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ABSTRACT

GRATING BASED PLASMONIC CAVITIES

Servet Seçkin Şenlik

M.S. in Physics

Supervisor: Prof. Dr. Atilla Aydınlı

July, 2009

Surface plasmon polaritons are dipole carrying electromagnetic excitations occur-

ing at metal-dielectric interfaces. Metallic periodic structures exhibit modified

transmission and reflection spectra owing to the interaction of propagating SPPs

with the periodicity. These periodic surfaces are used to demonstrate localiza-

tion of propagating SPPs. Thin metallic films surrounded by Bragg reflectors,

selective loading of biharmonic metallic surfaces and Moire patterns are used to

demonstrate plasmonic cavity formation. The quality factor, Q, a characteristic

value that indicates rate of energy loss relative to the stored energy in the cavity

is a crucial parameter for classifying these cavities. It was proposed that the

Q factor should strongly depend on the surface geometry. However, there was

not a sytematic study on the Q factor of these cavity structures. In this work,

we report on a comparative study of grating based plasmonic band gap cavities.

Numerically, we calculate the quality factors of the cavities based on three types

of grating surfaces; uniform, biharmonic and Moirè surfaces. Experimentally,

we demonstrate the existence of plasmonic cavities based on uniform gratings.

Effective index perturbation and cavity geometries are obtained by additional

dielectric loading. Furthermore, we fabricate 2D plasmonic structures, observe

plasmonic band gaps in the symetry axis and propose cavity geometries for this

structure.

Keywords: Surface plasmon polaritons, Localization, Biharmonic gratings, Uni-

form gratings, Moirè surface, Cavity, Quality factor.
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ÖZET

KIRINIM AG̃I TABANLI PLAZMONİK KOVUKLAR

Servet Seçkin Şenlik

Fizik Bölümü, Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Atilla Aydınlı

Temmuz, 2009

Yüzey plazmon polaritonları, metal-dielektrik yüzeylerinde hareket eden

çiftkutup taşıyan elektromanyetik hareketlenmelerdir. Metalik periyodik yüzeyler

hareket eden yüzey plazmon polaritonları ile etkileşerek o yüzeylerin geçirgenlik

ve yansıtma özelliklerini deg̃iştirir. Bu periyodik yüzeyler hareket eden

yüzey plazmon polaritonların yerelleştirilmesinde kullanılmaktadırlar. Bragg

yansıtıcıları tarafından çevrelenmiş ince metal kaplamalar, çift periyotlu me-

talik kırınım ag̃larının tercihli kaplanması ve Moire yüzeyleri plazmonik kovuk-

ların gösterilmesinde kullanılmıştır. Kalite faktörü kovuklardaki enerji kaybının

depolanan enerjiye oranıdır ve plazmonik kovukları sınıflandırmada önemli bir

özelliktir. Kalite faktörünün yüzey geometrisine bag̃lılıg̃ı öne sürülmüş ama sis-

tematik bir çalışma yapılmamıştır. Bu tezde kırınım ag̃ı tabanlı plazmonik kovuk-

ların kalite faktörlerine ilişkin bir çalışma yapılmıştır. Sayısal olarak, tek peri-

yotlu, çift periyotlu kırınım ag̃ları ve Moire yüzeylerindeki plazmonik kovukların

kalite faktörleri hesaplanmıştır. Deneysel olarak, tek periyotlu kırınım ag̃ları

üstünde plazmonik kovuk oluşumu gösterilmiştir. Ayrıca, iki boyutlu plazmonik

bant aralıg̃ı yapıları üretilmiştir ve bu yapılar için kovuk geometrisi önerilmiştir.

Anahtar sözcükler : Yüzey plazmon polaritonları, Yerleşme, Çift periyotlu kırınım

ag̃ları, Tek periyotlu kırınım ag̃ları, Moire yüzeyleri, Kovuk, Kalite faktörü.
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friendship and İncebacak family for their support (F2-49).

I wish to express my special thanks to my parents, my elder brother Niyazi and

my aunt for their support and love.

I wish to express my deepest graditudes to my wife, Özlem for always being near
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Chapter 1

Introduction

Despite the fact that surface plasmon polaritons (SPP) have been known for half

a century, there have been a renewed interest in this field during the last decade.

