
CEJOR (2008) 16:165–178
DOI 10.1007/s10100-007-0045-8

ORIGINAL PAPER

Model development and optimization in interactive
computing environments

János D. Pintér

Published online: 26 March 2008
© Springer-Verlag 2008

Abstract Integrated computing systems—such as Maple, Mathematica, and
MATLAB—enable the development of “live” electronic documents that include
explanatory text, calculations, custom programming (code development), visualiza-
tion, and other features. As a result, teachers and students, researchers and practitioners
can develop applications in a completely interactive format. Such e-documents can be
put to good use in developing textbooks, lecture notes, assignments and presentations,
as well as in the context of research and development (R&D) projects. The interactive
approach accelerates and enhances the process of learning and research. To illus-
trate this approach, we discuss a nonlinear (global and local) optimization software
product and a topical electronic book that support interactive model development and
optimization in Maple. We highlight the key features of the e-book and the software,
present illustrative examples, and point towards a range of scientific and engineering
applications.

Mathematics Subject Classification 65K30 · 90C05 · 90C31

Keywords Advanced systems modeling and optimization · Interactive electronic
documents for research and education · Integrated computing systems · Maple ·
Global Optimization Toolbox · Illustrative examples and applications

J. D. Pintér (B)
PCS Inc., 129 Glenforest Drive, Halifax, NS, Canada B3M 1J2
e-mail: jdpinter@hfx.eastlink.ca
URL: http://www.pinterconsulting.com

Present Address:
J. D. Pintér
Department of Industrial Engineering, Bilkent University,
06800 Bilkent, Ankara, Turkey
e-mail: janos.d.pinter@gmail.com; jdpinter@bilkent.edu.tr

123

166 J. D. Pintér

1 Introduction

Operations research provides a scientifically established methodology to assist ana-
lysts and decision makers in finding efficient (optimized) decisions under ever-present
resource constraints. As it is well-known, a “generic” O.R. project consists of the
following key steps:

• Conceptual description of the decision problem
• Development of a corresponding quantitative model
• Development and/or adaptation of a suitable algorithmic solution procedure
• Numerical solution of the model and its verification
• Implementation of the decision selected.

Many of the real-world problems tackled by O.R. are complicated, and the “best
possible” model development and solution procedure may not be clear at the begin-
ning of the project. As a result, interdisciplinary teams of decision makers, domain
experts, modelers and algorithm developers often have to work together in an iterative
fashion. Specifically, the O.R. team repeatedly has to modify the model formulation
and solution procedure until the model captures the essence of the problem, it is ade-
quately supported by data, computationally tractable, and its solution is deployable in
the real-world setting.

The outlined stages of decision support system development point towards the
advantages of using (also) high-level software tools. We specifically refer here to inte-
grated scientific–technical computing (ISTC) systems. The most prominent currently
available professional ISTC platforms are Maple (Maplesoft 2007a), Mathematica
(Wolfram Research 2007), and MATLAB (The MathWorks 2007). The alternative
terminology “problem solving environments” is used by Landau (2005), in relation to
Maple and Mathematica.

Integrated scientific–technical computing systems can be put to good use in R&D, as
well as in education. A key feature of ISTC systems is their capability to develop inter-
active electronic work documents. Such e-documents can be modified and extended
according to the needs and interests of their user(s). Their interactivity enables active
learning and hands-on experimentation, rapid prototyping and quick tests, incremen-
tal and modular development, to create, capture and preserve knowledge. We will
illustrate the advocated approach by developing and solving nonlinear optimization
models using Maple and the Global Optimization Toolbox (GOT) (Maplesoft 2007b).

The structure of the paper is as follows. Section 2 introduces Maple and the GOT.
Section 3 discusses model development and optimization using (electronic) Maple
worksheet documents. Section 4 introduces several examples: these serve to illus-
trate a simple-to-follow model formulation and solution approach, feasibility verifi-
cation, model visualization, incremental model development, parameterized models,
and models with embedded computational procedures. Section 5 discusses the devel-
opment of complete case studies, briefly reviewing one such study. The conclusions
in Sect. 6 are followed by references.

