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ABSTRACT

MARKOV DECISION PROCESS FORMULATIONS
FOR MANAGEMENT OF PUMPED HYDRO ENERGY

STORAGE SYSTEMS

Parinaz Toufani

Ph.D. in Industrial Engineering

Advisor: Emre Nadar

Co-Advisor: Ayşe Selin Kocaman

May 2023

Renewable energy sources have received much attention to mitigate the high

dependence on fossil fuels and the resulting environmental impacts. Since the

variability and intermittency of such renewable sources lower the reliability and

security of energy systems, they should often be accompanied by efficient and

flexible storage units. This dissertation focuses on pumped hydro energy storage

(PHES) facilities, which are one of the most commonly used large-scale storage

technologies. We study the energy generation and storage problem for PHES

facilities with two connected reservoirs, where water is pumped from the lower

reservoir to the upper reservoir to store energy during low-demand/low-electricity

price periods, and released back to the lower reservoir to generate energy dur-

ing high-demand/high-electricity price periods. The first part of this disserta-

tion investigates the potential benefits of transforming conventional cascading

hydropower stations into PHES facilities by replacing turbines with reversible

ones. The second part compares the short-term cash flows obtained from dif-

ferent PHES configurations (cascading vs. non-cascading facilities, upstream vs.

downstream inflows, and closed-loop facilities). We formulate both problems as

Markov decision processes under uncertainty in the streamflow rate and electric-

ity price. We include the streamflow rate and electricity price as exogenous state

variables in our formulation. We analytically derive bounds on the profit im-

provement obtained from PHES transformation in the first part and bounds on

the revenue differences obtained from different configurations in the second part.

In the last part, we establish several structural properties of the optimal profit

function for general two-reservoir PHES systems. We show the optimality of a

state-dependent threshold policy for non-cascading PHES facilities when the elec-

tricity price is always positive. Leveraging our structural results, we construct a

heuristic solution method for more general settings when the electricity price can
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also be negative. In this dissertation, we also conduct comprehensive numerical

experiments with data-calibrated time series models to provide insights into the

optimal operation of PHES facilities, considering distinct seasons with different

streamflow rates, different negative electricity price occurrence frequencies, and

different system parameters.

Keywords: Markov decision process, negative electricty price, pumped hydro en-

ergy storage, renewable energy sources, state-dependent treshold policy, uncer-

tainty.



ÖZET

POMPAJ DEPOLAMALI HİDROELEKTRİK
SANTRALLERİN YÖNETİMİNE İLİŞKİN MARKOV

KARAR SÜRECİ FORMÜLASYONLARI

Parinaz Toufani

Endüstri Mühendisliği, Doktora

Tez Danışmanı: Emre Nadar

İkinci Tez Danışmanı: Ayşe Selin Kocaman

Mayıs 2023

Yenilenebilir enerji kaynakları, fosil yakıtlara olan yüksek bağımlılığı ve bunun

sonucunda ortaya çıkan çevresel etkileri azaltmak için büyük ilgi görmektedir.

Yenilenebilir kaynakların değişkenliği ve kesintili olması, enerji sistemlerinin

güvenilirliğini azalttığından, bu kaynaklara genellikle verimli ve esnek depolama

birimleri eşlik etmelidir. Bu çalışma, büyük ölçekli enerji depolama teknoloji-

lerinden yaygın olarak kullanılan, pompaj depolamalı hidroelektrik santraller-

ine (PHES) odaklanmaktadır. Bu çalışmada, düşük talep yada düşük elek-

trik fiyatı dönemlerinde enerji depolamak için suyun alt rezervuardan üst rez-

ervuara pompalandığı ve yüksek talep yada yüksek elektrik fiyatı dönemleri

sırasında enerji üretmek için susyun alt rezervuara geri bırakıldığı bağlantılı

iki rezervuara sahip PHES sistemleri için enerji üretim ve depolama problemi

ele alınmıştır. Çalışmanın ilk kısmı, tersinir türbinler kullanarak konvensiyonel

ardışık hidroelektrik santralleri PHES sistemlerine dönüştürmenin ve enerji de-

polamanın katma değerini araştırmaktadır. İkinci kısım, yukarı ve aşağı su akışlı,

ardışık olan ve olmayan, açık döngülü ve kapalı döngülü PHES sistemler üzere

olmak farklı PHES konfigürasyonlarından elde edilen kısa vadeli nakit akışlarını

karşılaştırır. Her iki problem için, sisteme giren su miktarı ve elektrik fiyatındaki

belirsizlikleri göz önünde bulundurularak, enerji üretim ve depolama kararlarını

doğru ve etkin bir şekilde ele alan Markov karar süreçleri geliştirilmiştir. Su akışı

ve elektrik fiyatı formülasyona dışsal durum değişkenleri olarak dahil edilmek-

tedir. İlk çalışmada PHES dönüşümünden elde edilebilecek kâr artışının sınırı

ve ikinci çalışmada ise farklı PHES konfigürasyonlarında elde edilen kazançlar

arasındaki farkın sınırları analitik olarak sunulmaktadır. Son bölümde, farklı

PHES konfigürasyonları için optimal kâr fonksiyonunun birkaç yapısal özelliği

gösterilmektedir. Bu yapısal özellikler kullanılarak, elektrik fiyatı her zaman

v



vi

pozitif olduğunda ardışık olmayan PHES tesisleri için duruma bağlı bir eşik poli-

tikası ve ardışık olan PHES tesisler veya elektrik fiyatının negatif olabileceği

daha genel durumlar için sezgisel bir çözüm yöntemi geliştirilmektedir. PHES

tesislerinin optimum operasyonu hakkında fikir vermek için veri kalibreli zaman

serisi modelleriyle farklı mevsimler, farklı su akış miktarları, farklı negatif elektrik

fiyatı oluşum sıklığı ve farklı sistem parametreleri için kapsamlı sayısal deneyler

yürütülmektedir.

Anahtar sözcükler : Markov karar süreci, negatif elektrik fiyat, pompaj depolamalı

hidroelektrik santral, yenilenebilir enerji kaynaklar, duruma bağlı bir eşik politika,

belirsizlik.
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Chapter 1

Introduction

In recent years, there has been a growing interest in operating electrical sys-

tems in a more efficient, reliable, and environmentally-friendly manner, which

has increased the need for electrical energy storage. Prior to integrating a spe-

cific storage unit with electrical systems, several concerns should be addressed,

such as whether it is better than alternatives in terms of costs and performance

and how well energy sources are utilized in the presence of storage systems. In

case energy storage systems are successfully integrated, they have an undeniable

contribution in improving the use of existing generation and transmission sources

by increasing the market value and availability of distributed sources [1]. Stor-

age facilities provide flexibility to respond peak values of demand as well as the

price shocks when there exist irregularities in the market. They also help address

the environmental regulations by increasing the use of renewable energy sources.

Although clean and renewable energy sources have received a lot of attention

in today’s modern world as a hedge against the significant dependence on fos-

sil fuels and the resulting environmental issues, the variability and intermittent

nature of these resources reduce the energy system’s reliability. This is one of

the primary reasons why they should be accompanied by mature, responsive, and

flexible storage systems. Common storage techniques used for electricity genera-

tion are batteries, compressed-air energy storage, super-capacitor energy storage,

hydrogen energy storage, and pumped hydro energy storage (PHES).
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PHES is one of the most widely used bulk electrical energy storage (EES)

technologies worldwide (accounting for 99% of the existing EES capacity) and

has been used for over a century to assist in load balancing in the electricity

industry. The installed capacity of PHES is expected to increase from 161 GW

in 2018 to 300 GW in 2030 and 325 GW by 2050 [2]. However, the popularity

of PHES stems not only from its historical use, but also from its technical, eco-

nomic, and environmental benefits. PHES can provide cost-effective, large-scale,

and long-term grid energy storage, as well as the added benefit of freshwater

storage capacity. PHES uses the potential energy of water by exchanging the

flow between two reservoirs located at different altitudes. Typically, PHES stores

gravitational potential energy by pumping water from a lower reservoir to an

upper reservoir (charging mode) during periods of low demand and excess power

generation. The stored water in the upper reservoir is released (discharging mode)

in order to produce power during the periods of high demand and supply shortfall

or high prices. That is, PHES is one of the prominent storage types in smoothing

the fluctuations arising from the demand side (e.g., demand variations and market

price shocks) as well as from the supply side (e.g., uncertainties due to renewable

energy generation). Currently, PHES is considered to be the most mature plat-

form available with promising round-trip efficiencies (70% to 80%), operational

flexibility to quickly respond to extreme load changes (minutes to seconds), long

useful lifetimes (between 50 and 100 years), and low operation and maintenance

costs [3, 4]. PHES facilities can be classified into two categories of closed-loop

and open-loop, depending on whether they are connected to any streamflow like

rivers. Closed-loop PHES facilities have natural or artificial reservoirs with no

connection to any streamflow. On the other hand, the upper and/or lower reser-

voirs of the open-loop PHES facilities are fed by natural streamflows [5].

Driven by the significance role of PHES facilities in the electricity industry, in

this dissertation, we study the energy generation and storage problem for a vari-

ety of realistic configurations of PHES facilities. The optimal energy generation

and storage policies for PHES facilities are required to adequately capture the

problem’s stochastic nature. As a result, we employ Markov decision processes

(MDP) in order to analyze this complex problem that includes sequential decision

2



making under uncertainty arising from multiple sources such as renewable power

plants and energy markets. We take a data-driven approach in order to model

the multi-dimensional uncertainties and calibrate the problem parameters. We

also examine the role geographical conditions and system configurations play in

profitability of PHES facility.

The rest of this dissertation is organized as follows. In Chapter 2, we present

the related literature on optimization of PHES facilities with an emphasis on un-

certainty. In Chapter 3, we evaluate the potential benefit of retrofitting existing

conventional cascading hydropower stations (CCHSs) with reversible turbines so

as to operate them as PHES facilities. We examine the energy generation and

storage problem for a CCHS with two connected reservoirs that can be trans-

formed into a PHES facility in a market setting where the electricity price can

be negative. We formulate this problem as an MDP under uncertainty in the

streamflow rate and electricity price. We analytically derive an upper bound

on the profit improvement that can be obtained from the PHES transformation.

We also conduct numerical experiments with data-calibrated time series models

and observe that the PHES facility provides a greater benefit under more limited

streamflow conditions or more frequently observed negative electricity prices.

In Chapter 4, we study the energy generation and storage problem for vari-

ous types of two-reservoir PHES facilities: cascading systems with the upstream

or downstream flow, non-cascading systems with the upstream or downstream

flow, and closed-loop facilitates. We provide the MDP formulation of these con-

figurations including the streamflow rate and electricity price uncertainty in our

formulation. We compare the short-term total cash flows obtained by running

different PHES configurations in a market setting where the electricity price can

be negative. We first derive theoretical bounds on the revenue gains obtained

from different PHES configurations. We then conduct comprehensive numerical

experiments by employing time-series models to formulate the evolution of our

exogenous state variables (streamflow rate and electricity price). We consider

three distinct seasons with different streamflow rates, different negative price oc-

currence frequencies, and different reservoir capacities. Our results show that: (1)

The open-loop facility with the upstream flow can yield cash flows that are up

3



to four times as large as those of the closed-loop facility; (2) The cash flow from

operating a large closed-loop facility can be achieved by operating an open-loop

facility with 10 times smaller reservoirs; and (3) The open-loop facility with the

downstream flow can be more advantageous than the open-loop facility with the

upstream flow (with an improvement of more than 10% in the cash flow) if the

negative electricity price occurs more than 30% of the time.

In Chapter 5, we establish several structural properties of the optimal profit

functions for different PHES configurations we consider in Chapter 4, when

the electricity price is strictly positive throughout the finite horizon. For non-

cascading PHES facilities, we show that the optimal energy generation and stor-

age policy can be specified as a state-dependent threshold policy when the elec-

tricity price is always positive. Inspiring by the derived structural knowledge,

we also develop a heuristic solution method that can be usefully employed in

a more general setting where the configuration can also be cascading and the

electricity price can be negative. We evaluate the performance of our heuristic

method for settings with different negative electricity price frequencies and sea-

sons. Based on our results, for non-cascading configuration the heuristic method

yields near-optimal solutions with a maximum distance of only 1.12% from the

optimal profit, and reduces the computation time of the optimal algorithm by

50.35% on average and by up to 56.47%. For the cascading configuration, we ob-

serve higher optimality gap percentages (with a maximum distance of 40.21%),

but with a higher computation time reduction of 79.2% on average and up to

82.3%. We also observe that the performance of our heuristic method for the

cascading configuration is positively impacted by an increase in the occurrence

frequency of negative prices.

In Chapter 6, we provide a summary of concluding remarks and some future

research directions and possible extensions of present work.
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Chapter 2

Literature Review

There is a vast amount of literature on the modeling and optimization of PHES in

exemplary or real-world power systems. There are also numerous review articles

focusing on PHES. Several review articles provide an overview of energy storage

technologies, including but not limited to PHES (see, for example, [6,7] and [8]).

Some PHES-review articles focus on the status of PHES development (see, for

example, [9, 10]). Some other articles summarize and classify the drivers of and

barriers to PHES development (see, for example, [11,12]). Several studies examine

the installed PHES generation capacity as well as the potential locations and

timelines for new PHES development (see, for example, [13]). The results of

such reviews can be a useful aid for researchers and practitioners seeking ways to

better allocate available resources to promote PHES development in the future.

Some articles consider PHES operations in various electricity markets (see, for

example, [14,15]). Some other articles focus on certain physical aspects of PHES

facilities, such as the power converter topologies of variable-speed PHES and

hydropower plants (see, for example, [16, 17]). Rehman et al. [18] provide a

comprehensive review on the analysis of PHES conditions and operations. They

examine the technical advances and capabilities of PHES as well as its potential

integration with renewable sources. Javed et al. [19] review the key challenges

with PHES implementation in hybrid power systems (HPS), taking into account

the economic, environmental, and technical aspects of solar-wind-PHES systems.

5



In a recent study, Mahfoud et al. [20] provide a detailed review on the optimal

operation of PHES-based energy systems.

Incorporating uncertainty into energy systems planning is needed to provide

a secure, reliable, and affordable energy supply. The role of uncertainty is also

critical for a variety of services PHES facilities can offer: (i) assisting in the in-

tegration of renewable energy into power systems by acting as a backup source

that serves as a hedge against the intermittency of renewable outputs and by

reducing the amount of renewable curtailment; (ii) providing energy arbitrage

benefits by responding effectively to the price changes in electricity markets (i.e.,

storing electricity when the price is low and selling it back to the grid when the

price is high); and (iii) providing ancillary services such as frequency control,

black start, and power regulation. It is important to consider supply (i.e., renew-

able energy sources), demand, and price uncertainties in modeling and analyzing

these services of PHES. This complex analysis does, in fact, involve optimization

under uncertainty. There are valuable reviews of the uncertainty modeling tech-

niques for decision-making in broadly defined energy systems in [21–23]. To our

knowledge, however, there is no review of the optimization problems for PHES

systems, as a specific energy storage option, with an emphasis on uncertainty.

This chapter aims to fill this gap and reviews the literature dealing with the

sizing and/or operational problems for PHES systems under uncertainty. Specif-

ically, this review highlights the importance of considering uncertainty in PHES

optimization and provides timely insights into this critical area. Although this

review focuses on the uncertainty aspect of the problem, it also unravel several

other major aspects relevant to the modeling of PHES facilities in the literature.

At the end of this chapter, we highlight several research directions to draw the

attention of the operations research community to the needs and challenges in

PHES optimization yet to be addressed.
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2.1 Review methodology

The primary source for our review process is the Web of Science database. We

searched for ”pumped storage*” AND optim* AND (stochastic OR uncertain*

OR random) as well as ”pumped hydro*” AND optim* AND (stochastic OR

uncertain* OR random) to find relevant studies. We restricted our search to

English-language journal articles during the review process, including all articles

published between 2000 and January 2022. We also included additional articles

based on the reference lists of the relevant studies found and our previous research

experience to maximize the scope of our review. After a preliminary evaluation of

140 articles by title and abstract, we identified 125 articles to review in detail and

classify according to problem type, energy sources paired with PHES, physical

characteristics of PHES, uncertain system components, and solution methodol-

ogy. Figure 2.1 illustrates the number of articles included in our review that

were published in scientific journals each year. Figure 2.2 shows the percentage

breakdown of the articles into the scientific journals, restricted to those journals

in which at least four articles in our review were published (51% of the reviewed

articles are from this list of journals).

Figure 2.1: Number of articles per year.

The rest of this chapter is organized as follows: Chapter 2.2 classifies the

articles based on the problem definition and objective. Chapter 2.3 classifies

7



Figure 2.2: Percentage of articles per journal.

the articles based on PHES characteristics (configuration, pump/turbine, head,

efficiency, and case study). Chapter 2.4 discusses the energy sources coupled with

PHES facilities. Chapter 2.5 discusses the sources of uncertainty that typically

arise in PHES optimization. Chapter 2.6 presents the approaches used to model

such uncertainties. Chapter 2.7 presents the solution methodologies adopted in

PHES optimization. Chapter 2.8 concludes by highlighting the key research gaps.

2.2 Classifications of the PHES-optimization

problems

According to Frangopoulos [24], the optimization problems in the energy systems

literature are broadly concerned with three stages: synthesis, design, and oper-

ation. Our detailed reading of the articles suggests that we can categorize the

optimization problems for PHES systems under uncertainty based on (i) problem

definition and (ii) problem objective.
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2.2.1 Classification based on the problem definition

We first broadly categorize the PHES problems under uncertainty into two groups

based on the problem definition: sizing problems and operational problems. The

first group includes studies aiming to find the optimal sizing and configuration

of PHES facilities, usually in HPS. The storage system should be configured

throughout the design of HPS to ensure a reliable and cost-effective energy sup-

ply. The optimal sizing of a PHES facility is critical in recovering discarded

generated energy for a balanced distribution while dealing with seasonal short-

ages or excesses of renewable sources. The second group includes studies aiming

to find the optimal energy generation and storage policies for PHES facilities

in HPS. In general, the joint optimization of other sources in HPS with PHES

entails complex and sequential decision making over a planning horizon with an

arbitrary number of periods. The typical operational decisions in each period

involve the amount of energy that should be sold to or purchased from the mar-

ket, the amount of energy that should be used for pumping water, the amount

of energy that should be generated by releasing water, the amount of renewable

energy that should be curtailed, and the amount of water that should be spilled

from the PHES reservoirs. Figure 2.3 presents a Venn diagram with the numbers

of studies that fall into these two categories. Our review reveals that only a few

studies (10 out of 125 articles) focus on the sizing problems, the vast majority

deal with the operational problems and only two studies address both problem

types via a single optimization framework, as can be seen from the intersection

area.

We can also classify the articles according to the length of planning horizon

considered in optimization: short-term (from hours to days), medium-term (from

months to a year), and long-term (over a year). Table 2.1 exhibits these cate-

gories. Two articles consider both short- and long-term planning horizons. This is

the case in [25] and [26]. Only one article considers both medium- and long-term

horizon [27]. This classification reveals that approximately 77% of the studies

optimize their problems for short-term planning horizons.
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Figure 2.3: Classification based on the problem definition.

2.2.2 Classification based on the problem objective

The majority of the studies in the literature concentrated on energy generation/s-

torage planning and reliability of hybrid systems, including PHES facilities. Some

studies compared various storage options to demonstrate the validity of proposed

hybrid configurations using techno-economic analysis. In particular, the objec-

tives studied in the literature can be classified into the following [19]:

� Reliability: proposing different approaches to ensure system reliability by

mitigating the variability of renewable energy sources.

� Techno-economic analysis: demonstrating the importance of proposed con-

figurations technically and economically by comparing them with other op-

tions.

� Feasibility analysis: proposing feasibility studies for incorporating PHES

into power generation systems.

� Performance evaluation: conducting comparative performance analysis of

different HPS, including a PHES facility.
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Table 2.1: Classification based on the length of the planning horizon used in
optimization.

Time Horizon References

Short-term

[28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57],
[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72],
[73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87],
[88], [89], [90], [91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101],
[102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113],
[114], [115], [116], [117], [118], [119], [120], [121], [122], [123]

Medium-term
[124], [125], [126], [127], [128], [129], [130], [131], [132], [133], [134], [135],
[136], [137], [138], [139], [140], [141]

Long-term [142], [143], [144], [145], [146], [147], [148], [149]

� Energy management and scheduling: proposing energy management strate-

gies for the operation of HPS, including a PHES facility.

We can also categorize the problem objectives based on whether they are

single-objective (involving only one objective function to be optimized) or multi-

objective (involving more than one objective function to be optimized simulta-

neously) and whether they are minimization or maximization. Table 2.2 shows

the global number of reviewed articles within each category. The majority of the

articles consider single-objective optimization problems. Among them, the most

commonly used objectives are maximizing the profit and minimizing the imbal-

ance costs in electricity markets. 35 of 125 articles study energy commitment

decisions in electricity markets. The majority of these articles optimize day-

ahead market commitment decisions ( [30–32], [35], [37], [38], [44], [49], [51–54],

[57], [58], [61], [92], [93], [95], [102], [104], [110], [111], [113], [116], and [128]), four

articles consider ancillary market operations ( [63], [68], [71], and [130]), and only

three articles optimize both day-ahead and intraday market commitment deci-

sions ( [66], [118], and [132]). PHES can provide several different services such as

backup power for renewable sources and energy arbitrage [150]. PHES is mostly

integrated with renewable sources, particularly wind energy, as a backup source

to reduce possible energy imbalances in electricity markets. PHES can also be

operated standalone in various electricity markets as a generator or an electricity
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consumer. This is the case in [63], [102], [104], [113], [118], [128], [130], and [132].

Only two of them ( [128] and [113]) use PHES for arbitrage purposes.

We should note that some studies have objective structures that do not fall

into any of the categories in Table 2.2. For example, Ntomaris and Bakirtzis

[32] develop a bi-level optimization model in which the upper level identifies the

optimal energy offers by maximizing the profit, while the lower level specifies

how these energy offers should be dispatched by minimizing the production and

wind spillage costs. Similarly, Alharbi and Bhattacharya [102] propose a bi-level

model with the upper level maximizing the profit and the lower level maximizing

social welfare. Ding et al. [66] propose a rolling optimization methodology for the

operations of wind-PHES systems in day-ahead, intra-day and real-time markets.

Castronuovo et al. [51] consider three sub-problems for a wind farm paired with

a PHES facility: (i) the wind energy is stored in the PHES facility in low-price

periods to sell it in high-price periods to maximize revenue; (ii) the PHES facility

is used as a reserve option for deviations in wind generation to maximize profit;

and (iii) unlike the previous two problems, the PHES facility is used to minimize

regulation costs (thus increase revenue), but the wind energy trading is ignored.

Ding et al. [39] construct three formulations for a wind farm paired with a PHES

facility: a deterministic mixed integer programming formulation (where the wind

uncertainty is ignored), a chance-constrained formulation, and a scenario-based

formulation, all with the objective of maximizing the profit. Yahia and Pradhan

[78] examine the PHES scheduling problem with simultaneous and sequential

stochastic models. The simultaneous model minimizes the maintenance costs and

demand-supply disparity, whereas the sequential model minimizes the demand-

supply disparity and the total number of pump switches in the first and second

stages, respectively. Finally, some articles have the objective of evaluating the

reliability and feasibility of their proposed energy systems with PHES. This is

the case in [76], [91], and [145].
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2.3 Classification based on the PHES character-

istics

2.3.1 Configuration of the PHES facility

The design of the PHES systems is severely constrained by site characteristics,

such as whether sufficient access to water sources exists and whether favorable

topographical and geographical conditions exist. Their operational designs can

be classified into two types: open-loop PHES facilities (58% of the articles),

which are constantly connected to a flowing water source, and closed-loop PHES

facilities (42% of the articles), which are isolated from any water source. Table 2.3

and Figure 2.4 illustrate the breakdown of the reviewed articles into these PHES

configurations. In nearly half of the studies that consider the open-loop PHES

facilities, the upper reservoir has a certain capacity limit, but the lower reservoir

has no specified capacity limit. Since the lower reservoir is regarded as a sea

with infinite capacity in these studies, their PHES facilities are considered open-

loop. Streamflow is considered stochastic in 30.1% of the articles that include it

as a component in the optimization of the open-loop PHES facilities, while it is

assumed to be deterministic in 23.3%.
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Table 2.3: Classification based on the PHES configuration.

PHES Configuration References

Open-loop

[26], [28], [29], [37], [38], [39], [42], [43], [45], [46], [51], [52], [53],

[56], [57], [59], [60], [62], [67], [69], [70], [73], [75], [77], [81], [82],

[83], [85], [86], [87], [88], [89], [91], [92], [93], [94], [97], [98], [99],

[100], [101], [104], [105], [106], [107], [108], [110], [113], [116], [117],

[118], [121], [123], [125], [127], [128], [129], [131], [132], [133], [134],

[136], [138], [139], [140], [141], [143], [144], [146], [148], [149]

Closed-loop

[25], [27], [30], [31], [32], [33], [34], [35], [36], [40], [41], [44], [47],

[48], [49], [50], [54], [55], [58], [61], [63], [64], [65], [66], [68], [71],

[72], [74], [76], [78], [79], [80], [84], [90], [95], [96], [102], [103], [109],

[111], [112], [114], [115], [119], [124], [126], [130], [135], [137], [142],

[145], [147]

Figure 2.4: PHES configurations considered in the reviewed articles.

Although the energy stored in a closed-loop PHES facility is often potentially

less than the energy stored in a comparable-size open-loop facility, the closed-loop

PHES facilities account for a considerable fraction of the reviewed case studies

since the potential locations are, in general, far away from an existing river or
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body of water. Furthermore, since there exists significant environmental and

social opposition to damming or altering rivers, the closed-loop facilities seem to

have a distinct advantage over the open-loop facilities. Nevertheless, constructing

the open-loop facilities from the existing conventional hydropower systems by

replacing their turbines with reversible ones has recently gained popularity [121].

Only two studies ( [120] and [122]) considered both closed-loop and open-loop

configurations in their optimization problems.

2.3.2 Type of the pump/turbine

A single pump-turbine can perform both water pumping and power generation in

the PHES facilities. This is known as a reversible pump-turbine. Separate pumps

(for water pumping) and turbines (for power generation) can also be utilized in the

PHES facilities. The PHES facility can switch between generation and pumping

modes in a matter of minutes. While the initial PHES facilities used separate

pumps and turbines, the reversible pump-turbine has been widely adopted since

the middle of the 20th century [18]. Among the reviewed articles, only [51]

and [53] explicitly mention that they consider a reversible pump-turbine as well

as a pump and a turbine separately.

Moreover, as an alternative to a traditional fixed-speed pump-turbine, a

variable-speed one with an asynchronous motor-generator allows for power regu-

lation during both pumping and generation modes, thereby increasing the system

efficiency and flexibility. The variable-speed pump-turbine was introduced in the

1990s as a major advance in the operation of PHES facilities in Japan. Higher

efficiencies under varying conditions, shorter switchover times between pumping

and generation modes, higher ramp rates, and faster response times were all made

possible by the pump-turbine runners’ ability to change their rotation speed [151].

The majority of the reviewed articles discuss neither the type of pump-turbine

nor the level of flexibility in its speed. Several papers, such as [70] and [94],

state that the variable-speed pump-turbine is taken into account in their analy-

ses. A fixed-speed pump-turbine is considered in [76] and both fixed-speed and
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variable-speed pump-turbines are considered in [79] and [102].

2.3.3 Head

The head is the difference in altitude between the water intake and water de-

parture points. Although it typically varies between 100 and 800 meters, longer

and shorter heads were also installed based on physical conditions [152]. One

of the main challenges in modeling the PHES-optimization problems is the head

variation (also known as the head effect), which directly affects the efficiency and

operating limits of the PHES facilities. For computational flexibility, the head

is assumed to be fixed in most PHES-optimization problems, regardless of the

reservoir and pump/turbine characteristics. However, in the context of PHES

optimization, disregarding these nonlinear relations may result in sub-optimal or

even infeasible solutions. About 9% of the reviewed articles allow for a variable

head in their problem settings. This is the case in [39], [59], [62], [69], [93], [106],

[112], [123], [130], [133], and [136]. Most of these studies take into account the

head dependency constraints via nonlinear or stochastic optimization frameworks.

Several studies consider both the PHES facilities and the conventional hydropower

stations, but they incorporate the variable head into their formulations for the

conventional hydropower stations only; see, for example, [60] and [70].

2.3.4 Efficiency

The efficiency of a particular pump/turbine design is affected by the internal

leakage and friction of its mechanical components with one another and with the

water flowing through them. The pump/turbine efficiency improves as the flow

rate of handled water increases, and the relative importance of losses decreases

as the pump/turbine size increases [153]. The best pump/turbine efficiency levels

typically range between 0.86 and 0.95, depending on the effective water head and

flow rate between two reservoirs. One of the most difficult aspects of PHES op-

timization is the need to model the nonlinear pump/turbine performance curves
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that describe the relationship between output power, water discharge flow, and

net head between the reservoirs. When choosing a pump-turbine for PHES in-

stallments, it is crucial to take into account the variable head and volume of

water flowing through it to correctly calculate the efficiency dynamics of PHES.

However, for the sake of simplicity, the vast majority of studies assume that the

pump/turbine efficiency is a fixed constant free of such interactions. Only a few

articles ( [39], [59], [68], [71], [79], [112], [121], [130], and [133]) address the vari-

ability of pump/turbine efficiency. In addition, Afshari Igder et al. in [93] allow

for a variable efficiency level for the turbine, but assume a fixed efficiency level

for the pump.

2.3.5 Type of the case study

A large portion of today’s installed PHES capacity was built in the 1960s, 1970s,

and 1980s, with a huge growth rate in Europe, certain parts of Asia, and North

America. Some of the initial PHES facilities were built in the Alpine regions of

Switzerland and Austria, where there is an ample supply of water and a natural

topography suitable for PHES construction [18]. The rise of PHES capacity in the

United States can be attributed to nuclear power plant installments. Although

the rise of PHES capacity in Europe is in line with the nuclear capacity growth

rate, it is often linked to abundant hydropower resources [13]. Currently, China

has the largest hydropower capacity, followed by the European Union, Brazil,

Japan, and the United States [2]. Table 2.4 provides a detailed list of the case

studies used in the reviewed literature. The articles with hypothetical cases

constitute approximately 55% of the reviewed articles listed.
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Table 2.4: Classification based on the case studies.

Case Study References

Hypothetical Case Studies

[25], [28], [29], [30], [31], [33], [35],

[40], [41], [42], [45], [46], [47], [48],

[49], [50], [52], [53], [54], [55], [56],

[59], [130], [131], [64], [65], [67],

[68], [71], [72], [73], [74], [75], [76],

[77], [80], [81], [82], [85], [86], [87],

[90], [92], [93], [94], [95], [97], [98],

[99], [101], [102], [103], [104], [107],

[108], [109], [112], [113], [114],

[115], [117], [119], [123], [129],

[135], [137], [138], [139], [146]

Real Case Studies

Africa [27], [36], [78], [141]

Asia [39], [62], [66], [69], [70], [84], [89],

[96], [105], [116], [136], [140]

Europe [26], [32], [34], [37], [38], [44], [51],

[57], [58], [60], [61], [79], [83], [88],

[91], [106], [118], [110], [111], [125],

[126], [128], [132], [133], [134],

[139], [142], [143], [144], [145],

[147]

North America [43], [63], [120], [121], [122], [124],

[127], [148], [149]

2.4 Classification based on other sources inte-

grated with PHES

PHES plays a crucial role in load balancing and supplementing intermittent re-

newable sources. Using multiple energy sources in conjunction with PHES can
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successfully overcome the drawbacks related to partial predictability and limited

control of renewable sources and can increase their penetration into the grid.