The reason behind this interest is the observation that SPPs help to concentrate

and guide the light in subwavelength stuructures. In optical devices this limit

cannot be reached due to the diffraction limit [1] [2].Furthermore, recent devel-

opments in the fabrication of nanometer scale structures enable controlling SPP

properties. This control brings new understanding in SPP physics and makes

them suitable for specific applications. The use of SPPs in concentaring light

results in massive electric field enhancements at these structures. This enhance-

ment is used in surface enhanced Raman spectroscopy which enables detecting a

single molecule [3][4]. SPPs are used in biological sensing applications for many

years[5][6]. Thus, SPP field is an interdisciplinary area where both physicist,

chemists, material scientist and biologists work.

Studying the confinement behavior of surface plasmon polaritons is impor-

tant as it advances understanding of SPP physics as well as its technological

applications. In this regard, localization of SPPs using Bragg mirrors have been

studied, recently. Both experimental and numerical demonstration of plasmonic

cavities on different surface geometries are achieved. The quality factor, Q,-a

characteristic value that indicates rate of energy loss relative to the stored energy

of the cavity is a crucial parameter for characterizing the confinement properties

1



CHAPTER 1. INTRODUCTION 2

of these cavities. It was proposed that the Q factor should strongly depend on

the surface geoemtry. However, there has not been a sytematic study on the Q

factor of these cavity structures. In this work, we report on a comparative study

of grating based plasmonic band gap cavities. Numerically, we calculate the

quality factors of the cavities based on three types of grating surfaces; uniform,

biharmonic and Moir surfaces. Experimentally, we demonstrate the existence of

plasmonic cavities based on uniform gratings. Effective index perturbation and

cavity geometries are obtained by additional dielectric loading. Furthermore, we

show our preliminary study for demonstration of 2D plasmonic cavity structures.

Chapter 2 gives the fundamentals of SPP physics including the dielectric mod-

eling of metals, the charcteristics of SPPs, excitation of SPPs, the behavior of

SPPs on flat and periodic surfaces and localization of SPPs in cavities. Chapter 3

reviews the techniques we used to fabricate and characterize plasmonic structures.

Chapter 4 represents our results on experimental demonstration of plasmonic cav-

ities on uniform gratings and numerical study on the quality factors of grating

based plasmonic cavities. Chapter 5 represent the summary of our study and

future work plan in this field.



Chapter 2

Fundamentals of Surface

Plasmon Polaritons

Surface plasmon polaritons (SPPs) are dipole carrying electro magnetic excita-

tions that occur due to coupling of photons and collective oscillations of free

electrons at the interface between a metal and a dielectric[?]. The metal surfaces

supply free electrons for the excitation of SPPs. The characteristics of SPPs such

as dispersion relation and propagation distance depends on the optical properties

of the metal. In this chapter, optical properties of metals, dispersion relation of

SPPs, excitation techniques for SPPs and their behavior on periodic surfaces to

have a better understanding of the physics involved will be reviewed.

2.1 Optical Properties of Metals

In this section, the basic concepts of dielectric response of metals will be intro-

duced. Plasma model and its validity will be discussed. Then we will show real

optical behavior of metals where plasma model fails.

3



CHAPTER 2. FUNDAMENTALS OF SURFACE PLASMON POLARITONS4

2.1.1 Plasma Model

Plasma model assumes an electron gas of density n which moving in a fixed back-

ground of positive ion cores. This model is adequately explains even ultraviolet

regime of alkali metals (Na, K, Rb, Cs, Fr), however the interband transitions

limits the validity of the model for the noble metals (Ru, Rh,Pd, Ag, Os, Ir, Pt,

Au). Details of the lattice potential and electron-electron interaction do not take

part in this text. The effect of the lattice potential shows itself as defines an

effective optical mass for the electrons[7]. When an alternating electric field is

applied, electrons response to it by an oscillatory motion which is damped due to

collisions with a characteristic collision frequency of γ = 1/τ . τ is also known as

relaxation time and for most metals it is of the order of 10−14s at room temper-

ature. The equation of motion for an electron sea under an external alternating

electric field is E:

mẍ + mγẋ = −eE. (2.1)

When the time dependence of the electric field is harmonic, E(t) = E0e
−iwt, a

particular solution can be written for the plasma oscillation. x(t) = x0e
−iwt. The

phase shift between field and the oscillation is the x0 term. Solving Eq.2.1 for

x(t) we obtain:

x(t) =
e

m(ω2 + iγω)
E(t). (2.2)

The dielectric permitivity is related to the E field by the constituent relations

D = εE = ε0E+P . The effect of the displaced electron plasma to the polarization

term is described by P (t) = −nex(t), where n is the density of electrons in lattice.