For technical and pedagogical details that are not discussed here, we refer to Pintér
et al. (2006), Castillo et al. (2008), as well as to the Maple software documentation
(Maplesoft 2007a), and to the e-book (Pintér 2006b). From a growing collection of

123

Model development and optimization in interactive computing environments 167

electronically available books that can be used in conjunction with ISTC environ-
ments, we refer here only to several representative works by Landau (2005), Lopez
(2005), and Trott (2004, 2005).

2 Maple and the GOT

2.1 Maple

Maple supports the development of interactive documents that combine technical
description, computing, program code development, and visualization, with many
additional features. Maple incorporates an extensive mathematical function library:
its more than 3,500 built-in functions cover a multitude of scientific and technical
research areas. Maple also includes a detailed on-line documentation system with
hyperlinks, debugging tools, data communication (import from and export to various
software packages) Web connectivity, automated (ANSI C, Fortran 77, Java, MAT-
LAB and Visual Basic) code generation, and document production (including Maple to
HTML, MathML, TeX, and RTF converters). Maple is portable across all major hard-
ware platforms and operating systems, including most current Windows, Macintosh,
Linux, and Unix versions.

For further details, we refer to Maplesoft’s web site (http://www.maplesoft.com)
that offers extensive topical information. This information includes quick start guides,
training materials, complete user manuals, as well as interactive product and fea-
ture demonstrations. For illustration, see Fig. 1 that shows an integrated demonstra-

Fig. 1 Maple feature demonstrations through an integrated interface

123

http://www.maplesoft.com

168 J. D. Pintér

tion interface available at Maplesoft’s web site: clicking on the fields of the (active
website) figure leads to the corresponding feature demonstrations. Additionally, down-
loadable white papers, articles, demo applications, course materials and complete case
studies are available: these serve to illustrate the use of Maple in educational, engi-
neering design, scientific research, operations research, financial analysis, and other
contexts.

2.2 Global Optimization Toolbox for Maple

Within the general quantitative framework of systems modeling and optimization,
we see a particularly strong case for using ISTC software to assist the analysis and
management of nonlinear systems. Such systems are often defined by individually for-
mulated model objective and constraint functions, without a ready-to-use “canonical”
description (as opposed, e.g., to linear programming). Solving an arbitrary system
of nonlinear equations that could express system equilibrium conditions is a case
in point. To cite further examples, the optimization model functions may require,
e.g., the execution of computational procedures defined by special functions, the
numerical evaluation of integrals, the numerical solution of systems of differential
equations, calls to external function modules, deterministic or stochastic simulation,
and so on.

Nonlinear descriptive models are essential in various scientific and engineering
studies and applications. Here we refer only to an illustrative selection of topical
discussions by Aris (1999), Bracken and McCormick (1968), Diwekar (2003),
Gershenfeld (1999), Grossmann (1996), Hansen and Jørgensen (1991), Lopez (2005),
Mastinu et al. (2006), Murray (1983), Papalambros and Wilde (2000), Pardalos and
Resende (2002), Pintér (1996, 2006a), Schittkowski (2002), and Steeb (2005).

Nonlinear optimization models—typically based on an underlying descriptive
model—frequently have a multitude of (local and global) optima. The objective of
global optimization is to find the “absolutely best” solution of such multimodal prob-
lems. The continuous global optimization model form considered here is

min f (x) x ∈ D := {x : xl ≤ x ≤ xu g(x) ≤ 0}. (1)

Here x ∈ Rn is the real n-vector of decision variables, xl and xu are finite, com-
ponent-wise n-vector bounds of x, f : Rn → R is a continuous (scalar) objective
function, and g : Rn → Rm is the continuous m-vector function of constraints (the
inequality g(x) ≤ 0 is interpreted component-wise).

