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Abstract: N-GaN/P-GaN/N-GaN/P-GaN/N-GaN (NPNPN-GaN) junctions 
embedded between the n-GaN region and multiple quantum wells (MQWs) 
are systematically studied both experimentally and theoretically to increase 
the performance of InGaN/GaN light emitting diodes (LEDs) in this work. 
In the proposed architecture, each thin P-GaN layer sandwiched in the 
NPNPN-GaN structure is completely depleted due to the built-in electric 
field in the NPNPN-GaN junctions, and the ionized acceptors in these  
P-GaN layers serve as the energy barriers for electrons from the n-GaN 
region, resulting in a reduced electron over flow and enhanced the current 
spreading horizontally in the n- GaN region. These lead to increased optical 
output power and external quantum efficiency (EQE) from the proposed 
device. 

©2014 Optical Society of America 
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1. Introduction 

InGaN/GaN light-emitting diodes (LEDs) have been widely used in liquid crystal display 
(LCD) backlighting and full color displays and increasingly in indoor and outdoor lighting. 
Tremendous effort has been devoted to the improvement of LED performance through 
material and device engineering [1]. Some of the main issues affecting the LED performance 
and the corresponding solutions reported in the literature include: (1) Polarization induced 
quantum confined Stark effect (QCSE) in quantum wells (QWs) separates electrons and holes 
spatially and reduces the optical matrix element. Staggered InGaN QWs [2] and type-II QWs 
[3, 4] have been proposed to improve the optical matrix element. (2) Electron overflow from 
the QWs to the p-GaN region gives rise to the quantum efficiency droop at high current 
density [5, 6]. A p-type AlGaN electron blocking layer (EBL) is used to block electrons from 
escaping to the p-GaN region [7]. Moreover, an n-type AlGaN layer inserted below the active 
region for the reduction of the electron overflow has also been proposed [8–10]. (3) Current 
crowding effect for InGaN/GaN LEDs grown on insulating sapphire substrates with lateral 
current injection scheme causes non-uniform light emission across the device area and 
reduces the quantum efficiency [11, 12]. It has been reported that improving the p-type 
specific contact resistance helps to achieve a better current spreading [13, 14]. Meanwhile, it 
has been also shown that the current crowding decreases when the device is more resistive 
vertically [12], and an n-type InGaN current spreading layer has therefore been proposed to 
realize a better current spreading [15, 16]. Due to the relatively low growth temperature the 
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crystal quality of the n-type InGaN current spreading layer would be inferior to that of high-
temperature grown GaN, which may give rise to non-radiative recombination defects. 
Recently, a new design of p-GaN/n-GaN/p-GaN/n-GaN/p-GaN (PNPNP-GaN) current 
spreading layers in the p-GaN region proved to be effective in enhancing the optical power 
and external quantum efficiency (EQE) [17] by increasing the current spreading through 
generating energy barriers for holes. The limitations of the thickness (typically less than  
250 nm) and the growth temperature of the p-GaN region (much lower than the growth 
temperature of n-GaN) in InGaN LEDs imposes constrains on the freedom of optimizing the 
growth of the PNPNP-GaN and, thus, to its effectiveness on the current spreading 
enhancement. 

In this work we propose a new design compromising of lattice matched NPNPN-GaN 
junctions in the n-GaN region that serve both as the current spreading layer and the electron 
blocking layer. Since the growth temperature of the NPNPN-GaN junctions in the n-GaN 
region is not limited to be lower unlike in the case of PNPNP-GaN junctions in the p-GaN 
region or the n-type InGaN, an excellent crystal quality of the NPNPN-GaN junctions in the 
n-GaN region can be maintained. Moreover, because there is no practical limit on the 
thickness of the NPNPN-GaN junctions in the n-GaN region, there is a larger room for 
optimizing the growth. The NPNPN-GaN junctions in the n-GaN region with these 
advantages hold great promise for improving the InGaN/GaN LED performance. Here, we 
have proved the effectiveness of the NPNPN-GaN junctions in the n-GaN region for the 
enhancement of the LED performance both experimentally and theoretically. In the 
theoretical simulations, the APSYS simulation program has been used to solve self-
consistently the Poisson’s equations, continuity equations, and Schrӧdinger equation with 
proper boundary conditions. The parameters used in the simulations can be found elsewhere 
[18]. 

