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Abstract

Combined-field integral equation (CFIE) is modified and generalized to formulate the
electromagnetic problems of composite geometries involving both open and closed con-
ducting surfaces. These problems are customarily formulated with the electric-field integral
equation (EFIE) due to the presence of the open surfaces. With the new definition and
application of the CFIE, iterative solutions of these problems are now achieved with
significantly improved efficiency compared to the EFIE solution, without sacrificing the
accuracy.

I. INTRODUCTION

Problems arising in computational electromagnetics often involve both thin and thick con-
ductors that need to be modelled with open and closed surfaces, respectively. Since the
magnetic-field integral equation (MFIE) [1] can be formulated only on closed surfaces, the
electric-field integral equation (EFIE) becomes the inevitable choice for the solution of those
problems. However, the EFIE is prone to the interior-resonance problems and generates ill-
conditioned matrix equations, especially when applied on closed surfaces. This leads to
significant inefficiency in the solution of the composite problems with fast iterative solvers,
such as the multi-level fast multipole algorithm (MLFMA) [2].

For the solution of the electromagnetic modelling problems involving only closed surfaces,
CFIE is usually preferred over EFIE and MFIE mainly because it is free of the internal-
resonance problem [3] and generates better-conditioned matrix equations [4]. CFIE is simply
a linear combination, i.e.,

CFIE = αEFIE + (1− α)MFIE, (1)

so that the EFIE and MFIE can be interpreted as the two extreme cases of the CFIE, i.e.,
when α = 1 and α = 0, respectively. In this paper, we extend the definition of the CFIE to
benefit from its advantages for the solution of the composite problems, such as the one shown
in Fig. 1(a), which would customarily be formulated with the EFIE due to the presence of
an open surface in the geometry. The proposed technique, which is based on employing
a variable α in (1) so that EFIE (CFIE with α = 1) is used for the open surfaces of the
geometry while CFIE with 0 ≤ α < 1 is applied for the rest of the problem, accelerates the
iterative solution of the composite problems without sacrificing the accuracy.
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II. MODIFIED CFIE FORMULATION

For conducting surfaces, numerical application of the EFIE and the MFIE leads to matrix
equations as

N∑

n=1

ZE,M
mn an = vE,M

m , m = 1, ..., N. (2)

In the above, the matrix elements, namely the interactions between the basis functions bn(r)
and the testing functions tm(r), are derived as

ZE
mn =

∫

Sm

drtm(r) ·
∫

Sn

dr′bn(r′)g(r, r′)

− 1
k2

∫

Sm

drtm(r) ·
∫

Sn

dr′bn(r′) ·
[
∇∇′g(r, r′)

]
(3)

for the EFIE, and as

ZM
mn =

∫

Sm

drtm(r) · bn(r)−
∫

Sm

drtm(r) · n̂×
∫

Sn

dr′bn(r′)×∇′g(r, r′) (4)

for the MFIE.

To form the CFIE system, the matrix elements in Eqs. (3) and (4) are linearly combined as

ZC
mn = αmZE

mn + (1− αm)
i

k
ZM

mn, (5)

where we normalize the MFIE with i/k [2]. Prior to the CFIE implementation presented in
this paper, αm in (5) is commonly reduced to a constant α in the literature. For the solution
of the composite problems, such a definition forces the constant α to be 1 since the EFIE is
obligatory for open surfaces. However, we redefine the CFIE with a variable αm, depending
on the row index (m) of the impedance matrix, i.e., the index of the testing function. This
provides the freedom of choosing different linear combinations for different testing functions,
even using the EFIE (αm = 1) or the MFIE (αm = 0). Such a generalization allows the
use of the CFIE not only for the problems of closed surfaces, but also for the composite
problems involving both open and closed surfaces. This is achieved by employing the CFIE
with αm 6= 1 for the testing functions located on the closed parts of the geometry while
setting αm = 1 to use the EFIE on the open parts. In other words, we are proposing to
model composite geometries with a hybrid CFIE-EFIE formulation, which becomes better-
conditioned compared to the use of the EFIE formulation for the entire problem. As a result,
we obtain faster converging iterative solutions.