Without going into technical details that are unnecessary within the scope of our
discussion, let us point out that the model statement (1) covers a broad class of formally
more general or detailed models. Specifically, instead of ≤ relations, arbitrary combi-
nations of inequality and equality relations could be used in the functions g; one could
state explicit bounds also on the constraint function values; and one could even use a
combination of continuous and discrete (finitely bounded) decision variables. Observe
furthermore that if the feasible set D is non-empty, then model (1) has a non-empty
global solution set X∗. In spite of this key existence result, if we use traditional local

123

Model development and optimization in interactive computing environments 169

scope search methods to solve multimodal instances of (1), then—as a rule, depending
on the starting point of the search—we will find only corresponding locally optimal
solutions. In order to find the “true” solution (i.e., to properly approximate it after a
finite number of algorithmic search steps) in such cases, a genuine global scope search
strategy is required.

The GOT for Maple has been developed to meet these needs (Maplesoft 2007b).
The core of the GOT is the LGO global–local nonlinear optimization solver suite. LGO
abbreviates Lipschitz(-continuous) Global Optimizer, originally named after one of its
global solver components. The theoretical foundations of LGO are discussed in Pintér
(1996), together with basic implementation details, test examples, and a collection of
detailed case studies. The LGO software has been further developed to a significant
extent. It is currently available to use in conjunction with C and Fortran compiler plat-
forms, several optimization modeling languages (AIMMS, AMPL, GAMS, MPL), and
ISTC systems (Maple, Mathematica, and MATLAB via Tomlab). For details, consult
for example Pintér (2001, 2002, 2005, 2007), as well as the platform-specific user
manuals not cited here.

Since its 2004 release, the GOT has been used worldwide by industrial and gov-
ernment organizations, R&D laboratories and consulting companies, as well as by
academic researchers and educational users. The GOT has also been peer-reviewed
by academic and industrial experts, consult Castillo (2005), Wass (2006), Henrion
(2006), Deschaine (2006) and Forst (2008).

The GOT product page includes links to its key technical features and illustrative
applications, to a recorded web seminar, technical datasheet, white paper, several peer
reviews, and to topical books, articles, and presentations. In the following sections we
will use Maple and the GOT, to illustrate the application of interactive documents in
the context of O.R.

3 Global Optimization with Maple: an electronic book

The e-book (Pintér 2006b) has been written entirely using the Maple environment.
The book presents Maple as a model development and optimization environment.
The emphasis is placed on nonlinear (often multi-extremal) models: to solve these,
the GOT is used throughout the book. However, readers can also experiment with
Maple’s built-in (local nonlinear) optimization functionality, or perhaps with their
own solvers.

The e-book is available in the form of a single fully functional, printable Maple
worksheet, and/or as a set of nearly 60 hyperlinked worksheets (at the time of this
writing). The content of the e-book can be modified or expanded, as deemed suitable.
The book consists of five chapters, in addition to front material, conclusions, and
references. Chapter 1 presents a brief introduction and background regarding O.R.,
Maple, global optimization, and LGO. Chapter 2 introduces the GOT for Maple: the
discussion covers installation and initialization steps, basic option settings, model
formulation and function evaluation options, model development and solution tips.
Chapter 3 presents several dozen numerical examples to illustrate GOT usage basics.
The discussion covers the solution of standard nonlinear optimization test examples

123

170 J. D. Pintér

and some more challenging problems. Chapter 4 discusses more advanced exam-
ples: these include optimization models with various embedded computable functions
(such as a parametric integral or a Bessel function in the model objective), calls to
MATLAB to define model functions, and the use of external (precompiled C) func-
tions in a model. Chapter 5 presents illustrative case studies (these will be mentioned
later on); the last section discusses further application perspectives.

This electronic book is written primarily for model developers—practitioners,
researchers, academics, and students—working in the sciences and engineering, with
or without an in-depth optimization background. The e-book can be used as a self-study
resource, or as part of a practically oriented modeling and optimization curriculum. To
follow the exposition, an undergraduate level of mathematical knowledge and basic
Maple programming experience are sufficient. In order to execute all “live” examples
presented in the Maple worksheet(s), the reader should have access to a current version
of Maple (version 9.5 or higher) and to a compatible version of the GOT.

In the next section, we will highlight some key features of the interactive model
development and solution approach. The examples presented are similar to some of
those found in the e-book. Due to space limitations (to be followed by this article), we
will discuss here only small-size—yet non-trivial—models that can be presented in a
sufficiently compact fashion.