PHES is also recommended for use as a storage unit in remote areas to fill energy

gaps caused by fluctuations in renewable energy supply. These power systems,

which are frequently referred to as HPS, can be grouped into three major classes:

wind-PHES, solar-PHES, and solar-wind-PHES power systems. Table 2.5 ex-

hibits our classification of the articles that consider HPS. In addition to wind

and solar, some HPS with PHES use other energy sources such as thermal power

plants, gas power plants, and fuel-fired plants, which we classify as “other” in Ta-

ble 2.5. Zheng et al. [124] compare storage dispatch strategies of various storage

facilities, including the PHES facility, that are not integrated with other energy

sources. Thus we do not include this study in Table 2.5.

About 15% of the reviewed articles do not consider any HPS. The most com-

monly investigated HPS type is PHES integrated with wind generation: about

43% of the reviewed articles consider this HPS type. While about 29% of the re-

viewed articles consider PHES integrated with wind and solar generation, about

6% of the reviewed articles study PHES paired with an energy source other than

wind and solar. The remaining few articles consider PHES integrated with solar

generation.
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Table 2.5: Classification based on the energy source coupled with PHES.

Energy source References

PHES-

Wind [29], [30], [32], [36], [37], [39], [50], [51], [52], [53], [54],

[56], [57], [58], [61], [65], [66], [69], [71], [76], [77], [90],

[91], [93], [105], [111], [120], [127], [142], [143], [147]

Wind-Other [27], [33], [34], [35], [40], [47], [48], [55], [62], [64],

[79], [81], [84], [92], [94], [98], [103], [108], [109], [110],

[114], [125], [126]

Solar [70], [72], [119], [136], [139], [140]

Solar-Other [45]

Solar-Wind [49], [68], [73], [89], [95], [96], [115], [135], [138], [141],

[145], [146], [148]

Solar-Wind-Other [28], [31], [38], [41], [42], [44], [74], [75], [80], [82],

[83], [85], [86], [87], [97], [99], [101], [107], [116], [117],

[123], [144], [149]

Other [25], [46], [63], [67], [88], [102], [130], [131]

2.5 Classification based on the source of uncer-

tainty

As discussed in the previous sections, different system components are involved in

PHES-related optimization studies. Incorporating the uncertain nature of these

components improves the precision of optimization models, leading to more real-

istic results and stronger insights. Uncertain parameters in PHES optimizations

often include operational parameters such as electricity demand, economic pa-

rameters such as electricity price, and generation sources such as natural inflow

feeding the PHES facility, wind speed, and solar radiation. The variable and un-

certain nature of renewable energy sources, demand, and prices create significant

operational uncertainty, making it challenging to match supply and demand. In
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this regard, we provide a detailed table in Table 2.6 showing which system compo-

nent is considered deterministic (denoted by D) and/or stochastic (denoted by S)

in the reviewed articles. The wind is the most commonly studied component (72%

of the articles), followed by the price (52.8% of the articles), while the streamflow

is the least explored component (32% of the articles). A very large portion of the

studies that include the wind component in their optimization problems take into

account the wind uncertainty (95%). The stochasticity of wind speed has thus

been widely studied in the reviewed articles. On the other hand, more than half

of the studies that include the demand component in their optimization problems

take it as a deterministic component (59%).
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Table 2.6: Classification based on the source of uncertainty.

Paper Wind Solar Streamflow Demand Price

[28] S S D D —

[29] S — D D D

[30] S — — — D

[142] S — — — S

[31] S S — D D

[32] S — — D D

[33] S — — S D

[25] — — — — S

[34] S — — D —

[35] S — — D D

[124] — — — S D

[125] S — — D —

[36] S — — D D

[126] S — — D —

[127] S — D — S

[37] S — — — S

[38] S S — — S

[39] D&S — — D D

[128] — — S S D

[40] S — — D D

[41] S S — D D

[42] S S S S —

[43] — — — D S

[44] S D — S D

[45] — S — S —

[46] — — S D D

[47] S — — D —

[48] S — — D —

[49] S S — D S

[50] S — — D —

[51] D&S — D — D

Paper Wind Solar Streamflow Demand Price

[52] S — — D D

[53] S — — S D

[143] S — S D S

[129] — — S — S

[54] S — — — S

[55] S — — D —

[56] D&S — D D D

[57] S — — D D

[58] S — — — D

[59] — — D&S — D

[60] — — D — S

[130] — — S — S

[61] S — — — S

[62] S — D D —

[63] — — — D S

[131] — — S — S

[64] S — — S —

[65] S — — — D

[66] S — — — D

[26] — — S S —

[132] — — D S S

[67] — — — S —

[68] S S — — S

[69] S — S D —

[70] — S S D —

[71] S — — — —

[72] — S — — —

[73] S S D S —

[74] S S — S S

[75] S S — D —

[76] S — — — —
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Paper Wind Solar Streamflow Demand Price

[77] S — — — —

[78] — — — S —

[79] S — — S —

[80] S S — D —

[81] S — D S —

[82] S S — D —

[83] S S D S —

[84] S — — — —

[85] S S — D —

[86] S S — D —

[87] S S — D —

[88] — — S D —

[133] — — S — S

[89] S S D S D

[90] S — — — —

[91] S — — — —

[144] S S S — D

[92] S — — — S

[93] S — D — S

[94] S — S S —

[95] S S — S —

[96] S S — — D

[97] S S — D —

[145] S S — D —

[98] S — — S —

[99] S S — D —

[100] — — D — S

[101] S S D D S

[134] — — — — S

[102] — — — D&S —

[103] D&S — — D&S —

[104] — — — — S

Paper Wind Solar Streamflow Demand Price

[105] S — — D —

[106] — — — — S

[107] S S — D —

[108] S — — D —

[135] S S — S S

[109] S — — D —

[110] S — S S S

[111] S — — — S

[112] — — — — S

[113] — — — — S

[114] S — — D —

[136] — D D S —

[115] S S — S —

[116] S S — S —

[146] S S — S S

[117] S S — — —

[137] — — — — S

[118] — — D — S

[119] — S — S S

[147] S — — — S

[138] S S D — —

[139] — S — S S

[140] — S S S —

[141] S S — D —

[148] S S S S —

[27] S — — D —

[149] S S — D —

[120] S — S — S

[121] — — D&S — D&S

[122] — — S — S

[123] S S S D —
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Figures 2.5 and 2.6 contain Venn diagrams that summarize our detailed ob-

servations in Table 2.6. Figure 2.5 shows the numbers of studies that include

stochastic or deterministic components of demand, price, solar, streamflow, and

wind. For example, 11 studies consider only price and wind components in their

analysis. The most commonly observed set of components is the set of demand

and wind, which appears in 16 studies, followed by 15 studies with the set of

demand, solar, and wind. We then restrict our attention to the studies incor-

porating the inherently stochastic nature of these components into their analy-

ses. Figure 2.6 shows the numbers of studies that include the stochasticities of

demand, price, solar, streamflow, and wind. Consistent with our previous dis-

cussion, the most widely studied stochasticity is that of wind alone. The wind

is the only stochastic component in 33 articles. The second most widely studied

stochasticity is that of wind and solar together. Another important observation

is that the combinations of stochastic components that are absent in the reviewed

articles include the price component. These combinations are (i) price and solar;

(ii) price, solar, and streamflow; (iii) price, wind, solar, and streamflow; (iv) price,

wind, and demand; (v) price, demand, and streamflow; and (vi) price, demand,

streamflow, and solar. Finally, none of the reviewed articles considers all of the

five components together stochastic.
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Figure 2.5: Numbers of studies that include the components of demand, price,

solar, streamflow, and wind.

Figure 2.6: Numbers of studies that include the stochasticities of demand, price,

solar, streamflow, and wind.
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2.6 Classification based on the uncertainty

modeling approaches

Optimization models can be divided into two broad classes: deterministic mod-

els that ignore uncertainty in the problem and models that consider uncertainty,

partially or fully. It is vital to take into account uncertainties in decision-making

in the energy sector because the partial predictability and limited controllability

of the components involved in the energy systems are unavoidable. Systemati-

cally assessing the magnitude of uncertainties and incorporating the nonnegligible

uncertainties into optimization models improves the robustness of the obtained

results and provides more realistic insights. The impacts of uncertainties should

be thoroughly investigated to propose effective strategies for dealing with com-

plex system dynamics and develop quantitative analyses for correctly solving

real-world problems.

To deal with uncertain parameters, various methods have been developed. The

most commonly used methods are stochastic programming (SP), stochastic dy-

namic programming (SDP)/Markov decision process (MDP), robust optimization

(RO), and chance-constrained programming (CCP). The level of available infor-

mation about the model components and the assumptions about how it should

be handled determine the appropriate modeling framework. Table 2.7 exhibits

our classification of the articles based on the uncertainty modeling methods.
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Table 2.7: Classification based on the uncertainty modeling approaches.

Modeling Framework References

Stochastic Programming

[26], [30], [32], [34], [37], [43], [44],

[49], [57], [61], [67], [78], [79], [81],

[106], [118], [128], [129], [130],

[135], [140], [143]

Stochastic Dynamic Programming/Markov Decision Process

[33], [36], [46], [59], [63], [77],

[100], [115], [120], [121], [122],

[131], [132], [147]

Robust Optimization
[27], [41], [55], [80], [84], [90], [94],

[109], [113], [119], [123], [139]

Chance-Constrained Programming
[28], [29], [51], [66], [77], [112],

[116], [127], [141]

Others

[25], [31], [35], [38], [40], [42], [45],

[47], [48], [50], [52], [53], [54], [56],

[58], [60], [62], [64], [65], [66], [68],

[69], [70], [71], [72], [73], [74], [75],

[76], [77], [82], [83], [85], [86], [87],

[88], [89], [91], [92], [93], [95], [96],

[97], [98], [99], [101], [102], [103],

[104], [107], [108], [111], [114],

[117], [124], [125], [126], [133],

[134], [136], [137], [138], [142],

[144], [145], [146], [148], [149]

The traditional approach of SP can be used if the probability distributions

of the underlying uncertain components are known [154]. One can make proba-

bilistic distributional assumptions, estimate the parameters using historical data,

and then develop a stochastic optimization model. Typically, two- or multi-stage

stochastic programs are considered, with the decisions of the first stage made

before any uncertainty is resolved. In general, different scenarios are generated

to capture uncertainties in the following stages, in which the decisions are made
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based on the occurrence scenario. Scenario analysis techniques are often needed

when historical data is not informative enough. Stochastic programs may have in-

tense computational requirements for large-scale problems, especially when there

are a large number of scenarios. The studies capturing the uncertainties via two-

stage stochastic programming are those of [30], [32], [37], [44], [49], [57], [61],

[78], [79], [81], [106], [130], [135], and [140]. Alvarez et al. [110] propose a two-

stage stochastic programming for the unit commitment problem along with a

stochastic dual dynamic programming for the generic storage model. Energy of-

fers, contractual agreements, and bidding decisions are commonly assumed to be

first-stage decisions, particularly for the day-ahead scheduling problems, whereas

operational decisions (energy generation, energy storage, curtailment) are mostly

assumed to be second-stage decisions, especially for the intraday outlook. Among

the reviewed articles, [26], [43], [67], [118], [128], [129], and [143] develop multi-

stage stochastic programs.

Some other studies model the uncertainty via SDP. Murage and Anderson [36]

develop an SDP model to find the optimal control strategy for PHES integrated

with wind power generation to meet the committed dispatch. Zhao and Davi-

son [59] employ SDP models to determine the best way toutilizethe available

limited water for power generation. Reuter et al. [147] offer an SDP model for

evaluating the economics of using a hybrid technology combining wind power gen-

eration and PHES. Picarelli and Vargiolu [100] consideran energy system consist-

ing ofone or two hydropower plants with linked basins by introducing a stochastic

optimal control problem with state constraints. Ni et al. [63] characterize the

market offer curves by developing a stochastic optimization formulation that is

separable in terms of individual units and taking a solution approach combining

Lagrangian relaxation (LR) and SDP. Carmona and Ludkovski [131] investigate

the valuation of energy storage facilities via a stochastic optimal control frame-

work. Forouzandehmehr et al. [46] take a stochastic differential game-theoretical

approach to analyze the competitive interactions between an autonomous PHES

facility and a thermal power plant and to optimize power generation and storage

decisions. Finally, Kiran and Kumari [33] model the wind speed as following a

Weibull distribution, and penalize over- and under-estimation of wind generation
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in their objective function.

Some studies offer an MDP framework for sequential decision-making when

outcomes are partially random and under partial control of the decision-maker.

For example, Avci et al. [120] study the energy generation and storage problem of

a hybrid energy system consisting of a wind farm and a PHES facility, modeling

the problem as an MDP and characterizing the optimal policy structure. Toufani

et al. [121] assess the potential benefits of transforming an existing cascading

hydropower station into a PHES facility via an MDP framework that captures the

price and streamflow uncertainties. In another study, Toufani et al. [122] compare

the short-term cash-flow performance of various PHES configurations via an MDP

framework. Löhndorf et al. [132] optimize the short-term intraday and long-term

interday decisions of hydro storage systems with several connected reservoirs.

They formulate the intraday problem as a stochastic program that takes into

account bidding decisions as well as storage operations during the day. While

they formulate the interday problem as an MDP, they propose a novel solution

approach that integrates stochastic dual dynamic programming with approximate

dynamic programming. Huang et al. [115] introduce a deep reinforcement learning

agent for controlling the voltage of PHES-wind-solar systems, modeling the PHES

voltage management problem as an MDP.

RO is a promising framework when the probability distributions of the under-

lying random components are unknown. This framework handles the unknown

problem parameters by employing scenario sets or intervals [155]. It seeks a

solution that can perform well under the majority of possible realizations of the

uncertain inputs. Among the reviewed articles, [27], [55], [80], [84], [90], and [109]

take into account the wind uncertainty via RO, and [113] and [139] take into ac-

count the price uncertainty via RO. Zhang et al. [41] propose a robust stochastic

theory to model the uncertainties in wind power plants and solar generators.

Zhou et al. [94] address the uncertainties in wind energy, water inflow, and power

load via RO with intervals. Ju et al. [123] address the uncertainties in wind speed,

solar radiation, and water inflow via RO. Finally, Ahmadi et al. [119] incorporate

the uncertainties in renewable energy, electricity price, and local demand into an

RO model.
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CCP is a means to capture constraints that should hold with some prespecified

probability [156]. This approach enables relaxation of hard constraints that may

impose solutions influenced by extreme cases occurring with a small probability.

CCP has been mostly used to ensure that the wind power output restriction is

met at the decision maker’s target probability level. As a chance constraint, Lu

et al. [28] consider the forecast output errors of wind and solar power bounded

by the reserved spare capacity. Zhang et al. [29] define the wind power uncer-

tainty (curtailed power) as a chance constraint. Castronuovo et al. [51] introduce

a chance constraint in which the available wind power is more than the frac-

tion consumed by the PHES facility and the fraction delivered to the grid with

a certain probability. Ding et al. [66] use a chance-constrained formulation in

intraday market optimization to express the possibility of wind power generation

in a specific time interval and scenario while not exceeding the forecast wind

power. Toubeau et al. [112] use CCP for the day-ahead scheduling problem in

the presence of approximation errors and endogenous model uncertainties. Hong

et al. [116] study the unit commitment problem by considering chance constraints

to address the uncertainties of load, wind, and PV power generation. Elnozahy

et al. [141] consider a chance constraint to capture the weather uncertainty. In

a few other studies, SP and CCP have been used together. This is the case

in [39] and [105]. Finally, Lin et al. [77] develop a stochastic dynamic program

to solve the energy dispatch problem of a power system with several wind farms

and PHES facilities. They also provide scenario-based and CCP methods.

Scenario generation approaches have also been frequently used to capture un-

certainties in the energy literature. Unlike the SP method discussed before, the

scenarios here are not linked to each other through decision variables of the initial-

stage problem; instead, they are treated individually. One stream of research in

this category constructs a single model considering different scenarios (scenarios

with the same or different probabilities of occurrence) and solves the problem

once. However, the resulting models are usually decomposable into different sce-

narios. This is the case in [25], [38], [47], [48], [54], [56], [66], [68], [71], [77], [85],

[89], [92], [93], [95], [97], [98], [102], [103], [104], [111], [117], [125], [126], [137], [142],
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and [144]. Another stream of research in this category similarly generates differ-

ent scenarios in their experimental design and observes the effect of each scenario

on their final solution. Unlike the previous stream, the studies in this stream

do not include a scenario dimension in their optimization model; instead, they

solve their model separately for each scenario in their experiments and simply

compare the results or calculate the average of the results. This is the case

in [31], [35], [40], [42], [45], [50], [52], [53], [58], [60], [62], [64], [65], [69], [70], [72],

[73], [74], [75], [76], [82], [83], [86], [87], [88], [91], [96], [99], [101], [107], [108], [114],

[124], [133], [134], [138], [136], [145], [146], [148], and [149]. We classify these two

research streams as “others” in Table 2.7.

2.7 Classification based on the solution method-

ology

The solution methodologies proposed in the reviewed articles fall into three cate-

gories: exact optimization methods, heuristics, and metaheuristics. Table 2.8

classifies the reviewed articles according to the solution approach employed.

Among the exact optimization methods, the majority of articles use linear pro-

gramming (LP), nonlinear programming (NLP), mixed integer linear program-

ming (MILP), mixed integer nonlinear programming (MINLP), and dynamic pro-

gramming (DP). DP algorithms are among the most widely used optimization

techniques for solving the operational planning problems, but their practical ap-

plications may suffer from the curse of dimensionality. While LP models can

be very efficient for solving large-scale problems, these models fail to represent

the possible nonlinear structure of the energy generation and storage problem,

particularly the physical characteristics of PHES facilities.
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Table 2.8: Classification based on the solution methodology.

Solution Methodology Optimization Technique References

Optimization Models

LP [30], [51], [56], [58], [64], [65], [79],

[96], [127], [129], [134], [137]

MILP [27], [32], [34], [37], [38], [41], [44],

[48], [49], [54], [61], [66], [68], [71],

[79], [83], [88], [89], [90], [92], [102],

[104], [109], [110], [112], [116], [119],

[123], [126], [128], [130], [135], [138],

[140]

DP [33], [36], [46], [59], [62], [63], [69],

[77], [100], [110], [115], [120], [121],

[122], [125], [131], [143], [147]

NLP [25], [31], [35], [60], [95], [105], [133],

[139]

MINLP [28], [39], [40], [57], [66], [80], [81],

[84], [98], [103], [112]

Others [26], [113]

Heuristics

ADP [77], [117], [120], [132]

LR-based [33], [67]

Others [32], [33], [43], [50], [55], [78], [106],

[111], [117], [118], [144]

Metaheuristics

PSO [29], [42], [47], [50], [62], [70], [72],

[75], [77], [82], [87], [89], [93], [94],

[107], [108], [114], [136], [141], [146]

GA [42], [47], [70], [74], [85], [97], [106],

[146], [149]

ABC [35], [52], [53]

ASA [74], [85], [97]

Others [29], [42], [45], [47], [62], [70], [73],

[74], [75], [82], [85], [86], [87], [93],

[97], [99], [101], [106], [107], [108],

[114], [115], [141]
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NLP models can be employed to handle the nonlinear and nonconvex structure

of hydro generation, but these models are, in general, difficult to solve for large-

scale problems. If the problem’s nonlinearity is approximated by piecewise linear

functions along with discrete variables, the problem can be formulated as an

MILP model [157].

Although exact optimization methods have been commonly utilized to obtain

the optimal decisions and/or policies, various heuristics (common ones as approx-

imate dynamic programming (ADP) and Lagrangian-based (LR-based) meth-

ods) and metaheuristics (common ones as particle swarm optimization (PSO),

genetic algorithm (GA), artificial bee colony algorithm (ABC), and artificial

sheep algorithm (ASA)) have also been constructed to solve large-scale or non-

differentiable optimization problems. However, these approaches are often ineffi-

cient in the presence of binary decision variables and high-dimensional problem

settings. They may also fail to provide sufficient information about the optimal-

ity of the obtained solution, which is in general highly dependent on the initial

solution implemented into the solution algorithm. The most frequently employed

heuristic technique is ADP. ADP algorithms provide approximations of the value

function, the transition probabilities, or the system dynamics. The goal is to find

an approximate solution that is close to the optimum in a computationally fea-

sible way [158]. On the other hand, the most frequently employed metaheuristic

technique is PSO. PSO is a population-based optimization algorithm that models

the behavior of birds or fish to find the global optimum of a function in a mul-

tidimensional space. These algorithms consider a set of particles that move in

the solution space and update their velocity and position based on their personal

best and the global best [159].

The majority of studies compare the feasibility and computation efficiency of

their solution methods to those of other approaches, all summarized in Table 2.8.

For example, Abhindranath and Tiwari [50] take a heuristic approach based on in-

terior point solution as well as a metaheuristic approach based on PSO. Alvarez

et al. [110] solve a stochastic dual DP model for the generic storage problem,

along with an MILP equivalence of a two-stage SP model for the unit commit-

ment problem. Toubeau et al. [106] design a heuristic algorithm as well as a GA
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as a metaheuristic approach to optimize the operations of an underground PHES

facility in day-ahead and reserve energy markets. Huang et al. [115] construct

a deep deterministic policy gradient algorithm as a metaheuristic approach to

obtain the optimal control policy for the PHES facility. They also solve their

problem via DP to show the efficiency of this algorithm. Lee [62] compares the

performance of different metaheuristic approaches to the standard DP algorithm.

Avci et al. [120] solve their MDP model via MDP-based heuristics and several

ADP approaches. Finally, several studies offer solutions that rely only on simu-

lation results without explicitly specifying their solution methodologies. This is

the case in [76], [91], [124], [145], and [148].

2.8 Conclusion and future research directions

We conclude by outlining possible directions for PHES-related optimization stud-

ies under uncertainty based on our literature review. Our review has revealed

several research gaps in the PHES literature that can be divided into several

different classes discussed below:

(1) Optimization modeling

The proper modeling of uncertainties is required to adequately capture the

essence of most PHES facilities. The uncertainty modeling in PHES optimization

has received a great deal of attention and various approaches have been used to

incorporate the existing nonnegligible uncertainties. We observe that the majority

of the studies employ stochastic programming approaches in which they generate

scenarios in advance, which may fail to effectively capture the impact of events

on sequential decision-making. Such approaches for a specific scenario violate

the nonanticipativity condition by allowing the decision-maker to see the future

outcomes. We also observe that MDPs have not been widely used as a modeling

approach but have recently started to gain popularity. Alternative to in-advance

scenario generation, MDPs allow the uncertainties to be resolved only when the

decision-maker progresses in time, while enabling adaptive decisions based on the
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real-time realizations of uncertainties. MDPs also offer a precise mathematical

framework to analytically derive structural results by capturing multidimensional

dynamics and uncertainty inherent in the problem. We should note that scenario-

based stochastic programming approaches may suffer from the computational

burden when the number of scenarios generated is very large. Although MDPs

may also suffer from the curse of dimensionality when the numbers of states and

decisions are very large, ADP methods can be used to overcome this limitation.

Structural properties derived from MDPs, in particular, can be incorporated into

ADP algorithms to provide near-optimal policies in a computationally efficient

way.

(2) Problem objective

The majority of studies develop single-objective optimization models, mostly

focusing on either profit-maximization or cost-minimization. However, the sizing

and operational problems for hybrid energy systems, particularly those including

renewable energy sources, typically involve different aspects and multiple goals.

In comparison to the single-objective models, the multi-objective models have

advantages in making flexible decisions based on different priorities and evaluating

the trade-offs between conflicting objectives. Since environmental issues are one

of the primary drivers of growing interest in hybrid systems containing PHES,

the environmental concerns, together with system profits/costs, deserve close

attention and further investigations in the PHES literature.

(3) Scenario generation

Although scenarios are consistent representations of potential futures, it is

not possible for scenarios to encompass the entire range of multivariate future

possibilities. It can be challenging to identify all possible scenarios and their oc-

currence probabilities. Some articles use scenario-reduction techniques to reduce

the computational burden. However, sensitivity analyses are required to ensure

that an adequate number of scenarios are generated to capture the study envi-

ronment. While the majority of the reviewed articles address the uncertainty

via scenario generation, a limited number of studies discuss the sufficiency of the

36



number of generated scenarios.

(4) System components

The wind-PHES power systems have received much attention in the literature.

Only a few studies have looked into the solar-PHES power systems. Solar energy

is less intermittent than wind energy [160], yet it should be combined with en-

ergy storage since it is available only during the day. Solar energy is currently

the most accessible renewable source, and its installed capacity is predicted to

surpass the installed wind capacity in the near future [161, 162]. Solar systems

have also become a more cost-effective long-term investment option thanks to re-

cent technological advances [19]. In addition, the solar-wind power systems have

received considerable attention in recent years, partly because of their comple-

mentary nature [163]. Thus, given the increasing trend toward the use of solar

energy, it is advisable for researchers to further explore the solar-PHES power

systems.

(5) Nonlinear characteristics of PHES facilities

Variable head between the reservoirs and nonlinear efficiency curves of the

pump/turbine are two of the most significant sources of complexity in the PHES-

optimization studies. For the sake of simplicity, the head-dependence of water-

power conversions is often ignored and/or the pump/turbine efficiency level is

assumed to be constant. Although the nonlinear features of head and efficiency

augment the problem complexity and dimension, accurate quantification of vari-

able efficiency and head is required to precisely model PHES facilities. The

efficiency curves, in particular, indicate the relationship between power, water

flow rate, and water head, which should be carefully taken into account to model

various losses during the water-power conversion process in each PHES cycle.

This largely neglected aspect of the problem offers an area to explore, especially

to provide realistic and reliable generation and storage plans for PHES facilities.

(6) Market operations
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The PHES operations under uncertainty have been mostly optimized in a day-

ahead electricity market setting. A PHES operator, on the other hand, can also

participate in multiple electricity markets with different bidding strategies (e.g.,

sequential or coordinated) to make more profit and ancillary service auctions due

to its high flexibility and quick response to market price variations. Developing

optimal bidding strategies for the PHES operators by taking into account multi-

settlement markets, particularly the market for reserve electricity, is still an open

area to investigate.

(7) Sizing problems

Although there is a rich literature on the sizing problem for PHES facilities

(stand-alone or paired with other energy sources), only 8% of the reviewed ar-

ticles (on PHES optimization under uncertainty) fall into this category. The

uncertainty modeling has thus been largely neglected in the PHES sizing litera-

ture. Incorporating uncertainties into the sizing problems will likely bring new

challenges on how to optimally design the PHES facilities.

(8) Time horizon

Most studies deal with the PHES-optimization problems over short-term

scheduling horizons, with the vast majority using hourly periods over a daily

horizon. Only a few studies have focused on the long-term planning horizon, de-

spite the fact that long-term optimization assists authorities with strategic-level

generation and transmission planning. The short-term focus in optimization mod-

els can be partially attributed to the limited long-term accuracy of forecasting

methods adopted for the system components. However, the intermittent char-

acteristics of renewable energy sources as well as electricity demand and price

may still be modeled as exogenous stochastic processes with acceptable accuracy

levels over longer time horizons.

(9) Case studies

The vast majority of studies use hypothetical case studies to conduct numerical

experiments. Using real-world case studies, on the other hand, enables researchers
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to validate their optimization models and insights obtained from their models in

a more reasonable and realistic way. Moreover, a recent IRENA report [2] exem-

plifies innovative designs of PHES systems. Such designs include PHES coupled

with floating solar PV technology, PHES coupled with the onshore wind where

the foundations of the wind turbines are used as upper reservoirs of the PHES

facility, and PHES with variable speed turbines and hydraulic short circuits. The

academic literature, however, lacks studies on the optimization of these innovative

designs.
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Chapter 3

Operational Benefit of

Transforming Cascading

Hydropower Stations into

Pumped Hydro Energy Storage

Systems

3.1 Introduction

A typical PHES system stores and generates electricity by exchanging water

flow between two reservoirs located at different altitudes. When the electricity

price is low due to an excess energy supply, energy can be stored in the form of

hydraulic potential energy by pumping water from the lower reservoir to the upper

reservoir. When the electricity price is high due to a surge in energy demand,

energy can be generated by releasing the water stored in the upper reservoir to

This chapter is published in Journal of Energy Storage [121].
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the lower reservoir. PHES is an attractive storage option with promising round-

trip efficiencies (70% to 80%), short response times (minutes to even seconds),

and long useful lifetimes (50 to 100 years) [164–166].

As part of the International Renewable Energy Agency’s global roadmap, the

currently installed capacity of PHES needs to be doubled, reaching 325 GW by

2050 [167]. A major challenge in new PHES installations, however, is the need for

quite specific site conditions such as water access and favorable topography [168].

This challenge draws the attention of the PHES investors to the existing CCHSs

in which these conditions are already satisfied. Current trends show that it is

often possible to retrofit the CCHSs with reversible turbines to endow them with

pumping capability [169]. In this chapter, we evaluate the potential benefit of

rehabilitating an existing CCHS to operate it as a PHES system in a market

setting where the electricity price can be negative. We formulate the real-time

decision making process of the PHES system as an MDP, by taking into account

uncertainties in the streamflow incoming to the hydropower system as well as

in the electricity price and by constructing data-calibrated time series models to

include these uncertainties.

Previous research dealing with the optimization of PHES systems focus on

finding the optimal size and configurations of the new systems ( [64], [170], [140],

[171], [172], and [173]) and the optimal operating rules of the existing systems

( [174], [175], [61], [58], [132], [176], [43], [165], [133], [112], [177], and [120]).

Most of these studies develop deterministic optimization models or scenario-based

stochastic programming approaches. However, deterministic models do not take

uncertainty into account. Stochastic programming approaches, on the other hand,

require scenario generation in advance, which may fail to adequately capture the

impact of exogenous events on sequential decision-making. Such approaches, for

a particular scenario, violate the nonanticipativity condition by allowing the con-

troller to see the future outcomes [178]. Alternatively, MDPs allow uncertainties

to be resolved only when the controller progresses in time, while enabling adap-

tive decisions based on the real-time realizations of uncertainties. MDPs also

offer a precise mathematical framework to analytically derive structural results
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by capturing multidimensional dynamics and uncertainty inherent in the prob-

lem [179].

To our knowledge, however, only a few studies have developed MDPs in the

PHES literature. Löhndorf et al. [132] study the energy commitment and storage

problem for a PHES system by formulating a multi-stage stochastic program for

intraday decisions and an MDP for interday decisions. Avci et al. [120] examine

the integrated operations of a hybrid energy system that includes a wind farm

and a PHES facility (simpler than our PHES configuration in this chapter). They

model the problem as an MDP and characterize the optimal policy structure.