Combining Eq. 2.2 and expression for P, D can be written as:

D = (1− ω2
p

ω2 + iγω
)ε0E. (2.3)

Then the expression for the dielectric function of electron plasma model can be

written as:

ε(ω) = (1− ω2
p

ω2 + iγω
)ε0. (2.4)

where ωp is called the plasma frequency. Because the same expression can be

obtained by the Drude model it is also referred as optical response of the Drude
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model[7]. The real and imaginary parts of Eq. 2.4 are:

ε(ω) = ε1(ω) + iε2(ω), (2.5)

ε1(ω) = 1− ω2
pτ

2

1 + ω2τ 2
, (2.6)

ε2(ω) =
ω2

pτ

ω(1 + ω2τ 2)
. (2.7)

The complex refractive index ñ(ω) = n(ω) + iκ(ω) of the medium can be found

from ñ(ω) =
√

ε. The real and imaginary parts of refractive index are written as:

n(ω) =

√
ε1

2
+

1

2

√
ε2
1 + ε2

2, (2.8)

κ(ω) =
ε2

2n
. (2.9)

where κ is called the extinction coefficient and is a measure of the optical absorb-

tion.

The frequency response of the dielectric function can be investigated for high fre-

quency electric fields where ωτ >> 1 the imaginary part of the dielectric function

is negligible and can be written as:

ε(ω) = 1− ω2
p

ω2
. (2.10)

The model fails in this regime for noble metals due to interband transitions which

increase loss, leading to high ε2 which cannot be negligible anymore. In the low

frequency regime, where ωτ−1 << 1 the imaginary part of the dielectric function

is dominant so the real and imaginary part of the refractive indices are comparable

in this regime and can be found as

n ≈ κ =

√
ε2

2
(2.11)

Therefore, in the low frequency regime metals are mostly absorptive. The Fig.

2.1 and Fig. 2.2 shows the ε and ñ of silver as a function of energy. The ε and

ñ of silver are plotted as a function of energy according to Drude model with

τ = 1.45 × 1013s−1(≡ 0.06eV ) and ωp = 1.2 × 1016rads−1 In Fig 2.1 blue curve

represents ε1 and red curve represents ε2. The wine line stands for the plasma

frequency. It is clearly seen that ε1 changes sign at ωp. It is negative below this

frequency and positive above it. Above this frequency metal becomes transparent

to the applied electric field.
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Figure 2.1: Real(ε1) and imaginary(ε2) parts of dielectric functions calculated
using Drude model.

Figure 2.2: Refractive index (blue line) n and extinction coefficients (red line) κ
calculated from Drude model.
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Figure 2.3: Real(ε1) and imaginary(ε2) parts of dielectric functions calculated
from Drude model (lines) and experimentally measured values (dots).

2.1.2 Optical Constants of Real Metals

Drude’s free electron model fails in the visible and ultra violet regime for noble

metals which are materials of choice of many plasmonic applications. Therefore, it

is important to describe the dielectric function of the metals accurately. The color

of the noble metals are different although Drude model estimates nearly the same

plasma frequency corresponding to same color for these metals. The quantum

theory explains the difference by the interband transitions occurring between d

to sp bands. The electron configuration of gold and silver are [Xe]4f 145d106s1

and [Kr]4d105s1, respectively. For silver 4d and 5s orbitals are just below the

Fermi level. The energy difference between orbitals are in the order of 1.1 eV ∼
1 µm shifting the plasma frequency of silver to 3.9 eV . The polarized interband

excited electrons modify the dielectric behavior resulting in a drop in the reflection

spectrum and giving rise the characteristic color of the metal[8]. Fig. 2.3 and

Fig. 2.4 shows the difference and similarities between measured values and Drude

model calculations of the dielectric function and refractive index. It is clearly seen

that the resonance freqeuncy shifts from 7.9 eV to 3.9 eV . Practically, Drude

model is easily used in to the time-domain based numerical solver such as FDTD
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Figure 2.4: Refractive index n and absorbtion coefficients κ calculated from Drude
model (Lines) and experimentally measured values(Dots)

since the model allows to write induced current directly[7].