4 Illustrative examples

4.1 Model development, solution and analysis

A key feature of ISTC systems is their interpreted (as opposed to compiled) language
environment. An apparent manifestation of this feature is that one can enter com-
mands one by one, and the system will respond “immediately” (barring time-intensive
calculations), unless we suppress its response. The interpreted environment supports
interactive exploration, model prototyping, and modular development.

We will not discuss Maple programming details here, but the examples presented
should be easy to follow. All Maple input will be typeset usingCourier Bold fonts.
Maple’s output will be shown using standard (Times New Roman) fonts, immediately
following the corresponding input line(s). Individual Maple input lines typically end
with the symbol “;” that leads to a corresponding Maple output. To suppress the
resulting output, the symbol “:”can be used after an input line(s). Except minimal
editing done for the purposes of this article, all Maple input and output is directly
copied and pasted from a corresponding Maple worksheet document.

The following Maple command allows us to launch directly the (subsequently
issued) commands of the GOT.
> with(GlobalOptimization):
The GOT automatically sets default parameter values for its operations, partly based

on the model to solve. According to extensive numerical experience, the suggested
default settings are suitable in many cases, but the user can always directly assign
(i.e., override) them. In all examples presented here, the default settings are used.

Our first example shows a simple-to-follow “standard” model development style.
First we define the key model components, essentially following the structure of the

123

Model development and optimization in interactive computing environments 171

mathematical model formulation (1). The model (2) displayed below has two variables
(x and y), and three nonlinear constraints given in a list between the braces {}, in
addition to bound constraints.

> objective := (2 ∗ sin(1+ 2 ∗ x) ∗ sin(3 ∗ x+ y)) ˆ2 : (2)

constraints :=
{x ˆ2− 3 ∗ x ∗ y >= 0,

sin(y) ∗ y− sin(x) <= 0.3,

(x− y) ˆ2 <= 0.1} :
bounds := x = −1..3,y = −2..3 :

Notice that the objective function and two of the constraints are non-convex: this
structure leads to a global optimization problem. The model is solved using the GOT:
the GlobalSolve command computes a numerical global solution, in a fraction of
a second (on today’s average personal computer).
> solution :=
GlobalSolve(objective, constraints, bounds);
solution := [1.61054103392516999 ·10−32,
[x = –0.00925260522200139526, y = 0.0277578156660041112]]
The solution output consists of the objective function value, followed by the

assigned list of optimal solution vector components. Since—by its definition—the
model objective function in (2) is always non-negative, a feasible solution with an
approximately zero objective function value is a numerical global solution. The next
statement serves to verify numerical feasibility, by evaluating the constraints at the
solution argument.
eval(constraints, solution[2]);
0.01002287059 ≤ 0.3, 0 ≤ 0.0008561070340, 0.001369771254 ≤ 0.1
Let us point out that we do need global optimization technology to solve this model.

The next two statements illustrate this point: first we invoke the built-in local nonlinear
solver, and then attempt to solve the model.
> with(Optimization):
> localsolution:=
Minimize(objective, constraints, bounds);
localsolution := [3.45511225499958430,
[x = .474341655354528546, y = .158113889337685638]]
Let us also note that if one is interested in other (quite possibly existing, “noticeably

different”) global solutions, then, e.g., a “sufficiently small” spherical neighborhood
of the current global solution can be excluded by adding a single constraint to the
model formulation (2). After adding such a constraint, the model can be immediately
resolved. The modified model displayed in (3) implements this approach. Here we
prefer to show a very simple way to do this, instead of perhaps more sophisticated
Maple programming. For clarity, we repeat also the unchanged model components.
Notice also the rounding of the previous solution, for facilitating the display of the
modified model.