2. Experiments 

In our study, two InGaN/GaN LEDs were grown by metal-organic chemical vapor deposition 
(MOCVD) system as shown in Fig. 1(a) for the reference device and Fig. 1(b) for the 
proposed device dubbed the NPNPN-GaN device. The epitaxial growth of the two LEDs was 
initiated on c-sapphire substrates. Both LEDs consist of a 4 µm thick unintentionally doped 
GaN (u-GaN) layer grown on a 30 nm GaN buffer layer, and then followed by a 2 µm thick 
Si-doped GaN layer (n-GaN region) with a doping concentration of 5 × 1018 cm−3. For the 
reference device, five-period In0.18Ga0.82N/GaN MQWs with a 3 nm thick well and a 12 nm 
thick barrier were grown after the n-GaN. For the NPNPN-GaN device, the NPNPNP-GaN 
junctions were grown before the MQWs. The thickness of the N-GaN layer (with Si doping 
concentration of Nd = 5 × 1018 cm−3) and the P-GaN layer (with ionized Mg concentration of 
Na = 4 × 1017 cm−3) for each NPN-GaN junction was 40 nm each. Then, the same 
In0.18Ga0.82N/GaN MQWs as in the reference device were grown after the NPNPN-GaN 
junctions. Both the reference device and the NPNPN-GaN device had a 25 nm Mg-doped-
Al0.15Ga0.85N layer serving as the EBL, followed by a 200 nm thick Mg-doped GaN (p-GaN) 
region with an effective hole concentration of 3 × 1017 cm −3. 

The LED chips were fabricated using standard fabrication process for the two devices. 
LED mesa of 350 µm × 350 µm was patterned through reactive ion etching. Ni/Au  
(5 nm/5 nm) was deposited as the semi-transparent current spreading layer on the defined 
mesa and then the thermal annealing was performed in the mixture of N2 and O2 for 5 min at a 
temperature of 525 C̊. Finally, Ti/Au (30 nm/150 nm) was deposited on the exposed n-GaN 
layer and the semi-transparent current spreading layer as the N and P electrodes [17–20]. The 
electroluminescence (EL) spectra and the optical output power for both the devices were 
collected through an integrating sphere attached to an Ocean Optics spectrometer (QE65000). 
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Fig. 1. Schematic diagrams of (a) the reference device and (b) the proposed NPNPN-GaN 
device. 

3. Results and discussion 

As shown in Figs. 2(a) and 2(b), the electroluminescence (EL) spectra are presented at 
different injection currents of 20, 50, 100 and 150 mA for the reference device and the 
NPNPN-GaN device, respectively. A stronger EL intensity is evident from the NPNPN-GaN 
device compared to the reference device. Meanwhile, a red shift of the emission wavelength is 
observed with respect to the increasing injection current for both of the devices. This is 
commonly observed and attributed to the increased junction temperature due to the heating 
effect [21, 22]. 
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Fig. 2. EL spectra measured from (a) the reference device and (b) the NPNPN-GaN device. 

The measured optical power and EQE are shown in Fig. 3. It can be seen that an improved 
optical power and EQE have been achieved from the NPNPN-GaN device compared to that of 
the reference device. For example, the power enhancement from the NPNPN-GaN device 
relative to the reference device is about 30% at 150 mA according to Fig. 3. 
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Fig. 3. Optical output power and EQE measured as a function of the current injection for the 
reference device and the proposed NPNPN-GaN device. 
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Improvement of the optical output power and EQE for the NPNPN-GaN device could be 
attributed to two reasons. First, the electron overflow is reduced due to the blocking barriers 
generated in the NPNPN-GaN junctions. Second, the current crowding is reduced due to the 
fact that the NPNPN-GaN junctions increase the layer resistivity vertically and thus promote 
the lateral current spreading. 

