

tim
e

s

Figure 5.13: Comparison of CP-WO and ATP schedulers for the given workloads.
Sum of execution times is normalized with respect to FR-FCFS.

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24 w25 w26 w27 w28 w29 w30 w31 w32
0.75

0.80

0.85

0.90

0.95

1.00

1.05

CP-WO

ACP-TP

S
um

 o
f e

xe
cu

tio
n

tim
e

s

Figure 5.14: Comparison of CP-WO and ACP-TP schedulers for the given work-
loads. Sum of execution times is normalized with respect to FR-FCFS.

67

For the 22 out of 32 workloads ACP-TP outperforms CP-WO. For 10 of the

workloads, CP-WO is better than ACP-TP. Out of these 10 workloads, 5 of them

is less than 0.5% better compared to ACP-TP that can be omitted. When we look

at the workloads in which ACP-TP left behind CP-WO, we can see that these are

the workloads of a single benchmark (e.g. w9), or the same benchmark having

multiple instances running on different cores (e.g. w22, w24, w25). In cases where

there is no diversity in the memory access requests, similar to these workloads,

the ACP-TP tries to prioritize the memory requests of threads; however, it does

not provide any benefit since all the threads are of the same type (or there is

only one thread). For this reason, the arrangements made on memory access

requests for these workloads may show no benefit, even worse, they may degrade

the performance. Since, we expect to have diversity and abundance in the tasks

of real workloads, we consider such a flaw in ACP-TP as benign.

Figure 5.15 shows the total sum of execution times for the given workloads. It

also shows the impact of adaptive compute phase prediction (i.e., ACP) and adap-

tive thread prioritization (i.e., ATP), separately. Notice that, the combination of

these two (i.e., ACP-TP) has better performance compared to all others.

52

54

56

58

60

62

64

66

64.1

57.8
57.4 57.2 57.1

FR-FCFS
CP-WO
ACP
ATP
ACP-TP

S
um

 o
f e

xe
cu

tio
n

tim
e

s
(b

ill
io

n
cy

cl
e

s)

Figure 5.15: Total sum of execution times for the given workloads.

68

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24 w25 w26 w27 w28 w29 w30 w31 w32
0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

CP-WO

ACP-TP

T
o

ta
l M

e
m

o
ry

 P
o

w
e

r

Figure 5.16: Comparison of total memory system power of CP-WO and ACP-TP
schedulers for the given workloads. The total memory system power is normalized
with respect to FR-FCFS.

5.2.4 The Effect of Scheduling on Power Consumption

Another concern in memory access scheduling is to minimize the power consump-

tion of the memory subsystem. Since the performance and power consumption

are conflicting goals most of the time, it is challenging to optimize both of them

simultaneously. Although it is challenging, our adaptive compute-phase predic-

tion and thread prioritization algorithm provides reasonable results. Figure 5.16

shows the comparison of total memory system power when the CP-WO and

ACP-TP schedulers are used. The total memory power is normalized to power

consumption of FR-FCFS. As it can be seen from the Figure 5.16, ACP-TP has

lower memory power compared to CP-WO. On the other hand, FR-FCFS has

the lowest memory power overall.

Similarly, Figure 5.17 shows the comparison of total system power when CP-

WO and ACP-TP schedulers are used. The total system power is normalized

to FR-FCFS. As it can be seen from the Figure 5.17, ACP-TP has the lowest

total system power. This indicates that ACP-TP allows processing cores to run

respective workloads faster which reduces the power consumed by processing

cores (i.e., reduces the time of being idle, so the power consumed is reduced when

processing core is idle). Although ACP-TP has higher power consumption on

memory subsystem compared to FR-FCFS, the reduction of power consumption

on processing cores provided by ACP-TP over weighs. Thus, ACP-TP has the

lowest total system power consumption.

69

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18 w19 w20 w21 w22 w23 w24 w25 w26 w27 w28 w29 w30 w31 w32
0.85

0.90

0.95

1.00

1.05

1.10

CP-WO

ACP-TP

T
o

ta
l S

ys
te

m
 P

o
w

e
r

Figure 5.17: Comparison of total system power of CP-WO and ACP-TP sched-
ulers for the given workloads. The total system power is normalized with respect
to FR-FCFS.

Figure 5.18 shows the sum of total memory system power for the given work-

loads. It also shows the impact of adaptive compute-phase prediction (i.e., ACP)

and adaptive thread prioritization (i.e., ATP) on power consumption, separately.

Notice that, the combination of these two (i.e., ACP-TP) has lower memory

power consumption.