123

172 J. D. Pintér

> objective := (2 ∗ sin(1+ 2 ∗ x) ∗ sin(3 ∗ x+ y)) ˆ2 : (3)

constraints2 :=
{
x ˆ2− 3 ∗ x ∗ y >= 0,

sin(y) ∗ y− sin(x) <= 0.3,

(x− y) ˆ2 <= 0.1,

(x+ 0.0092526) ˆ2+ (y− 0.0277578) ˆ2 >= 0.0001
} :

bounds := x = −1..3,y = −2..3 :
> solution2 := GlobalSolve

(objective,constraints2,bounds);
solution2 := [8.67322388733747448 · 10−32,

[x = 0.0424073335558855652, y = −0.127222000667656876]]

The second global numerical solution found is also feasible, as it can be easily ver-
ified. Evidently, this approach can be iterated to find additional global solutions (until
no further solutions can be found). Before dismissing such a pragmatic approach,
recall that the general problem of finding all global solutions to an arbitrary instance
of (1) is theoretically NP-complete.

One can also visualize the model functions: the command shown below displays
the objective function, see Fig. 2.
plot3d(objective, bounds, axes=boxed);
The constraint functions can be visualized similarly. In higher-dimensional mod-

els, interactively selected subspace projections can be displayed. As Maple users will
know, one can also rotate the surface plots generated: this option—and the many
other visualization options not discussed here—can help users to gain further insight
regarding their model.

4.2 Parameterized optimization problems

Model (3) illustrates the possibility of incremental development via inline model
changes. To show another model development example, here we introduce a

Fig. 2 Objective function in model (2)

123

Model development and optimization in interactive computing environments 173

parameterized model-class. The model objective includes a trigonometric term which
can be made to “dominate” a simple underlying quadratic function, by increasing its
multiplier parameter. When solving these models, one can observe that the precision
of the numerical solution becomes somewhat less as the noise increases, but—in the
examples presented—not too much. (In all cases, the theoretical unique global solution
is the vector x = y = 0, with the corresponding objective function value 0.)

> GlobalSolve(x ˆ2+ y ˆ2+ 1 ∗ (sin(x ˆ2+ x+ y ˆ2− y)) ˆ2, (4)

x = −8..1,y = −3..10);
[2.65363041289996510 · 10−22,

[x = 2.66241931525791942 · 10−12, y = 1.26168271945189798 · 10−11]]
> GlobalSolve(x ˆ2+ y ˆ2+ 10 ∗ (sin(x ˆ2+ x+ y ˆ2− y)) ˆ2,

x = −8..1,y = −3..10);
[1.30003498875953083 · 10−20,

[x = 7.17520512867093428 · 10−11, y = 4.82487515260131190 · 10−11]]
> GlobalSolve(x ˆ2+ y ˆ2+ 100 ∗ (sin(x ˆ2+ x+ y ˆ2− y)) ˆ2,

x = −8..1,y = −3..10);
[2.98780842650330138 · 10−20,

[x = 1.18729856020084858 · 10−10, y = 1.21804064110639752 · 10−10]]

Of course, the parameterized models themselves are becoming more and more dif-
ficult as the multiplier of the trigonometric term is increased. Figure 3 displays the
objective function of the third model version shown in (4). This figure illustrates the
fact that global optimization models—even low-dimensional instances of the general
problem statement (1)—can be truly difficult. In higher dimensions, as well as in the
presence of added general constraints, nonlinear models tend to become even harder.
Hence, the need for global scope search immediately becomes clear (e.g., in a class-
room environment, or for non-mathematician members of an interdisciplinary R&D
team). Parameterized model-classes similar to (4)—and optionally equipped with a
new randomized solution vector for each instance—can be put to good use also in
testing global optimization software as suggested and done in Pintér (2002).

Fig. 3 Objective function in the third parameterized model shown in (4)

123

174 J. D. Pintér

4.3 Models with embedded computational procedures

One of the apparent advantages of ISTC systems is the range of built-in functions—and
their programmable extensions—that can be directly used in optimization model for-
mulations. In order to illustrate this feature, in the next example we will use the built-in
gamma function of Maple. Let us recall that the gamma function �(z) is defined for
complex z arguments with Re(z) > 0 by the integral expression

�(z) =
∞∫

0

e−t t
z−1

dt .

The gamma function is extended to the entire complex plane, except for non-positive
integers, by analytic continuation. (Consult, e.g., Maple’s Help system for more infor-
mation.) Consider first the model shown in (5), and its numerical solution. Notice that
for simplicity and consistency we use the same model component symbols as above:
this could be changed if necessary, of course.