However, these papers present no result for the potential value of operating a

CCHS as a PHES system.

Despite the widespread practice of rehabilitating CCHSs as PHES sys-

tems [180, 181], as far as we are aware, only a few studies quantify the value

of such rehabilitation. Bozorg Haddad et al. [176] formulate nonlinear programs

to examine the advantages of converting CCHSs to PHES systems by ignoring

uncertainties in the electricity price and streamflow rate. Ak et al. [133] study the

same problem by developing a nonlinear program and solving it as many times

as the number of scenarios generated to take the price uncertainty into account

and by ignoring the streamflow uncertainty. Finally, Ribeiro et al. [182] study a

similar problem by formulating a deterministic dynamic program.

The main contributions of this chapter are as follows:

� Our study is the first to assess the potential benefit of transforming an

existing CCHS into a PHES system via an MDP framework that captures

the price and streamflow uncertainties as well as the nonlinear dynamics

of the problem. With our MDP framework, we are the first to offer a

theoretical upper bound on the profit improvement that can be achieved

with the pumping capability in the CCHS.

� We conduct numerical experiments with data-calibrated time series models

to provide insights into the optimal operations and profits of the CCHS as
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well as the PHES system in different environments.

� We show the benefit of taking into account the price and streamflow uncer-

tainties by comparing the results of our stochastic solution approach with

a deterministic one.

The rest of this chapter is organized as follows: Chapter 3.2 formulates the

energy generation and storage problem for a PHES facility. Chapter 3.3 presents

our theoretical upper bound and numerical results for the benefit of pumping

capability. Chapter 3.4 measures the value of including randomness in our for-

mulation. Chapter 3.5 offers a summary and the conclusions. Proofs of the

analytical results are contained in Appendix A.

3.2 Problem formulation

We consider a CCHS with two reservoirs at different altitudes where energy can

be generated by releasing water from the upper reservoir to the lower reservoir

or from the lower reservoir to the stream bed. There is a natural streamflow

incoming to the upper reservoir. Any excess amount of the streamflow (and any

excess amount of the water pumped in the PHES system) spills from the upper

reservoir and feeds the lower reservoir. Utilizing a reversible turbine between

the cascading reservoirs, one can transform this CCHS into a PHES system in

which energy can be stored by pumping water from the lower reservoir to the

upper reservoir. Figure 3.1 illustrates one such PHES system. Since the PHES

system includes the CCHS as a special case when the pumping capability is

disabled, we present below the MDP formulation of the PHES system. In order

to quantify the value of transforming the CCHS into a PHES system, we compare

the expected total cash flows that result from the transactions of these systems

with an electricity market. We presume that the system operations are unable

to influence the market price, that is, the operator is a price-taker. Such market

settings appear in many related papers; see, for example, [43, 133, 176, 179, 183],

and [184].
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Figure 3.1: Illustration of the PHES system.

The amount of energy that can be generated by releasing a unit volume of

water from any reservoir equals the multiplication of the water density (ρ), the

gravitational constant (g), the potential head of the hydropower station, and the

electricity conversion efficiency of the turbine. The efficiency depends on the

water flow rate and the potential head available. The potential head is usually

determined based on the constructed wall of the dam and the topography of the

site. We assume that the vertical height of a waterfall is measured from the intake

to the turbine, leading to constant heads for the upper and lower hydropower

stations (h1 and h2). This assumption appears in many PHES papers; see, for

example, [140, 185], and [186]. Nevertheless, our MDP formulation can be easily

modified to incorporate a variable head as the water is drawn from the reservoir.

Our efficiency calculations are based on an efficiency curve that is a function of

the ratio of the water flow rate to the design charge or discharge amount of the

pump or turbine. We denote the design discharge amounts of the upper and lower

turbines byQRU andQRL, respectively, and the design charge amount of the pump

by QP . We also denote the efficiency functions of the upper and lower turbines

in the discharging mode by ΦRU(·) and ΦRL(·), respectively, and the efficiency

function of the pump in the charging mode by ΦP (·). The energy generated by

releasing a unit volume of water from the upper reservoir is ρgh1ΦRU , the energy

generated by releasing a unit volume of water from the lower reservoir is ρgh2ΦRL,

44



and the energy required to pump a unit volume of water from the lower reservoir

is ρgh1/ΦP . We define CU and CL as the maximum amounts of water that can be

stored in the upper and lower reservoirs, respectively. We assume no loss of water

due to evaporation and no delay or efficiency loss due to vertical or horizontal

distances between the reservoirs.

For the PHES system, we study the energy generation and storage problem

via a dynamic model over a finite planning horizon of T periods. Let T :=

{1, 2, . . . , T} denote the set of periods. We denote the accumulated amounts of

water in the upper and lower reservoirs at the beginning of period t by xut and

xlt, respectively. Note that xut ∈ [0, CU ] and xlt ∈ [0, CL]. We define rt as the

amount of streamflow incoming to the upper reservoir at the beginning of period

t and pt as the electricity price in period t. We also define yt := (rκ, pκ)κ≤t as

the history of the streamflow rate and electricity price, which evolves over time

according to an exogenous stochastic process. We include xut, xlt, and yt in our

state description. In each period t, after observing yt as well as xut and xlt, the

operator determines the amount of water that will be released from or pumped

to the upper reservoir at ∈ R and the amount of water that will be released from

the lower reservoir bt ∈ R+. If at ≥ 0, the water is released from the upper

reservoir to the lower reservoir. If at < 0 (in the PHES system only), the water

is pumped from the lower reservoir to the upper reservoir. We thus assume that

the reversible turbine can operate in only one mode (either pumping or releasing)

within a time period, as widely recognized in the PHES literature dealing with

short-term planning problems with hourly periods ( [61], [34], [74]). We also

assume that if at > 0 and bt > 0, the water in the lower reservoir is released after

the water in the upper reservoir is released. Finally, we assume that bt = 0 if

at < 0. Figure 3.2 illustrates the sequence of events in each period.

periodt t+ 1

xut, xltrt, pt

btat

R(at, bt, yt)

Figure 3.2: Sequence of events in each period.
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Let U(xut, xlt, yt) denote the set of action pairs (at, bt) that are admissible

in state (xut, xlt, yt). For any action pair (at, bt) ∈ U(xut, xlt, yt), the following

conditions must hold:

−min {xlt, QP} ≤ at ≤ min {xut, QRU}

and

0 ≤ bt ≤


min {xlt + at, CL, QRL} if at ≥ 0,

0 if at < 0.

The state variables xut and xlt evolve over time as

xu(t+1) =min{min{xut − at, CU}+rt+1, CU}=min{xut − at + rt+1, CU} .

Let (x)+ := max{x, 0}. If at ≥ 0,

xl(t+1) = min
{

min{xlt + at, CL} − bt + (xut − at + rt+1 − CU)+ , CL

}
.

If at < 0,

xl(t+1) =min
{
xlt + at + (xut − at − CU)+

+ (min {xut − at, CU}+ rt+1 − CU)+ , CL

}
.

In the above formulation,
(
xut − at − CU

)+
is the amount of water spilling

from the upper reservoir due to the water pumped, and
(
xut − at + rt+1 − CU

)+

and
(

min{xut− at, CU}+ rt+1−CU
)+

are the amounts of water spilling from the

upper reservoir due to the water runoff.

The objective is to maximize the expected total cash flow from sales and

purchases of energy over the finite horizon. In any period t, if some water is
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released from the upper or lower reservoir (at ≥ 0 and bt ≥ 0), the energy

generated is sold to the market. If some water is pumped to the upper reservoir

to store energy (at < 0 and bt = 0), the energy required is purchased from the

market. Hence, given the action pair (at, bt) and exogenous state pair yt, the

payoff in period t is formulated as

R(at, bt, yt)=


ptρg

(
atΦRU (at/QRU)h1 + btΦRL (bt/QRL)h2

)
if at≥ 0,

ptρgh1

(
at/ΦP (at/QP )

)
if at< 0.

A control policy π is the sequence of decision rules

(aπt (xπut, x
π
lt, yt), b

π
t (xπut, x

π
lt, yt))t∈T , where xπut and xπlt are the random state

variables under policy π, ∀t ∈ T \{1}. We denote the set of all admissible control

policies by Π. For any initial state (xu1, xl1, y1), the optimal expected total cash

flow over the finite horizon is

max
π∈Π

E
[∑
t∈T

R
(
aπt (xπut, x

π
lt, yt) , b

π
t (xπut, x

π
lt, yt)

)∣∣∣xu1, xl1, y1

]
.

For each state (xut, xlt, yt) in each period t ∈ T , the optimal profit function

v∗t (xut, xlt, yt) can be calculated with the following dynamic programming recur-

sion:

v∗t (xut, xlt, yt) = max
(at,bt)∈U(xut,xlt,yt)

{
R(at, bt, yt)

+ Eyt+1|yt

[
v∗t+1

(
xu(t+1), xl(t+1), yt+1

)]} (3.1)

where v∗T (xuT , xlT , yT ) = 0. This recursion proceeds backward from period T

by calculating the optimal actions and profit for each state in each period via a

complete enumeration method. For the initial state (xu1, xl1, y1), v∗1(xu1, xl1, y1)

is the optimal expected total cash flow over the finite horizon.
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3.3 Results and discussion

3.3.1 Theoretical bound on the value of PHES

In this section, we establish a theoretical upper bound on the profit improvement

that can be achieved with the PHES transformation. Let ṽ∗t denote the optimal

profit function in period t for the CCHS; this can be calculated via the recursion

in (3.1) by restricting the action at to be nonnegative for all t. For our upper

bound, we assume that the system efficiencies are constants in both charging

and discharging modes, and are independent of the amount of water pumped or

released throughout the entire planning horizon.

Assumption 3.3.1. ΦRU (at/QRU) = φRU ∈ (0, 1], ΦP (at/QP ) = φP ∈ (0, 1],

and ΦRL (bt/QRL) = φRL ∈ (0, 1], ∀at, bt.

Theorem 3.3.1. Suppose that Assumption 3.3.1 holds. Then, ṽ∗t (xut, xlt, yt)≤

v∗t (xut, xlt, yt) ≤ ṽ∗t (xut, xlt, yt) + QPρgh1(T − t)

(
φRU max

t≤τ≤T
pτ − min

t≤τ≤T
p
τ
/φP

)+

,

where pt ∈ [p
t
, pt] and pt ≥ 0, for all t ∈ T .

Since the PHES system includes the CCHS as the special case when at ≥ 0, ∀t,
the optimal profit function of the PHES system is bounded below by that of the

CCHS. The upper bound for the optimal profit difference between the PHES

system and the CCHS can be viewed as the gap between the revenue obtained by

generating and selling energy at full capacity at the maximum possible electricity

price and the cost incurred by purchasing and storing energy at full capacity at

the minimum possible electricity price, summed over all future periods except

the last period (recall that the optimal profit function in period T is zero for

both settings). This upper bound is affected by the electricity price and the

physical features of the PHES system. A tight upper bound can be obtained

in the markets with low volatility in the electricity price and in the systems

with low efficiency in the installed turbine/pump. An important implication of

this upper bound is that the PHES transformation brings no additional profit if

min
1≤τ≤T

p
τ
≥ φRUφP max

1≤τ≤T
pτ . However, this condition never holds if the electricity

price can be negative in some periods.
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3.3.2 Experimental setup for the numerical study

In our experiments we set the period length to be one hour, as in [140, 187],

and [188]. For the streamflow rate, we consider two distinct data sets with sub-

stantially different rates in the State of New York, the Hudson River at Fort

Edward and at North Creek, between the years 2000 and 2019 [189]. We re-

strict the intraday hourly streamflow rates to stay constant because the data sets

display no substantial fluctuation within each day. However, a frequency spec-

trum analysis of the streamflow rates indicates the significance of daily frequency.

Hence, we model the interday streamflow rates by fitting a periodic autoregres-

sive (PAR) model to daily average streamflow rates. Specifically, we partition the

365 days of the year into disjoint clusters of normal, drought, and flood with the

fuzzy c-means clustering approach in [190]. Figure 3.3 shows these three clusters

at Fort Edward and North Creek.

Following [191], we characterize the streamflow rate in each cluster i as fol-

lowing a different autoregressive of order one, AR(1), process: rt = δi + φirt−1 +

σiεt, ∀t ∈ Ti, where {εt}t∈Ti are independent standard normal error terms, δi is

a constant, φi is the autoregressive coefficient, σi is the volatility of white noise,

and Ti is the set of daily periods that belong to cluster i. Table 3.1 exhibits the

parameter estimates of the PAR models at Fort Edward and North Creek.

Table 3.1: Parameter estimates of the PAR model.

Fort Edward North Creek

Parameters Normal Drought Flood Normal Drought Flood

φ̂i 0.904 0.939 0.942 0.837 0.839 0.907

σ̂i 34.42 19.23 41.96 21.84 13.69 33.69

δ̂i 168.17 102.68 223.10 52.05 25.87 91.48

To incorporate this parametric model into our MDP, we discretize the continu-

ous space of the AR(1) processes: For Fort Edward and North Creek, we restrict
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Figure 3.3: Three clusters for 365 days of the year and the daily average stream-
flow rates over the years 2000-2019.

the streamflow rate to take values from the sets Rn
F := {75, 100, . . . , 250} and

Rn
N := {20, 45, 70, 95} in the normal flow cluster, the setsRd

F := {50, 75, . . . , 200}
and Rd

N := {5, 30, 55} in the drought flow cluster, and the sets Rf
F :=

{100, 125, . . . , 350} and Rf
N := {25, 50, . . . , 200} in the flood flow cluster, re-

spectively. We then formulate the AR(1) process of the streamflow rate in each

cluster as a different finite-state Markov chain for which we calculate the tran-

sition probabilities with the procedure in [192]. For Fort Edward, the transition

matrix of the Markov chain in the normal flow cluster is
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P n
F =



75 100 125 150 175 200 225 250

75 .716 .187 .076 .018 .003 .000 .000 .000

100 .466 .273 .175 .067 .016 .002 .000 .000

125 .229 .265 .267 .163 .060 .013 .002 .000

150 .081 .170 .271 .261 .151 .053 .011 .002

175 .020 .072 .182 .276 .253 .140 .047 .011

200 .003 .020 .081 .193 .280 .244 .129 .050

225 .000 .004 .024 .090 .205 .282 .235 .161

250 .000 .000 .005 .027 .099 .216 .283 .369


,

the transition matrix in the drought flow cluster is

P d
F =



50 75 100 125 150 175 200

50 .791 .192 .017 .000 .000 .000 .000

75 .340 .473 .173 .014 .000 .000 .000

100 .051 .318 .464 .155 .012 .000 .000

125 .002 .058 .340 .452 .138 .009 .000

150 .000 .003 .067 .361 .439 .122 .008

175 .000 .000 .003 .078 .381 .424 .114

200 .000 .000 .000 .004 .090 .400 .506


,

and the transition matrix in the flood flow cluster is
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P f
F =



100 125 150 175 200 225 250 275 300 325 350

100 .669 .180 .099 .039 .011 .002 .000 .000 .000 .000 .000

125 .450 .231 .176 .095 .036 .010 .002 .000 .000 .000 .000

150 .246 .218 .229 .171 .091 .034 .009 .002 .000 .000 .000

175 .106 .151 .220 .228 .167 .086 .032 .008 .002 .000 .000

200 .035 .077 .156 .223 .226 .162 .082 .030 .008 .001 .000

225 .009 .029 .081 .161 .225 .223 .157 .078 .028 .007 .001

250 .002 .008 .031 .085 .165 .227 .221 .152 .074 .026 .008

275 .000 .002 .009 .033 .090 .170 .229 .218 .148 .071 .031

300 .000 .000 .002 .010 .036 .094 .175 .231 .215 .143 .095

325 .000 .000 .000 .002 .010 .038 .098 .179 .232 .212 .227

350 .000 .000 .000 .000 .002 .011 .041 .103 .184 .233 .426



.

For North Creek, the transition matrices of the Markov chain in the normal

and drought flow clusters, respectively, are

P n
N =



20 45 70 95

20 .765 .204 .030 .001

45 .407 .412 .162 .020

70 .116 .364 .383 .137

95 .016 .141 .398 .446

and P d
N =


5 30 55

5 .834 .163 .003

30 .288 .610 .103

55 .018 .377 .605

,

and the transition matrix in the flood flow cluster is
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P f
N =



25 50 75 100 125 150 175 200

25 .670 .211 .091 .023 .004 .000 .000 .000

50 .408 .287 .200 .082 .020 .003 .000 .000

75 .182 .252 .284 .188 .074 .017 .002 .000

100 .057 .144 .261 .279 .176 .066 .015 .002

125 .012 .053 .156 .268 .273 .165 .059 .014

150 .002 .013 .060 .167 .275 .267 .153 .063

175 .000 .002 .015 .068 .179 .280 .259 .197

200 .000 .000 .002 .018 .076 .191 .284 .428


.

For our MDP, if the system moves to a different cluster in period t and the AR(1)

process defined on the state space in period t − 1 moves to a state in period t

that is not in the state space in period t, we take the closest state in the state

space in period t as the streamflow rate in period t.

For the electricity price, we consider the hourly average values of the real-time

data available for New York City between the years 2007 and 2019; we retrieve

this data from [193]. It is important to note that the electricity price can be

negative according to our time series data. We model the hourly electricity prices

as follows: First, we deseasonalize the price data to remove the effect of seasonal

variation on our spike identification. Following [179], we construct a seasonality

model by fitting a linear regression to the price data:

st = γ1 +
11∑
i=1

γ2iD
2i
t +

6∑
j=1

γ3jD
3j
t +

23∑
h=1

γ4hD
4h
t ,

where γ1 is a constant and γ2i, γ3j, and γ4h are the coefficients of the dummy

variables D2i
t , D3j

t , and D4h
t , that are equal to one if period t is in month i, week

day j, and hour h, respectively. Then, we remove the seasonal effect from the

observed prices and determine the spikes under the assumption that the highest

5% and lowest 5% of the deseasonalized prices are outliers. The spikes are the

differences between these outliers and the mean of the remaining deseasonalized
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prices after these outliers are removed. Figure 3.4 illustrates the empirical dis-

tribution of the spikes. For a more refined seasonality model, we remove the

spikes from the observed prices and fit the above linear regression to the despiked

prices. Finally, we subtract the refined seasonal effect from the despiked prices

and formulate the despiked and deseasonalized price, ρt, as an AR(1) process:

ρt = (1− κ) ρt−1 + σεt, ∀t, where κ is the speed of mean reversion and σ is

the volatility of white noise. The parameter estimates of this AR(1) process are

κ̂ = 0.328 and σ̂ = 13.674. Table 3.2 exhibits the parameter estimates of the

seasonality model.
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Figure 3.4: Empirical distribution of the spikes.

We employ the trinomial lattice method of [194] to characterize the AR(1)

process of the electricity price as a finite-state Markov chain. Following the

suggestions of [194] and [195] regarding the number of time steps that should

be iterated, we construct a three-hour trinomial lattice for our AR(1) process

(Figure 3.5).

The Markov chain obtained from this lattice has the state space P :=
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Table 3.2: Parameter estimates of the despiked price seasonality model.

γ̂1 34.50

i 1 2 3 4 5 6 7 8 9 10 11
γ̂2i 19.3 13.1 -1.5 -6.5 -9.5 -10.2 -5.5 -6.4 -9.0 -10.0 -6.4

j 1 2 3 4 5 6
γ̂3j 4.1 4.2 4.5 4.3 3.7 1.6

h 1 2 3 4 5 6 7 8 9 10 11 12
γ̂4h -1.9 -3.7 -3.4 -2.8 -1.6 2.6 5.0 7.3 9.4 10.5 10.4 10.4

h 13 14 15 16 17 18 19 20 21 22 23
γ̂4h 9.6 9.0 9.3 11.6 15.4 15.6 13.2 9.9 6.4 3.0 0.6
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Figure 3.5: Trinomial lattice for the despiked and deseasonalized price. Nodes
represent discrete states of the Markov chain and arcs represent transitions be-
tween these states.

{−47.4,−23.7, 0, 23.7, 47.4} and the following transition matrix:

P =



−47.4 −23.7 0.0 23.7 47.4

−47.4 .398 .548 .054 0 0

−23.7 .056 .559 .384 0 0

0.0 0 .167 .667 .167 0

23.7 0 0 .384 .559 .056

47.4 0 0 .054 .548 .398


.

We also restrict the spikes to take values from the set J :=
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{−500,−400, . . . , 1200, 1300}. Note that the spike occurrence probability is 10%

in each period.

For our numerical study, we construct twelve different scenarios in which the

pumping capability is turned on (PHES) or off (CCHS); the upper reservoir is fed

by the Hudson River at Fort Edward or at North Creek; and the planning horizon

spans the month of January, April, or August in 2019 (T = 720 hours). We

employ the efficiency curve of Francis turbines [196] for our efficiency calculations;

the same curve applies to the upper and lower turbines in the discharging mode

as well as the pump (turbine in reverse mode) in the charging mode (do not

require Assumption 3.3.1 in our experiments). We assume that h1 = h2 = 100 m,

CU = CL = 10 hm3, QRU = QRL = QP = 0.4 hm3, and xu1 = xl1 = 5 hm3 for our

base case; we conduct our experiments by varying the values of CU , CL, h1, h2,

and negative price occurrence frequency (NPF). The NPF is 4.90% in January,

6.76% in April, and 6.76% in August, according to our price model. For each

month, we obtain two other values of NPF (in addition to the one observed in

our price model) by multiplying the numbers of negative spike occurrences in our

price model with certain constants. The initial exogenous states for Fort Edward

and North Creek are y1 = (150, 0) and y1 = (45, 0) in January, y1 = (225, 0) and

y1 = (100, 0) in April, and y1 = (125, 0) and y1 = (30, 0) in August, respectively.

Finally, xut and xlt take values from the set {0, 0.2, 0.4, . . . , 10}, at takes values

from the set {−0.4,−0.2, 0, 0.2, 0.4}, and bt takes values from the set {0, 0.2, 0.4}.
We solve the recursion of our MDP in each instance, with Figures 3.6 and 3.7

showing our results.

3.3.3 Discussion of the numerical results

We observe from Figure 3.6 that, for both system configurations at Fort Edward,

the total cash flow (TCF) decreases as the NPF grows, with the exception of the

PHES system in August. However, in contrast to the CCHS, the PHES system

is expected to benefit from an increase in the NPF. This counter-intuitive result

can be explained by the availability of excess streamflow in January and April

56



that dampens the incentive to pump water to purchase energy at low prices. The

PHES system operator considers purchasing energy at only negative prices in

January and April, leading to relatively small amounts of energy purchased from

the market. Consequently, in the months of January and April with high stream-

flow rates, both system configurations yield similar and large amounts of water

released from both reservoirs as well as energy sold to the market, thereby suffer-

ing from an increase in the NPF. Motivated by our observation in August with

low streamflow rate, we repeat our experiments for North Creek with much lower

streamflow rates compared to Fort Edward. We observe that the lower stream-

flow availability significantly drains the TCF for both system configurations, and

the PHES system at North Creek always benefits from an increase in the NPF.

The PHES transformation provides the greatest benefit (with an improvement of

59.2% in the TCF) at North Creek in August when the NPF is highest.

For both Fort Edward and North Creek, our time series models indicate that

the streamflow rates are the highest in April and the lowest in August, while the

electricity prices are the highest in January and the lowest in April. For Fort

Edward, the price effect is more dominant so that the amounts of energy sold

and the TCFs are the highest in January. For North Creek, on the other hand,

the streamflow effect is more dominant so that the amounts of energy sold are the

highest in April. However, since the electricity price in January is significantly

higher than in April, the large amounts of energy sold in April cannot lead to

higher TCFs in April than in January.

We observe from Figure 3.7 that the PHES transformation tends to become

more beneficial as the capacity levels of the upper and lower reservoirs grow only

up to certain points. This increase in the value of PHES is more significant at

North Creek in August. We also note that the benefit of PHES transformation

increases as the head of the upper station increases, while it decreases as the head

of the lower station increases. This is because increasing the head of the upper

station improves the pumping capability of the PHES system, whereas increasing

the head of the lower station improves the energy generation potential in the

lower reservoir, reducing the need for energy storage by pumping water. This

change in the value of PHES is again more significant at North Creek in August.
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Figure 3.6: Numerical results for the value of PHES with respect to NPF.
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The tightness of our upper bound in Theorem 3.3.1 is greatly influenced by

the range in which the electricity prices vary. Our upper bound may not be

tight enough in markets with high price spikes, particularly when the negative

prices exist within the volatile structure. The price range is high in our exper-

iments: In January, the maximum and minimum prices are $300.99 and -$62.7

per MWh, respectively, leading to an upper bound of 26 million dollars. In April,

the maximum and minimum prices are $379.76 and -$79.41 per MWh, respec-

tively, leading to an upper bound of 33 million dollars. In August, the maximum

and minimum prices are $163.91 and -$6.4 per MWh, respectively, leading to an

upper bound of 12 million dollars. Our upper bound is thus noticeably tighter

at North Creek in August, when the PHES transformation provides the greatest

benefit due to the limited streamflow availability. Our upper bound is expected

to be much tighter in more stable markets like Nord Pool. For instance, Norway

experienced low price ranges with the maximum and minimum prices of (e68.00,

e43.81), (e60.70, e27.91), and (e52.79, e28.96) per MWh, in January, April,

and August of 2019, respectively [197].

3.4 Comparison with deterministic solution ap-

proach

We compare our solution approach with a deterministic one and measure the

value of including randomness in our formulation. The advantage of using a

stochastic solution over a deterministic solution, i.e., the value of the stochastic

solution (VSS), determines the cost of ignoring uncertainty in decision-making.

Concentrating on the despiked prices in this section, we consider the determin-

istic version of our problem that ignores uncertainty by replacing the random

components (rt for the streamflow rate and ρt for the electricity price) with their

expected values. Let πd denote the optimal policy for this deterministic problem.

The TCF of the policy πd can be calculated from the recursion in (3.1) (without

optimization) when the actions are restricted to obey the policy πd in each state
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and each period. Table 3.3 exhibits the VSS (i.e., the percentage improvement

in the TCF via the stochastic solution) for the base case in each of our twelve

scenarios. We have found that the VSS is maximum at North Creek in August

(21.71% and 30.83% for CCHS and PHES, respectively).

Table 3.3: Numerical results for the VSS.

Type Season
Fort Edward North Creek

S D VSS (%) S D VSS (%)

CCHS January 8.473 8.221 2.97 4.314 3.812 11.64

April 5.157 4.954 3.94 4.133 3.771 8.76

August 4.607 4.253 8.07 1.704 1.334 21.71

PHES January 8.490 8.230 3.06 4.555 3.890 14.60

April 5.199 4.983 4.15 4.303 3.846 10.62

August 4.724 4.305 8.87 2.199 1.521 30.83

S: TCF of the optimal policy. D: TCF of the policy πd.

3.5 Conclusion

In this chapter, we consider a CCHS that can be converted to a PHES system

by utilizing a reversible turbine between the reservoirs. In order to examine the

value of this transformation, we formulate the energy generation and storage

problem in both systems as an MDP by taking into account uncertainties in

the streamflow rate and electricity price. With this formulation, we analytically

derive an upper bound on the profit improvement that can be obtained from this

transformation. Using data-calibrated time series models for the streamflow rate

and electricity price, we solve the problem to optimality for various realistic cases

of these systems in different seasons. Our numerical results imply that PHES

becomes an important large scale storage option when the negative prices occur

more frequently or the streamflow availability is more limited. Although adding a
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reversible turbine to a CCHS to obtain a PHES system can significantly increase

the profits, a cost-benefit analysis is required in real-life cases to compare the cost

of transformation with the profit improvement. Our MDP can help policymakers

and investors to calculate the benefit in such an analysis, accurately taking into

account the problems stochastic and nonlinear nature.
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Chapter 4

Short-Term Assessment of

Pumped Hydro Energy Storage

Configurations: Up, Down, or

Closed?

4.1 Introduction

Renewable energy sources have received much attention to mitigate the high

dependence on fossil fuels and the resulting environmental impacts [198, 199].

Wind and solar account for roughly two-thirds of the global power capacity ad-

ditions [152]. Since the variability and intermittency of such renewable sources

lower the reliability and utilization of energy systems, they should often be ac-

companied by efficient and flexible storage units [19, 200]. In this regard, one

of the most commonly used large-scale storage technologies is PHES [18]. This

technology, which currently accounts for more than 99% of the global installed

This chapter is published in journal of Renewable Energy [122].
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energy storage capacity, is among the best commercially available storage options

in terms of environmental and economic performance, compared to other tech-

nologies like advanced batteries [201]. A PHES facility stores water by pumping

it into an elevated reservoir and produces energy by releasing it into a lower reser-

voir. Depending on the local topographical conditions as well as the water runoff

availability, these facilities can be configured as closed-loop or open-loop [202].

There is no natural inflow in a closed-loop PHES facility, whereas a natural inflow

feeds either upper, lower, or both reservoirs in an open-loop PHES facility. The

open-loop PHES facilities can be built as cascading or non-cascading. One can

release water from multiple reservoirs in a cascading PHES facility, but from a

single reservoir in a non-cascading PHES facility. The open-loop PHES facilities

can be constructed from the existing conventional hydropower systems by replac-

ing their turbines with reversible ones [121]. The closed-loop PHES facilities, on

the other hand, have recently gained popularity since they can be developed ar-

tificially off-stream and are in general environmentally better than the open-loop

PHES facilities [5, 152].

In the presence of suitable on-stream conditions, like mountainous areas with

a flowing mid-altitude river, it is crucial to evaluate the potential revenues of

different PHES configurations when installing a new PHES facility. Building

an open-loop facility by constructing a new reservoir in addition to the existing

one (for example in a conventional hydropower station) may be environmen-

tally less severe than building an entirely new closed-loop facility. An important

decision may then be whether to construct this new reservoir as the lower or

upper reservoir (if both options are technically feasible). The answer to this

question may depend nontrivially on the available infrastructure (cascading or

non-cascading). This chapter aims to identify the most profitable option prior

to PHES installation, by comparing the short-term total cash flows of different

PHES configurations for both cascading and non-cascading infrastructures in a

market setting where the electricity price can be negative. To this end, we model

the real-time decision-making process of the PHES operator as an MDP. While

the energy generation and storage problem of the PHES operator entails sequen-

tial decision-making over a multi-period planning horizon, the variable nature of
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streamflow rate and electricity price creates significant operational uncertainty.

Our MDP framework enables us to capture this stochastic nature of the problem

in a structured fashion.

The literature dealing with the optimization of PHES facilities (stand-alone

or integrated with other energy sources in a hybrid system) can be divided into

two major streams. The first research stream studies the optimal sizing problem

for PHES facilities, which plays a critical role in ensuring a reliable and cost-

effective energy supply as well as recovering discarded or excess energy from

renewable sources [203]. In this research stream, Zheng et al. [124] optimize the

sizing of various storage technologies including PHES for an average demand

of a household. Brown et al. [64] utilize a scenario-based linear programming

framework for the optimal sizing of wind-PHES systems. Kapsali et al. [204]

take deterministic approaches for the optimal sizing of wind-PHES systems in

remote islands. Ma et al. [170] propose a genetic algorithm approach for the

optimal sizing of solar-PHES systems. Kocaman and Modi [205] and Kocaman

[171] develop a two-stage stochastic mixed-integer programming model for the

optimal sizing of solar-PHES systems. Abdalla et al. [27] apply a two-stage

robust generation expansion planning model to the optimal sizing of wind-PHES

systems. Bhayo et al. [173] propose a particle swarm optimization model for the

optimal sizing of solar-PHES-battery systems.