Figure 5.19 shows the sum of total system power for the given workloads.

It also shows the impact of adaptive compute-phase prediction (i.e., ACP) and

adaptive thread prioritization (i.e., ATP), separately. Note that, the combination

of these two (i.e., ACP-TP) has the lowest sum of total system power, as well.

260

262

264

266

268

270

272

274

276

278

FR-FCFS

CP-WO

ACP

ATP

ACP-TP

T
o

ta
l M

e
m

o
ry

 P
o

w
e

r
(W

)

Figure 5.18: Sum of total memory system power for the given workloads.

70

2120

2130

2140

2150

2160

2170

2180

FR-FCFS

CP-WO

ACP

ATP

ACP-TP

T
o

ta
l S

ys
te

m
 P

o
w

e
r

(W
)

Figure 5.19: Sum of total system power consumption for the given workloads.

71

Chapter 6

Conclusions and Future Work

To provide higher throughput and increased performance without bumping into

physical limits of Moore’s Law, novel multiprocessor architectures have emerged,

including chip multiprocessors that contains multiple cores on a single chip [2].

Another way to provide higher throughput and increased performance is to run

more than one thread on each core with multithreading, namely simultaneous

multithreading [3]. The choice of threads to be scheduled on the same core has

signicant impact on overall system performance. Inter-thread contention occurs

since coscheduled threads are competing for shared resources. The primary shared

resource that influence the performance is the cache. An efficient scheduling

should minimize the contention for shared caches to maximize utilization and

system performance. Since the execution characteristics of threads varies over

time, the scheduling decision has to be remade based on provisioned behaviors of

threads for the near future.

The frequency and power walls have forced chip manufacturers to change their

design philosophy from uniprocessors to chip multiprocessors. While multicore

architectures provide higher aggregated throughput, the underlying memory sub-

system remains a performance bottleneck. The memory subsystems operate in

lower frequencies and they have to serve to multiple threads running on different

cores simultaneously. This creates a contention on memory subsystem and has a

significant impact on the overall system performance. Traditional memory access

72

scheduling algorithms designed for uniprocessors are inadequate for chip multi-

processors. For this reason, an efficient memory access scheduler is required to

exploit the performance promises of chip multiprocessors.

To address these challenges, first, we propose a novel adaptive cache-hierarchy-

aware thread scheduling algorithm that minimizes the number of accesses to the

lower levels of cache/memory hierarchy and reduces the number of evictions due

to contention. The adaptive cache-hierarchy-aware scheduling provides higher

system throughput and improved performance.

We introduce and use a fine-grained, multi-metric scoring scheme to classify

threads with respect to their execution characteristics in the proposed scheduling

algorithm. The metrics used in scoring are obtained from L1 cache, as opposed

to LLC as has been done in most of the previous studies.

We observe that our adaptive cache-hierarchy-aware scheduler improves the

performance (i.e., instruction per cycle) of the benchmarks used in this work by

up to 12.6% and an average of 7.3% over the static schedules.

The cache partitioning techniques and replacement policies to improve LLC

performance are orthogonal to our approach, so they can be used along with our

adaptive cache-hierarchy-aware scheduling scheme. We believe that integration

of partitioning techniques with our adaptive cache-hierarchy-aware scheduler will

provide even higher performance. Similarly, employing efficient replacement poli-

cies will result in with reduced number of evictions and misses, thus will improve

the performance even further. As a future work, we will integrate cache partition-

ing and replacement policies with our adaptive cache-hierarchy-aware scheduler

and evaluate the impact on system performance.

In addition to the multi-metric scoring scheme, the ability to predict/detect

the regions of the cache that are used by threads can be helpful to minimize

inter-thread conflicts. Such an ability will improve the performance even further.

We left these enhancements as future work.

Second, we introduce a memory access scheduling algorithm that is based on

73

the state-of-the-art Compute-phase Prediction with Writeback-Refresh Overlap

(CP-WO) scheduler proposed by Ishii et al. [34]. We improved thread priori-

tization scheme of Compute-phase Prediction with Writeback-Refresh Overlap

scheduler. Instead of prioritizing threads based solely on their execution phases,

our prioritization scheme allows to obtain fine-grained prioritization that is based

on their potential to make progress in their execution. Since the properties and

priorities of threads change over time, we call this approach as adaptive thread

prioritization.

In addition to that, we enhanced compute-phase prediction scheme of

Compute-phase Prediction with Writeback-Refresh Overlap scheduler in a way

that it tolerates short distortions and bursts to prevent inaccurate predictions.