III. RESULTS

To demonstrate the improvements obtained with the use of the novel definition of the CFIE,
we present the results of a scattering problem involving a perfectly conducting sphere of
radius 30 cm and a square patch with edges of 60 cm as depicted in Fig. 1(a). The patch
is located at a distance of 50 cm from the center of the sphere. The structure is illuminated
by a plane wave propagating in the −x direction with the electric field polarized in the
y direction. The problem is solved with an MLFMA solver employing the Rao-Wilton-
Glisson [5] functions as the basis and testing functions defined on the triangular domains.

At 600 MHz, triangulation size of about λ/10 leads to 1302 unknowns on the sphere and
465 unknowns on the patch. Fig. 1(b) demonstrates the iteration counts for the solution



of the problem with the conjugate gradient squared (CGS) algorithm with respect to the
value of αm in (5) applied on the closed parts of the geometry (surface of the sphere),
while keeping αm = 1 on the open parts of the geometry (surface of the patch). In
Fig. 1(b), the dashed curve represents the number of iterations required to reach 10−3

residual error while employing a block-diagonal preconditioner (BDP) with 31,787 nonzero
elements to accelerate the iterative solution. The solid curve in Fig. 1(b) represents the
iteration counts required to reach 10−6 residual error while employing a stronger filtered
near-field preconditioner (NFP) with 123,605 nonzero elements. Both curves are observed
to be minimized when αm is about 0.2–0.3, with significant improvement in the convergence
compared to the pure EFIE solution of the problem (αm = 1 ∀m), which is not shown in
the figure due to the extremely high iteration counts.

In Fig. 2(a), the residual error is observed with respect to the number of iterations. The
curves in this figure are obtained for two types of accelerations: (i) BDP, and (ii) NFP
with 358,595 nonzero elements obtained by keeping all of the near-field interactions in
the impedance matrix. This figure also demonstrates that the convergence is significantly
improved with the use of the modified CFIE with αm = 0.2 on the sphere and αm = 1
on the patch. Fig. 2(b) shows the normalized radar cross section (RCS/λ2 in dB) values on
the z-x plane with respect to θ, where we observe that the modified CFIE remains highly
accurate while reducing the number of iterations.

Fig. 3(a) demonstrates the acceleration of the iterative solutions over a frequency band
of 500–1200 MHz. This figure presents the iteration counts required by the EFIE and the
modified CFIE with αm = 0.2 to reach a residual value of 10−6 with the CGS algorithm
employing the NFP. In addition to the overall inefficiency, the EFIE suffers from the internal
resonance problems as manifested by the peaks in the number of iterations. Finally, the same
problem is also solved at 6 GHz, when the size of the geometry becomes relatively large,
i.e, λ/10 triangulation leads to 132,336 unknowns on the sphere and 49,200 unknowns on
the patch. Fig. 3(b) shows that the EFIE solution does not converge even using the strong
NFP with 35,158,068 nonzero elements, whereas the modified CFIE solution reaches the
10−6 error in only 35 iterations.

IV. CONCLUSION

A novel modification of the CFIE formulation is presented for the solution of the compos-
ite problems involving both open and closed conducting surfaces. The novel formulation
obliterates the necessity to use EFIE for the whole geometry even though only a small part
of the geometry is an open surface. As a consequence of the improved conditioning of the
matrix equation, solutions of the composite problems are accelerated without sacrificing the
accuracy.
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revolution,” AEÜ, vol. 32, no. 4, pp. 157–164, Apr. 1978.
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Fig. 1. (a) Composite geometry involving a perfectly conducting sphere of radius 30 cm (closed surface) and
a square patch with edges of 60 cm (open surface). (b) Iteration counts for the solution of the problem with the
CGS algorithm with respect to the value of αm.
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Fig. 2. (a) Comparison of convergence characteristics of the EFIE and the CFIE formulations for the scattering
problem in Fig. 1(a) at 600 MHz. (b) Normalized radar cross section (RCS/λ2 in dB) obtained at 600 MHz on
the z-x plane with respect to θ.
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Fig. 3. (a) Iteration counts required to reach 10−6 residual error in the solution for the scattering problem in
Fig. 1(a) in the frequency range from 500 MHz to 1200 MHz. (b) Comparison of convergence characteristics of
the EFIE and the CFIE formulations for the scattering problem in Fig. 1(a) at 6 GHz.