2.2 Characteristics of SPP

In this section, first we will review the derivation of dispersion relation for SPPs

and show the field distribution of SPPs. Next, we will review characteristic scales

for SPPs as a function of index, wavelength, propagation distance and penetration

depths of SPPs.

2.2.1 Dispersion of Surface Plasmon Polaritons

From the wave equation as a start, one can derive the dispersion relation of SPPs

from Maxwell equations. Wave equation will be solved in regions with constant

dielectric permittivity together with the boundary conditions. To describe the

confined wave propagating at the interface first, we will define the geometry and

the time dependenceof the field. In Fig. 2.5 the geometry is shown, dielectric
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Figure 2.5: a)The propagation geometry. b)xz plane of propagation geometry

permittivity is constant in the xy plane and changing abruptly at z = 0. It

equals to ε1 above z = 0 to ε2 below z = 0. x is the propagation direction.

The propagating wave can be written as E(r, t) = E(z)eiβxe−iωt with a harmonic

time depence. β is the propagation constant along the x direction. Inserting the

expression into the electromagnetic wave equation, we obtain:

∂2E(z)

∂z2
+ (k0ε− β2)E = 0. (2.12)

where k0 = ω
c
. A similar equation can be written for H component. Propagation

in the x direction and homogeneity in the y direction, ( ∂
∂y

= 0) simplifies and

decouples equations into two polarizations: TM and TE modes. Here, we show

only the solutions for the TM mode,

Ex = −i
1

ωε0ε

∂Hy

∂z
, (2.13)

Ex =
β

ωε0ε
Hy, (2.14)

∂2Hy

∂z2
+ (k0ε− β2)Hy = 0. (2.15)

Now, we write the field components which are propagating along the x direction

and are confined to the interface. The field components for z > 0 can be written

as:

Hy(z) = A2e
iβxe−k2z, (2.16)

Ex(z) = iA2
1

ωε0ε2

k2e
iβxe−k2z, (2.17)

Ez(z) = −A2
β

ωε0ε2

eiβxe−k2z. (2.18)
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For z > 0 the solutions are:

Hy(z) = A1e
iβxe−k2z, (2.19)

Ex(z) = iA1
1

ωε0ε2

k2e
iβxe−k2z, (2.20)

Ez(z) = −A1
β

ωε0ε2

eiβxe−k2z. (2.21)

where k1 and k2 are both positive and restricts the confined behavior along the

z direction. Boundary conditions restricts the continuity of Hy and Ex at z = 0

plane and result with:

A1 = A2 (2.22)

k2

k1

= −ε2

ε1

(2.23)

It should be noted that k1 and k2 are positive, so the ε of the media should be of

the opposite sign to satisfy Eq.2.23. These surface waves can only occur at the

interface of materials with dielectric constants of opposite sign, such as metal-

dielectric interface. On the other hand Hy should also satisfy Eq.2.15, namely:

k2
1 = β2 − k2

0ε1, (2.24)

k2
2 = β2 − k2

0ε2. (2.25)

We can combine both Eq. 2.23-2.25 and find the dispersion relation of surface

plasmon polaritons as:

β = k0

√
ε1ε2

ε1 + ε2

. (2.26)

Dielectric permittivity ε for dielectrics is usually constant over a wide range of

frequencies compared to metals. On the other hand, metals are very dispersive

materials such that ε of silver changes dramatically from −0.6209 + i0.01570 to

−159.6131 + i15.5259 for wavelengths in the range of 200 to 2000nm. Also it

should be noted that β is always larger than k0 which indicates the nonradiative

behavior of surface plasmon polaritons. Also, due to the difference between k0 and

β, photons cannot directly excite SPPs. Fig. 2.6 shows the dispersion relation

according to this expression modelling the dielectric constant of metal according

to Drude model. The bounded nature of SPPs can be seen from the dispersion

curve relies below the light line. For frequencies above ωp the dispersion curve
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Figure 2.7: The SPP Dispersion relation at silver-air interface (Blue Line)

is above the light line and these modes are called radiative modes. For small

wavevectors, propagation constant β and k0 are very close to each other. For

larger wavectors, inserting ε of the metal into dispersion relation for SPPs gives us

the characteristic surface plasmon frequency, wsp. There is a natural gap between

ωp and ωsp where propagation is not allowed because the propagation constant

β takes imaginary values. However, Drude model fails to estimate values of ωp

and ωsp and the behavior between these frequencies.The Fig.2.7 shows the actual

relation of SPP with corrected ε characteristic of metal. The plasma frequency

shifts to 3.9 eV and surface plasmon frequency shifts to 3.7 eV due to additional d

orbital transitions. The region between ωp and ωsp can be experimentally excited

and these modes are called as quasi-bounded modes.