> objective := sin(4 ∗ x ˆ2+ 10 ∗ y− GAMMA(x+ 1)) ˆ2+ (5)

sin(x− 2 ∗ y− GAMMA(y)) ˆ2 :
constraints:= {

xˆ2− yˆ5 <= −10,

cos(x− y) ∗ sin(−x+ y ˆ3− 3) = 0
} :

bounds := x = 1..8,y = 1..5 :
solution := GlobalSolve

(objective,constraints,bounds);
solution := [0.00145307767952264008,

[x = 4.45034916356521926, y = 2.87955283435428422]]

Next, we will modify (only) the constraints of this model, and then resolve it.

> constraints2 := {
x ˆ2− yˆ5 <= −7, (6)

x ∗ sin(−x+ y ˆ3− 3) = 0
} :

solution2 := GlobalSolve

(objective,constraints2,bounds);
solution2 := [2.90055483780898152 · 10−16,

[x = 5.00000000010406876, y = 2.00000000001128520]]

Inspecting now the model objective and constraints in (6), and recalling the fact
that �(z) = (z − 1)! for positive integer arguments z, one can directly verify that
the solution found to the modified model (6) is a close numerical approximation of
the theoretical global solution x = 5, y = 2. In the formulation (6) both constraints
are active, and this fact helps to drive the GOT towards the exact solution. Notice
also that the values returned in (5) using default GOT settings provide a verifiably

123

Model development and optimization in interactive computing environments 175

Fig. 4 Objective function in models (5) and (6)

feasible, high-quality, global search based solution (since the objective function in (5)
is always non-negative). Barring numerical problems—that could occur even in the
realm of local optimization—such a result can be expected by default from a numerical
global solver. Figure 4 shows the surface plot of the objective function in the last two
examples, indicating again the potential difficulty of instances within the very general
model-class addressed by the GOT.

5 Developing case studies and applications

As it has been already noted, Maple enables the modular development of complete
R&D projects. Due to space limitations, the numerical examples introduced above
could only hint at these possibilities. To present a more realistic (but still fairly sim-
ple) illustrative application, we briefly review an automotive suspension system tuning
problem. For further details—including the industrial background and motivation, as
well as other aspects of modeling and optimizing vehicle dynamics—consult Goossens
et al. (2007).

One of the many areas where the GOT is used extensively by industry is model
fitting or calibration. Frequently, engineers will have a good theoretical model of
a system component or module, but they do not have the necessary parameter
values to make the model output (such as a trajectory) behave the same as the
observed or desired system. In situations like this, engineers can capture system output
data, and then use optimization techniques to find the best model input parame-
ter values to match the target output as closely as possible. Since engineering and
many other professional studies typically deal with highly non-linear dynamic sys-
tems, the use of global optimization in such applications is key, to obtain the best
possible model fit. This is a more general, flexible and successful approach than
using traditional statistical regression techniques that often restrict the class
of stochastic models to be considered, and/or involve only local scope search
methods.

For illustration, let us consider a vehicle suspension system parameterized by the
spring stiffness parameter k and the damper parameter b. We shall use the basic

123

176 J. D. Pintér

second-order suspension (unforced mass-spring-damper) system model

m

(
d2

dt2 x(t)

)
+ b

(
d

dt
x(t)

)
+ k · x(t) = 0. (7)

In (7) m is the mass of the car on each wheel. Using this model, for any given
parameter combination (k, b) we can determine the dynamic response of the system
using Maple’s built-in ordinary differential equation solvers. However, one would have
to use initial parameter “guesses” that will most likely not give the desired response,
unless we are very experienced—or lucky. . . Given a prescribed suspension system
behavior at a “typical” (specific size and shape) road bump, the designer’s task is to
find values for k and b to generate a system response that matches the target response
at the bump. Obviously, this problem can be cast in an optimization model framework:
the objective function is defined as the squared error between the desired and actual
response measured over a discrete set of time moments, as a function of k and b. After
deriving the parameterized response by solving the differential equation (7), one can
use the GOT to find the values of k and b that globally minimize the error function.
This general strategy has been followed in several topical case studies which validated
the approach outlined above.