The predefined thresholds for saturation counters to predict execution phases

may prevent the detection of execution phase changes in a timely manner. Inad-

equately defined thresholds may result certain threads to be prioritized unfairly

longer while preventing others to be prioritized when they actually should be pri-

oritized. Thus, the efficiency of phase prediction mechanism is correlated to the

accuracy of thresholds used for saturation counters. We introduced a mechanism

that determines the thresholds for each thread on the fly, considering the recent

memory access pattern of a thread. Since the thresholds are determined on the

fly, we call it adaptive compute-phase prediction.

Compared to the prior schedulers First-Ready First-Come First-Serve (FR-

FCFS) and Compute-phase Prediction with Writeback-Refresh Overlap (CP-

WO), our algorithm reduces the execution time of the generated workloads up

to 23.6% and 12.9%, respectively. Our adaptive compute-phase prediction and

thread prioritization algorithm also provides reasonable power consumption re-

sults compared to CP-WO and FR-FCFS.

The proposed adaptive compute-phase prediction and thread prioritization

algorithm has a flaw in workloads that consists of multiple instances of a particular

task, or there is a single task in the workload. For such workloads, adaptive

compute-phase prediction and thread prioritization algorithm performs poorly

due to unnecessary effort to prioritize memory requests of thread(s) that are the

74

instances of the same task. Although we believe that such cases are rare and we

expect to have diversity and abundance in the real workload tasks, we plan to

enhance the presented algorithm to deal with such cases. This enhancement is

also left as a future work.

75

Bibliography

[1] G. Moore, “Cramming more components onto integrated circuits,” Proceed-

ings of the IEEE, vol. 86, no. 1, pp. 82–85, 1998.

[2] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang, “The

case for a single-chip multiprocessor,” in Proceedings of the 7th International

Conference on Architectural Support for Programming Languages and Oper-

ating Systems, (New York, NY, USA), pp. 2–11, ACM, 1996.

[3] D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultaneous multithread-

ing: maximizing on-chip parallelism,” in Proceedings of the 22nd Annual

International Symposium on Computer Architecture, (New York, NY, USA),

pp. 392–403, ACM, 1995.

[4] Y. Jiang, X. Shen, J. Chen, and R. Tripathi, “Analysis and approximation

of optimal co-scheduling on chip multiprocessors,” in Proceedings of the 17th

International Conference on Parallel Architectures and Compilation Tech-

niques, (New York, NY, USA), pp. 220–229, ACM, 2008.

[5] A. El-Moursy, R. Garg, D. H. Albonesi, and S. Dwarkadas, “Compatible

phase co-scheduling on a CMP of multi-threaded processors,” in Proceedings

of the 20th International Conference on Parallel and Distributed Processing,

(Washington, DC, USA), pp. 141–141, IEEE Computer Society, 2006.

[6] A. Snavely and D. M. Tullsen, “Symbiotic jobscheduling for a simultaneous

multithreaded processor,” in Proceedings of the 9th International Confer-

ence on Architectural Support for Programming Languages and Operating

Systems, (New York, NY, USA), pp. 234–244, ACM, 2000.

76

[7] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and partitioning in

a chip multiprocessor architecture,” in Proceedings of the 13th International

Conference on Parallel Architectures and Compilation Techniques, (Wash-

ington, DC, USA), pp. 111–122, IEEE Computer Society, 2004.

[8] A. Fedorova, M. Seltzer, and M. D. Smith, “Improving performance isolation

on chip multiprocessors via an operating system scheduler,” in Proceedings of

the 16th International Conference on Parallel Architecture and Compilation

Techniques, (Washington, DC, USA), pp. 25–38, IEEE Computer Society,

2007.

[9] P. J. Denning, “The working set model for program behavior,” Communica-

tions of the ACM, vol. 11, no. 5, pp. 323–333, 1968.

[10] W. Wong and J.-L. Baer, “Modified LRU policies for improving second-level

cache behavior,” in Proceedings of the 6th International Symposium on High

Performance Computer Architecture, pp. 49–60, 2000.

[11] H. S. Stone, J. Turek, and J. L. Wolf, “Optimal partitioning of cache mem-

ory,” IEEE Transactions on Computers, vol. 41, no. 9, pp. 1054–1068, 1992.

[12] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A case for mlp-

aware cache replacement,” in Proceedings of the 33rd Annual International

Symposium on Computer Architecture, (Washington, DC, USA), pp. 167–

178, IEEE Computer Society, 2006.