The second research stream studies the energy generation and storage problem

for PHES facilities. Foley et al. [125] formulate a deterministic dynamic program

for the long-term operational planning problem for wind-PHES systems. Vojvodic

et al. [206] develop a multi-stage stochastic optimization model for PHES facil-

ities and propose a scatter search algorithm to solve their large-scale problems.

Wang et al. [97] study the unit commitment problem for solar-wind-PHES sys-

tems and propose an artificial sheep algorithm as a meta-heuristic optimization

method. Yıldıran and Kayahan [111] study the day-ahead market bidding deci-

sions and real-time operations of a wind-PHES system via a risk-averse stochastic

optimization model. Ak et al. [133] formulate a nonlinear program for PHES fa-

cilities obtained from conventional hydropower stations. Avci et al. [120] develop

an MDP for wind-PHES systems to characterize the optimal policy structure.
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Huang et al. [70] examine the short-term operations of a hybrid energy system

including a PHES facility via a multi-objective stochastic optimization model.

Lu et al. [28] study the short-term joint dispatch problem for a hybrid energy

system including a PHES facility. Toufani et al. [121] demonstrate the short-

term economical benefits of transforming conventional hydropower stations into

PHES facilities via an MDP framework. Our study falls into this second research

stream.

To our knowledge, no paper in the literature investigates the role that the ex-

istence and location of the streamflow play in the profitability of PHES facilities.

We aim to fill this gap in the literature. Specifically, we provide a short-term

assessment of the cash flows from selling and purchasing energy for each of the

five different PHES configurations in Figure 4.1: cascading systems with the up-

stream or downstream flow, non-cascading systems with the upstream or down-

stream flow, and closed-loop systems. Short-term cash-flow comparisons of these

configurations, if combined with upfront installation costs, may have important

implications for energy investors, planners, and policy-makers while investing in

new PHES systems as well as upgrading the appropriate existing energy systems.

We also note that our MDP framework takes into account uncertainties in the

streamflow rate and electricity price. Although the natural inflow is the most

critical input to any typical PHES facility, only a limited number of papers inte-

grate the streamflow rate into the optimization of PHES facilities, and most of

these papers ignore the streamflow uncertainty and take the streamflow rate as a

deterministic model component [51,56,73,127].

The main contributions of this chapter are as follows:

� Our study is the first to compare different PHES configurations in which

the natural inflow exists or not, the natural inflow exists and feeds either

the upper or lower reservoir, and the infrastructure is either cascading or

non-cascading.

� We develop an MDP to compare the short-term total cash flows from these

different PHES configurations. We capture the nonlinear dynamics of the
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problem as well as the streamflow and price uncertainties in our MDP,

utilizing time-series models with random components.

� With our MDP framework, we are able to offer theoretical bounds on the

effects of different PHES configurations on the total cash flows.

� With data-calibrated time-series models, we conduct numerical experiments

to provide insights into the optimal revenues of different PHES configura-

tions in different environments.

The rest of this chapter is organized as follows: Chapter 4.2 formulates the

energy generation and storage problem for a very general PHES configuration.

Chapter 4.3 presents our analytical comparisons of various PHES configurations.

Chapter 4.4 presents our numerical results. Chapter 4.5 offers a summary and

concludes. Proofs of the analytical results are contained in Appendix B.

4.2 Problem formulation

Figure 4.1 illustrates the five different PHES configurations that we consider in

this study: cascading facilities (see Figures 4.1a and 4.1b), non-cascading facilities

(see Figures 4.1c and 4.1d), and closed-loop facilities (see Figure 4.1e). In this

section, we present the MDP formulation of a very general PHES configuration

that includes each configuration in Figure 4.1 as a special case. This general

configuration has two connected reservoirs located at different altitudes. The

natural streamflows feed both the upper and lower reservoirs. Energy can be

generated by releasing water from the upper reservoir to the lower reservoir and

from the lower reservoir to the stream bed, while energy can be stored by pumping

water from the lower reservoir to the upper reservoir. The excess streamflow into

the reservoirs as well as the excess water flow between the reservoirs lead to a

water spillage from the facility. The water spilling from any reservoir is lost.

We assume that the market accepts the dispatch and purchase amounts set by

the PHES operator. The system’s contribution to the market’s overall energy
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supply is very small, making it benign to assume that the operator is merely a

price-taker [120,133,176,183].

We study the energy generation and storage problem of the PHES oper-

ator via an MDP defined over a finite planning horizon of T periods. Let

T := {1, 2, . . . , T} denote the set of periods. The amount of energy that can

be generated by releasing a unit volume of water from any reservoir equals the

multiplication of the water density, the gravitational constant, the potential ver-

tical distance of the hydropower station, and the efficiency of the system. We

assume constant and equal vertical distances for both reservoirs. We denote the

maximum amount of water (in energy units) that can be stored in the upper and

lower reservoirs by CU and CL, respectively. We denote the maximum amounts

of water (in energy units) that can be released from the upper (or lower) reservoir

and pumped from the lower reservoir in any period by CR and CP , respectively.

We assume that CR ≤ min{CL, CU} and CP ≤ CL. We denote the efficiency level

of the PHES facility by θ ∈ (0, 1]. We define xut and xlt as the amounts of water

accumulated (in energy units) at the beginning of period t in the upper and lower

reservoirs, respectively. We include the variables xut ∈ [0, CU ] and xlt ∈ [0, CL]

in our state description. These state variables evolve over time according to the

energy generation and storage decisions as well as the streamflow rate. We de-

fine pt as the electricity price in period t, rut as the amount of water runoff to

the upper reservoir in period t (in energy units), and rlt as the amount of water

runoff to the lower reservoir in period t (in energy units). We also include the

tuple yt := (pt, rut, rlt) in our state description.
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Figure 4.1: Illustration of various PHES configurations.

69



Figure 4.2 illustrates the sequence of events in each period. In any period

t ∈ T , the operator observes first the exogenous state variables (pt, rut, and rlt)

and then the accumulated amounts of water in the reservoirs (xut and xlt). With

these observations, the operator determines first the amount of water that will be

released from the lower reservoir bt ∈ R+ (in energy units) and then the amount

of water that will be released from or pumped to the upper reservoir at ∈ R (in

energy units). Non-negative values of at represent the action of releasing water

from the upper reservoir, whereas negative values of at represent the action of

pumping water from the lower reservoir.

periodt t+ 1

xut, xlt
rut, rlt, pt

atbt

R(at, yt)

Figure 4.2: Sequence of events in each period.

Let U(xut, xlt, yt) denote the set of action pairs (at, bt) that are admissible in

state (xut, xlt, yt). For any action pair (at, bt) ∈ U(xut, xlt, yt), the energy and

power capacities of the PHES facility imply that −min{xlt − bt, CP} ≤ at ≤
min{xut, CR} and 0 ≤ bt ≤ min{xlt, CR}. Since the excess amount of water

spilling from each reservoir is lost, the state variables xut and xlt evolve over time

as

xu(t+1) =min
{

min{xut − at, CU}+ ru(t+1), CU

}
=min{xut − at + ru(t+1), CU}

and

xl(t+1) =min
{
min{xlt+at−bt, CL}+rl(t+1), CL

}
=min{xlt+at− bt+ rl(t+1), CL}.

The objective is to maximize the expected total cash flow that accrues from

selling or purchasing energy over the finite horizon. There are two different types

of decisions that we need to consider in our payoff formulation in any period t: A
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certain amount of water is (i) released from the upper reservoir to generate energy

(at > 0) or (ii) pumped from the lower reservoir to store energy (at ≤ 0). The

amount of energy generated from or stored in the upper reservoir in period t as a

function of action at can be formulated as E(at) = min{θat, at/θ}. Considering

this energy together with the energy generated by releasing water from the lower

reservoir, the amount of energy sold or purchased in period t is given by E(at) +

θbt. Hence, the payoff in period t as a function of action pair (at, bt) and exogenous

state tuple yt can be formulated as R(at, bt, yt) = (E(at) + θbt) pt.

A control policy π is the sequence of decision rules

(aπt (xπut, x
π
lt, yt), b

π
t (xπut, x

π
lt, yt))t∈T , where xπut and xπlt denote the random state

variables governed by policy π, ∀t ∈ T \{1}. We denote the set of all admissible

control policies by Π. For any initial state (xu1, xl1, y1), the optimal expected

total cash flow over the finite horizon is

max
π∈Π

E

[∑
t∈T

R(aπt (xπut, x
π
lt, yt), b

π
t (xπut, x

π
lt, yt), yt)

∣∣∣∣xu1, xl1, y1

]
.

For each period t ∈ T and each state (xut, xlt, yt), the optimal value func-

tion v∗t (xut, xlt, yt) can be calculated with the following dynamic programming

recursion:

v∗t (xut, xlt, yt) = max
(at,bt)∈U(xut,xlt,yt)

{
R(at, bt, yt)

+ Eyt+1|yt

[
v∗t+1

(
xu(t+1), xl(t+1), yt+1

)]} (4.1)

where v∗T (xuT , xlT , yT ) = 0. Note that v∗1(xu1, xl1, y1) is the optimal expected

total cash flow for the initial state (xu1, xl1, y1) over the finite horizon. We de-

note by (a∗t (xut, xlt, yt),b
∗
t (xut, xlt, yt)) the optimal action pair for the optimization

problem in equation (4.1).
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4.3 Analytical comparisons of different configu-

rations

In this section, we establish several theoretical bounds on the revenue gains and

losses that can be observed by switching from one configuration to another. For all

t ∈ T , let v∗ct(xut, xlt, yt) denote the value function for the closed-loop PHES facil-

ity, v∗lt(xut, xlt, yt) denote the value function for the open-loop PHES facility with

the downstream flow, and v∗ut(xut, xlt, yt) denote the value function for the open-

loop PHES facility with the upstream flow. The value function v∗ct(xut, xlt, yt) can

be calculated from the recursion in (4.1) by taking rut = rlt = 0, ∀t; the value

function v∗lt(xut, xlt, yt) can be calculated from the recursion in (4.1) by taking

rut = 0 and rlt = rt, ∀t; and v∗ut(xut, xlt, yt) can be calculated from the recursion

in (4.1) by taking rlt = 0 and rut = rt, ∀t. Let pt ∈
[
p
t
, pt

]
and rt ∈ [0, rt], for all

t ∈ T . With this notation we obtain the following theorem:

Theorem 4.3.1. For a given infrastructure (cascading or non-cascading), the

following relationships hold for each t ∈ T .

(a) v∗t (xut, xlt, yt) ≤ v∗t (xut, xlt + α, yt) and v∗t (xut, xlt, yt) ≤ v∗t (xut + α, xlt, yt),

where α > 0.

(b) Suppose that rt ≤ CR. Then:

v∗ct(xut, xlt, yt)

≤ v∗lt(xut, xlt, yt)

≤ v∗ct(xut, xlt, yt) +
1

θ
CR

T∑
i=t

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}

≤ v∗ut(xut, xlt, yt) +
1

θ
CR

T∑
i=t

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}

≤ v∗ct(xut, xlt, yt) +
2

θ
CR

T∑
i=t

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
.
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(c) Suppose that the upper and lower reservoirs have sufficiently large capacities

to prevent any water spillage. Then:

v∗lt(xut, xlt, yt)−(T − t)1

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}(
max
t≤τ≤T

rτ

)
≤ v∗ut(xut, xlt, yt)

≤ v∗lt(xut, xlt, yt) + (T − t)θ
(

max
t≤τ≤T

pτ

)+(
max
t≤τ≤T

rτ

)
.

Point (a) of Theorem 4.3.1 states that the PHES facility becomes more prof-

itable as the amount of water in the upper or lower reservoir grows. This is

because a larger amount of water in the upper reservoir induces greater energy

generation capacity and a larger amount of water in the lower reservoir induces

greater energy storage and generation capacity.

The first and third inequalities in point (b) of Theorem 4.3.1 state that the

open-loop PHES facility with the downstream or upstream flow is more profitable

than the closed-loop PHES facility. This is because the PHES facility with down-

stream or upstream flow includes the closed-loop PHES facility as a special case

when rt = 0 and bt = 0, ∀t. The second inequality in point (b) presents an up-

per bound on the revenue gain from switching from the closed-loop configuration

to the open-loop configuration with the downstream flow. This bound can be

viewed as the cumulative revenue potential from utilizing the downstream flow at

full capacity at the best possible electricity price, summed over all future periods.

The last inequality in point (b) implies that the same bound also applies to the

revenue gain from switching from the closed-loop configuration to the open-loop

configuration with the upstream flow.

Point (c) of Theorem 4.3.1 presents lower and upper bounds on the cash flow

difference caused by changing the downstream flow to the upstream flow in a

special case where water spillage is not possible in any period. Such a case may

indeed arise in dry seasons or regions. The bound that we found in point (b) is not

tight enough due to the extreme cases where the excess amount of downstream

flow spills from the lower reservoir or the excess amount of upstream flow spills
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from the upper reservoir. Therefore, we constructed tighter bounds in point (c)

by disregarding the water spillage possibility in the PHES facility. Finally, we

note that our bounds in points (b) and (c) indicate no clear advantage of one of

these open-loop configurations over the other.

4.4 Numerical results and discussions

In this section, we conduct numerical experiments to gain further insights into the

short-term economical comparisons of different PHES configurations in different

environments, by varying the values of reservoir capacity (CU = CL), negative

price occurrence frequency (NPF), and streamflow rate. Using the historical data

available from the State of New York, we develop distinct time-series models for

the electricity price and streamflow rate that involve stochastic autoregressive

processes of order one. We incorporate these parametric models into our MDP

by utilizing the exogenous state variables. We then discretize the continuous

space of the exogenous state variables for numerical calculations. We refer the

reader to Chapter 3 (or [121]) for the time-series models as well as the parame-

ter estimates and Markov chain representations of these time-series models. The

planning horizon spans the months of January, April, or August (T = 720 hours);

the upper and lower vertical distances are the same and equal to 30 meters; the

power capacity of the turbine and pump is 100 MW (CR = CP = 100 MWh); and

the round trip efficiency of the PHES facility is 0.88. We assume that the initial

water levels xu1 and xl1 are the closest states to CU/2 and CL/2, respectively,

for all instances. We solve the recursion of our MDP to optimality in each of

these instances. In order to evaluate the impact of streamflow availability, we

repeat these experiments by calibrating the streamflow model for different frac-

tions of the observed values (25%, 50%, or 75% of the original streamflow rate).

Figures 4.3, 4.4, 4.5, and 4.6 exhibit our numerical results.
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Figure 4.3: Numerical results for various values of the reservoir capacity (CU =

CL) in cascading systems. The NPF is 4.90% in January and 6.76% in April and

August.
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Figure 4.4: Numerical results for various values of the reservoir capacity (CU =

CL) in non-cascading systems. The NPF is 4.90% in January and 6.76% in April

and August.
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Figure 4.5: Numerical results for various values of the NPF in cascading systems.

CU = CL = 500 MWh.
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Figure 4.6: Numerical results for various values of the NPF in non-cascading

systems. CU = CL = 500 MWh.

We observe from Figures 4.3 and 4.4 that the monthly cash flow is the highest

for the open-loop configurations with the upstream flow and the lowest for the

closed-loop configurations. The open-loop configuration has the greatest benefit

over the closed-loop configuration when the original streamflow is considered in
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April and CU = CL = 100 MWh (with an improvement of 274.85% in cascad-

ing facilities and 114.16% in non-cascading facilities). We also observe that the

monthly cash flow decreases for both cascading and non-cascading facilities as the

streamflow availability becomes more limited. Likewise, the monthly cash flows

in January and April are higher than in August (the driest season of the year)

for both cascading and non-cascading facilities.

We observe from Figure 4.3 that, in cascading systems (where the water in

the lower reservoir can be released to generate energy), the monthly cash flows

of the open-loop configurations with upstream and downstream flows approach

each other as the streamflow availability becomes more severely limited so that

the location of water runoff is less critical. In August, for example, the cash flows

differ by only 2.45% when the streamflow rate is 25% of the original rate and CU =

CL = 1000 MWh. On the other hand, in non-cascading systems, the monthly

cash flows of the closed-loop configuration are in general very close to those of the

open-loop configuration with the downstream flow. This is because the inability

to release water from the lower reservoir significantly restricts the potential gain

from utilizing the downstream flow and thus the open-loop configuration with

downstream flow becomes similar to the closed-loop configuration. All these

results may assist the investors in their choice of the PHES configuration with

both economical and environmental concerns, especially in areas with limited

streamflow availability.

We also note that the monthly cash flow of operating a large closed-loop PHES

facility can be achieved by operating an open-loop PHES facility with much

smaller reservoirs. For instance, in cascading systems with the original streamflow

rate in April (see Figure 4.3), the monthly cash flow of the closed-loop facility

with CU = CL = 1000 MWh is similar to that of the open-loop facility with the

downstream flow and CU = CL = 100 MWh. In non-cascading systems with the

original streamflow rate in April (see Figure 4.4), the monthly cash flow of the

closed-loop facility with CU = CL = 1000 MWh is similar to that of the open-loop

facility with the upstream flow and CU = CL = 200 MWh.

Our time-series model for the electricity price implies that the NPF is 4.90%
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in January and 6.76% in April and August. For each month, we obtain five other

values of the NPF (in addition to the one implied by our price model) by multiply-

ing the number of negative spike occurrences in our price model with prespecified

constants. We observe from Figures 4.5 and 4.6 that the open-loop configurations

with downstream flow benefit more (or suffer less) from increased NPF than the

open-loop configurations with the upstream flow. This is because the existence

of the downstream flow increases the amount of water that can be pumped from

the lower reservoir to the upper reservoir, allowing the PHES operator to pur-

chase more energy at negative prices. It thus helps better exploit the benefit

of larger NPF values. When the NPF is sufficiently large, for both cascading

and non-cascading systems, the open-loop configuration with downstream flow

outperforms the open-loop configuration with the upstream flow. This effect of

the NPF is the most noticeable in April when the streamflow availability is at its

peak. For example, in April with the original streamflow rate, switching from the

open-loop configuration with the upstream flow to the open-loop configuration

with downstream flow increases the monthly cash flow by 14.63% in cascading

systems (see Figure 4.5) and 10.81% in non-cascading systems (see Figure 4.6).

We also note from Figure 4.6 that, for non-cascading systems in August, the

open-loop configurations of both types perform similarly to the closed-loop con-

figuration. This is because the limited streamflow availability in August provides

no significant advantage to open-loop configurations of any type.

The bounds we found in Theorem 4.3.1 vary with the efficiency level and power

capacity of the pump/turbine as well as the stochastic components of the system.

The tightness of our bounds in point (c) of Theorem 4.3.1 is greatly influenced

by the ranges of the electricity prices and streamflow rates. These bounds may

not be tight enough in markets with very large price spikes or in environments

with very large streamflow rates. For example, for our experiments in April, the

maximum and minimum prices are $379.76 and -$79.41 per MWh, respectively,

and the maximum streamflow rate is 539.7 m3/s, leading to bounds of 49.3 and

38.1 million dollars, respectively, in point (c) of Theorem 4.3.1. However, for

our experiments in August, the maximum and minimum prices are $163.91 and

-$6.4 per MWh, respectively, and the maximum streamflow rate is 19.25 m3/s,
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leading to bounds of only 0.7 and 0.5 million dollars, respectively, in point (c) of

Theorem 4.3.1.

4.5 Conclusion

In this chapter, we have compared the short-term cash flow performance of dif-

ferent realistic configurations of the PHES technology. In order to make such a

comparison, we formulate the energy generation and storage problem of the PHES

operator as an MDP by taking into account uncertainties in the streamflow rate

and electricity price. Using this formulation, we analytically derive bounds on the

revenue gains and losses from operating various PHES configurations. We then

conduct numerical experiments for a wide variety of realistic scenarios involving

different PHES configurations with different capacity levels, various seasons of

the year, and large ranges of streamflow availability and negative price occur-

rence frequency. Our numerical results indicate that the open-loop facility with

the upstream flow outperforms the open-loop facility with the downstream flow

as well as the closed-loop facility if the negative electricity prices are rarely ob-

served (as in our time-series model). However, the open-loop facility with the

downstream flow can outperform the open-loop facility with the upstream flow

if the negative prices are observed more frequently. Our results also imply that

operating a small open-loop facility can yield the same revenue as operating a

relatively large closed-loop facility.

The state and/or decision space of the problem grows if the time-series models

require more distant past observations of the streamflow rate and electricity price,

if the PHES facility involves a larger number of connected reservoirs, and/or if

the PHES facility is integrated with other energy sources in a hybrid setting.

The practical application of our MDP framework may then suffer from the curse

of dimensionality. For such large-size problems, however, approximate dynamic

programming techniques may be employed to overcome this drawback [158].
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Chapter 5

Structural Results for General

Pumped Hydro Energy Storage

Systems with Two Reservoirs

5.1 Analytical results

In this chapter, we consider the energy generation and storage problem for PHES

systems presented in Chapter 4. Adopting the problem formulation and notation

of Chapter 4, we establish below several structural properties of the optimal profit

function for different PHES configurations (see Figure 4.1). For our analysis, we

assume that the electricity price is strictly positive throughout the finite planning

horizon.

Assumption 5.1.1. pt > 0, ∀t ∈ T .

We require Assumption 5.1.1 to show that the payoff in period t is jointly

concave in action pair (at, bt):

Lemma 5.1.1. Under Assumption 5.1.1, R(at, bt, yt) is jointly concave in at and

bt for all yt.
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The proofs of all analytical results in this chapter are provided in Appendix C.

Lemma 5.1.2. Under Assumption 5.1.1, v∗t (xut, xlt, yt) ≤ v∗t (xut, xlt + α, yt) and

v∗t (xut, xlt, yt) ≤ v∗t (xut + α, xlt, yt), where α > 0, ∀t ∈ T .

Lemma 5.1.2 states that the system becomes more profitable as the amount

of water in the PHES facility grows. This is because the system is capable of

generating and storing more energy when the amount of water in the PHES

facility is larger. Using Lemma 5.1.2, we introduce an upper bound on the optimal

amount of water that should be pumped:

Lemma 5.1.3. Under Assumption 5.1.1, for each t ∈ T , xut − CU ≤
a∗t (xut, xlt, yt).

Lemma 5.1.3 states that it is never optimal to pump water to the upper reser-

voir by leading to a water spillage from the PHES facility.

Lemma 5.1.4. Under Assumption 5.1.1, for each t ∈ T , a∗t (xut, xlt, yt) −
b∗t (xut, xlt, yt) ≤ CL − xlt.

Lemma 5.1.4 states that it is never optimal to release water from the upper

reservoir by leading to a water spillage from the PHES facility. Using Lem-

mas 5.1.1–5.1.4, we establish several other structural properties of our optimal

profit function:

Lemma 5.1.5. Under Assumption 5.1.1, the following structural properties hold

for α > 0 and β > 0:

(a) v∗t (xut+α, xlt, yt)−v∗t (xut, xlt+α, yt) ≤ v∗t (xut+α, xlt+β, yt)−v∗t (xut, xlt+
α + β, yt), ∀t.

(b) v∗t (xut+α+β, xlt, yt)−v∗t (xut+β, xlt+α, yt) ≤ v∗t (xut+α, xlt, yt)−v∗t (xut, xlt+
α, yt), ∀t.

(c) v∗t (xut+α, xlt+β, yt)−v∗t (xut+α, xlt, yt) ≤ v∗t (xut, xlt+β, yt)−v∗t (xut, xlt, yt),

∀t.
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We discuss below the implications of Lemma 5.1.5:

� Point (a) of Lemma 5.1.5 says that it becomes less desirable to release a

certain amount of water from the upper reservoir as the amount of water

in the lower reservoir grows. The intuition behind this result can be seen

more easily when the controller wants to minimize the loss of water in the

PHES facility. In this case, having too much water in the lower reservoir

may have the follwoing implications: Holding a large amount of water in

the lower reservoir in any period increases the risk of losing some water

in the PHES facility in future periods with high electricity prices in which

it is beneficial to sell energy by releasing too much water from the upper

reservoir. On the other hand, pumping a large amount of water from the

lower reservoir in any period limits the capacity of the PHES facility to

sell energy to the market in this period. This may even entail purchasing

energy from the market. Hence, increasing the amount of water in the lower

reservoir exhibits diminishing returns.

� Point (b) of Lemma 5.1.5 says that it becomes more desirable to release a

certain amount of water from the upper reservoir as the amount of water in

the upper reservoir grows. This is because holding some amount of water

in the upper reservoir may be beneficial in anticipation of high electricity

prices in future periods while holding a large amount of water in the upper

reservoir increases the risk of underutilizing the water runoff in elevating the

total amount of water in the PHES facility. Hence, increasing the amount of

water in the upper reservoir exhibits diminishing returns. The summation

of the properties in part (a) and (b) implies that v∗t (xut + α + β, xlt, yt) −
v∗t (xut + β, xlt +α, yt) ≤ v∗t (xut +α, xlt + β, yt)− v∗t (xut, xlt +α+ β, yt), ∀yt.
Thus, if α = β, it becomes less desirable to release water as the water flows

from the upper reservoir to the lower reservoir at any particular rate.

� Point (c) of Lemma 5.1.5 says that it is more desirable to have an extra

amount of water in the upper reservoir when the amount of water in the

lower reservoir is smaller. Likewise, it is more desirable to have an extra

amount of water in the lower reservoir when the amount of water in the
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upper reservoir is smaller. It is important to note that the summation of

the properties in parts (a) and (c) implies the concavity of v∗t (xut, ·, yt), i.e.,

v∗t (xut, xlt, yt)−v∗t (xut, xlt+α, yt) ≤ v∗t (xut, xlt+β, yt)−v∗t (xut, xlt+α+β, yt),

∀xut, yt. Similarly, the summation of the properties in parts (b) and (c)

implies the concavity of v∗t (·, xlt, yt), i.e., v∗t (xut, xlt, yt)−v∗t (xut+α, xlt, yt) ≤
v∗t (xut +β, xlt, yt)− v∗t (xut +α+β, xlt, yt), ∀xlt, yt. Finally, we note that the

property in part (c) can be viewed as [207] submodularity property in xut

and xlt, ∀yt.

Let Zt(xut, xlt, yt) and Zut(Zt, xut, yt) denote the optimal state-dependent tar-

get levels that are associated with the total amount of water in the PHES facility

and the amount of water in the upper reservoir, respectively, i.e., Zt(xut, xlt, yt) =

xut + xlt − b∗t (xut, xlt, yt) and Zut(Zt, xut, yt) = xut − a∗t (xut, xlt, yt). The target

levels Zt(.) and Zut(.) can be calculated as follows:

Zt(xut, xlt, yt) = arg max
zt∈[Zt,Zt]

{
θ(xut + xlt − zt)pt + E(xut − Zut(zt, xut, yt))pt

+ E
[
v∗t+1

(
min{Zut(zt, xut, yt) + ru(t+1), CU},

min{zt−Zut(zt, xut, yt) + rl(t+1), CL}, yt+1

)]}
,

(5.1)

where

Zut(zt, xut, yt) = arg max
zut∈[Zut,Zut]

{
E(xut − zut)pt + Vt(zt, zut, yt)

}
, (5.2)

Vt(zt, zut, yt) := E
[
v∗t+1

(
min{zut + ru(t+1), CU},

min{zt − zut + rl(t+1), CL}, yt+1

)]
,

Zt = max{xut, xut + xlt − CR}, Zt = xut + xlt, Zut = max{0, xut − CR}, and

Zut = min{zt, CU , xut + CP}.

Using Lemma 5.1.2 and Lemma 5.1.5, Lemma 5.1.6 proves that Vt(zt, zut, yt)

is concave in zut. Since the payoff function is linear in zut, the expression in the

argmax function of (5.2) is concave in zut.
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Lemma 5.1.6. Under Assumption 5.1.1, Vt(zt, zut, yt) is concave in zut.

Equations (5.1) and (5.2) are interdependent, with Zut appearing multiple

times in (5.1). This interdependency makes it challenging to characterize the

optimal policy structure via a simple threshold policy. However, by restricting

our analysis to the non-cascading PHES configuration presented in Figure 4.1c,

where there is no water release from the lower reservoir, we are able to characterize

the optimal policy structure. Therefore, in the remainder of this chapter, we focus

on the non-cascading configuration in Figure 4.1c.

Assumption 5.1.2. bt = rlt = 0, ∀t ∈ T .

Letting rt = rut, ∀t ∈ T , we now introduce optimal state-dependent target

levels that are associated with the water level of the upper reservoir for each of

the two different action types: For ν ∈ {PP,RS},

S
(ν)
t (xut, xlt, yt) := arg max

zut∈[0,CU ]

{Vt(xut + xlt, zut, yt) +R
(ν)
t (xut − zut, yt)},

where

Vt(xut + xlt, zut, yt) := Eyt+1|yt

[
v∗t+1

(
min

{
zut + rt+1, CU

}
,

min{xut + xlt − zut, CL}, yt+1

)]
,

R
(ν)
t (xut − zut, yt) =

pt(xut − zut)/θ if ν = PP,

ptθ(xut − zut) if ν = RS,

and zut := xut− at is the water level of the upper reservoir at the end of period t

if the action at is taken in period t. Recall that xut is the water level of the upper

reservoir at the beginning of period t, including the amount of water runoff rt. For

notational convenience, we often suppress the dependency of S
(ν)
t on (xut, xlt, yt)

in the remainder of the chapter. Recall from Lemma 5.1.3 that the amount of

water pumped can be limited to prevent water spillage from the upper reservoir.

Hence, in any period, one can easily determine the optimal amount of water that

should remain in the lower reservoir at the end of this period by bringing the

amount of water in the upper reservoir to the optimal target level in this period.
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It is thus sufficient to define the optimal target level for only the upper reservoir

in our optimal policy characterization.

Let Ω denote the domain of (xut, xlt), i.e., Ω := [0, CU ] × [0, CL]. With this

notation, and leveraging the above analytical results, we are now ready to state

the main result of this chapter:

Theorem 5.1.1. Under Assumptions 5.1.1 and 5.1.2, the structure of the optimal

energy generation and storage policy in the PHES facility can be specified as

follows. In any period t, for (xut, xlt) ∈ Ω, it is optimal to

� pump up the water to get as close as possible to S
(PP)
t if xut ≤ S

(PP)
t ,

� keep the water level unchanged if S
(PP)
t < xut ≤ S

(RS)
t ,

� release down the water to get as close as possible to S
(RS)
t if S

(RS)
t < xut.

Furthermore, the optimal state-dependent target levels obey (i) S
(PP)
t (xut, xlt, yt) ≤

S
(RS)
t (xut, xlt, yt), (ii) S

(ν)
t (xut, xlt, yt) = S

(ν)
t (xut, xlt + α, yt) if xut + xlt ≥ CU ,

and (iii) S
(ν)
t (xut, xlt, yt) ≤ S

(ν)
t (xut, xlt + α, yt) = S

(ν)
t (xut + α, xlt, yt), for each

ν ∈ {PP,RS} and α > 0.