Figure 5 displays one of the related Maple worksheet documents in its concise
format: its expandable sections (denoted by black right-pointing triangles) lead to

Fig. 5 An illustrative case study developed in Maple and solved by the GOT

123

Model development and optimization in interactive computing environments 177

the complete documentation, computing and visualization details regarding the cor-
responding stages of our demonstration project.

A growing number of other examples and case studies that illustrate the application
potentials of using Maple and the GOT are available from Maplesoft’s website, and
from Pintér (2006b). Current (publicly available) examples are related, e.g., to alkyl-
ation process modeling, calibration of multiple process Arrhenius models, aspherical
lens surface identification, calibration of a molecular similarity index model, chemical
equilibrium analysis, industrial design, electrical circuit design, general (non-uniform)
circle packing problems, nonlinear equations, perfume bottle design, portfolio man-
agement, and supply chain performance (reliability) optimization. Further examples
are available upon request from Maplesoft and from the author.

6 Conclusions

In this article, we have discussed the advantages of using “live” electronic documents
in R&D and education. To illustrate this point, we have presented examples of inter-
active model development and optimization using Maple and the GOT.

We see especially strong application potentials for ISTC systems and related tools
in the analysis of highly nonlinear systems. Several broad (and obviously overlapping)
model-classes with a potential need for both ISTC systems and advanced optimization
tools include models with a provably non-convex structure, “black box” models (with
an unknown structure), as well as dynamic and stochastic system models. Models
belonging to these categories are ubiquitous in educational, research and commercial
contexts. These include, e.g., automotive, chemical, electrical, electronic, environmen-
tal and process engineering, econometric and finance studies, and a range of mathe-
matical, physical, chemical, biological, medical and pharmaceutical applications.

Acknowledgments Thanks are due to my colleagues at Maplesoft—especially to Paulina Chin,
Paul Goossens, Tom Lee, David Linder, William Spaetzel, and Christina Spirou—for useful discussions
and cooperation related to the Global Optimization Toolbox, topical web seminars, the e-book, and other
publications. I also wish to acknowledge the work and constructive suggestions of all reviewers of the GOT
and/or the e-book: published reviews were written (so far) by Ignacio Castillo, Larry Deschaine, Wilhelm
Forst, Didier Henrion, Mahmut Parlar, Tamás Terlaky, and John Wass. The constructive comments received
from two anonymous referees of this article are also appreciated.

References

Aris R (1999) Mathematical modeling: a chemical engineer’s perspective. Academic Press, San Diego
Bracken J, McCormick GP (1968) Selected applications of nonlinear programming. Wiley, New York
Castillo I (2005) Maple 10 and the global optimization toolbox (software review). ORMS Today 32(6):

56–60. Available online at http://www.lionhrtpub.com/orms/orms-12-05/swr.html
Castillo I, Lee T, Pintér JD (2008) Integrated software tools for the ORMS Classroom. Algorithm Oper Res

(in press)
Deschaine LM (2006) Global optimization toolbox for Maple and global optimization with Maple (book

and software review). Int J Model Identif Control 1(4):338–339
Diwekar U (2003) Introduction to applied optimization. Kluwer, Boston
Forst W (2008) Global optimization with Maple (book review). Algorithm Oper Res (in press)
Gershenfeld N (1999) The nature of mathematical modeling. Cambridge University Press, Cambridge

123

http://www.lionhrtpub.com/orms/orms-12-05/swr.html

178 J. D. Pintér

Goossens P, McPhee J, Schmitke C, Pintér JD, Stahl H (2007) Driving innovation: how mathematical
modeling and optimization increase efficiency and productivity in vehicle design. Technical memo-
randum published by Maplesoft, Waterloo

Grossmann IE (ed) (1996) Global optimization in engineering design. Kluwer, Dordrecht
Hansen PE, Jørgensen SE (eds) (1991) Introduction to environmental management. Elsevier, Amsterdam
Henrion D (2006) A review of the Global Optimization Toolbox for Maple. IEEE Control Syst Mag 26

(October issue):106–110
Landau RH (2005) A first course in scientific computing. Princeton University Press, Princeton
Lopez RJ (2005) Advanced engineering mathematics with Maple, electronic book edition. Waterloo Maple