[13] D. Chiou, S. Devadas, L. Rudolph, B. S. Ang, D. Chiouy, D. Chiouy,

L. Rudolphy, L. Rudolphy, S. Devadasy, S. Devadasy, B. S. Angz, and B. S.

Angz, “Dynamic cache partitioning via columnization,” in In Proceedings of

Design Automation Conference, 2000.

[14] E. Z. Zhang, Y. Jiang, and X. Shen, “Does cache sharing on modern cmp

matter to the performance of contemporary multithreaded programs?,” in

Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, (New York, NY, USA), pp. 203–212, ACM,

2010.

77

[15] D. Tam, R. Azimi, and M. Stumm, “Thread clustering: sharing-aware

scheduling on smp-cmp-smt multiprocessors,” in Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems, (New York,

NY, USA), pp. 47–58, ACM, 2007.

[16] A. Settle, J. Kihm, A. Janiszewski, and D. Connors, “Architectural support

for enhanced smt job scheduling,” in Proceedings of the 13th International

Conference on Parallel Architectures and Compilation Techniques, (Wash-

ington, DC, USA), pp. 63–73, IEEE Computer Society, 2004.

[17] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically char-

acterizing large scale program behavior,” in Proceedings of the 10th Interna-

tional Conference on Architectural Support for Programming Languages and

Operating Systems, (New York, NY, USA), pp. 45–57, ACM, 2002.

[18] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread cache

contention on a chip multi-processor architecture,” in Proceedings of the

11th International Symposium on High Performance Computer Architecture,

(Washington, DC, USA), pp. 340–351, IEEE Computer Society, 2005.

[19] F. J. Cazorla, A. Ramirez, M. Valero, and E. Fernandez, “Dynamically con-

trolled resource allocation in smt processors,” in Proceedings of the 37th

Annual IEEE/ACM International Symposium on Microarchitecture, (Wash-

ington, DC, USA), pp. 171–182, IEEE Computer Society, 2004.

[20] J. L. Kihm, A. W. Janiszewski, and D. A. Connors, “Predictable fine-grained

cache behavior for enhanced simultaneous multithreading (smt) scheduling,”

in Proceedings of International Conference on Computing, Communications

and Control Technologies, 2004.

[21] K. Tian, Y. Jiang, and X. Shen, “A study on optimally co-scheduling jobs of

different lengths on chip multiprocessors,” in Proceedings of the 6th ACM

Conference on Computing Frontiers, (New York, NY, USA), pp. 41–50,

ACM, 2009.

[22] Y. Jiang, K. Tian, and X. Shen, “Combining locality analysis with online

proactive job co-scheduling in chip multiprocessors,” in Proceedings of the

78

5th International Conference on High Performance Embedded Architectures

and Compilers, (Berlin, Heidelberg), pp. 201–215, Springer-Verlag, 2010.

[23] C. Ding and Y. Zhong, “Predicting whole-program locality through reuse

distance analysis,” in Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, (New York, NY, USA),

pp. 245–257, ACM, 2003.

[24] G. E. Suh, S. Devadas, and L. Rudolph, “A new memory monitoring scheme

for memory-aware scheduling and partitioning,” in Proceedings of the 8th In-

ternational Symposium on High Performance Computer Architecture, (Wash-

ington, DC, USA), pp. 117–128, IEEE Computer Society, 2002.

[25] R. A. Sugumar and S. G. Abraham, “Set-associative cache simulation us-

ing generalized binomial trees,” ACM Transactions on Computer Systems,

vol. 13, no. 1, pp. 32–56, 1995.

[26] M. DeVuyst, R. Kumar, and D. M. Tullsen, “Exploiting unbalanced thread

scheduling for energy and performance on a CMP of SMT processors,” in

Proceedings of the 20th International Conference on Parallel and Distributed

Processing, (Washington, DC, USA), pp. 140–149, IEEE Computer Society,

2006.

[27] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory

access scheduling,” in Proceedings of the 27th Annual International Sympo-

sium on Computer Architecture, (New York, NY, USA), pp. 128–138, 2000.

[28] O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling for

chip multiprocessors,” in Proceedings of the 40th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, (Washington, DC, USA), pp. 146–

160, IEEE Computer Society, 2007.

[29] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhanc-

ing both performance and fairness of shared dram systems,” in Proceedings of

the 35th Annual International Symposium on Computer Architecture, (Wash-

ington, DC, USA), pp. 63–74, IEEE Computer Society, 2008.