Notice that the target water level is highest if the optimal action type is RS

and lowest if it is PP: The PHES facility inefficiency leads to different marginal

payoffs in the energy generation and storage modes. Thus S
(PP)
t ≤ S

(RS)
t . Note

that S
(PP)
t = S

(RS)
t if θ = 1. Finally, for each action type, the target level increases

with the total amount of water in the PHES facility as long as the total amount of

water is no larger than the upper reservoir capacity. However, the target level is

independent of how the available water is distributed between the two reservoirs.
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5.2 A policy approximation algorithm

Theorem 5.1.1 establishes the optimality of a state-dependent threshold policy

when the electricity price is always positive and the PHES configuration is non-

cascading. In this section, we implement this policy structure into a heuristic

solution method for more general settings with possibly negative electricity prices

and cascading PHES configurations. Our heuristic method determines the action

pair in each state with a positive price using the target water levels described in

Theorem 5.1.1, while it implements the myopically optimal action pair in each

state with a negative price. Although this approach need not be optimal in

general, it yields instantaneous decisions without a significant drain on the total

profit, since the occurrence frequency of negative prices is quite small in our time

series data.

Let yt = (rut, ρt, jt) ∈ Yt := Rt × P × J and ȳt = (rut, ρt) ∈ Y t := Rt × P .

We restrict the water levels in the upper and lower reservoirs to take values from

the sets Xu := {nζa ∈ [0, CU ] : n ∈ Z} and Xl := {nζa ∈ [0, CL] : n ∈ Z},
respectively, where ζa is a prespecified constant. In this method, for each period

t ∈ T and each state (xut, xlt, yt), we define vPAt (xut, xlt, yt) as the profit function

and S
(ν),PA
t (xut, xlt, yt) as the state-dependent target level for each ν ∈ {PP,RS}.

We compute these profit functions and target levels, as well as the corresponding

action aPAt , as outlined by Theorem 5.1.1. See Algorithm 1 for the resulting

backward induction algorithm. We incorporate the properties of the target levels

of Theorem 5.1.1 into this algorithm: the target levels increase with the total

amount of water in the PHES facility (if less than CU) and with the decision type

from PP to RS, and the variables S
(ν),lower
t and Slowert reduce the search space for

the target levels in each iteration. See steps 9-16 of Algorithm 1. We label this

method PA (the initials of policy approximation).
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Algorithm 1 Policy approximation based on noncascading-PHES operations.

1: v̄PAT (xuT , xlT , ȳT )← 0, ∀(xuT , xlT , ȳT ) ∈ Xu ×Xl × YT .

2: for t = T − 1, . . . , 1 do

3: for yt ∈ Yt such that pt > 0 do

4: S
(ν),lower
t ← 0, ∀ν.

5: for x = xut + xlt ∈ {0, ζa, ..., bCU/ζacζa, CU} do
6: Slowert ← 0.

7: for ν ∈ {PP,RS} do
8: St ← arg max

zut∈[max{S(ν),lower
t ,Slowert },CU ]

{
R

(ν)
t (xut − zut, yt) +

Eȳt+1|ȳt

[
v̄PAt+1(min

{
zut + rt+1, CU

}
,min{xut + xlt − zut, CL}, ȳt+1)

]}
.

9: Slowert ← St. . See point (i) of Theorem 5.1.1.

10: S
(ν),lower
t ← St. . See point (iii) of Theorem 5.1.1.

11: for (xut, xlt) ∈ Xu ×Xl such that xut + xlt = x do

12: S
(ν),PA
t (xut, xlt, yt)← St. . See point (iii) of Theorem 5.1.1.

13: end for

14: if x = CU then

15: for (xut, xlt) ∈ Xu ×Xl such that xut + xlt ≥ CU do

16: S
(ν),PA
t (xut, xlt, yt)← St. . See point (ii) of Theorem 5.1.1.

17: end for

18: end if

19: end for

20: end for

21: end for

22: for (xut, xlt, yt) ∈ Xu ×Xl × Yt do
23: if pt > 0 then . The price is positive.

24: Compute aPAt from Theorem 5.1.1 with S
(ν)
t replaced by S

(ν),PA
t , ∀ν.

25: else . The price is negative.

26: aPAt = −min{xlt, CP }.
27: end if

28: vPAt (xut, xlt, yt)← R(aPAt , 0, yt) + Eȳt+1|ȳt
[
v̄PAt+1(xu(t+1), xl(t+1), ȳt+1)

]
.

29: end for

30: for (xut, xlt, ȳt) ∈ Xu ×Xl × Yt do
31: v̄PAt (xut, xlt, ȳt)← Ejt

[
vPAt (xut, xlt, yt)

]
.

32: end for

33: end for
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5.3 Performance of the heuristic

Using the experimental setup in Chapter 4, we evaluate the performances of

our heuristic solution method in 18 instances in which the PHES facility is cas-

cading or non-cascading. All computations were executed on a 13th Gen In-

tel(R) Core(TM) i7-1360P 2.20 GHz CPU computer with 16 GB of RAM. Ta-

bles 5.1 and 5.2 exhibit the optimality gaps and computation times of our heuristic

method for the cascading and non-cascading configurations, respectively. For the

non-cascading configuration, our heuristic method yields near-optimal solutions

with a maximum distance of only 1.12% from the optimal profit, and reduces

the computation time of the optimal algorithm by 50.35% on average and by

up to 56.47%. For the cascading configuration, as expected, we observe higher

optimality gap percentages (with a maximum distance of 40.21%), but with a

higher computation time reduction of 79.2% on average and up to 82.3%. In

the case of non-cascading configuration, our heuristic method may perform worse

when the negative prices are observed more frequently. In the case of cascading

configuration, however, an increase in NPF results in a noticeable decrease in the

optimality gaps. This is because when NPF is larger, there is a greater incentive

to keep more water in the facility and pump more water from the lower reser-

voir to the upper reservoir, and thus the cascading configuration performs more

similarly to the non-cascading one.
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Table 5.1: Optimality gaps and computation times (in CPU seconds) for cascad-

ing configuration.

Season NPF Optimality gap
Computation times

Optimal policy Heuristic method

4.90% 39.40% 1262.8 247.1

January 9.34% 35.46% 1235.1 219.8

13.37% 32.43% 1183.2 269.9

6.76% 40.21% 2126.2 488.7

April 11.20% 36.52% 2284.2 533.6

15.24% 33.67% 2133.6 499.2

6.76% 29.17% 859.3 151.9

August 11.20% 25.23% 860.3 162.9

15.23% 22.40% 874.7 182.2
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Table 5.2: Optimality gaps and computation times (in CPU seconds) for non-

cascading configuration.

Season NPF Optimality gap
Computation times

Optimal policy Heuristic method

4.90% 0.39% 497.9 247.1

January 9.34% 0.41% 490.0 219.8

13.37% 0.41% 511.4 269.9

6.76% 0.89% 914.5 488.7

April 11.20% 0.99% 1109.4 533.6

15.24% 1.12% 944.0 499.2

6.76% 0.91% 348.9 151.9

August 11.20% 0.90% 368.9 162.9

15.23% 0.91% 364.4 182.2

5.4 Conclusion

In this chapter, we establish several structural properties of the optimal profit

function for general PHES systems. We characterize the optimal policy structure

for non-cascading PHES configurations under the assumption of positive electric-

ity prices. With this structural knowledge, we develop the policy-approximation

algorithm as a heuristic solution method to tackle the more complex setting where

the configuration can be cascading and the prices can also be negative. Our nu-

merical experiments demonstrate that this algorithm can significantly reduce the

computation times while maintaining the profits at acceptable levels.
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Chapter 6

Conclusion

The goal of this dissertation is to improve the optimization of PHES facilities

in different settings by addressing existing uncertainties through a Markov de-

cision process. In Chapter 2, we provide a comprehensive literature review of

previous studies on the sizing and operational problems for PHES facilities under

uncertainty. In Chapter 3, we explore the benefits of transforming a conventional

cascading hydropower station into a PHES facility and provide an analytical up-

per bound on the profit improvement achievable through such a transformation.

We also conduct numerical experiments with data-calibrated time series mod-

els and observe that the PHES facility provides a greater benefit under more

limited streamflow conditions or more frequently observed negative prices. In

Chapter 4, we conduct a comparative analysis of different realistic configurations

of PHES technology and identify the configurations that outperform the others

under various scenarios, both analytically and numerically. We observe that the

open-loop PHES facility with upstream flow generates higher cash flows compared

to the other configurations, while the open-loop PHES facility with downstream

flow becomes more advantageous as negative electricity prices occur more fre-

quently. Finally, in Chapter 5, we establish several structural properties of the

optimal profit function for general PHES systems and characterize the optimal

policy structure for non-cascading PHES configurations under the assumption
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of positive electricity prices. Using the obtained structural knowledge, we de-

vise a policy-approximation algorithm as a heuristic solution approach to address

the challenges posed by complex settings involving cascading configurations and

negative prices. Our numerical experiments show that this algorithm achieves

substantial reductions in computation times while ensuring profits remain at sat-

isfactory levels.

Moving forward, there are several directions for future research. One promis-

ing avenue would be to extend the analysis to PHES facilities integrated with

other renewable energy sources, such as solar and wind, to assess their overall

performance and potential synergies. Another direction would be to consider the

joint optimization of sizing and operational planning decisions for PHES facilities,

incorporating upfront installation costs via employing multi-stage stochastic pro-

gramming frameworks. Additionally, future research may integrate the economic

analysis with environmental and social factors, including considerations of the po-

tential impact of different PHES configurations on communities and ecosystems.

Finally, there is a need to explore the use of the structural properties to develop

approximate dynamic programming methods that offer greater computational

advantages. Taken together, these future research directions have the potential

to advance our understanding of PHES and contribute to the development of

sustainable and efficient energy systems.
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Renewable energy sources and climate change mitigation: Special report

of the intergovernmental panel on climate change. Cambridge University

Press, 2011.

[197] Nord Pool, “Europe’s leading power market.” https://www.

nordpoolgroup.com/historical-market-data/, 2021.

[198] A. Dehghani-Sanij, E. Tharumalingam, M. Dusseault, and R. Fraser,

“Study of energy storage systems and environmental challenges of batter-

ies,” Renewable and Sustainable Energy Reviews, vol. 104, pp. 192–208,

2019.

117

https://www.nyiso.com/energy-market-operational-data
https://www.nyiso.com/energy-market-operational-data
https://www.nordpoolgroup.com/historical-market-data/
https://www.nordpoolgroup.com/historical-market-data/


[199] J. Haas, L. Prieto-Miranda, N. Ghorbani, and C. Breyer, “Revisiting the

potential of pumped-hydro energy storage: A method to detect economi-

cally attractive sites,” Renewable Energy, vol. 181, pp. 182–193, 2022.

[200] A. Rogeau, R. Girard, and G. Kariniotakis, “A generic gis-based method

for small pumped hydro energy storage (phes) potential evaluation at large

scale,” Applied Energy, vol. 197, pp. 241–253, 2017.

[201] A. Olabi, C. Onumaegbu, T. Wilberforce, M. Ramadan, M. A. Abdelka-

reem, and A. H. Al-Alami, “Critical review of energy storage systems,”

Energy, vol. 214, p. 118987, 2021.

[202] B. Lu, M. Stocks, A. Blakers, and K. Anderson, “Geographic information

system algorithms to locate prospective sites for pumped hydro energy stor-

age,” Applied Energy, vol. 222, pp. 300–312, 2018.

[203] K. Hedegaard and P. Meibom, “Wind power impacts and electricity

storage–a time scale perspective,” Renewable Energy, vol. 37, no. 1, pp. 318–

324, 2012.

[204] M. Kapsali, J. Anagnostopoulos, and J. Kaldellis, “Wind powered pumped-

hydro storage systems for remote islands: a complete sensitivity analysis

based on economic perspectives,” Applied Energy, vol. 99, pp. 430–444,

2012.

[205] A. S. Kocaman and V. Modi, “Value of pumped hydro storage in a hy-

brid energy generation and allocation system,” Applied Energy, vol. 205,

pp. 1202–1215, 2017.

[206] G. Vojvodic, A. I. Jarrah, and D. P. Morton, “Forward thresholds for oper-

ation of pumped-storage stations in the real-time energy market,” European

Journal of Operational Research, vol. 254, no. 1, pp. 253–268, 2016.

[207] D. M. Topkis, Supermodularity and Complementarity. Princeton University

Press, 1998.

118



Appendix A

Proofs of the Analytical Results

in Chapter 3

Proof of Theorem 3.3.1

First, we will prove that ṽ∗t (xut, xlt, yt) ≤ v∗t (xut, xlt, yt), ∀t ∈ T . Note that

ṽ∗T (xuT , xlT , yT ) = v∗T (xuT , xlT , yT ) = 0. Assuming ṽ∗t+1(xu(t+1), xl(t+1), yt+1) ≤
v∗t+1(xu(t+1), xl(t+1), yt+1), we show ṽ∗t (xut, xlt, yt) ≤ v∗t (xut, xlt, yt). Let ã =

ã∗t (xut, xlt, yt) ≥ 0 and b̃ = b̃∗t (xut, xlt, yt) denote the optimal actions in state

(xut, xlt, yt) for the CCHS. Also, let Ũ(xut, xlt, yt) denote the set of admissible

action pairs (at, bt) in state (xut, xlt, yt) for the CCHS. Since Ũ(xut, xlt, yt) ⊆
U(xut, xlt, yt), (ã, b̃) ∈ U(xut, xlt, yt). Thus:

ṽ∗t (xut, xlt, yt) = R(ã, b̃, yt) + E
[
ṽ∗t+1

(
min{xut − ã+ rt+1, CU},

min
{
min{xlt+ã, CL}−b̃+(xut−ã−CU+rt+1)+, CL

}
, yt+1

)]
≤R(ã, b̃, yt)+E

[
v∗t+1

(
min{xut − ã+ rt+1, CU

}
,

min{min{xlt+ã, CL}−b̃+(xut−ã−CU+rt+1)+, CL}, yt+1

)]
≤ v∗t (xut, xlt, yt).
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Next, we will prove that: v∗t (xut, xlt, yt) ≤ ṽ∗t (xut, xlt, yt) + QPρgh1(T −

t)

(
φRU max

t≤τ≤T
pτ − min

t≤τ≤T
p
τ
/φP

)+

, ∀t ∈ T . Note that v∗T (xuT , xlT , yT ) =

ṽ∗T (xuT , xlT , yT ) + QPρgh1(T − T )(φRUpT − p
T
/φP )+ = 0. To this end, we

first show that ṽ∗t (xut, xlt, yt) − ṽ∗t (xut − α, xlt + α, yt) ≤ ρgh1αφRU max
t≤τ≤T

pτ

where 0 ≤ α ≤ min{xut, CL − xlt}, ∀t ∈ T . Note that ṽ∗T (xuT , xlT , yT ) =

ṽ∗T (xuT −α, xlT +α, yT ) = 0. Assuming ṽ∗t+1(xu(t+1), xl(t+1), y(t+1))− ṽ∗t+1(xu(t+1)−
α, xl(t+1) + α, y(t+1)) ≤ ρgh1αφRU max

t+1≤τ≤T
pτ , we show ṽ∗t (xut, xlt, yt) − ṽ∗t (xut −

α, xlt + α, yt) ≤ ρgh1αφRU max
t≤τ≤T

pτ . Suppose that ã = ã∗t (xut, xlt, yt) ≥ α. Recall

that b̃ = b̃∗t (xut, xlt, yt). Notice that (ã− α, b̃) ∈ Ũ(xut − α, xlt + α, yt). Thus:

ṽ∗t (xut, xlt, yt)− ṽ∗t (xut − α, xlt + α, yt)

≤R(ã, b̃, yt)+E
[
ṽ∗t+1

(
min{xut − ã+ rt+1, CU},min{min{xlt + ã, CL}

−b̃+ (xut − ã− CU + rt+1)+, CL}, y(t+1)

)]
−R(ã− α, b̃, yt)

− E
[
ṽ∗t+1

(
min{xut − α− (ã− α) + rt+1, CU},

min{min{xlt + α + (ã− α), CL} − b̃

+ (xut − α− (ã− α)− CU + rt+1)+ , CL}, y(t+1)

)]
= ptρgh1φRU(ã− ã+ α) + ptρgh2φRL(̃b− b̃)

≤ ρgh1αφRU max
t≤τ≤T

pτ .

Now suppose that ã < α. If the optimal actions (ã, b̃) are taken in state

(xut, xlt, yt):

xu(t+1) = min{xut − ã+ rt+1, CU
}

and

xl(t+1) = min{xlt + ã− b̃+ (xut − ã− CU + rt+1)+, CL}.

If the actions (0, b̃) are taken in state (xut − α, xlt + α, yt):

x′u(t+1) = min{xut − α + rt+1, CU
}

and

x′l(t+1) = min{xlt + α− b̃+ (xut − α− CU + rt+1)+, CL}.
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For these state variables, we make the following observations:

(1) If xut − ã + rt+1 ≤ CU , x′u(t+1) = xut − α + rt+1 = xu(t+1) − (α − ã) and

x′l(t+1) = xlt + α− b̃ = xl(t+1) + (α− ã).

(2) If xut − α+ rt+1 ≤ CU ≤ xut − ã+ rt+1 and xut + xlt − b̃−CU + rt+1 ≤ CL,

x′u(t+1) = xut−α+rt+1 = xu(t+1)−(CU−rt+1−xut+α) and x′l(t+1) = xlt+α−
b̃ = xl(t+1) +(CU−rt+1−xut+α). Note that 0 ≤ CU−rt+1−xut+α ≤ α− ã.

(3) If xut − α+ rt+1 ≤ CU ≤ xut − ã+ rt+1 and xut + xlt − b̃−CU + rt+1 > CL,

note that xlt +α− b̃ > CL. This scenario is not possible since xlt +α ≤ CL.

(4) If CU ≤ xut − α + rt+1, x′u(t+1) = xu(t+1) = CU and x′l(t+1) = xl(t+1) =

min{xlt − b̃+ xut − CU + rt+1, CL}.

Thus, there exists β such that 0 ≤ β ≤ α− ã and

ṽ∗t (xut, xlt, yt)− ṽ∗t (xut − α, xlt + α, yt)

≤ R(ã, b̃, yt) + E
[
ṽ∗t+1

(
xu(t+1), xl(t+1), y(t+1)

)]
−R(0, b̃, yt)− E

[
ṽ∗t+1

(
x′u(t+1), x

′
l(t+1), y(t+1)

)]
= ptρgh1φRU ã+ E

[
ṽ∗t+1

(
xu(t+1), xl(t+1), y(t+1)

)]
− E

[
ṽ∗t+1

(
xu(t+1) − β, xl(t+1) + β, y(t+1)

)]
≤ ãρgh1φRUpt + βρgh1φRU max

t+1≤τ≤T
pτ

≤ ãρgh1φRU max
t≤τ≤T

pτ + βρgh1φRU max
t≤τ≤T

pτ

≤ αρgh1φRU max
t≤τ≤T

pτ .

Using the above result and assuming v∗t+1(xu(t+1), xl(t+1), y(t+1)) −

ṽ∗t+1(xu(t+1), xl(t+1), y(t+1)) ≤ QPρgh1(T−t−1)

(
φRU max

t+1≤τ≤T
pτ − min

t+1≤τ≤T
p
τ
/φP

)+

,

we show v∗t (xut, xlt, yt) − ṽ∗t (xut, xlt, yt) ≤ QPρgh1(T −
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t)

(
φRU max

t≤τ≤T
pτ − min

t≤τ≤T
p
τ
/φP

)+

. Let a = a∗(xut, xlt, yt) and b = b∗(xut, xlt, yt)

denote the optimal actions in state (xut, xlt, yt) for the PHES system. Suppose

that a ≥ 0. Note (a, b) ∈ Ũ(xut, xlt, yt). Thus:

v∗t (xut, xlt, yt)− ṽ∗t (xut, xlt, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min{xut − a+ rt+1, CU},min{min{xlt + a, CL}

− b+ (xut − a− CU + rt+1)+, CL}, y(t+1)

)]
−R(a, b, yt)

− E
[
ṽ∗t+1

(
min{xut − a+ rt+1, CU},min{min{xlt + a, CL}

− b+ (xut − a− CU + rt+1)+, CL}, y(t+1)

)]
≤ QPρgh1(T − t− 1)

(
φRU max

t+1≤τ≤T
pτ − min

t+1≤τ≤T
p
τ
/φP

)+

≤ QPρgh1(T − t)
(
φRU max

t≤τ≤T
pτ − min

t≤τ≤T
p
τ
/φP

)+

.

Now suppose that a < 0. Note that b = 0 in this case. If the optimal actions

(a, 0) are taken in state (xut, xlt, yt) for the PHES system:

xu(t+1) = min{xut − a+ rt+1, CU
}

and

xl(t+1) = min
{
xlt + a+ (xut − a− CU)+

+ (min {xut − a, CU}+ rt+1 − CU)+ , CL

}
.

If the actions (0, 0) are taken in state (xut, xlt, yt) for the CCHS:

x′u(t+1) = min{xut + rt+1, CU
}

and

x′l(t+1) = min
{
xlt + (xut + rt+1 − CU)+ , CL

}
.

For these state variables, we make the following observations:

(1) If xut−a+rt+1 ≤CU , x′u(t+1) = xut+rt+1 = xu(t+1)−(−a) and x′l(t+1) = xlt =

xl(t+1) + (−a).
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(2) If max{xut + rt+1, xut − a} ≤ CU ≤ xut − a + rt+1, x′u(t+1) = xut + rt+1 =

xu(t+1) − (CU − rt+1 − xut) and x′l(t+1) = xlt = xl(t+1) + (CU − rt+1 − xut).
Note that 0 ≤ CU − rt+1 − xut ≤ −a.

(3) If xut − a ≤ CU ≤ xut + rt+1 and xut + xlt + rt+1 − CU ≤ CL, x′u(t+1) =

xu(t+1) = CU and x′l(t+1) = xl(t+1) = xut + xlt + rt+1 − CU .

(4) If xut − a ≤ CU ≤ xut + rt+1 and xut + xlt + rt+1 − CU > CL, x′u(t+1) =

xu(t+1) = CU and x′l(t+1) = xl(t+1) = CL.

(5) If xut+rt+1 ≤ CU ≤ xut−a, x′u(t+1) = xut+rt+1 = xu(t+1)−(CU−rt+1−xut)
and x′l(t+1) = xlt = xl(t+1)+(CU−rt+1−xut). Note that 0 ≤ CU−rt+1−xut ≤
−a.

(6) If CU ≤ min{xut − a, xut + rt+1} and xut + xlt + rt+1 − CU ≤ CL, x′u(t+1) =

xu(t+1) = CU and x′l(t+1) = xl(t+1) = xut + xlt + rt+1 − CU .

(7) If CU ≤ min{xut − a, xut + rt+1} and xut + xlt + rt+1 − CU > CL, x′u(t+1) =

xu(t+1) = CU and x′l(t+1) = xl(t+1) = CL.

Thus, there exists α such that 0 ≤ α ≤ −a and

v∗t (xut, xlt, yt)− ṽ∗t (xut, xlt, yt)

≤ R(a, 0, yt) + E
[
v∗t+1

(
xu(t+1), xl(t+1), y(t+1)

)]
−R(0, 0, yt)− E

[
ṽ∗t+1

(
x′u(t+1), x

′
l(t+1), y(t+1)

)]
= ptaρgh1/φP + E

[
v∗t+1

(
xu(t+1), xl(t+1), y(t+1)

)
−ṽ∗t+1

(
xu(t+1) − α, xl(t+1) + α, y(t+1)

)]
≤ ptaρgh1/φP + E

[
v∗t+1

(
xu(t+1), xl(t+1), y(t+1)

)
−ṽ∗t+1

(
xu(t+1), xl(t+1), y(t+1)

)]
+ αρgh1φRU max

t+1≤τ≤T
pτ

≤ ptaρgh1/φP + αρgh1φRU max
t+1≤τ≤T

pτ

+QPρgh1(T − t− 1)

(
φRU max

t+1≤τ≤T
pτ − min

t+1≤τ≤T
p
τ
/φP

)+

.

If pt ≥ 0:
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ptaρgh1/φP + αρgh1φRU max
t+1≤τ≤T

pτ

≤ −ptαρgh1/φP + αρgh1φRU max
t+1≤τ≤T

pτ

≤ −αρgh1/φP min
t≤τ≤T

p
τ

+ αρgh1φRU max
t≤τ≤T

pτ

≤ αρgh1

(
φRU max

t≤τ≤T
pτ − min

t≤τ≤T
p
τ
/φP

)+

≤ QPρgh1

(
φRU max

t≤τ≤T
pτ − min

t≤τ≤T
p
τ
/φP

)+

.

If pt < 0:

ptaρgh1/φP + αρgh1φRU max
t+1≤τ≤T

pτ

≤ −QPρgh1pt/φP + αρgh1φRU max
t+1≤τ≤T

pτ

≤ −QPρgh1/φP min
t≤τ≤T

p
τ

+QPρgh1φRU max
t≤τ≤T

pτ

≤ QPρgh1

(
φRU max

t≤τ≤T
pτ − min

t≤τ≤T
p
τ
/φP

)+

.

Thus,

v∗t (xut, xlt, yt)− ṽ∗t (xut, xlt, yt)

≤ QPρgh1

(
φRU max

t≤τ≤T
pτ − min

t≤τ≤T
p
τ
/φP

)+

+QPρgh1(T − t− 1)

(
φRU max

t+1≤τ≤T
pτ − min

t+1≤τ≤T
p
τ
/φP

)+

≤ QPρgh1(T − t)
(
φRU max

t≤τ≤T
pτ − min

t≤τ≤T
p
τ
/φP

)+

.
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Appendix B

Proofs of the Analytical Results

in Chapter 4

Proof of Theorem 4.3.1

(a) Note that v∗T (xuT , xlT , yT ) = v∗T (xuT , xlT + α, yT ) = v∗T (xuT + α, xlT , yT ) =

0. Assuming v∗t+1(xu(t+1), xl(t+1), yt+1) ≤ v∗t+1(xu(t+1), xl(t+1) + α, yt+1), we show

v∗t (xut, xlt, yt) ≤ v∗t (xut, xlt + α, yt). Let a = a∗t (xut, xlt, yt) and b = b∗t (xut, xlt, yt).

Note that (a, b) ∈ U(xut, xlt + α, yt). Thus:

v∗t (xut, xlt, yt) = R(a, b, yt) + E
[
v∗t+1

(
min{xut − a+ ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
≤ R(a, b, yt) + E

[
v∗t+1

(
min{xut − a+ ru(t+1), CU

}
,

min{xlt + a− b+ α + rl(t+1), CL}, yt+1

)]
≤ v∗t (xut, xlt + α, yt).
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Also, assuming v∗t+1(xu(t+1), xl(t+1), yt+1) ≤ v∗t+1(xu(t+1) +α, xl(t+1), yt+1), we show

v∗t (xut, xlt, yt) ≤ v∗t (xut + α, xlt, yt). Note that (a, b) ∈ U(xut + α, xlt, yt). Thus:

v∗t (xut, xlt, yt) = R(a, b, yt) + E
[
v∗t+1

(
min{xut − a+ ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
≤ R(a, b, yt) + E

[
v∗t+1

(
min{xut − a+ α + ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut + α, xlt, yt).

(b) Note that v∗cT (xuT , xlT , yT ) = v∗lT (xuT , xlT , yT ) = v∗uT (xuT , xlT , yT ) =

0. Assuming v∗c(t+1)(xu(t+1), xl(t+1), yt+1) ≤ v∗l(t+1)(xu(t+1), xl(t+1), yt+1), we show

v∗ct(xut, xlt, yt) ≤ v∗lt(xut, xlt, yt). Let a = a∗ct(xut, xlt, yt). Note that (a, 0) ∈
U(xut, xlt, yt). Thus:

v∗ct(xut, xlt, yt) = R(a, 0, yt) + E
[
v∗c(t+1)

(
min{xut − a, CU

}
,

min{xlt + a, CL}, yt+1

)]
≤ R(a, 0, yt) + E

[
v∗l(t+1)

(
min{xut − a, CU

}
,

min{xlt + a, CL}, yt+1

)]
≤ R(a, 0, yt) + E

[
v∗l(t+1)

(
min{xut − a, CU

}
,

min{xlt + a+ rt+1, CL}, yt+1

)]
≤ v∗lt(xut, xlt, yt).

The first inequality follows from the induction assumption and the second in-

equality follows from point (a).

We next prove that v∗lt(xut, xlt, yt) ≤ v∗ct(xut, xlt, yt) + 1
θ
CR
∑T

i=t(T −

i) max

{(
max
i≤τ≤T

pτ

)+

,
(

max
i≤τ≤T

−p
τ

)+
}
, ∀t ∈ T . Note that v∗lT (xuT , xlT , yT ) =

v∗cT (xuT , xlT , yT ) + 1
θ
CR
∑T

i=T (T − i) max

{(
max
i≤τ≤T

pτ

)+

,
(

max
i≤τ≤T

−p
τ

)+
}

= 0.

To this end, we first show that v∗ct(xut + α, xlt + β, yt) − v∗ct(xut, xlt, yt) ≤
1
θ
(α + |β|)(T − t) max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

where α ≥ 0. Note that
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v∗cT (xuT + α, xlT + β, yT ) = v∗cT (xuT , xlT , yT ) = 0. Assuming v∗c(t+1)(xu(t+1) +

α, xl(t+1) + β, y(t+1)) − v∗c(t+1)(xu(t+1), xl(t+1), y(t+1)) ≤ 1
θ
(α + |β|)(T − t −

1) max

{(
max

t+1≤τ≤T
pτ

)+

,
(

max
t+1≤τ≤T

−p
τ

)+
}

, we show v∗ct(xut + α, xlt + β, yt) −

v∗ct(xut, xlt, yt) ≤ 1
θ
(α + |β|)(T − t) max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

. Suppose

that ã = a∗ct(xut+α, xlt+β, yt) ≥ α. Notice that (ã−α, 0) ∈ U(xut, xlt, yt). Thus:

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ R(ã, 0, yt) + E
[
v∗c(t+1)

(
min{xut − ã+ α,CU},

min{xlt + ã+ β, CL}, y(t+1)

)]
−R(ã− α, 0, yt)− E

[
v∗c(t+1)

(
min{xut − ã+ α,CU},

min{xlt + ã− α,CL}, y(t+1)

)]
.

If pt ≥ 0, R(ã, 0, yt) − R(ã − α, 0, yt) = ptθα ≤ pt
α
θ
≤

α
θ

max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

. If pt < 0, R(ã, 0, yt) − R(ã − α, 0, yt) =

ptθα ≤ 0 ≤ α
θ

max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

. Thus:

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ α

θ
max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

+
1

θ
(|α + β|)(T − t− 1) max

{(
max

t+1≤τ≤T
pτ

)+

,
(

max
t+1≤τ≤T

−p
τ

)+
}

≤ 1

θ
(α + |β|) max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

+
1

θ
(α + |β|)(T − t− 1) max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

≤ 1

θ
(α + |β|)(T − t) max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}
.