To reveal the physical mechanism of the NPNPN-GaN junctions and their effect on the 
device performance, APSYS was used to simulate the band structures, electron and hole 
concentration distributions and radiative recombination rates in the MQWs for both of the 
devices. Figures 4(a) and 4(b) show the simulated energy band profiles for the reference 
device and the NPNPN-GaN device, respectively. The significant difference in the energy 
band profile for the two devices lies in the section of the conduction band of the n-GaN region 
in contrast to the flat band of the reference device; there are two energy barriers generated 
after incorporating the NPNPN-GaN junctions. 
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Fig. 4. Energy band diagram at 20 A/cm2 for (a) the reference device and (b) the NPNPN-GaN 
device. Ec, Ev, Efe and Efh denote the conduction band, valance band, and quasi-Fermi level for 
electrons and holes, respectively. 

These energy barriers are helpful for the electron overflow reduction [8]. This can be 
confirmed with the comparison of the simulated electron concentration distribution and the 
normalized electron current for the two devices as shown in Figs. 5(a) and 5(b). The electron 
concentration of the NPNPN-GaN device is much lower than that of the reference device in 
the p-GaN region and so is the normalized electron current. 
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Fig. 5. Simulated (a) electron concentration and (b) normalized electron current at 20 A/cm2 
across the InGaN/GaN MQWs region for the reference device and the NPNPN-GaN device, 
respectively. 

The NPNPN-GaN junctions can also reduce the current crowding and thus promote the 
lateral current spreading. As the energy barriers for the electrons in the conduction band of the 
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n-GaN region have been generated, the NPNPN-GaN junctions increase the layer resistivity 
vertically, which is beneficial for better current spreading [15–17]. Figures 6(a) and 6(b) 
depict the simplified equivalent circuits of the reference device and the NPNPN-GaN device. 
In the reference device grown on the insulating substrates with the lateral current-injection 
scheme, the current flows both vertically and laterally from the p-GaN region to the n-GaN 
region. However, the current preferably flows vertically due to the much smaller sheet 
resistance of the n-GaN region compared to the p-GaN region. This leads to the non-uniform 
current distribution (i.e., I1 > I2 > I3 > I4 > ..... > In), which is root reason for the current 
crowding effect [12]. This detrimental current crowding effect can be suppressed by 
incorporating the NPNPN-GaN junctions in the LED structure. In the case of the NPNPN-
GaN device, we divide the total current into a vertical portion (J1) and a horizontal portion 
(J2). Based on the equivalent circuits in Figs. 6(a) and 6(b), the simplified equations, Eq. (1) 
and Eq. (2), are obtained. 

 1

2

1CSL CSL

p GaN npn
p

CSL CSL

w tJ
NJ lw

t
ρ ρ
ρ ρ

−
= +

+
 (1) 

 1

2

1

p GaN npn
p

CSL CSL

J
NJ

t
ρ ρ
ρ ρ

−
≅

+
 (2) 

where wCSL is the width of the current spreading layer and tCSL is the thickness of the current 
spreading layer, w is the width of the device mesa, l is the length of the device mesa, tp is the 
thickness of the p-GaN region, ρp-GaN and ρCSL are the resistivities for the p-GaN region and 
the current spreading layer, respectively, and ρnpn is the specific interfacial resistivity induced 
by the barrier height in each NPN-GaN junction [17]. N is the total number of NPN-GaN 
junctions. From Eq. (2), obviously the lateral current (i.e., J2) can be improved by a higher 
ratio of N × ρnpn / ρCSL, which can be achieved through either increasing N × ρnpn or reducing 
ρCSL. Therefore, the current crowding effect can be suppressed by incorporating the NPNPN-
GaN junctions in the LED structure. It is noted that the current spreading effect will also be 
enhanced by properly increasing the p-GaN region thickness tp as shown in Eq. (2). 