79

[30] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread clus-

ter memory scheduling: Exploiting differences in memory access behavior,”

in Proceedings of the 43rd Annual IEEE/ACM International Symposium on

Microarchitecture, (Washington, DC, USA), pp. 65–76, IEEE Computer So-

ciety, 2010.

[31] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana, “Self-optimizing memory

controllers: A reinforcement learning approach,” in Proceedings of the 35th

Annual International Symposium on Computer Architecture, (Washington,

DC, USA), pp. 39–50, IEEE Computer Society, 2008.

[32] I. Hur and C. Lin, “A comprehensive approach to dram power management,”

in Proceedings of the 14th IEEE International Symposium on High Perfor-

mance Computer Architecture, pp. 305–316, Feb. 2008.

[33] J. Mukundan and J. Mart́ınez, “Morse: Multi-objective reconfigurable self-

optimizing memory scheduler,” in Proceedings of the 18th IEEE Interna-

tional Symposium on High Performance Computer Architecture, pp. 1–12,

Feb. 2012.

[34] Y. Ishii, K. Hosokawa, M. Inaba, and K. Hiraki, “High performance mem-

ory access scheduling using compute-phase prediction and writeback-refresh

overlap,” in Proceedings of 3rd JILP Workshop on Computer Architecture

Competitions, (Portland, OR, USA), 2012.

[35] J. Stuecheli, D. Kaseridis, H. C.Hunter, and L. K. John, “Elastic refresh:

Techniques to mitigate refresh penalties in high density memory,” in Proceed-

ings of the 43rd Annual IEEE/ACM International Symposium on Microar-

chitecture, (Washington, DC, USA), pp. 375–384, IEEE Computer Society,

2010.

[36] R. Kumar and D. M. Tullsen, “Compiling for instruction cache perfor-

mance on a multithreaded architecture,” in Proceedings of the 35th Annual

ACM/IEEE International Symposium on Microarchitecture, (Los Alamitos,

CA, USA), pp. 419–429, IEEE Computer Society Press, 2002.

80

[37] S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, R. L. Stamm, and D. M.

Tullsen, “Simultaneous multithreading: A platform for next-generation pro-

cessors,” IEEE Micro, vol. 17, no. 5, pp. 12–19, 1997.

[38] V. Krishnan and J. Torrellas, “A chip-multiprocessor architecture with spec-

ulative multithreading,” IEEE Transactions on Computers, vol. 48, no. 9,

pp. 866–880, 1999.

[39] S. S. Parekh, S. J. Eggers, and H. M. Levy, “Thread-sensitive scheduling for

smt processors,” tech. rep., University of Washington, 2001.

[40] J. R. Bulpin and I. A. Pratt, “Hyper-threading aware process scheduling

heuristics,” in Proceedings of USENIX Annual Technical Conference, (Berke-

ley, CA, USA), pp. 27–27, USENIX Association, 2005.

[41] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, H., N. Udipi,

Aniruddha, A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti, “USIMM: the

utah simulated memory module,” tech. rep., University of Utah, UUCS-12-

002, 2012.

[42] R. Ubal, J. Sahuquillo, S. Petit, and P. López, “Multi2sim: A simulation

framework for cpu-gpu computing,” in Proceedings of the 19th International

Symposium on Computer Architecture and High Performance Computing,

Oct. 2007.

[43] C. Bienia, Benchmarking Modern Multiprocessors. PhD thesis, Princeton

University, Jan. 2011.

[44] 3rd JILP Workshop on Computer Architecture Competitions (JWAC-3):

Memory Scheduling Championship (MSC). http://www.cs.utah.edu/ ra-

jeev/jwac12/, Jun. 2012.

81

Appendix A

Extended Evaluations for

Adaptive Cache-Hierarchy-Aware

Thread Scheduling

In this appendix, we provide extented evaluations for adaptive cache-hierarchy-

aware thread scheduling. The evaluations include L1 and L2 hits/misses, L1

and L2 hit ratio of different schedules and performance of benchmarks under

different schedules. These evaluations give more insight regarding the execution

characteristics of threads, and their friendliness for a given thread.

82

A.1 L1 Hits/Misses Variations

0

2000

4000

6000

8000

10000

12000 Core 0 : L1 (blackscholes - vips)

0

2000

4000

6000

8000

10000

12000

14000 Core 1 : L1 (canneal - dedup)

0

2000

4000

6000

8000

10000

12000 Core 2 : L1 (facesim - x264)

0

2000

4000

6000

8000

10000

12000 Core 3 : L1 (fluidanimate - freqmine)

Figure A.1: L1 hits and misses under static schedule 1.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000 Core 0 : L1 (blackscholes - canneal)

0

2000

4000

6000

8000

10000

12000

14000 Core 1 : L1 (vips - dedup)

0

5000

10000

15000

20000

25000 Core 2 : L1 (facesim - fluidanimate)

0

1000

2000

3000

4000

5000

6000

7000 Core 3 : L1 (x264 - freqmine)

Figure A.2: L1 hits and misses under static schedule 2.