Now suppose that −β ≤ ã < α and ã ≥ 0. If the action (0, 0) is taken in state

(xut, xlt, yt),
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v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ R(ã, 0, yt) + E
[
v∗c(t+1)

(
min{xut − ã+ α,CU},

min{xlt + ã+ β, CL}, y(t+1)

)]
−R(0, 0, yt)− E

[
v∗c(t+1)

(
min{xut, CU},min{xlt, CL}, y(t+1)

)]
.

If pt ≥ 0, R(ã, 0, yt) − R(0, 0, yt) = ptθã ≤ pt
ã
θ

≤
α
θ

max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}
. If pt < 0, R(ã, 0, yt) − R(0, 0, yt) =

ptθã ≤ 0 ≤ α
θ

max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}
. Thus:

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ α

θ
max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

+
1

θ
(α− ã+ ã+ β)(T − t− 1) max

{(
max

t+1≤τ≤T
pτ

)+

,
(

max
t+1≤τ≤T

−p
τ

)+
}

≤ 1

θ
(α + |β|)(T − t) max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}
.

Now suppose that −β ≤ ã < α and ã < 0. If the action (0, 0) is taken in state

(xut, xlt, yt),

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ R(ã, 0, yt) + E
[
v∗c(t+1)

(
min{xut − ã+ α,CU},

min{xlt + ã+ β, CL}, y(t+1)

)]
−R(0, 0, yt)− E

[
v∗c(t+1)

(
min{xut, CU},min{xlt, CL}, y(t+1)

)]
.

If pt ≥ 0, R(ã, 0, yt) − R(0, 0, yt) = pt
ã
θ
≤ 0 ≤ 1

θ
(α +

|β|) max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. If pt < 0, R(ã, 0, yt) − R(0, 0, yt) =

pt
ã
θ

≤ −pt βθ ≤ β
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
≤ 1

θ
(α +
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|β|) max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. Thus:

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ 1

θ
(α + |β|)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+

1

θ
(α− ã+ ã+ β)(T − t− 1)max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ 1

θ
(α + |β|)(T − t)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.

Now suppose that 0 ≤ ã < −β < α. If the action (0,0) is taken in state

(xut, xlt, yt),

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ R(ã, 0, yt) + E
[
v∗c(t+1)

(
min{xut − ã+ α,CU},

min{xlt + ã+ β, CL}, y(t+1)

)]
−R(0, 0, yt)− E

[
v∗c(t+1)

(
min{xut, CU},min{xlt, CL}, y(t+1)

)]
.

If pt ≥ 0, R(ã, 0, yt) − R(0, 0, yt) = ptθã ≤ ã
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
≤

1

θ
(α − β)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. If pt < 0, R(ã, 0, yt) − R(0, 0, yt) =

ptθã ≤ 0 ≤ 1
θ
(α− β)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. Thus:

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ 1

θ
(α− β)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+

1

θ
(α− ã− ã− β)(T − t− 1)max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ 1

θ
(α− β)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+

1

θ
(α− β)(T − t− 1)max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ 1

θ
(α + |β|)(T − t)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.
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Now suppose that ã < 0 < −β < α. If the action (ã, 0) is taken in state

(xut, xlt, yt),

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ R(ã, 0, yt) + E
[
v∗c(t+1)

(
min{xut − ã+ α,CU},

min{xlt + ã+ β, CL}, y(t+1)

)]
−R(ã, 0, yt)− E

[
v∗c(t+1)

(
min{xut − ã, CU},min{xlt + ã, CL}, y(t+1)

)]
≤ 1

θ
(α + |β|)(T − t− 1)max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ 1

θ
(α + |β|)(T − t)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.

Now suppose that ã < −β < 0 ≤ α. If the action (ã + β, 0) is taken in state

(xut, xlt, yt),

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ R(ã, 0, yt) + E
[
v∗c(t+1)

(
min{xut − ã+ α,CU},

min{xlt + ã+ β, CL}, y(t+1)

)]
−R(ã+ β, 0, yt)− E

[
v∗c(t+1)

(
min{xut − ã− β, CU},

min{xlt + ã+ β, CL}, y(t+1)

)]
.

If pt ≥ 0, R(ã, 0, yt) − R(ã + β, 0, yt) = −pt βθ ≤ 0 ≤ 1
θ
(α +

β)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. If pt < 0, R(ã, 0, yt)−R(ã+β, 0, yt) = −pt βθ ≤

1
θ
(α + β)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. Thus:

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ 1

θ
(α + β)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+

1

θ
(α + β)(T − t− 1)max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ 1

θ
(α + |β|)(T − t)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.
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Now suppose that 0 ≤ ã < α ≤ −β. If the action (0,0) is taken in state

(xut, xlt, yt),

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ R(ã, 0, yt) + E
[
v∗c(t+1)

(
min{xut − ã+ α,CU},

min{xlt + ã+ β, CL}, y(t+1)

)]
−R(0, 0, yt)− E

[
v∗c(t+1)

(
min{xut, CU},min{xlt, CL}, y(t+1)

)]
.

If pt ≥ 0, R(ã, 0, yt) − R(0, 0, yt) = ptθã ≤ pt
α
θ

≤
α
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. If pt < 0, R(ã, 0, yt) − R(0, 0, yt) = ptθã ≤

0 ≤ α
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. Thus:

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ α

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+

1

θ
(α− ã− ã− β)(T − t− 1)max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ α

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+

1

θ
(α + |β|)(T − t− 1)max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ 1

θ
(α + |β|)(T − t)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.

Finally suppose that ã < 0 ≤ α ≤ −β. If the action (ã, 0) is taken in state

(xut, xlt, yt),

v∗ct(xut + α, xlt + β, yt)− v∗ct(xut, xlt, yt)

≤ R(ã, 0, yt) + E
[
v∗c(t+1)

(
min{xut − ã+ α,CU},

min{xlt + ã+ β, CL}, y(t+1)

)]
−R(ã, 0, yt)− E

[
v∗c(t+1)

(
min{xut − ã, CU},min{xlt + ã, CL}, y(t+1)

)]
≤ 1

θ
(α + |β|)(T − t)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.
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Using the above result and assuming v∗l(t+1)(xu(t+1), xl(t+1), y(t+1)) −

v∗c(t+1)(xu(t+1), xl(t+1), y(t+1)) ≤ 1
θ
CR
∑T

i=t+1(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
,

we show v∗lt(xut, xlt, yt) ≤ v∗ct(xut, xlt, yt) + 1
θ
CR
∑T

i=t(T −

i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
. Let a = a∗lt(xut, xlt, yt) and b = b∗lt(xut, xlt, yt)

denote the optimal actions in state (xut, xlt, yt) for the system with streamflow

coming to the lower reservoir. Note that (a, 0) ∈ U(xut, xlt, yt). Thus:

v∗lt(xut, xlt, yt)− v∗ct(xut, xlt, yt)

≤ R(a, b, yt) + E
[
v∗l(t+1)

(
min{xut − a, CU},

min{xlt + a− b+ rt+1, CL}, y(t+1)

)]
−R(a, 0, yt)− E

[
v∗c(t+1)

(
min{xut − a, CU},min{xlt + a, CL}, y(t+1)

)]
= R(a, b, yt)−R(a, 0, yt)

+ E
[
v∗l(t+1)

(
min{xut − a, CU},min{xlt + a− b+ rt+1, CL}, y(t+1)

)
− v∗c(t+1)

(
min{xut − a, CU},min{xlt + a− b+ rt+1, CL}, y(t+1)

)
+ v∗c(t+1)

(
min{xut − a, CU},min{xlt + a− b+ rt+1, CL}, y(t+1)

)
− v∗c(t+1)

(
min{xut − a, CU},min{xlt + a, CL}, y(t+1)

)]
.

If pt ≥ 0, R(a, b, yt) − R(a, 0, yt) = ptθb ≤ pt
b
θ

≤
b
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. If pt < 0, R(a, b, yt)−R(a, 0, yt) = ptθb ≤ 0 ≤

b
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. Thus:
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v∗lt(xut, xlt, yt)− v∗ct(xut, xlt, yt)

≤ b

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+
CR
θ

T∑
i=t+1

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
+

1

θ
|rt+1 − b|(T − t− 1)max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ CR

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+
CR
θ

T∑
i=t+1

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
+
CR
θ

(T − t− 1)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
=
CR
θ

T∑
i=t+1

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
+
CR
θ

(T − t)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
=
CR
θ

T∑
i=t

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
.

Moreover, assuming v∗c(t+1)(xu(t+1), xl(t+1), yt+1) ≤ v∗u(t+1)(xu(t+1), xl(t+1), yt+1),

we show v∗ct(xut, xlt, yt) ≤ v∗ut(xut, xlt, yt), which implies the third inequality in

point (b). Let a = a∗ct(xut, xlt, yt). Note that (a, 0) ∈ U(xut, xlt, yt). Thus:

v∗ct(xut, xlt, yt) = R(a, 0, yt) + E
[
v∗c(t+1)

(
min{xut − a, CU

}
,

min{xlt + a, CL}, yt+1

)]
≤ R(a, 0, yt) + E

[
v∗u(t+1)

(
min{xut − a, CU

}
,

min{xlt + a, CL}, yt+1

)]
≤ R(a, 0, yt) + E

[
v∗u(t+1)

(
min{xut − a+ rt+1, CU

}
,

min{xlt + a, CL}, yt+1

)]
≤ v∗ut(xut, xlt, yt).
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The first inequality follows from the induction assumption and the second

inequality follows from point (a).

Finally we prove that v∗ut(xut, xlt, yt) ≤ v∗ct(xut, xlt, yt) + 1
θ
CR
∑T

i=t(T −

i) max

{(
max
i≤τ≤T

pτ

)+

,
(

max
i≤τ≤T

−p
τ

)+
}
, ∀t ∈ T . Note that v∗uT (xuT , xlT , yT ) =

v∗cT (xuT , xlT , yT ) + 1
θ
CR
∑T

i=T (T − i) max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+
}

= 0. To

this end, we will use the inequality v∗ct(xut+α, xlt+β, yt)−v∗ct(xut, xlt, yt) ≤ 1
θ
(α+

|β|)(T − t) max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

where α ≥ 0, which we showed

before. We assume v∗u(t+1)(xu(t+1), xl(t+1), y(t+1)) − v∗c(t+1)(xu(t+1), xl(t+1), y(t+1)) ≤
1
θ
CR
∑T

i=t+1(T − i) max

{(
max
i≤τ≤T

pτ

)+

,
(

max
i≤τ≤T

−p
τ

)+
}

. Also, let a =

a∗ut(xut, xlt, yt) and b = b∗ut(xut, xlt, yt) denote the optimal actions in state

(xut, xlt, yt) for the system with streamflow coming to the upper reservoir. Note

that (a, 0) ∈ U(xut, xlt, yt). Thus:
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v∗ut(xut, xlt, yt)− v∗ct(xut, xlt, yt)

≤ R(a, b, yt) + E
[
v∗u(t+1)

(
min{xut − a+ rt+1, CU},

min{xlt + a− b, CL}, y(t+1)

)]
−R(a, 0, yt)− E

[
v∗c(t+1)

(
min{xut − a, CU},

min{xlt + a, CL}, y(t+1)

)]
= R(a, b, yt)−R(a, 0, yt)

+ E
[
v∗u(t+1)

(
min{xut − a+ rt+1, CU},min{xlt + a− b, CL}, y(t+1)

)
− v∗c(t+1)

(
min{xut − a+ rt+1, CU},min{xlt + a− b, CL}, y(t+1)

)
+ v∗c(t+1)

(
min{xut − a+ rt+1, CU},min{xlt + a− b, CL}, y(t+1)

)
− v∗c(t+1)

(
min{xut − a, CU},min{xlt + a, CL}, y(t+1)

)]
≤ R(a, b, yt)−R(a, 0, yt)

+ E
[
v∗u(t+1)

(
min{xut − a+ rt+1, CU},min{xlt + a− b, CL}, y(t+1)

)
− v∗c(t+1)

(
min{xut − a+ rt+1, CU},min{xlt + a− b, CL}, y(t+1)

)
+ v∗c(t+1)

(
min{xut − a+ rt+1, CU},min{xlt + a, CL}, y(t+1)

)
− v∗c(t+1)

(
min{xut − a, CU},min{xlt + a, CL}, y(t+1)

)]
.

If pt ≥ 0, R(a, b, yt) − R(a, 0, yt) = ptθb ≤ pt
b
θ

≤
b
θ

max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}
. If pt < 0, R(a, b, yt) − R(a, 0, yt) =

ptθb ≤ 0 ≤ b
θ

max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}
. Thus:

135



v∗ut(xut, xlt, yt)− v∗ct(xut, xlt, yt)

≤ b

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+
CR
θ

T∑
i=t+1

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
+

1

θ
rt+1(T − t− 1)max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ CR

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+
CR
θ

T∑
i=t+1

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
+
CR
θ

(T − t− 1)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
=
CR
θ

T∑
i=t+1

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
+
CR
θ

(T − t)max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
=
CR
θ

T∑
i=t

(T − i)max

{(
max
i≤τ≤T

pτ

)+
,
(

max
i≤τ≤T

−p
τ

)+}
.

(c) First, we will prove that v∗ut(xut, xlt, yt) ≤ v∗lt(xut, xlt, yt) + (T −

t)θ

(
max
t≤τ≤T

pτ

)+(
max
t≤τ≤T

rτ

)
, ∀t ∈ T . Note that v∗uT (xuT , xlT , yT ) =

v∗lT (xuT , xlT , yT ) = 0. To this end, we first show that v∗lt(xut + α, xlt − α, yt) −

v∗lt(xut, xlt, yt) ≤ αθ

(
max
t≤τ≤T

pτ

)+

where α ≥ 0. Note that v∗lT (xuT + α, xlT −

α, yT ) = v∗lT (xuT , xlT , yT ) = 0. Assuming v∗l(t+1)(xu(t+1) + α, xl(t+1) − α, y(t+1)) −

v∗l(t+1)(xu(t+1), xl(t+1), y(t+1)) ≤ αθ

(
max

t+1≤τ≤T
pτ

)+

, we show v∗lt(xut+α, xlt−α, yt)−

v∗lt(xut, xlt, yt) ≤ αθ

(
max
t≤τ≤T

pτ

)+

. Suppose that ã = a∗lt(xut + α, xlt − α, yt) < 0
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and b̃ = b∗lt(xut + α, xlt − α, yt). Notice that (ã, b̃) ∈ U(xut, xlt, yt). Thus:

v∗lt(xut + α, xlt − α, yt)− v∗lt(xut, xlt, yt)

≤ R(ã, b̃, yt) + E
[
v∗l(t+1)

(
xut − ã+ α, xlt + ã− b̃− α + rt+1, y(t+1)

)]
−R(ã, b̃, yt)− E

[
v∗l(t+1)

(
xut − ã, xlt + ã− b̃+ rt+1, y(t+1)

)]
≤ αθ

(
max

t+1≤τ≤T
pτ

)+

≤ αθ

(
max
t≤τ≤T

pτ

)+

.

Now suppose that 0 ≤ ã < α. If the action (0, b̃) is taken in state (xut, xlt, yt),

v∗lt(xut + α, xlt − α, yt)− v∗lt(xut, xlt, yt)

≤ R(ã, b̃, yt) + E
[
v∗l(t+1)

(
xut − ã+ α, xlt + ã− b̃− α + rt+1, y(t+1)

)]
−R(0, b̃, yt)− E

[
v∗l(t+1)

(
xut, xlt − b̃+ rt+1, y(t+1)

)]
.

If pt ≥ 0, R(ã, b̃, yt) − R(0, b̃, yt) = ptθã ≤ θã

(
max
t≤τ≤T

pτ

)+
. If pt < 0, R(ã, b̃, yt) −

R(0, b̃, yt) = ptθã ≤ 0 ≤ θã

(
max
t≤τ≤T

pτ

)+
. Thus:

v∗lt(xut + α, xlt − α, yt)− v∗lt(xut, xlt, yt)

≤ ãθ

(
max
t≤τ≤T

pτ

)+
+ (α− ã)θ

(
max
t≤τ≤T

pτ

)+
= αθ

(
max
t≤τ≤T

pτ

)+
.

Finally suppose that ã ≥ α. If the action (ã− α, b̃) is taken in state (xut, xlt, yt),

v∗lt(xut + α, xlt − α, yt)− v∗lt(xut, xlt, yt)

≤ R(ã, b̃, yt) + E
[
v∗l(t+1)

(
xut − ã+ α, xlt + ã− b̃− α + rt+1, y(t+1)

)]
−R(ã− α, b̃, yt)−E

[
v∗l(t+1)

(
xut − ã+ α, xlt + ã− b̃− α + rt+1, y(t+1)

)]
.

If pt ≥ 0, R(ã, b̃, yt) − R(ã − α, b̃, yt) = ptθα ≤ αθ

(
max
t≤τ≤T

pτ

)+
. If pt < 0,

R(ã, b̃, yt)−R(ã− α, b̃, yt) = ptθα ≤ 0 ≤ αθ

(
max
t≤τ≤T

pτ

)+
. Thus:

v∗lt(xut + α, xlt − α, yt)− v∗lt(xut, xlt, yt) ≤ αθ

(
max
t≤τ≤T

pτ

)+
.
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Using the above result and assuming v∗u(t+1)(xu(t+1), xl(t+1), y(t+1)) −

v∗l(t+1)(xu(t+1), xl(t+1), y(t+1)) ≤ (T − t − 1)θ

(
max

t+1≤τ≤T
pτ

)+(
max

t+1≤τ≤T
rτ

)
, we show

v∗ut(xut, xlt, yt) ≤ v∗lt(xut, xlt, yt) + (T − t)θ

(
max
t≤τ≤T

pτ

)+(
max
t≤τ≤T

rτ

)
. Let a =

a∗ut(xut, xlt, yt) and b = b∗ut(xut, xlt, yt) denote the optimal actions in state

(xut, xlt, yt) for the system with streamflow coming to the upper reservoir. Note

that (a, b) ∈ U(xut, xlt, yt). Thus:

v∗ut(xut, xlt, yt)− v∗lt(xut, xlt, yt)

≤ R(a, b, yt) + E
[
v∗u(t+1)

(
xut − a+ rt+1, xlt + a− b, y(t+1)

)]
−R(a, b, yt)− E

[
v∗l(t+1)

(
xut − a, xlt + a− b+ rt+1, y(t+1)

)]
= E

[
v∗u(t+1)

(
xut − a+ rt+1, xlt + a− b, y(t+1)

)
− v∗l(t+1)

(
xut − a+ rt+1, xlt + a− b, y(t+1)

)
+ v∗l(t+1)

(
xut − a+ rt+1, xlt + a− b, y(t+1)

)
− v∗l(t+1)

(
xut − a, xlt + a− b+ rt+1, y(t+1)

)]
≤ (T − t− 1)θ

(
max

t+1≤τ≤T
pτ

)+(
max

t+1≤τ≤T
rτ

)
+ rt+1θ

(
max

t+1≤τ≤T
pτ

)+
≤ (T − t− 1)θ

(
max

t+1≤τ≤T
pτ

)+(
max

t+1≤τ≤T
rτ

)
+ θ

(
max

t+1≤τ≤T
pτ

)+(
max

t+1≤τ≤T
rτ

)
≤ (T − t)θ

(
max
t≤τ≤T

pτ

)+(
max
t≤τ≤T

rτ

)
.

Next, we will prove that v∗lt(xut, xlt, yt) ≤ v∗ut(xut, xlt, yt) + (T −

t)1
θ

max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}(

max
t≤τ≤T

rτ

)
, ∀t ∈ T . Note that

v∗lT (xuT , xlT , yT ) = v∗uT (xuT , xlT , yT ) = 0. To this end, we first show that

v∗ut(xut − α, xlt + α, yt) − v∗ut(xut, xlt, yt) ≤ α
θ

max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

where α ≥ 0. Note that v∗uT (xuT − α, xlT + α, yT ) = v∗uT (xuT , xlT , yT ) = 0.

Assuming v∗u(t+1)(xu(t+1) − α, xl(t+1) + α, y(t+1)) − v∗u(t+1)(xu(t+1), xl(t+1), y(t+1)) ≤
α
θ

max

{(
max

t+1≤τ≤T
pτ

)+

,
(

max
t+1≤τ≤T

−p
τ

)+
}

, we show v∗ut(xut − α, xlt + α, yt) −

v∗ut(xut, xlt, yt) ≤ α
θ

max

{(
max
t≤τ≤T

pτ

)+

,
(

max
t≤τ≤T

−p
τ

)+
}

. Suppose that ã =

a∗ut(xut − α, xlt + α, yt) and b̃ = b∗ut(xut − α, xlt + α, yt) > α. Notice that
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(ã, b̃− α) ∈ U(xut, xlt, yt). Thus:

v∗ut(xut − α, xlt + α, yt)− v∗ut(xut, xlt, yt)

≤ R(ã, b̃, yt) + E
[
v∗u(t+1)

(
xut − ã− α + rt+1, xlt + ã− b̃+ α, y(t+1)

)]
−R(ã, b̃− α, yt)− E

[
v∗u(t+1)

(
xut − ã+ rt+1, xlt + ã− b̃+ α, y(t+1)

)]
.

If pt ≥ 0, R(ã, b̃, yt)−R(ã, b̃−α, yt) = ptθα ≤ α
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.

If pt < 0, R(ã, b̃, yt) − R(ã, b̃ − α, yt) = ptθα ≤ 0 ≤
α
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. Thus:

v∗ut(xut − α, xlt + α, yt)− v∗ut(xut, xlt, yt)

≤ α

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.

Now suppose that ã ≥ 0 and b̃ ≤ α. Notice that (ã, 0) ∈ U(xut, xlt, yt).

v∗ut(xut − α, xlt + α, yt)− v∗ut(xut, xlt, yt)

≤ R(ã, b̃, yt) + E
[
v∗u(t+1)

(
xut − ã− α + rt+1, xlt + ã− b̃+ α, y(t+1)

)]
−R(ã, 0, yt)− E

[
v∗u(t+1)

(
xut − ã+ rt+1, xlt + ã, y(t+1)

)]
≤ R(ã, b̃, yt) + E

[
v∗u(t+1)

(
xut − ã− α + b̃+ rt+1, xlt + ã− b̃+ α, y(t+1)

)]
−R(ã, 0, yt)− E

[
v∗u(t+1)

(
xut − ã+ rt+1, xlt + ã, y(t+1)

)]
.

If pt ≥ 0, R(ã, b̃, yt) − R(ã, 0, yt) = ptθb̃ ≤ b̃
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. If

pt < 0, R(ã, b̃, yt) − R(ã, 0, yt) = ptθb̃ ≤ 0 ≤ b̃
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.

Thus:

v∗ut(xut − α, xlt + α, yt)− v∗ut(xut, xlt, yt)

≤ b̃

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+ (α− b̃) 1

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
≤ α

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.
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Now suppose that −α ≤ ã < 0 and b̃ ≤ α. If the action (0, 0) is taken in state

(xut, xlt, yt),

v∗ut(xut − α, xlt + α, yt)− v∗ut(xut, xlt, yt)

≤ R(ã, b̃, yt) + E
[
v∗u(t+1)

(
xut − ã− α + rt+1, xlt + ã− b̃+ α, y(t+1)

)]
−R(0, 0, yt)− E

[
v∗u(t+1)

(
xut + rt+1, xlt, y(t+1)

)]
≤ R(ã, b̃, yt) + E

[
v∗u(t+1)

(
xut − ã− α + b̃+ rt+1, xlt + ã− b̃+ α, y(t+1)

)]
−R(0, 0, yt)− E

[
v∗u(t+1)

(
xut + rt+1, xlt, y(t+1)

)]
.

If pt ≥ 0, R(ã, b̃, yt) − R(0, 0, yt) = pt
ã
θ

+ ptθb̃ ≤ ptθb̃ ≤ pt
b̃
θ
≤

b̃
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
≤ − ã

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+

b̃

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. If pt < 0, R(ã, b̃, yt) − R(0, 0, yt) =

pt
ã
θ

+ ptθb̃ ≤ pt
ã
θ

≤ − ã
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
≤

− ã
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+
b̃

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.

Thus:

v∗ut(xut − α, xlt + α, yt)− v∗ut(xut, xlt, yt)

≤ − ã
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+
b̃

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
+ (ã+ α− b̃)1

θ
max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ α

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.

Finally suppose that ã < −α and b̃ ≤ α. If the action (ã+ α, 0) is taken in state
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(xut, xlt, yt),

v∗ut(xut − α, xlt + α, yt)− v∗ut(xut, xlt, yt)

≤ R(ã, b̃, yt) + E
[
v∗u(t+1)

(
xut − ã− α + rt+1, xlt + ã− b̃+ α, y(t+1)

)]
−R(ã+ α, 0, yt)− E

[
v∗u(t+1)

(
xut − ã− α + rt+1, xlt + ã+ α, y(t+1)

)]
.

If pt ≥ 0, R(ã, b̃, yt) − R(ã + α, 0, yt) =
(
−α

θ
+ θb̃

)
pt ≤ 0 ≤

α
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. If pt < 0, R(ã, b̃, yt) − R(ã + α, 0, yt) =(

−α
θ

+ θb̃
)
pt ≤ −pt αθ ≤

α
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
. Thus:

v∗ut(xut − α, xlt + α, yt)− v∗ut(xut, xlt, yt)

≤ α

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}
.

Using the above result and assuming v∗l(t+1)(xu(t+1), xl(t+1), y(t+1)) −

v∗u(t+1)(xu(t+1), xl(t+1), y(t+1)) ≤ (T − t − 1)1
θ

max
{(

max
t+1≤τ≤T

pτ

)+

,(
max

t+1≤τ≤T
−p

τ

)+}(
max

t+1≤τ≤T
rτ

)
, we show v∗lt(xut, xlt, yt) ≤ v∗ut(xut, xlt, yt) +

(T − t)1
θ

max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}(
max
t≤τ≤T

rτ

)
. Let a = a∗lt(xut, xlt, yt) and

b = b∗lt(xut, xlt, yt) denote the optimal actions in state (xut, xlt, yt) for the system

with streamflow coming to the lower reservoir. Note that (a, b) ∈ U(xut, xlt, yt).

141



Thus:

v∗lt(xut, xlt, yt)− v∗ut(xut, xlt, yt)

≤ R(a, b, yt) + E
[
v∗l(t+1)

(
xut − a, xlt + a− b+ rt+1, y(t+1)

)]
−R(a, b, yt)− E

[
v∗u(t+1)

(
xut − a+ rt+1, xlt + a− b, y(t+1)

)]
= E

[
v∗l(t+1)

(
xut − a, xlt + a− b+ rt+1, y(t+1)

)
− v∗u(t+1)

(
xut − a, xlt + a− b+ rt+1, y(t+1)

)
+ v∗u(t+1)

(
xut − a, xlt + a− b+ rt+1, y(t+1)

)
− v∗u(t+1)

(
xut − a+ rt+1, xlt + a− b, y(t+1)

)]
≤ (T − t− 1)

1

θ
max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}(
max

t+1≤τ≤T
rτ

)
+
rt+1

θ
max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}
≤ (T − t− 1)

1

θ
max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}(
max

t+1≤τ≤T
rτ

)
+

1

θ
max

{(
max

t+1≤τ≤T
pτ

)+
,
(

max
t+1≤τ≤T

−p
τ

)+}(
max

t+1≤τ≤T
rτ

)
≤ (T − t)1

θ
max

{(
max
t≤τ≤T

pτ

)+
,
(

max
t≤τ≤T

−p
τ

)+}(
max
t≤τ≤T

rτ

)
.
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Appendix C

Proofs of the Analytical Results

in Chapter 5

Proof of Lemma 5.1.1. Under Assumption 5.1.1, pt > 0, ∀t ∈ T . Note that

R(at, bt, yt) = min{(θat + θbt)pt, (at/θ + θbt)pt}. Since the minimum of affine

functions is concave, R(at, bt, yt) is jointly concave in at and bt. �

Proof of Lemma 5.1.2. Note that v∗T (xuT , xlT , yT ) = v∗T (xuT , xlT +

α, yT ) = v∗T (xuT + α, xlT , yT ) = 0. Assuming v∗t+1(xu(t+1), xl(t+1), yt+1) ≤
v∗t+1(xu(t+1), xl(t+1) + α, yt+1), we show v∗t (xut, xlt, yt) ≤ v∗t (xut, xlt + α, yt). Let

a = a∗t (xut, xlt, yt) and b = b∗t (xut, xlt, yt). Note that (a, b) ∈ U(xut, xlt + α, yt).

Thus:

v∗t (xut, xlt, yt) = R(a, b, yt) + E
[
v∗t+1

(
min{xut − a+ ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
≤ R(a, b, yt)+E

[
v∗t+1

(
min{xut − a+ ru(t+1), CU

}
,

min{xlt+a−b+rl(t+1)+α,CL}, yt+1

)]
≤ v∗t (xut, xlt + α, yt).

Now, assuming v∗t+1(xu(t+1), xl(t+1), yt+1) ≤ v∗t+1(xu(t+1) + α, xl(t+1), yt+1), we
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show v∗t (xut, xlt, yt) ≤ v∗t (xut + α, xlt, yt). Let a = a∗t (xut, xlt, yt) and b =

b∗t (xut, xlt, yt). Note that (a, b) ∈ U(xut + α, xlt, yt). Thus:

v∗t (xut, xlt, yt) = R(a, b, yt) + E
[
v∗t+1

(
min{xut − a+ ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
≤ R(a, b, yt)+E

[
v∗t+1

(
min{xut + α− a+ru(t+1), CU

}
,

min{xlt+a−b+rl(t+1), CL}, yt+1

)]
≤ v∗t (xut + α, xlt, yt).

�

Proof of Lemma 5.1.3. Let a = a∗t (xut, xlt, yt) and b = b∗t (xut, xlt, yt). Pick

an arbitrary yt. Assume to the contrary that a < xut − CU ≤ 0. Note that

−CP ≤ a < xut − CU ≤ 0 ≤ min{xut, CR} and b + CU − xut < b − a ≤ xlt.

Hence (xut − CU , b) ∈ U(xut, xlt, yt). Since R(·, b, yt) is an increasing function,

R(xut −CU , b, yt) > R(a, b, yt). Thus, the first inequality in Lemma 5.1.2 implies

that

v∗t (xut, xlt, yt)=R(a, b, yt)+E
[
v∗t+1

(
CU ,min{xlt+a−b+rl(t+1), CL}, yt+1

)]
< R(xut − CU , b, yt)

+E
[
v∗t+1

(
CU ,min{xlt+xut−CU−b+rl(t+1), CL}, yt+1

)]
.