2.2.2 Field Distribution of SPP

Fig. 2.8 shows the field distribution of SPPs at the metal-dielectric surface. The

electric fields originate from positively charged sites of the metal and end with
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Figure 2.8: Electric and Magnetic field distribution of Surface Plasmon Polariton
propagating at metal-air interface (TM case).
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the negatively charged sites. Electric field has both parallel and perpendicular

components at the interface while H has only paralel components. The direction

of perpendicular electric field components in two media are opposite, while the

direction of parallel components are the same. The boundary conditions require

the continuity of D⊥ = εE⊥ and E‖. Having a metal-dielectric interface with

εs being negative and positive guarantees the continuity of D⊥ and E⊥. The

impossibility of TE polarized SPP is based on absence of magnetic monopoles,

resulting in a divergence free H fields. This means that originating and end

points of H fields are the same. The H field is divergence free, however boundary

condition restricts that H‖ should be continous but H have opposite directions

at metal dielectric interface due to its divergence free nature. Therefore the TE

polarized SPPs cannot fullfill the boundary conditions and can not be excited at

metal-dielectric interfaces. A detailed explanation can be found in [9].

2.2.3 The compex refractive Index of SPP

Defining an effective index for SPPs produces a deeper understanding for the

bound behavior of SPP. The dispersion relation of SPP can be simplified as

kSPP = ω
c
(1 + 1

2|εm1| + i εm2

2(εm1)2
) if εm2 << |εm1| and |εm1| >> 1. Then the effective

index for SPP can be expressed as:

nSPP = 1 +
1

2|εm1| + i
εm2

2(εm1)2
(2.27)

Note that real part of the nspp is always larger than 1, which indicates the bound

baheviour of a SPP. The corresponding momentum for SPP is p = h̄kSPP is larger

than momentum of free photon p = h̄k0. The imaginary part determines the loss

which will be discussed later.

2.2.4 SPP Wavelength

The period of the surface charge density oscillation and field distribution describes

the wavelength of SPP. The real and imaginary parts of the dispersion relation
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Figure 2.9: Normalized surface plasmon polariton wavelength at silver-air inter-
face. The Drude model is used to characterise silver

describes the wavelength and propagation length of SPP respectively. The real

part of the SPP wavevector is

k
′
SPP = k0

√
εdεm1

εd + εm1

. (2.28)

The SPP wavelength can be written from λSPP = 2π
kSPP

and found as:

λSPP = λ0

√
εd + εm1

εdεm1

. (2.29)

From Fig.2.9 it is seen λSPP is larger than λ0. This reduction in the wavelength

make SPPs suitable for diffraction limited applications. The wavelength of SPP

shrinks to 70 nm at ωsp where the wavelength of a free photon with same energy

is 310 nm. In the visible regime this reduction effect is not very important since

the ratio of SPP and free photon wavelength is about 0.9 [10].

2.2.5 Propagation Distance of SPP

The main factor reducing propagation distance is the metallic losses. Due to

imaginary part of the wavevector in the propagation direction has imaginary
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Figure 2.10: The propagation length of the surface plasmon polariton. The Drude
model is used to characterise silver

part, the SPP intensity reduces from loss as it propagates. The propagation

distance δSPP can be defined as the length where the power decreases to 1/e of

value. The propagation distance is defined by δSPP =
√

1

2k
′′
SPP

and can be found

as[10]:

δSPP = λ0
(εm1)

2πεm2

(
εm1 + εd

εm1εd

)
3
2 . (2.30)

The ways to increase propagation distance is to use different geometries for

guding of wavelength or using gain media [11].