83

0

5000

10000

15000

20000

25000 Core 0 : L1 (blackscholes - dedup)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000 Core 1 : L1 (vips - canneal)

0

2000

4000

6000

8000

10000

12000

14000

16000 Core 2 : L1 (facesim - freqmine)

0

1000

2000

3000

4000

5000

6000

7000 Core 3 : L1 (x264 - fluidanimate)

Figure A.3: L1 hits and misses under static schedule 3.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000 Core 0 : L1 (blackscholes - facesim)

0

2000

4000

6000

8000

10000

12000 Core 1 : L1 (vips - fluidanimate)

0

5000

10000

15000

20000

25000 Core 2 : L1 (canneal - x264)

0

1000

2000

3000

4000

5000

6000

7000 Core 3 : L1 (dedup - freqmine)

Figure A.4: L1 hits and misses under static schedule 4.

84

0

5000

10000

15000

20000

25000 Core 0 : L1 (blackscholes - x264)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000 Core 1 : L1 (vips - freqmine)

0

2000

4000

6000

8000

10000

12000

14000

16000 Core 2 : L1 (canneal - facesim)

0

1000

2000

3000

4000

5000

6000

7000

8000 Core 3 : L1 (dedup - fluidanimate)

Figure A.5: L1 hits and misses under static schedule 5.

0

2000

4000

6000

8000

10000

12000 Core 0 : L1 (blackscholes - fluidanimate)

0

1000

2000

3000

4000

5000

6000

7000

8000 Core 1 : L1 (vips - x264)

0

2000

4000

6000

8000

10000

12000 Core 2 : L1 (canneal - freqmine)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000 Core 3 : L1 (dedup - facesim)

Figure A.6: L1 hits and misses under static schedule 6.

85

0

2000

4000

6000

8000

10000

12000

14000

16000

18000 Core 0 : L1 (blackscholes - freqmine)

0

2000

4000

6000

8000

10000

12000

14000

16000 Core 1 : L1 (vips - facesim)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000 Core 2 : L1 (canneal - fluidanimate)

0

1000

2000

3000

4000

5000

6000

7000 Core 3 : L1 (dedup - x264)

Figure A.7: L1 hits and misses under static schedule 7.

0

5000

10000

15000

20000

25000 Core 0 : L1 (dynamic)

0

2000

4000

6000

8000

10000

12000

14000 Core 1 : L1 (dynamic)

0

2000

4000

6000

8000

10000

12000 Core 2 : L1 (dynamic)

0

2000

4000

6000

8000

10000

12000 Core 3 : L1 (dynamic)

Figure A.8: L1 hits and misses under dynamic-offline schedule.

86

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000 Core 0 : L1 (cache-aware)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000 Core 1 : L1 (cache-aware)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000 Core 2 : L1 (cache-aware)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000 Core 3 : L1 (cache-aware)

Figure A.9: L1 hits and misses under adaptive cache-hierarchy-aware scheduling.

87

A.2 L1 Hit Ratio Variations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 0 : L1 (blackscholes - vips)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 1 : L1 (canneal - dedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 2 : L1 (facesim - x264)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 3 : L1 (fluidanimate - freqmine)

Figure A.10: L1 hit ratio under static schedule 1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 0 : L1 (blackscholes - canneal)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 1 : L1 (vips - dedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 2 : L1 (facesim - fluidanimate)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Core 3 : L1 (x264 - freqmine)

Figure A.11: L1 hit ratio under static schedule 2.

88

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 0 : L1 (blackscholes - dedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 1 : L1 (vips - canneal)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 2 : L1 (facesim - freqmine)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Core 3 : L1 (x264 - fluidanimate)

Figure A.12: L1 hit ratio under static schedule 3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 0 : L1 (blackscholes - facesim)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 1 : L1 (vips - fluidanimate)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 2 : L1 (canneal - x264)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Core 3 : L1 (dedup - freqmine)

Figure A.13: L1 hit ratio under static schedule 4.