Since the action pair (xut−CU , b) ∈ U(xut, xlt, yt) leads to a larger profit function,

we have a contradiction. Thus a = a∗t (xut, xlt, yt) ≥ xut − CU . �

Proof of Lemma 5.1.4. Let a = a∗t (xut, xlt, yt) and b = b∗t (xut, xlt, yt). Pick

an arbitrary yt. Assume to the contrary that b − a < xlt − CL ≤ 0. Note that

0 ≤ b < a ≤ CR. Since CR ≤ CL, b < xlt + a − CL ≤ xlt + CR − CL ≤ xlt. Let

∆ = min{xlt, CR, xlt + a−CL} − b > 0. Note that 0 ≤ b < b+ ∆ ≤ min{xlt, CR}
and b+∆−a ≤ xlt−CL ≤ xlt. Hence (a, b+∆) ∈ U(xut, xlt, yt). Since R(a, ·, yt) is

an increasing function, R(a, b, yt) < R(a, b+∆, yt). Note that xlt+a−b−∆ ≥ CL.
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Thus:

v∗t (xut, xlt, yt) = R(a, b, yt)+E
[
v∗t+1

(
min{xut−a+ru(t+1), CU}, CL, yt+1

)]
< R(a, b+ ∆, yt)

+ E
[
v∗t+1

(
min{xut − a+ ru(t+1), CU}, CL, yt+1

)]
= R(a, b+ ∆, yt)

+ E
[
v∗t+1

(
min{xut − a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1) −∆, CL}, yt+1

)]
.

Since the action pair (a, b + ∆) ∈ U(xut, xlt, yt) leads to a larger profit function,

we have a contradiction. Thus b− a = b∗t (xut, xlt, yt)− a∗t (xut, xlt, yt) ≥ xlt − CL.

�

Proof of Lemma 5.1.5. Note that v∗T (.) satisfies properties (a)–(c). Pick an

arbitrary t < T . Assuming v∗t+1(.) satisfies properties (a)–(c), we first prove that

v∗t+1(.) satisfies the following properties:

(i)

v∗t+1(min{x̄ut + α,CU},min{x̄lt, CL}, yt+1)

− v∗t+1(min{x̄ut, CU},min{x̄lt + α,CL}, yt+1)

≤ v∗t+1(min{x̄ut + α,CU},min{x̄lt + β, CL}, yt+1)

− v∗t+1(min{x̄ut, CU},min{x̄lt + α + β, CL}, yt+1),

(ii)

v∗t+1(min{x̄ut + α + β, CU},min{x̄lt, CL}, yt+1)

− v∗t+1(min{x̄ut + β, CU},min{x̄lt + α,CL}, yt+1)

≤ v∗t+1(min{x̄ut + α,CU},min{x̄lt, CL}, yt+1)

− v∗t+1(min{x̄ut, CU},min{x̄lt + α,CL}, yt+1),
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(iii)

v∗t+1(min{x̄ut + α,CU},min{x̄lt + β, CL}, yt+1)

− v∗t+1(min{x̄ut, CU},min{x̄lt + β, CL}, yt+1)

≤ v∗t+1(min{x̄ut + α,CU},min{x̄lt, CL}, yt+1)

− v∗t+1(min{x̄ut, CU},min{x̄lt, CL}, yt+1),

where x̄ut = xut+δu, x̄lt = xlt+δl, δu ≥ 0, and δl ≥ 0. With the above properties,

we will prove that v∗t (.) satisfies properties (a)–(c).

In order to prove property (i), we consider the following fourteen cases:

(1) If δu ≤ CU − xut − α < CU − xut and δl ≤ CL − xlt − α − β, as we assume

v∗t+1(.) satisfies property (a),

v∗t+1(xut + δu + α, xlt + δl, yt+1)− v∗t+1(xut + δu, xlt + δl + α, yt+1)

≤ v∗t+1(xut + δu + α, xlt + δl + β, yt+1)

− v∗t+1(xut + δu, xlt + δl + α + β, yt+1).

(2) If δu ≤ CU − xut − α < CU − xut and CL − xlt − α− β < δl ≤ CL − xlt − α,

as we assume v∗t+1(.) satisfies property (a), and by Lemma 5.1.2,

v∗t+1(xut + δu + α, xlt + δl, yt+1)− v∗t+1(xut + δu, xlt + δl + α, yt+1)

≤ v∗t+1(xut + δu + α,CL − α, yt+1)− v∗t+1(xut + δu, CL, yt+1)

≤ v∗t+1(xut + δu + α,min{xlt + δl + β, CL}, yt+1)

− v∗t+1(xut + δu, CL, yt+1).

(3) If δu ≤ CU − xut − α < CU − xut and CL − xlt − α < δl ≤ CL − xlt, by

Lemma 5.1.2,

v∗t+1(xut + δu + α, xlt + δl, yt+1)− v∗t+1(xut + δu, CL, yt+1)

≤ v∗t+1(xut + δu + α,min{xlt + δl + β, CL}, yt+1)

− v∗t+1(xut + δu, CL, yt+1).
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(4) If δu ≤ CU − xut − α < CU − xut and CL − xlt < δl, both sides of the

inequality reduce to v∗t+1(xut + δu + α,CL, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(5) If CU − xut − α < δu ≤ CU − xut and δl ≤ CL − xlt − α − β, as we assume

v∗t+1(.) satisfies properties (a) and (c) (which together imply the concavity

of v∗t+1(xut + δu, ·, yt+1)),

v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(CU , xlt + δl + β, yt+1)

≤ v∗t+1(xut + δu, xlt + δl + CU − xut − δu, yt+1)

− v∗t+1(xut + δu, xlt + δl + β + CU − xut − δu, yt+1)

≤ v∗t+1(xut + δu, xlt + δl + α, yt+1)

− v∗t+1(xut + δu, xlt + δl + α + β, yt+1).

(6) If CU −xut−α < δu ≤ CU −xut and CL−xlt−α−β < δl ≤ min{CL−xlt−
β, CL−xlt−α}, as we assume v∗t+1(.) satisfies properties (a) and (c) (which

together imply the concavity of v∗t+1(xut + δu, ·, yt+1)), and by Lemma 5.1.2,

v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(CU , xlt + δl + β, yt+1)

≤ v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(CU , CL − α, yt+1)

≤ v∗t+1(xut + δu, xlt + δl + CU − xut − δu, yt+1)

− v∗t+1(xut + δu, CL − α + CU − xut − δu, yt+1)

≤ v∗t+1(xut + δu, xlt + δl + α, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(7) If CU − xut − α < δu ≤ CU − xut, CL − xlt − β < δl ≤ CL − xlt, and

δl ≤ CL − xlt − α, as we assume v∗t+1(.) satisfies property (a), and by

Lemma 5.1.2,

v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(CU , CL, yt+1)

≤ v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(CU , CL − CU + xut + δu, yt+1)

≤ v∗t+1(xut+δu, xlt+δl+CU−xut−δu, yt+1)−v∗t+1(xut + δu, CL, yt+1)

≤ v∗t+1(xut + δu, xlt + δl + α, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(8) If CU − xut − α < δu ≤ CU − xut, CL − xlt − β < δl ≤ CL − xlt, and CL −
xlt − α < δl, by Lemma 5.1.2, v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(CU , CL, yt+1) ≤
0 = v∗t+1(xut + δu, CL, yt+1)− v∗t+1(xut + δu, CL, yt+1).
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(9) If CU − xut − α < δu ≤ CU − xut and CL − xlt − α < δl ≤ CL − xlt, by

Lemma 5.1.2, v∗t+1(CU , xlt+δl, yt+1)−v∗t+1(CU ,min{xlt+δl+β, CL}, yt+1) ≤
0 = v∗t+1(xut + δu, CL, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(10) If CU − xut − α < δu ≤ CU − xut and CL − xlt < δl, both sides of the

inequality reduce to zero.

(11) If CU − xut − α < CU − xut < δu and δl ≤ CL − xlt − α − β, as we assume

v∗t+1(.) satisfies properties (a) and (c) (which together imply the concavity

of v∗t+1(CU , ·, yt+1)),

v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(CU , xlt + δl + α, yt+1)

≤ v∗t+1(CU , xlt + δl + β, yt+1)− v∗t+1(CU , xlt + δl + α + β, yt+1).

(12) If CU − xut − α < CU − xut < δu and CL − xlt − α− β < δl ≤ CL − xlt − α,

as we assume v∗t+1(.) satisfies properties (a) and (c) (which together imply

the concavity of v∗t+1(CU , ·, yt+1)), and by Lemma 5.1.2,

v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(CU , xlt + δl + α, yt+1)

≤ v∗t+1(CU , CL − α, yt+1)− v∗t+1(CU , CL, yt+1)

≤ v∗t+1(CU ,min{xlt + δl + β, CL}, yt+1)− v∗t+1(CU , CL, yt+1).

(13) If CU − xut − α < CU − xut < δu and CL − xlt − α < δl ≤ CL − xlt, by

Lemma 5.1.2,

v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(CU , CL, yt+1)

≤ v∗t+1(CU ,min{xlt + δl + β, CL}, yt+1)− v∗t+1(CU , CL, yt+1).

(14) If CU − xut − α < CU − xut < δu and CL − xlt < δl, both sides of the

inequality reduce to zero.

In order to prove property (ii), we consider the following nine cases:
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(1) If δu ≤ CU −xut−α−β and δl ≤ CL−xlt−α, as we assume v∗t+1(.) satisfies

property (b),

v∗t+1(xut + δu + α + β, xlt + δl, yt+1)

− v∗t+1(xut + δu + α, xlt + δl, yt+1)

≤ v∗t+1(xut + δu + β, xlt + δl + α, yt+1)

− v∗t+1(xut + δu, xlt + δl + α, yt+1).

(2) If δu ≤ CU − xut − α − β and CL − xlt − α < δl ≤ CL − xlt, as we assume

v∗t+1(.) satisfies properties (b) and (c) (which together imply the concavity

of v∗t+1(·, xlt + δl, yt+1)),

v∗t+1(xut + δu + α + β, xlt + δl, yt+1)−v∗t+1(xut + δu + α, xlt + δl, yt+1)

≤ v∗t+1(xut + δu + β + CL − xlt − δl, xlt + δl, yt+1)

− v∗t+1(xut + δu + CL − xlt − δl, xlt + δl, yt+1)

≤ v∗t+1(xut + δu + β, CL, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(3) If δu ≤ CU−xut−α−β and CL−xlt < δl, as we assume v∗t+1(.) satisfies prop-

erties (b) and (c) (which together imply the concavity of v∗t+1(·, CL, yt+1)),

v∗t+1(xut + δu + α + β, CL, yt+1)− v∗t+1(xut + δl + α,CL, yt+1)

≤ v∗t+1(xut + δu + β, CL, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(4) If CU −xut−α−β < δu ≤ CU −xut−α and δl ≤ CL−xlt−α, as we assume

v∗t+1(.) satisfies property (b), and by Lemma 5.1.2,

v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(xut + δu + α, xlt + δl, yt+1)

≤ v∗t+1(CU − α, xlt + δl + α, yt+1)− v∗t+1(xut + δu, xlt + δl + α, yt+1)

≤ v∗t+1(min{xut + δu + β, CU}, xlt + δl + α, yt+1)

− v∗t+1(xut + δu, xlt + δl + α, yt+1).

(5) If CU − xut − α− β < δu ≤ CU − xut − α and CL − xlt − α < δl ≤ CL − xlt,
as we assume v∗t+1(.) satisfies properties (b) and (c) (which together imply

the concavity of v∗t+1(·, xlt + δl, yt+1)), and by Lemma 5.1.2,
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v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(xut + δu + α, xlt + δl, yt+1)

≤ v∗t+1(CU + CL − xlt − δl − α, xlt + δl, yt+1)

− v∗t+1(xut + δu + CL − xlt − δl, xlt + δl, yt+1)

≤ v∗t+1(CU − α,CL, yt+1)− v∗t+1(xut + δu, CL, yt+1)

≤ v∗t+1(min{xut + δu + β, CU}, CL, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(6) If CU − xut − α − β < δu ≤ CU − xut − α and CL − xlt < δl, as we assume

v∗t+1(.) satisfies properties (b) and (c) (which together imply the concavity

of v∗t+1(·, CL, yt+1)), and by Lemma 5.1.2,

v∗t+1(CU , CL, yt+1)− v∗t+1(xut + δu + α,CL, yt+1)

≤ v∗t+1(CU − α,CL, yt+1)− v∗t+1(xut + δu, CL, yt+1)

≤ v∗t+1(min{xut + δu + β, CU}, CL, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(7) If CU − xut − α < δu ≤ CU − xut and δl ≤ CL − xlt − α, by Lemma 5.1.2,

v∗t+1(CU , xlt + δl, yt+1) − v∗t+1(CU , xlt + δl, yt+1) = 0 ≤ v∗t+1(min{xut + δu +

β, CU}, xlt + δl + α, yt+1)− v∗t+1(xut + δu, xlt + δl + α, yt+1).

(8) If CU − xut − α < δu ≤ CU − xut and CL − xlt − α < δl, by Lemma 5.1.2,

v∗t+1(CU ,min{xlt + δl, CL}, yt+1) − v∗t+1(CU ,min{xlt + δl, CL}, yt+1) = 0 ≤
v∗t+1(min{xut + δu + β, CU}, CL, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(9) If CU − xut < δu, both sides of the inequality reduce to zero.

In order to prove property (iii), we consider the following seven cases:

(1) If δu ≤ CU − xut − α and δl ≤ CL − xlt − β, as we assume v∗t+1(.) satisfies

property (c),

v∗t+1(xut + δu + α, xlt + δl + β, yt+1)−v∗t+1(xut + δu, xlt + δl + β, yt+1)

≤ v∗t+1(xut + δu + α, xlt + δl, yt+1)−v∗t+1(xut + δu, xlt + δl, yt+1).
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(2) If δu ≤ CU − xut−α and CL− xlt− β < δl ≤ CL− xlt, as we assume v∗t+1(.)

satisfies property (c),

v∗t+1(xut + δu + α,CL, yt+1)− v∗t+1(xut + δu, CL, yt+1)

≤ v∗t+1(xut + δu + α, xlt + δl, yt+1)− v∗t+1(xut + δu, xlt + δl, yt+1).

(3) If δu ≤ CU − xut − α and CL − xlt < δl, both sides of the inequality reduce

to v∗t+1(xut + δu + α,CL, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(4) If CU −xut−α < δu ≤ CU −xut and δl ≤ CL−xlt−β, as we assume v∗t+1(.)

satisfies property (c),

v∗t+1(CU , xlt + δl + β, yt+1)− v∗t+1(xut + δu, xlt + δl + β, yt+1)

≤ v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(xut + δu, xlt + δl, yt+1).

(5) If CU − xut − α < δu ≤ CU − xut and CL − xlt − β < δl ≤ CL − xlt, as we

assume v∗t+1(.) satisfies property (c),

v∗t+1(CU , CL, yt+1)− v∗t+1(xut + δu, CL, yt+1)

≤ v∗t+1(CU , xlt + δl, yt+1)− v∗t+1(xut + δu, xlt + δl, yt+1).

(6) If CU − xut − α < δu ≤ CU − xut and CL − xlt < δl, both sides of the

inequality reduce to v∗t+1(CU , CL, yt+1)− v∗t+1(xut + δu, CL, yt+1).

(7) If CU − xut < δu, both sides of the inequality reduce to zero.

Hence v∗t+1(.) satisfies properties (i)-(iii). We now will prove that v∗t (.) satisfies

properties (a)–(c).

(a) First we prove that v∗t (xut + α, xlt, yt) − v∗t (xut, xlt + α, yt) ≤ v∗t (xut +

α, xlt + β, yt) − v∗t (xut, xlt + α + β, yt). Let a = a∗t (xut + α, xlt, yt) and c =

a∗t (xut, xlt+α+β, yt). Also, let b = b∗t (xut+α, xlt, yt) and d = b∗t (xut, xlt+α+β, yt).

Lemma 5.1.3 implies that CU ≥ xut + α − a and CU ≥ xut − c. Lemma 5.1.4

implies that CL ≥ xlt + a − b and CL ≥ xlt + α + β + c − d. We consider the

following three scenarios to prove the statement:
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(a1) Suppose that β + b > d and α + c > a: We show that (c, b) ∈ U(xut, xlt +

α, yt): Since (a, b) ∈ U(xut+α, xlt, yt), note that b−c ≤ xlt+a−c < xlt+α

and b ≤ xlt < xlt+α. Since (c, d) ∈ U(xut, xlt+α+β, yt), note that xut ≥ c.

Hence (c, b) ∈ U(xut, xlt +α, yt). We also show that (a, d) ∈ U(xut +α, xlt +

β, yt): Since (c, d) ∈ U(xut, xlt + α + β, yt), note that xut + α ≥ c + α > a.

Since (a, b) ∈ U(xut + α, xlt, yt), note that d− a ≤ d+ xlt − b < xlt + β and

d < b+ β < xlt + β. Hence (a, d) ∈ U(xut + α, xlt + β, yt). Thus:

v∗t (xut + α, xlt, yt)− v∗t (xut, xlt + α, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
−R(c, b, yt)− E

[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + α + c− b+ rl(t+1), CL}, yt+1

)]
≤ R(a, d, yt) + E

[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + β + a− d+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + α + β + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut + α, xlt + β, yt)− v∗t (xut, xlt + α + β, yt).

Note that R(a, b, yt)−R(c, b, yt) = (E(a)−E(c))pt = R(a, d, yt)−R(c, d, yt).

The second inequality holds since v∗t+1(.) satisfies property (i).

(a2) Suppose that β+b > d and α+c ≤ a: We show that (a−α, b) ∈ U(xut, xlt+

α, yt): Since (a, b) ∈ U(xut + α, xlt, yt), note that a − α ≤ xut, b ≤ xlt <

xlt + α, a − α < a ≤ CR, and b − (a − α) ≤ xlt + α. Since (c, d) ∈
U(xut, xlt + α + β, yt), note that −CP ≤ c ≤ a − α. Hence (a − α, b) ∈
U(xut, xlt+α, yt). We also show that (c+α, d) ∈ U(xut+α, xlt+β, yt): Since

(c, d) ∈ U(xut, xlt+α+β, yt), note that c+α ≤ xut+α, −CP ≤ c ≤ c+α, and

d−(c+α) ≤ xlt+β. Since (a, b) ∈ U(xut+α, xlt, yt), note that c+α ≤ a ≤ CR
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and d < b+ β ≤ xlt + β. Hence (c+ α, d) ∈ U(xut + α, xlt + β, yt). Thus:

v∗t (xut + α, xlt, yt)− v∗t (xut, xlt + α, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min

{
xut + α− a+ ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
−R(a− α, b, yt)− E

[
v∗t+1

(
min

{
xut + α− a+ ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
= (E(a)− E(a− α))pt

≤ (E(c+ α)− E(c))pt

= R(c+ α, d, yt) + E
[
v∗t+1

(
min

{
xut − c+ ru(t+1), CU

}
,

min{xlt + α + β + c− d+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min

{
xut − c+ ru(t+1), CU

}
,

min{xlt + α + β + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut + α, xlt + β, yt)− v∗t (xut, xlt + α + β, yt).

The second inequality holds since E(.) is a concave function and pt > 0.

(a3) Suppose that β + b ≤ d: We show that (c, d − β) ∈ U(xut, xlt + α, yt):

Since (a, b) ∈ U(xut + α, xlt, yt), note that d − β ≥ b ≥ 0. Since (c, d) ∈
U(xut, xlt + α + β, yt), note that xut ≥ c, d − β − c ≤ xlt + α, and d ≤
xlt + α + β. Hence (c, d − β) ∈ U(xut, xlt + α, yt). We also show that

(a, b+ β) ∈ U(xut +α, xlt + β, yt): Since (c, d) ∈ U(xut, xlt +α+ β, yt), note

that b+β ≤ d ≤ CR. Since (a, b) ∈ U(xut+α, xlt, yt), note that xut+α ≥ a,

b+β−a ≤ xlt+β, and b+β ≤ xlt+β. Hence (a, b+β) ∈ U(xut+α, xlt+β, yt).

Thus:
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v∗t (xut + α, xlt, yt)− v∗t (xut + α, xlt + β, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
−R(a, b+ β, yt)− E

[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
= −θβpt

= R(c, d− β, yt) + E
[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + α + β + c− d+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + α + β + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut, xlt + α, yt)− v∗t (xut, xlt + α + β, yt).

(b) Next we prove that v∗t (xut + α + β, xlt, yt) − v∗t (xut + β, xlt + α, yt) ≤
v∗t (xut + α, xlt, yt) − v∗t (xut, xlt + α, yt). Let a = a∗t (xut + α + β, xlt, yt) and c =

a∗t (xut, xlt +α, yt). Also, let b = b∗t (xut +α+ β, xlt, yt) and d = b∗t (xut, xlt +α, yt).

Lemma 5.1.3 implies that CU ≥ xut + α+ β − a and CU ≥ xut − c. Lemma 5.1.4

implies that CL ≥ xlt + a− b and CL ≥ xlt +α+ c− d. We consider the following

five scenarios to prove the statement:

(b1) Suppose that α + c > a and b ≤ d: Since (c, d) ∈ U(xut, xlt + α, yt),

note that c ≤ xut < xut + β, d ≤ xlt + α, and d − c ≤ xlt + α. Hence

(c, d) ∈ U(xut + β, xlt + α, yt). Since (c, d) ∈ U(xut, xlt + α, yt), note that

a < c+α ≤ xut+α. Since (a, b) ∈ U(xut+α+β, xlt, yt), note that b−a ≤ xlt
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and b ≤ xlt. Hence (a, b) ∈ U(xut + α, xlt, yt). Thus:

v∗t (xut + α + β, xlt, yt)− v∗t (xut + α, xlt, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min{xut + α + β − a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
−R(a, b, yt)− E

[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
≤ R(c, d, yt) + E

[
v∗t+1

(
min{xut + β − c+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut + β, xlt + α, yt)− v∗t (xut, xlt + α, yt).

The second inequality holds if d − b ≤ α + c − a: Since v∗t+1(.) satisfies

properties (ii) and (iii),

v∗t+1(min{xut + α + β − a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut + α− a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut + β − b− c+ d+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − b− c+ d+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut + β − c+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1).

The second inequality also holds if α+ c− a < d− b: Since v∗t+1(.) satisfies

properties (iii) and (ii),
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v∗t+1(min{xut + α + β − a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut + α− a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut + α + β − a+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut + α− a+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut + β − c+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1).

(b2) Suppose that α+c > a and d < b: Since (c, d) ∈ U(xut, xlt+α, yt), note that

c ≤ xut < xut + β. Since (a, b) ∈ U(xut + α + β, xlt, yt), note that b ≤ xlt <

xlt +α and b− c < b−a+α ≤ xlt +α. Hence (c, b) ∈ U(xut +β, xlt +α, yt).

Since (c, d) ∈ U(xut, xlt + α, yt), note that a < c + α ≤ xut + α. Since

(a, b) ∈ U(xut +α+β, xlt, yt), note that d−a < b−a ≤ xlt and d < b ≤ xlt.

Hence (a, d) ∈ U(xut + α, xlt, yt). Thus:

156



v∗t (xut + α + β, xlt, yt)− v∗t (xut + β, xlt + α, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min{xut + α + β − a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
−R(c, b, yt)− E

[
v∗t+1

(
min{xut + β − c+ ru(t+1), CU},

min{xlt + α + c− b+ rl(t+1), CL}, yt+1

)]
≤ R(a, b, yt) + E

[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
−R(c, b, yt)− E

[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + α + c− b+ rl(t+1), CL}, yt+1

)]
≤ R(a, d, yt) + E

[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + a− d+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut + α, xlt, yt)− v∗t (xut, xlt + α, yt).

Note that R(a, b, yt)−R(a, d, yt) = θ(b−d)pt = R(c, b, yt)−R(c, d, yt). The

second and third inequalities hold since v∗t+1(.) satisfies properties (ii) and

(i).

(b3) Suppose that α+ c ≤ a and d ≤ b: Since (a, b) ∈ U(xut+α+β, xlt, yt), note

that a− α ≤ xut + β, a− α < a ≤ CR, b ≤ xlt < xlt + α, and b− (a− α) ≤
xlt +α. Since (c, d) ∈ U(xut, xlt +α, yt), note that −CP ≤ c ≤ a−α. Hence

(a − α, b) ∈ U(xut + β, xlt + α, yt). Since (c, d) ∈ U(xut, xlt + α, yt), note

that c + α ≤ xut + α, −CP ≤ c ≤ c + α, and d − (c + α) ≤ xlt. Since

(a, b) ∈ U(xut + α + β, xlt, yt), note that c + α ≤ a ≤ CR and d ≤ b ≤ xlt.

Hence (c+ α, d) ∈ U(xut + α, xlt, yt). Thus:
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v∗t (xut + α + β, xlt, yt)− v∗t (xut + β, xlt + α, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min

{
xut + α + β − a+ ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
−R(a− α, b, yt)− E

[
v∗t+1

(
min

{
xut + α + β − a+ ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
= (E(a)− E(a− α))pt

≤ (E(c+ α)− E(c))pt

= R(c+ α, d, yt) + E
[
v∗t+1

(
min

{
xut − c+ ru(t+1), CU

}
,

min{xlt + α + c− d+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min

{
xut − c+ ru(t+1), CU

}
,

min{xlt + α + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut + α, xlt, yt)− v∗t (xut, xlt + α, yt).

The second inequality holds since E(.) is a concave function.

(b4) Suppose that α + c ≤ a < α + β + c and b < d: Recall from scenario

(b3) that −CP ≤ a − α ≤ min{xut + β, CR} when α + c ≤ a. Since

(c, d) ∈ U(xut, xlt+α, yt), note that d ≤ xlt+α and d−a+α ≤ d−c ≤ xlt+α.

Hence (a − α, d) ∈ U(xut + β, xlt + α, yt). Since (c, d) ∈ U(xut, xlt + α, yt),

note that c+α ≤ xut+α, −CP ≤ c ≤ c+α, and b−(c+α) < d−(c+α) ≤ xlt.

Since (a, b) ∈ U(xut + α+ β, xlt, yt), note that b ≤ xlt and c+ α ≤ a ≤ CR.

Hence (c+ α, b) ∈ U(xut + α, xlt, yt). Thus:
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v∗t (xut + α + β, xlt, yt)− v∗t (xut + β, xlt + α, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min

{
xut + α + β − a+ ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
−R(a− α, d, yt)− E

[
v∗t+1

(
min

{
xut + α + β − a+ ru(t+1), CU

}
,

min{xlt + a− d+ rl(t+1), CL}, yt+1

)]
≤ R(a, b, yt) + E

[
v∗t+1

(
min

{
xut + α + β − a+ ru(t+1), CU

}
,

min{xlt + α + c− b+ rl(t+1), CL}, yt+1

)]
−R(a− α, d, yt)− E

[
v∗t+1

(
min

{
xut + α + β − a+ ru(t+1), CU

}
,

min{xlt + α + c− d+ rl(t+1), CL}, yt+1

)]
≤ R(c+ α, b, yt) + E

[
v∗t+1

(
min

{
xut − c+ ru(t+1), CU

}
,

min{xlt + α + c− b+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min

{
xut − c+ ru(t+1), CU

}
,

min{xlt + α + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut + α, xlt, yt)− v∗t (xut, xlt + α, yt),

Note that R(a, b, yt) − R(a − α, d, yt) = (E(a) + θb − E(a − α) − θd)pt ≤
(E(c+α) + θb−E(c)− θd)pt = R(c+α, b, yt)−R(c, d, yt). The second and

third inequalities hold since v∗t+1(.) satisfies properties (i) and (iii).

(b5) Suppose that α + β + c < a and b < d:

Since (a, b) ∈ U(xut+α+β, xlt, yt), note that c+β < a−α < a ≤ CR. Since

(c, d) ∈ U(xut, xlt+α, yt), note that −CP ≤ c < c+β ≤ xut+β, d ≤ xlt+α,

and d−(c+β) < d−c ≤ xlt+α. Hence (c+β, d) ∈ U(xut+β, xlt+α, yt). Since

(a, b) ∈ U(xut+α+β, xlt, yt), note that a−β < a ≤ CR, a−β ≤ xut+α, and

b ≤ xlt. Since (c, d) ∈ U(xut, xlt+α, yt), note that −CP ≤ c < c+α < a−β
and b−a+β < b−c−α < d−c−α ≤ xlt. Hence (a−β, b) ∈ U(xut+α, xlt, yt).

Thus:
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v∗t (xut + α + β, xlt, yt)− v∗t (xut + α, xlt, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min

{
xut + α + β − a+ ru(t+1), CU

}
,

min{xlt + a− b+ rl(t+1), CL}, yt+1

)]
−R(a− β, b, yt)− E

[
v∗t+1

(
min

{
xut + α + β − a+ ru(t+1), CU

}
,

min{xlt + a− b− β + rl(t+1), CL}, yt+1

)]
≤ R(a, b, yt) + E

[
v∗t+1

(
min

{
xut + α + β − a+ ru(t+1), CU

}
,

min{xlt + a− d+ rl(t+1), CL}, yt+1

)]
−R(a− β, b, yt)− E

[
v∗t+1

(
min

{
xut + α + β − a+ ru(t+1), CU

}
,

min{xlt + a− d− β + rl(t+1), CL}, yt+1

)]
≤ R(c+ β, d, yt) + E

[
v∗t+1

(
min

{
xut − c+ ru(t+1), CU

}
,

min{xlt + α + β + c− d+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min

{
xut − c+ ru(t+1), CU

}
,

min{xlt + α + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut + β, xlt + α, yt)− v∗t (xut, xlt + α, yt).

Note that R(a, b, yt) − R(c + β, d, yt) = (E(a) + θb − E(c + β) − θd)pt ≤
(E(a − β) + θb − E(c) − θd)pt = R(a − β, b, yt) − R(c, d, yt) since E(.) is

a concave function. The second and third inequalities hold since v∗t+1(.)

satisfies properties (i) and (iii).

(c) Last we prove that v∗t (xut + α, xlt + β, yt) − v∗t (xut, xlt + β, yt) ≤ v∗t (xut +

α, xlt, yt)− v∗t (xut, xlt, yt). Let a = a∗t (xut + α, xlt + β, yt) and c = a∗t (xut, xlt, yt).

Also, let b = b∗t (xut + α, xlt + β, yt) and d = b∗t (xut, xlt, yt). Lemma 5.1.3 implies

that CU ≥ xut + α − a and CU ≥ xut − c. Lemma 5.1.4 implies that CL ≥
xlt + β + a− b and CL ≥ xlt + c− d. We consider the following three scenarios to

prove the statement:

(c1) Suppose that b > β + d: Since (a, b) ∈ U(xut + α, xlt + β, yt), note that

a ≤ xut + α, b − β ≤ xlt, and b − β − a ≤ xlt. Since b − β > d ≥ 0, we
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obtain (a, b− β) ∈ U(xut +α, xlt, yt). Since (c, d) ∈ U(xut, xlt, yt), note that

c ≤ xut, d+β ≤ xlt +β, and d+β− c ≤ xlt +β. Since b > d+β, we obtain

(c, d+ β) ∈ U(xut, xlt + β, yt). Thus:

v∗t (xut + α, xlt + β, yt)− v∗t (xut + α, xlt, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1

)]
−R(a, b− β, yt)− E

[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1

)]
= θβpt

= R(c, d+ β, yt) + E
[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut, xlt + β, yt)− v∗t (xut, xlt, yt).

(c2) Suppose that b ≤ β + d and c < a: Since (a, b) ∈ U(xut + α, xlt + β, yt),

note that a ≤ xut + α. Since (c, d) ∈ U(xut, xlt, yt), note that d ≤ xlt

and d − a < d − c ≤ xlt. Hence (a, d) ∈ U(xut + α, xlt, yt). Since (a, b) ∈
U(xut+α, xlt+β, yt), note that b ≤ xlt+β. Since (c, d) ∈ U(xut, xlt, yt), note

that c ≤ xut and b−c ≤ d−c+β ≤ xlt+β. Hence (c, b) ∈ U(xut, xlt+β, yt).