Inc., Waterloo
Maplesoft (2007a) Maple (Version 11). Maplesoft, Waterloo. http://www.maplesoft.com
Maplesoft (2007b) Global optimization toolbox for Maple (Version 11). Maplesoft, Waterloo. http://www.

maplesoft.com/products/toolboxes/globaloptimization/
Mastinu G, Gobbi M, Miano C (2006) Optimal design of complex mechanical systems with applications

to vehicle engineering. Springer, Berlin
Murray JD (1983) Mathematical biology. Springer, Berlin
Papalambros PM, Wilde DJ (2000) Principles of optimal design—modeling and computation, 2nd edn.

Cambridge University Press, Cambridge
Pardalos PM, Resende MGC (eds) (2002) Handbook of applied optimization. Oxford University Press,

Oxford
Pintér JD (1996) Global optimization in action. Kluwer, Dordrecht
Pintér JD (2001) Computational global optimization in nonlinear systems: an interactive tutorial

(includes LGO demo software). Lionheart Publishing, Marietta. See http://www.lionhrtpub.com/
books/globaloptimization.html

Pintér JD (2002) Global optimization: software, test problems, and applications. In: Pardalos PM, Romeijn
HE (eds) Handbook of global optimization, vol 2, chap 15. Kluwer, Dordrecht, pp 515–569

Pintér JD (2005) Nonlinear optimization in modeling environments: software implementations for compil-
ers, spreadsheets, modeling languages, and integrated computing systems. In: Jeyakumar V, Rubinov
AM (eds) Continuous optimization: current trends and applications, chap 5. Springer Science + Busi-
ness Media, New York, pp 147–173

Pintér JD (ed) (2006a) Global optimization: scientific and engineering case studies. Springer Science +
Business Media, New York

Pintér JD (2006b) Global optimization with Maple—an introduction with illustrative examples. An elec-
tronic book distributed by Maplesoft and Pintér Consulting Services. See http://www.maplesoft.com/
products/thirdparty/GOT/index.aspx

Pintér JD (2007) LGO—a model development and solver system for continuous global optimization. User
Guide (current edition). Pintér Consulting Services, Inc., Halifax. For related information, see http://
www.pinterconsulting.com

Pintér JD, Linder D, Chin P (2006) Global optimization toolbox for Maple: an introduction with illustrative
applications. Optim Methods Softw 21(4):565–582

Schittkowski K (2002) Numerical data fitting in dynamical systems. Kluwer, Dordrecht
Steeb W-H (2005) The nonlinear workbook, 3rd edn. World Scientific Publishing, Singapore
The MathWorks (2007) MATLAB (Version: R2007b). The MathWorks, Inc., Natick. http:/www.mathworks.

com
Trott M (2004, 2005) The Mathematica GuideBooks, vol 1–4. Springer Science + Business Media,

New York
Wass JA (2006) Global optimization with Maple—an add-on toolkit for the experienced scientist (software

review). Scientific Computing, p.16 and fwd
Wolfram Research (2007) Mathematica (Version: 6.0). Wolfram Research, Inc., Champaign. http://www.

wolfram.com

123

http://www.maplesoft.com
http://www.maplesoft.com/products/toolboxes/globaloptimization/
http://www.maplesoft.com/products/toolboxes/globaloptimization/
http://www.lionhrtpub.com/books/globaloptimization.html
http://www.lionhrtpub.com/books/globaloptimization.html
http://www.maplesoft.com/products/thirdparty/GOT/index.aspx
http://www.maplesoft.com/products/thirdparty/GOT/index.aspx
http://www.pinterconsulting.com
http://www.pinterconsulting.com
http:/www.mathworks.com
http:/www.mathworks.com
http://www.wolfram.com
http://www.wolfram.com

	Model development and optimization in interactive computing environments
	Abstract
	Introduction
	Maple and the GOT
	Maple
	Global Optimization Toolbox for Maple
	Global Optimization with Maple: an electronic book
	Illustrative examples
	Model development, solution and analysis
	Parameterized optimization problems
	Models with embedded computational procedures
	Developing case studies and applications
	Conclusions
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