89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 0 : L1 (blackscholes - x264)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 1 : L1 (vips - freqmine)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 2 : L1 (canneal - facesim)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 3 : L1 (dedup - fluidanimate)

Figure A.14: L1 hit ratio under static schedule 5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 0 : L1 (blackscholes - fluidanimate)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 1 : L1 (vips - x264)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 2 : L1 (canneal - freqmine)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 Core 3 : L1 (dedup - facesim)

Figure A.15: L1 hit ratio under static schedule 6.

90

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 0 : L1 (blackscholes -freqmine)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Core 1 : L1 (vips - facesim)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 2 : L1 (canneal - fluidanimate)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 3 : L1 (dedup - x264)

Figure A.16: L1 hit ratio under static schedule 7.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 0 : L1 (dynamic)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 1 : L1 (dynamic)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 2 : L1 (dynamic)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Core 3 : L1 (dynamic)

Figure A.17: L1 hit ratio under dynamic-offline schedule.

91

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 0 : L1 (cache-aware)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 1 : L1 (cache-aware)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 2 : L1 (cache-aware)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Core 3 : L1 (cache-aware)

Figure A.18: L1 hit ratio under adaptive cache-hierarchy-aware scheduling.

92

A.3 L2 Hits/Misses Variations

0

5000

10000

15000

20000

25000 L2 Hits/Misses

(blackscholes - vips) (canneal - dedup) (facesim - x264) (fluidanimate - freqmine)

0

5000

10000

15000

20000

25000 L2 Hits/Misses

(blackscholes - canneal) (vips - dedup) (facesim - fluidanimate) (x264 - freqmine)

0

5000

10000

15000

20000

25000 L2 Hits/Misses

(blackscholes - dedup) (vips - canneal) (facesim - freqmine) (x264 - fluidanimate)

0

5000

10000

15000

20000

25000 L2 Hits/Misses

(blackscholes - facesim) (vips - fluidanimate) (canneal - x264) (dedup - freqmine)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000 L2 Hits/Misses

(blackscholes - x264) (vips - freqmine) (canneal - facesim) (dedup - fluidanimate)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000 L2 Hits/Misses

(blackscholes - fluidanimate) (vips - x264) (canneal - freqmine) (dedup - facesim)

0

5000

10000

15000

20000

25000 L2 Hits/Misses

(blackscholes - freqmine) (vips - facesim) (canneal - fluidanimate) (dedup - x264)

Figure A.19: L2 hits and misses under static scheduling schemes.

93

0

5000

10000

15000

20000

25000 L2 Hits/Misses

(dynamic)

0

5000

10000

15000

20000

25000 L2 Hits/Misses

(cache-aware)

Figure A.20: L2 hits and misses under dynamic offline and adaptive cache-
hierarchy-aware scheduling schemes.

94

A.4 L2 Hit Ratio Variations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 L2 Hit Ratio

(blackscholes - vips) (canneal - dedup) (facesim - x264) (fluidanimate - freqmine)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 L2 Hit Ratio

(blackscholes - canneal) (vips - dedup) (facesim - fluidanimate) (x264 - freqmine)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 L2 Hit Ratio

(blackscholes - dedup) (vips - canneal) (facesim - freqmine) (x264 - fluidanimate)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 L2 Hit Ratio

(blackscholes - facesim) (vips - fluidanimate) (canneal - x264) (dedup - freqmine)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 L2 Hit Ratio

(blackscholes - x264) (vips - freqmine) (canneal - facesim) (dedup - fluidanimate)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 L2 Hit Ratio

(blackscholes - fluidanimate) (vips - x264) (canneal - freqmine) (dedup - facesim)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 L2 Hit Ratio

(blackscholes - freqmine) (vips - facesim) (canneal - fluidanimate) (dedup - x264)

Figure A.21: L2 hit ratio under static scheduling schemes.

95

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 L2 Hit Ratio

(dynamic)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 L2 Hit Ratio

(cache-aware)

Figure A.22: L2 hit ratio under dynamic offline and adaptive cache-hierarchy-
aware scheduling schemes.

96

A.5 Performance Variations of Benchmarks

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 blackscholes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 blackscholes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 blackscholes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 blackscholes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 blackscholes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 blackscholes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 blackscholes

Figure A.23: IPC of blackscholes under static scheduling schemes.

97

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 blackscholes (dynamic)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 blackscholes (cache-aware)

Figure A.24: IPC of blackscholes under dynamic offline and adaptive cache-
hierarchy-aware scheduling schemes.