 

Fig. 6. (a) Equivalent circuit of an InGaN/GaN LED grown on an insulating substrate (e.g., 
sapphire) using Ni/Au current spreading layer with lateral current-injection scheme  
(I1 > I2 > I3 > I4 > ..... > In) [17], and (b) simplified equivalent circuit of the InGaN/GaN LED 
with possible current paths (J1 and J2) when the NPNPN-GaN junctions is embedded, using 
Ni/Au as the current spreading layer on the top [17]. 

The improved current spreading effect by incorporating the NPNPN-GaN junctions brings 
about another benefit of higher efficiency of hole injection into the MQWs, which is 
confirmed by the simulated hole concentration distribution as shown in Fig. 7(a). The 
combined effects of the electron overflow reduction, the current crowding suppression, and 
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the hole injection enhancement with the application of the NPNPN-GaN junctions therefore 
enhance the radiative recombination rate, as shown in Fig. 7(b), which explains the 
enhancements of the optical output power and the EQE in the NPNPN-GaN device. 
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Fig. 7. Simulated (a) hole concentration and (b) radiative recombination rates at 20 A/cm2 
across the InGaN/GaN MQW region for the reference device and the NPNPN-GaN device, 
respectively. 

Figure 8 shows the current-voltage (I-V) characteristics of the two devices. Clearly we can 
see that the NPNPN-GaN device exhibits an increased forward voltage when compared to the 
reference device. The forward voltages of the reference device and the NPNPN-GaN device at 
20 mA are 4.8 and 5.4 V, respectively. The increased forward voltage is likely due to the 
voltage drop across the NPNPN-GaN junctions as shown below. Due to the small thickness of 
each layer in the N-P-N junction, an abrupt junction model can be applied and the built-in 
potential in the P-GaN/N-GaN junction can be calculated to be 3.28 V using Eq. (3) 

 
2

ln a d
bi

i

N NkT
V

e N

 
=  

 
 (3) 

where e is the elementary electron charge and Ni = 1.9 × 10−10 cm−3 for GaN. Therefore, the 
total depletion region width is 93.39 nm according to the Eq. (4) 

 
( )02 1/ 1/r a d bi

t

N N V
W

e

ε ε +
=  (4) 

where εr = 8.9 for GaN and εo is the absolute dielectric constant [23]. This depletion region 
consists of the depletion region width in P-GaN of 86.47 nm and the depletion region width in 
N-GaN layer of 6.91 nm, respectively, with the assumption that P-GaN and N-GaN layers 
have infinite lengths. However, the P-GaN layer has the actual thickness of only 40 nm; so, 
the depletion region extends through the whole P-GaN layer. It is also worthy to note that 
ionization ratio of the Mg dopants at room temperature is 1% in GaN [24]. According to the 
charge neutrality principle in the depletion region of a homojunction, the actual depletion 
width in N-GaN of NPN-GaN junction is only about 2.95 nm. Hence, the current can flow 
through the reversely biased junction when it was in reach through breakdown situation. The 
reach through breakdown voltage for the reversely biased junction is calculated according to 
Eq. (5) 
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where Wp is the width of P-GaN [25]. A value of 0.65 V is obtained, which is found close to 
the increment of the forward voltage in the NPNPN-GaN device. The NPNPN-GaN junctions 
can be further optimized by tuning the thickness, doping concentrations and the periods of 
NPN-GaN junctions, so that the improved current spreading can overwhelm the increased 
forward voltage, and thus an improved electrical performance can be realized. 
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Fig. 8. Measured I-V characteristics of the reference device and the NPNPN-GaN device. 

4. Conclusion 

In conclusion, the InGaN/GaN LED with a new design architecture of NPNPN-GaN junctions 
inserted between the n-GaN and the InGaN/GaN MQWs has been proposed and studied in 
this work. The experimental and theoretical findings indicate that the NPNPN-GaN junctions 
mitigate the electron overflow and reduce the current crowding effect. As the result, the 
optical power and EQE can be significantly improved. This work offers an alternative way to 
improve the carrier balancing and, thus, the LED performance. 
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