Thus:
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v∗t (xut + α, xlt + β, yt)− v∗t (xut + α, xlt, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1

)]
−R(a, d, yt)− E

[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + a− d+ rl(t+1), CL}, yt+1

)]
≤ R(c, b, yt) + E

[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + β + c− b+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut, xlt + β, yt)− v∗t (xut, xlt, yt).

Note that R(a, b, yt)−R(a, d, yt) = θ(b−d)pt = R(c, b, yt)−R(c, d, yt). The

second inequality holds if α ≤ a − c: Since v∗t+1(.) satisfies properties (i)

and (iii),

v∗t+1(min{xut + α− a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut + α− a+ ru(t+1), CU},

min{xlt + a− d+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + α + β + c− b+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + α + c− d+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + β + c− b+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1).

The second inequality also holds if a− c < α: Since v∗t+1(.) satisfies proper-

ties (iii) and (i),
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v∗t+1(min{xut + α− a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut + α− a+ ru(t+1), CU},

min{xlt + a− d+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + a− d+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + β + c− b+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1).

(c3) Suppose that b ≤ β+d and a ≤ c: Since (a, b) ∈ U(xut+α, xlt+β, yt), note

that b ≤ xlt + β and b− a ≤ xlt + β. Since (c, d) ∈ U(xut, xlt, yt), note that

a ≤ c ≤ xut. Hence (a, b) ∈ U(xut, xlt + β, yt). Since (c, d) ∈ U(xut, xlt, yt),

note that c ≤ xut < xut + α, d ≤ xlt, and d − c ≤ xlt. Hence (c, d) ∈
U(xut + α, xlt, yt). Thus:

v∗t (xut + α, xlt + β, yt)− v∗t (xut, xlt + β, yt)

≤ R(a, b, yt) + E
[
v∗t+1

(
min{xut + α− a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1

)]
−R(a, b, yt)− E

[
v∗t+1

(
min{xut − a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1

)]
≤ R(c, d, yt) + E

[
v∗t+1

(
min{xut + α− c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1

)]
−R(c, d, yt)− E

[
v∗t+1

(
min{xut − c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1

)]
≤ v∗t (xut + α, xlt, yt)− v∗t (xut, xlt, yt).
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The second inequality holds if β + d − b ≤ c − a: Since v∗t+1(.) satisfies

properties (ii) and (iii),

v∗t+1(min{xut + α− a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL, yt+1)

− v∗t+1(min{xut − a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut + α + β − b− c+ d+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut + β − b− c+ d+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut + α− c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1).

The second inequality also holds if c− a < β + d− b: Since v∗t+1(.) satisfies

properties (iii) and (ii),

v∗t+1(min{xut + α− a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − a+ ru(t+1), CU},

min{xlt + β + a− b+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut + α− a+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − a+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1)

≤ v∗t+1(min{xut + α− c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1)

− v∗t+1(min{xut − c+ ru(t+1), CU},

min{xlt + c− d+ rl(t+1), CL}, yt+1).
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Hence v∗t (.) satisfies properties (a)–(c). �

Proof of Lemma 5.1.6. Suppose that α > 0 and β > 0. Fix zt and yt.

Without loss of generality, we assume that α ≥ β. We consider the following

sixteen cases to show that Vt(zt, zut, yt) is concave in zut, that is,

Vt(zt, zut, yt)− Vt(zt, zut + α, yt)

= E
[
v∗t+1

(
min{zut + ru(t+1), CU},

min{zt − zut + rl(t+1), CL}, yt+1

)]
− E

[
v∗t+1

(
min{zut + α + ru(t+1), CU},

min{zt − zut − α + rl(t+1), CL}, yt+1

)]
≤ E

[
v∗t+1

(
min{zut + β + ru(t+1), CU},

min{zt − zut − β + rl(t+1), CL}, yt+1

)]
− E

[
v∗t+1

(
min{zut + α + β + ru(t+1), CU},

min{zt − zut − α− β + rl(t+1), CL}, yt+1

)]
= Vt(zt, zut + β, yt)− Vt(zt, zut + α + β, yt).

(1) If ru(t+1) ≤ CU − zut − α − β and zt − zut + rl(t+1) ≤ CL, by properties (a)

and (b) of Lemma 5.1.5, v∗t+1(zut+ ru(t+1), zt−zut+ rl(t+1), yt+1)−v∗t+1(zut+

α+ ru(t+1), zt− zut−α+ rl(t+1), yt+1) ≤ v∗t+1(zut + β + ru(t+1), zt− zut− β +

rl(t+1), yt+1)− v∗t+1(zut + α + β + ru(t+1), zt − zut − α− β + rl(t+1), yt+1).

(2) If ru(t+1) ≤ CU−zut−α−β and zt−zut−β+rl(t+1) ≤ CL < zt−zut+rl(t+1),

by Lemma 5.1.2 and by properties (b) and (a) of Lemma 5.1.5, v∗t+1(zut +

ru(t+1), CL, yt+1)−v∗t+1(zut+α+ru(t+1),min{zt−zut−α+rl(t+1), CL}, yt+1) ≤
v∗t+1(zut+ ru(t+1), CL, yt+1)−v∗t+1(zut+α+ ru(t+1), CL−α, yt+1) ≤ v∗t+1(zut+

β + ru(t+1), CL, yt+1)− v∗t+1(zut + α+ β + ru(t+1), CL − α, yt+1) ≤ v∗t+1(zut +

β + ru(t+1), zt − zut − β + rl(t+1), yt+1)− v∗t+1(zut + α+ β + ru(t+1), zt − zut −
α− β + rl(t+1), yt+1).

(3) If ru(t+1) ≤ CU − zut − α − β and zt − zut − α − β + rl(t+1) ≤ CL <

zt − zut − β + rl(t+1), by properties (b) and (c) of Lemma 5.1.5 and by
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Lemma 5.1.2, v∗t+1(zut + ru(t+1), CL, yt+1)− v∗t+1(zut +β+ ru(t+1), CL, yt+1) ≤
v∗t+1(zut+α+ru(t+1), CL−α, yt+1)−v∗t+1(zut+α+β+ru(t+1), CL−α, yt+1) ≤
v∗t+1(zut + α + ru(t+1), zt − zut − α − β + rl(t+1), yt+1) − v∗t+1(zut + α + β +

ru(t+1), zt− zut−α−β+ rl(t+1), yt+1) ≤ v∗t+1(zut +α+ ru(t+1),min{zt− zut−
α+rl(t+1), CL}, yt+1)−v∗t+1(zut+α+β+ru(t+1), zt−zut−α−β+rl(t+1), yt+1).

(4) If ru(t+1) ≤ CU − zut − α − β and CL < zt − zut − α − β + rl(t+1), by

properties (b) and (c) of Lemma 5.1.5 (which together imply the con-

cavity of v∗t+1(·, CL, yt+1)), v∗t+1(zut + ru(t+1), CL, yt+1) − v∗t+1(zut + β +

ru(t+1), CL, yt+1) ≤ v∗t+1(zut + α + ru(t+1), CL, yt+1) − v∗t+1(zut + α + β +

ru(t+1), CL, yt+1).

(5) If CU − zut − α − β < ru(t+1) ≤ CU − zut − β and zt − zut + rl(t+1) ≤ CL,

by properties (b) and (a) of Lemma 5.1.5 and by Lemma 5.1.2, v∗t+1(zut +

ru(t+1), zt−zut+rl(t+1), yt+1)−v∗t+1(zut+β+ru(t+1), zt−zut−β+rl(t+1), yt+1) ≤
v∗t+1(CU − β, zt − zut + rl(t+1), yt+1)− v∗t+1(CU , zt − zut − β + rl(t+1), yt+1) ≤
v∗t+1(CU−β, zt−zut−α+rl(t+1), yt+1)−v∗t+1(CU , zt−zut−α−β+rl(t+1), yt+1) ≤
v∗t+1(min{zut + α + ru(t+1), CU}, zt − zut − α + rl(t+1), yt+1) − v∗t+1(CU , zt −
zut − α− β + rl(t+1), yt+1).

(6) If CU − zut − α − β < ru(t+1) ≤ CU − zut − β and zt − zut − α + rl(t+1) ≤
CL < zt − zut + rl(t+1), by Lemma 5.1.2 and by properties (b) and (a) of

Lemma 5.1.5, v∗t+1(zut + ru(t+1), CL, yt+1) − v∗t+1(zut + β + ru(t+1),min{zt −
zut − β + rl(t+1), CL}, yt+1) ≤ v∗t+1(zut + ru(t+1), CL, yt+1) − v∗t+1(zut + β +

ru(t+1), CL − β, yt+1) ≤ v∗t+1(CU − β, CL, yt+1) − v∗t+1(CU , CL − β, yt+1) ≤
v∗t+1(CU−β, zt−zut−α+rl(t+1), yt+1)−v∗t+1(CU , zt−zut−α−β+rl(t+1), yt+1) ≤
v∗t+1(min{zut + α + ru(t+1), CU}, zt − zut − α + rl(t+1), yt+1) − v∗t+1(CU , zt −
zut − α− β + rl(t+1), yt+1).

(7) If CU − zut − α − β < ru(t+1) ≤ CU − zut − β and zt − zut − α −
β + rl(t+1) ≤ CL < zt − zut − α + rl(t+1), since α ≥ β, by proper-

ties (b) and (c) of Lemma 5.1.5 (which together imply the concavity

of v∗t+1(·, CL, yt+1)) and by Lemma 5.1.2, v∗t+1(zut + ru(t+1), CL, yt+1) −
v∗t+1(zut+β+ru(t+1), CL, yt+1) ≤ v∗t+1(CU−β, CL, yt+1)−v∗t+1(CU , CL, yt+1) ≤
v∗t+1(min{zut + α + ru(t+1), CU}, CL, yt+1) − v∗t+1(CU , zt − zut − α − β +
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rl(t+1), yt+1).

(8) If CU−zut−α−β < ru(t+1) ≤ CU−zut−β and CL < zt−zut−α−β+rl(t+1),

by properties (b) and (c) of Lemma 5.1.5 (which together imply the concav-

ity of v∗t+1(·, CL, yt+1)) and by Lemma 5.1.2, v∗t+1(zut + ru(t+1), CL, yt+1) −
v∗t+1(zut+β+ru(t+1), CL, yt+1) ≤ v∗t+1(CU−β, CL, yt+1)−v∗t+1(CU , CL, yt+1) ≤
v∗t+1(min{zut + α + ru(t+1), CU}, CL, yt+1)− v∗t+1(CU , CL, yt+1).

(9) If CU − zut − β < ru(t+1) ≤ CU − zut and zt − zut + rl(t+1) ≤ CL, since

α ≥ β, by Lemma 5.1.2 and by properties (a) and (c) of Lemma 5.1.5

(which together imply the concavity of v∗t+1(CU , ·, yt+1)), v∗t+1(zut+rt+1, zt−
zut + rl(t+1), yt+1)− v∗t+1(CU , zt− zut−α+ rl(t+1), yt+1) ≤ v∗t+1(CU , zt− zut +

rl(t+1), yt+1)− v∗t+1(CU , zt − zut − α+ rl(t+1), yt+1) ≤ v∗t+1(CU , zt − zut − β +

rl(t+1), yt+1)− v∗t+1(CU , zt − zut − α− β + rl(t+1), yt+1).

(10) If CU − zut − β < ru(t+1) ≤ CU − zut and zt − zut − β + rl(t+1) ≤
CL < zt − zut + rl(t+1), since α ≥ β, by Lemma 5.1.2 and by prop-

erties (a) and (c) of Lemma 5.1.5 (which together imply the concavity

of v∗t+1(CU , ·, yt+1)), v∗t+1(zut + ru(t+1), CL, yt+1) − v∗t+1(CU , zt − zut − α +

rl(t+1), yt+1) ≤ v∗t+1(CU , CL, yt+1) − v∗t+1(CU , CL − α, yt+1) ≤ v∗t+1(CU , zt −
zut − β + rl(t+1), yt+1)− v∗t+1(CU , zt − zut − α− β + rl(t+1), yt+1).

(11) If CU − zut − β < ru(t+1) ≤ CU − zut and zt − zut − α − β + rl(t+1) ≤
CL < zt − zut − β + rl(t+1), since α ≥ β, by Lemma 5.1.2, v∗t+1(zut +

ru(t+1), CL, yt+1) − v∗t+1(CU , CL, yt+1) ≤ 0 ≤ v∗t+1(CU ,min{zt − zut − α +

rl(t+1), CL}, yt+1)− v∗t+1(CU , zt − zut − α− β + rl(t+1), yt+1).

(12) If CU −zut−β < ru(t+1) ≤ CU −zut and CL < zt−zut−α−β+ rl(t+1), since

α ≥ β, by Lemma 5.1.2, v∗t+1(zut + ru(t+1), CL, yt+1) − v∗t+1(CU , CL, yt+1) ≤
v∗t+1(CU , CL, yt+1)− v∗t+1(CU , CL, yt+1).

(13) If CU − zut < ru(t+1) and zt − zut + rl(t+1) ≤ CL, by properties (a) and (c)

of Lemma 5.1.5 (which together imply the concavity of v∗t+1(CU , ·, yt+1)),

v∗t+1(CU , zt − zut + rl(t+1), yt+1) − v∗t+1(CU , zt − zut − α + rl(t+1), yt+1) ≤
v∗t+1(CU , zt− zut−β+ rl(t+1), yt+1)− v∗t+1(CU , zt− zut−α−β+ rl(t+1), yt+1).
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(14) If CU − zut < ru(t+1) and zt − zut − β + rl(t+1) ≤ CL < zt − zut + rl(t+1),

by Lemma 5.1.2 and by properties (a) and (c) of Lemma 5.1.5 (which

together imply the concavity of v∗t+1(CU , ·, yt+1)), v∗t+1(CU , CL, yt+1) −
v∗t+1(CU ,min{zt − zut − α + rl(t+1), CL}, yt+1) ≤ v∗t+1(CU , CL, yt+1) −
v∗t+1(CU , CL−α, yt+1) ≤ v∗t+1(CU , zt− zut− β + rl(t+1), yt+1)− v∗t+1(CU , zt−
zut − α− β + rl(t+1), yt+1).

(15) If CU − zut < ru(t+1) and zt − zut − α − β + rl(t+1) ≤ CL < zt − zut −
β+rl(t+1), by Lemma 5.1.2, v∗t+1(CU , CL, yt+1)−v∗t+1(CU ,min{zt−zut−α+

rl(t+1), CL}, yt+1) ≤ v∗t+1(CU , CL, yt+1)−v∗t+1(CU , zt−zut−α−β+rl(t+1), yt+1).

(16) If CU − zut < ru(t+1) and CL < zt − zut − α− β + rl(t+1), both sides become

v∗t+1(CU , CL, yt+1)− v∗t+1(CU , CL, yt+1).

Hence Vt(zt, zut, yt) is concave in zut. �

Proof of Theorem 5.1.1. First, we need to prove that v∗t (xut, xlt +

α, yt) = v∗t (xut, xlt, yt) for xut + xlt ≥ CU . Since Lemma 5.1.2 states that

v∗t (xut, xlt+α, yt) ≥ v∗t (xut, xlt, yt), it is sufficient to show that v∗t (xut, xlt+α, yt) ≤
v∗t (xut, xlt, yt). Assuming v∗t+1(xu(t+1), xl(t+1) +α, yt+1) ≤ v∗t+1(xu(t+1), xl(t+1), yt+1)

for xu(t+1) + xl(t+1) ≥ CU , we show v∗t (xut, xlt + α, yt) ≤ v∗t (xut, xlt, yt) for

xut + xlt ≥ CU . Let a = a∗t (xut, xlt + α, yt). We consider the following two

scenarios to prove the statement:

� Suppose that a > −xlt: Since a ∈ U(xut, xlt+α, yt) and a > −xlt, note that

a ∈ U(xut, xlt, yt). Thus, v∗t (xut, xlt+α, yt) = R(a, 0, yt)+E
[
v∗t+1

(
min{xut−

a+ru(t+1), CU},min{xlt+α+a, CL}, yt+1

)]
≤ R(a, 0, yt)+E

[
v∗t+1

(
min{xut−

a+ ru(t+1), CU},min{xlt + a, CL}, yt+1

)]
≤ v∗t (xut, xlt, yt). The first inequal-

ity holds in each of the following two cases: (1) If CL ≥ xlt + a, since

xut+xlt ≥ CU , v∗t+1(min{xut−a+ru(t+1), CU},min{xlt+α+a, CL}, yt+1) ≤
v∗t+1(min{xut − a + ru(t+1), CU}, xlt + a, yt+1) from the induction assump-

tion. (2) If xlt + a > CL, both sides become v∗t+1(min{xut − a +

ru(t+1), CU}, CL, yt+1).
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� Suppose that a ≤ −xlt: Let â = −xlt. Since a ∈ U(xut, xlt+α, yt), note that

â ∈ U(xut, xlt, yt). Thus, v∗t (xut, xlt + α, yt) = R(a, 0, yt) +E
[
v∗t+1

(
CU , xlt +

α + a, yt+1

)]
≤ R(â, 0, yt) + E

[
v∗t+1

(
CU , 0, yt+1

)]
≤ v∗t (xut, xlt, yt) from

the non-decreasing property of the payoff function as well as the induction

assumption.

Using the above result, we are now ready to prove Theorem 5.1.1. Let a =

a∗t (xut, xlt, yt). Fix xut, xlt, and yt. Suppose that (xut, xlt) ∈ Ω. In order to

characterize the optimal water flow policy, we consider the following cases:

� Suppose that a ≥ 0. We consider the following problem:

maxzut∈[0,xut]

{
Vt(xut + xlt, zut, yt) + R

(RS)
t (xut − zut, yt)

}
. By Lemma 5.1.6,

min{S(RS)
t , xut} yields the maximum value in this problem. Taking into ac-

count the capacity constraint a ≤ min{xut, CR}, we obtain a = min{xut −
S

(RS)
t , CR} if xut > S

(RS)
t and a = 0 if xut ≤ S

(RS)
t .

� Suppose that a ≤ 0. We consider the following problem:

maxzut∈[xut,CU ]

{
Vt(xut+xlt, zut, yt)+R

(PP)
t (xut−zut, yt)

}
. By Lemma 5.1.6,

max{S(PP)
t , xut} yields the maximum value in this problem. Taking into

account the capacity constraint −min{xlt, CP} ≤ a, we obtain a =

−min{xlt, CP , S(PP)
t − xut} if xut < S

(PP)
t and a = 0 if xut ≥ S

(PP)
t .

We next show that S
(PP)
t (xut, xlt, yt) ≤ S

(RS)
t (xut, xlt, yt): Fix xut, xlt, and

yt. For each ν ∈ {PP,RS}, let S(ν) = S
(ν)
t (xut, xlt, yt). By definition of

S
(ν)
t (xut, xlt, yt), the following inequalities hold.

Vt(xut + xlt, S
(PP), yt)− ptS(PP)/θ ≥ Vt(xut + xlt, S

(RS), yt)− ptS(RS)/θ,

Vt(xut + xlt, S
(RS), yt)− ptθS(RS) ≥ Vt(xut + xlt, S

(PP), yt)− ptS(PP)θ.

The summation of the above inequalities implies that pt(θ − 1/θ)S(PP) ≥ pt(θ −
1/θ)S(RS). Since 0 < θ, S

(PP)
t (xut, xlt, yt) ≤ S

(RS)
t (xut, xlt, yt).
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We now show that S
(ν)
t (xut, xlt, yt) = S

(ν)
t (xut, xlt + α, yt) if xut + xlt ≥ CU

for each ν ∈ {PP,RS} and α > 0: Since v∗t (xut, xlt + α, yt) = v∗t (xut, xlt, yt) if

xut + xlt ≥ CU , for any zut ∈ [0, CU ] note that

Vt(xut + xlt, zut, yt)

= E
[
v∗t+1

(
min{zut + rt+1, CU},min{xut + xlt − zut, CL}, yt+1

)]
= E

[
v∗t+1

(
min{zut + rt+1, CU},min{xut + xlt + α− zut, CL}, yt+1

)]
= Vt(xut + xlt + α, zut, yt).

Thus, for each ν ∈ {PP,RS},

S
(ν)
t (xut, xlt, yt) = arg max

zut∈[0,CU ]

{Vt(xut + xlt, zut, yt) +R
(ν)
t (xut − zut, yt)}

= arg max
zut∈[0,CU ]

{Vt(xut + xlt + α, zut, yt) +R
(ν)
t (xut − zut, yt)}

= S
(ν)
t (xut, xlt + α, yt).

We also show that S
(ν)
t (xut, xlt + α, yt) = S

(ν)
t (xut + α, xlt, yt) for each ν ∈

{PP,RS} and α > 0:

S
(ν)
t (xut, xlt + α, yt)

= arg max
zut∈[0,CU ]

{Vt(xut + xlt + α, zut, yt) +R
(ν)
t (xut − zut, yt)}

= S
(ν)
t (xut + α, xlt, yt).

Lastly, we show that S
(ν)
t (xut, xlt, yt) ≤ S

(ν)
t (xut, xlt + α, yt) for each ν ∈

{PP,RS} and α > 0: For each ν ∈ {PP,RS}, let S
(ν)
t (xut, xlt, yt) = S

(ν)
1 and

S
(ν)
t (xut, xlt+α, yt) = S

(ν)
2 . Assume to the contrary that S

(ν)
1 > S

(ν)
2 . We consider

the following nine cases to show that

E
[
v∗t+1

(
min{S(ν)

1 + rt+1, CU},min{xut + xlt − S(ν)
1 , CL}, yt+1

)]
− E

[
v∗t+1

(
min{S(ν)

2 + rt+1, CU},min{xut + xlt − S(ν)
2 , CL}, yt+1

)]
≤ E

[
v∗t+1

(
min{S(ν)

1 + rt+1, CU},min{xut + xlt + α− S(ν)
1 , CL}, yt+1

)]
− E

[
v∗t+1

(
min{S(ν)

2 + rt+1, CU},min{xut + xlt + α− S(ν)
2 , CL}, yt+1

)]
.
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(1) If rt+1 ≤ CU−S(ν)
1 < CU−S(ν)

2 and xut+xlt+α−S(ν)
2 ≤ CL, by property (a)

of Lemma 5.1.5, v∗t+1(S
(ν)
1 +rt+1, xut+xlt−S(ν)

1 , yt+1)−v∗t+1(S
(ν)
2 +rt+1, xut+

xlt − S(ν)
2 , yt+1) ≤ v∗t+1(S

(ν)
1 + rt+1, xut + xlt + α − S(ν)

1 , yt+1) − v∗t+1(S
(ν)
2 +

rt+1, xut + xlt + α− S(ν)
2 , yt+1).

(2) If rt+1 ≤ CU−S(ν)
1 < CU−S(ν)

2 and xut+xlt−S(ν)
2 ≤ CL < xut+xlt+α−S(ν)

2 ,

by property (a) of Lemma 5.1.5 and by Lemma 5.1.2, v∗t+1(S
(ν)
1 + rt+1, xut +

xlt−S(ν)
1 , yt+1)−v∗t+1(S

(ν)
2 +rt+1, xut+xlt−S(ν)

2 , yt+1) ≤ v∗t+1(S
(ν)
1 +rt+1, CL+

S
(ν)
2 − S

(ν)
1 , yt+1) − v∗t+1(S

(ν)
2 + rt+1, CL, yt+1) ≤ v∗t+1(S

(ν)
1 + rt+1,min{xut +

xlt + α− S(ν)
1 , CL}, yt+1)− v∗t+1(S

(ν)
2 + rt+1, CL, yt+1).

(3) If rt+1 ≤ CU −S(ν)
1 < CU −S(ν)

2 and CL < xut + xlt−S(ν)
2 , by Lemma 5.1.2,

v∗t+1(S
(ν)
1 +rt+1,min{xut+xlt−S(ν)

1 , CL}, yt+1)−v∗t+1(S
(ν)
2 +rt+1, CL, yt+1) ≤

v∗t+1(S
(ν)
1 +rt+1,min{xut+xlt+α−S(ν)

1 , CL}, yt+1)−v∗t+1(S
(ν)
2 +rt+1, CL, yt+1).

(4) If CU−S(ν)
1 < rt+1 ≤ CU−S(ν)

2 and xut+xlt+α−S(ν)
2 ≤ CL, by properties (a)

and (c) of Lemma 5.1.5, v∗t+1(CU , xut+xlt−S(ν)
1 , yt+1)−v∗t+1(CU , xut+xlt+

α − S(ν)
1 , yt+1) ≤ v∗t+1(CU + S

(ν)
2 − S(ν)

1 , xut + xlt − S(ν)
2 , yt+1) − v∗t+1(CU +

S
(ν)
2 −S

(ν)
1 , xut+xlt+α−S(ν)

2 , yt+1) ≤ v∗t+1(S
(ν)
2 +rt+1, xut+xlt−S(ν)

2 , yt+1)−
v∗t+1(S

(ν)
2 + rt+1, xut + xlt + α− S(ν)

2 , yt+1).

(5) If CU − S(ν)
1 < rt+1 ≤ CU − S(ν)

2 and xut + xlt − S(ν)
2 ≤ CL < xut + xlt +

α − S(ν)
2 , by Lemma 5.1.2 and by properties (a) and (c) of Lemma 5.1.5,

v∗t+1(CU , xut+xlt−S(ν)
1 , yt+1)−v∗t+1(CU ,min{xut+xlt+α−S(ν)

1 , CL}, yt+1) ≤
v∗t+1(CU , xut+xlt−S(ν)

1 , yt+1)−v∗t+1(CU , CL+S
(ν)
2 −S

(ν)
1 , yt+1) ≤ v∗t+1(CU +

S
(ν)
2 −S

(ν)
1 , xut+xlt−S(ν)

2 , yt+1)−v∗t+1(CU+S
(ν)
2 −S

(ν)
1 , CL, yt+1) ≤ v∗t+1(S

(ν)
2 +

rt+1, xut + xlt − S(ν)
2 , yt+1)− v∗t+1(S

(ν)
2 + rt+1, CL, yt+1).

(6) If CU −S(ν)
1 < rt+1 ≤ CU −S(ν)

2 and CL < xut + xlt−S(ν)
2 , by Lemma 5.1.2,

v∗t+1(CU ,min{xut + xlt − S
(ν)
1 , CL}, yt+1) − v∗t+1(S

(ν)
2 + rt+1, CL, yt+1) ≤

v∗t+1(CU ,min{xut + xlt + α− S(ν)
1 , CL}, yt+1)− v∗t+1(S

(ν)
2 + rt+1, CL, yt+1).

(7) If CU − S(ν)
1 < CU − S(ν)

2 < rt+1 and xut + xlt + α − S(ν)
2 ≤ CL, by prop-

erties (a) and (c) of Lemma 5.1.5 (which together imply the concavity

of v∗t+1(CU , ·, yt+1)), v∗t+1(CU , xut + xlt − S
(ν)
1 , yt+1) − v∗t+1(CU , xut + xlt −

S
(ν)
2 , yt+1) ≤ v∗t+1(CU , xut + xlt + α − S(ν)

1 , yt+1) − v∗t+1(CU , xut + xlt + α −
S

(ν)
2 , yt+1).
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(8) If CU − S
(ν)
1 < CU − S

(ν)
2 < rt+1 and xut + xlt − S

(ν)
2 ≤ CL <

xut + xlt + α − S
(ν)
2 , by properties (a) and (c) of Lemma 5.1.5 (which

together imply the concavity of v∗t+1(CU , ·, yt+1)) and by Lemma 5.1.2,

v∗t+1(CU , xut+xlt−S(ν)
1 , yt+1)−v∗t+1(CU , xut+xlt−S(ν)

2 , yt+1) ≤ v∗t+1(CU , CL+

S
(ν)
2 − S

(ν)
1 , yt+1) − v∗t+1(CU , CL, yt+1) ≤ v∗t+1(CU ,min{xut + xlt + α −

S
(ν)
1 , CL}, yt+1)− v∗t+1(CU , CL, yt+1).

(9) If CU − S
(ν)
1 < CU − S

(ν)
2 < rt+1 and CL < xut + xlt − S

(ν)
2 , by

Lemma 5.1.2, v∗t+1(CU ,min{xut+xlt−S(ν)
1 , CL}, yt+1)−v∗t+1(CU , CL, yt+1) ≤

v∗t+1(CU ,min{xut + xlt + α− S(ν)
1 , CL}, yt+1)− v∗t+1(CU , CL, yt+1).

Hence:

E
[
v∗t+1

(
min{S(ν)

1 + rt+1, CU},min{xut + xlt − S(ν)
1 , CL}, yt+1

)]
− E

[
v∗t+1

(
min{S(ν)

2 + rt+1, CU},min{xut + xlt − S(ν)
2 , CL}, yt+1

)]
= Vt(xut + xlt, S

(ν)
1 , yt)− Vt(xut + xlt, S

(ν)
2 , yt)

≤ Vt(xut + xlt + α, S
(ν)
1 , yt)− Vt(xut + xlt + α, S

(ν)
2 , yt) (C.1)

= E
[
v∗t+1

(
min{S(ν)

1 + rt+1, CU},min{xut + xlt + α− S(ν)
1 , CL}, yt+1

)]
− E

[
v∗t+1

(
min{S(ν)

2 + rt+1, CU},min{xut + xlt + α− S(ν)
2 , CL}, yt+1

)]
.

By definitions of S
(ν)
t (xut, xlt, yt) and S

(ν)
t (xut, xlt+α, yt), the following inequalities

hold.

Vt(xut + xlt, S
(ν)
1 , yt) +R

(ν)
t (xut − S(ν)

1 , yt)

≥ Vt(xut + xlt, S
(ν)
2 , yt) +R

(ν)
t (xut − S(ν)

2 , yt),

Vt(xut + xlt + α, S
(ν)
2 , yt) +R

(ν)
t (xut − S(ν)

2 , yt)

≥ Vt(xut + xlt + α, S
(ν)
1 , yt) +R

(ν)
t (xut − S(ν)

1 , yt).
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The summation of the above inequalities implies that

E
[
v∗t+1

(
min{S(ν)

2 + rt+1, CU},min{xut + xlt − S(ν)
2 , CL}, yt+1

)]
− E

[
v∗t+1

(
min{S(ν)

1 + rt+1, CU},min{xut + xlt − S(ν)
1 , CL}, yt+1

)]
= Vt(xut + xlt, S

(ν)
2 , yt)− Vt(xut + xlt, S

(ν)
1 , yt)

≤ Vt(xut + xlt + α, S
(ν)
2 , yt)− Vt(xut + xlt + α, S

(ν)
1 , yt)

= E
[
v∗t+1

(
min{S(ν)

2 + rt+1, CU},min{xut + xlt + α− S(ν)
2 , CL}, yt+1

)]
− E

[
v∗t+1

(
min{S(ν)

1 + rt+1, CU},min{xut + xlt + α− S(ν)
1 , CL}, yt+1

)]
.

This leads to a contradiction with the inequality in (C.1). Thus S
(ν)
1 ≤ S

(ν)
2 . �
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