98

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 vips

0

0.1

0.2

0.3

0.4

0.5

0.6 vips

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 vips

0

0.1

0.2

0.3

0.4

0.5

0.6 vips

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 vips

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 vips

0

0.1

0.2

0.3

0.4

0.5

0.6 vips

Figure A.25: IPC of vips under static scheduling schemes.

99

0

0.1

0.2

0.3

0.4

0.5

0.6 vips (dynamic)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 vips (cache-aware)

Figure A.26: IPC of vips under dynamic offline and adaptive cache-hierarchy-
aware scheduling schemes.

100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 canneal

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 canneal

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 canneal

0

0.05

0.1

0.15

0.2

0.25

0.3 canneal

0

0.05

0.1

0.15

0.2

0.25 canneal

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 canneal

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 canneal

Figure A.27: IPC of canneal under static scheduling schemes.

101

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 canneal (dynamic)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 canneal (cache-aware)

Figure A.28: IPC of canneal under dynamic offline and adaptive cache-hierarchy-
aware scheduling schemes.

102

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 dedup

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 dedup

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 dedup

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 dedup

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 dedup

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 dedup

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 dedup

Figure A.29: IPC of dedup under static scheduling schemes.

103

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 dedup (dynamic)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 dedup (cache-aware)

Figure A.30: IPC of dedup under dynamic offline and adaptive cache-hierarchy-
aware scheduling schemes.

104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 facesim

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 facesim

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 facesim

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 facesim

0

0.05

0.1

0.15

0.2

0.25

0.3 facesim

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 facesim

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 facesim

Figure A.31: IPC of facesim under static scheduling schemes.

105

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 facesim (dynamic)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45 facesim (cache-aware)

Figure A.32: IPC of facesim under dynamic offline and adaptive cache-hierarchy-
aware scheduling schemes.

106

0

0.05

0.1

0.15

0.2

0.25

0.3 x264

0

0.05

0.1

0.15

0.2

0.25 x264

0

0.1

0.2

0.3

0.4

0.5

0.6 x264

0

0.05

0.1

0.15

0.2

0.25 x264

0

0.05

0.1

0.15

0.2

0.25 x264

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 x264

0

0.05

0.1

0.15

0.2

0.25

0.3 x264

Figure A.33: IPC of x264 under static scheduling schemes.

107

0

0.05

0.1

0.15

0.2

0.25

0.3 x264 (dynamic)

0

0.05

0.1

0.15

0.2

0.25

0.3 x264 (cache-aware)

Figure A.34: IPC of x264 under dynamic offline and adaptive cache-hierarchy-
aware scheduling schemes.

108

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 fluidanimate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 fluidanimate

0

0.1

0.2

0.3

0.4

0.5

0.6 fluidanimate

0

0.1

0.2

0.3

0.4

0.5

0.6 fluidanimate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 fluidanimate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 fluidanimate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5 fluidanimate

Figure A.35: IPC of fluidanimate under static scheduling schemes.

109

0

0.1

0.2

0.3

0.4

0.5

0.6 fluidanimate (dynamic)

0

0.1

0.2

0.3

0.4

0.5

0.6 fluidanimate (cache-aware)

Figure A.36: IPC of fluidanimate under dynamic offline and adaptive cache-
hierarchy-aware scheduling schemes.

110

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 freqmine

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 freqmine

0

0.05

0.1

0.15

0.2

0.25

0.3 freqmine

0

0.05

0.1

0.15

0.2

0.25

0.3 freqmine

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35 freqmine

0

0.05

0.1

0.15

0.2

0.25 freqmine

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2 freqmine

Figure A.37: IPC of freqmine under static scheduling schemes.

111

0

0.05

0.1

0.15

0.2

0.25 freqmine (dynamic)

0

0.05

0.1

0.15

0.2

0.25

0.3 freqmine (cache-aware)

Figure A.38: IPC of freqmine under dynamic offline and adaptive cache-hierarchy-
aware scheduling schemes.

112

Vita

Ismail Akturk was born in 1984, in Trabzon, Turkey. He has spent his life in

Samsun until he received his high school diploma from Samsun Anatolian High

School in 2002. Then, he moved to Istanbul for his college education. He received

a bachelor’s degree in computer engineering from Dogus University in 2007. Af-

ter that, he obtained master’s degree in Electrical Engineering from Louisiana

State University in 2009. He worked in Center for Computation and Technol-

ogy at Louisiana State University as a graduate research assistant and focused

on distributed storage and data management systems. Then, he joined Bilkent

University in 2010, where he pursued master’s study in Computer Engineering,

and worked on computer architecture and memory systems.

113