2.2.6 Penetration Depths of SPP

The SPP field is confined to the interface. It decays into both dielectric and

metallic medium. The penetration depths are the length where perpendicular

(to interface) component of electric field Ex falls to 1/e of its value. It was

characterized by kx which can be found from the expression for total wavevector:

εik
2
0 = k2

SPP + k2
z,i (2.31)
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Figure 2.11: The penetration depth of the surface plasmon polariton into air.
The Drude model is used to characterise silver

where εi stands for dielectric constants of metal and dielectric mediums. Then

inserting Eq. 2.26 into Eq. 2.31 we can define penetration depths in metal and

dielectric as δm and δd:

δm =
1

k0 | εm1+εd

ε2m
| 12 , (2.32)

δd =
1

k0 | εm1+εd

ε2d
| 12 . (2.33)

The details can be found in [10].

The penetration depth in the dielectric and the propagation length decrease

as the wavelength decreases. In other words as the filed localizes along the metal-

dielectric interface, the metallic increases and propagation distance decreases[10].

2.3 SPP Coupling

As the dispersion relation reveals, SPP dispersion curve lies below the light line.

So there is a necessity to use special phase matching techniques to excite SPPs.
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There are numerous techniques to excite SPP such as with charged particles,

prism couplers grating couplers, near field coupling . The detailed expalanations

can be found [7]. Here we will focus on the prism coupling and the grating

coupling method.

2.3.1 Prism Coupler

The method is based on attenuated total reflection (ATR) to excite SPP. The

configuration is shown in Fig. 4.1a. The prism is a high index prism which can

enhance the momentum of the incident photon. The momentum of SPP is larger

than k0 and to excite an SPP, the parallel k vector component of the incoming

photon should be equal to kspp. k vector of incoming photon is increased to

nprismk. The coupling condition is given by:

kSPP = k0nprismsin(θ) (2.34)

where nprism and θ) are refractive index of the prism and angle of incidence re-

spectively. The resonance condition can be found through scanning the angle

of incidence. The reflected beam intensity goes to a minimum when an SPP is

excited. Incident light penetrates through the metal/air interface and partially

reflects. SPP also reradiates through the prism and the radiated field interfere

with each other. The minimum in the reflected spectrum occurs due to destruc-

tive interference between the reradiated SPPs and reflected light at prism-metal

interface. The metal thickness is important to reach a perfect dip in the reflection

spectrum.

2.3.2 Grating Coupler

Gratings can also supply the momentum needed to excite SPPs. Periodic patterns

on the surface can increase the momentum of the incoming light. Using this

property of gratings SPPs on both sides, above and below a grating can be excited.

The coupling condition is given by this condition

kSPP = k0 · sin(θ)±mG (2.35)
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where θ,G = 2π
λ

are angle of incidence of incoming photon and reciprocal vector

of the grating respectively with m = (0, 1, 2...). Similarly in the case partially

reflected beam and reradiated SPPs interfere destructively and a minima in the

reflection spectrum is observed. By changing the incidence angle and wavelength

of the photon available, SPP excitations can be measured. The configuration is

shown in Fig4.1b.

2.4 Propagation of SPP on Periodic Surfaces

In this section we review the SPP propagation on the periodic surface. We will

use the analogy between energy band gaps in condensed matter physics, photonic

band gaps in photonic band gap materials and crystals and plasmonic band gaps.

In condensed matter physics, energy bands occur due to interaction of the con-

duction electron with the ion cores of the crystal. At Bragg resonance no wavelike

solutions exist. At these wavevectors, left propagating waves are back reflected.

The solution of these waves are standing waves and two different standing wave

configuration can be constructed. These two standing waves have different spa-

tial distributions and experience different parts of the crystal potentials. One is

located on the cores of ions, the other one is between the ion cores. The potential

experienced by these two standing waves are different, so the average expected

energy values are different for these standing waves. Thus, a band gap is opened

between these energies[12]. For the photonic case, media with different refractive

indices serve as high and low potential regions for photons. The periodic con-

figuration of this medium is known as photonic crystal. When the light beam

is incident onto these structures, there will be scattering at each interface in the

structure. If the wavelength of the light is twice the optical periodicity, Bragg

condition will be satisfied and the light will be back reflected. These waves will

destructively interfere with each other and form a standing wave similar to the

electronic case. The configuration of these standing waves will be different. One

configuration leads to localization on the high index material and the other on

the low index material. There will be energy gap between these values similar

to the electronic case, called the photonic band gap[13]. Fig. 2.13 represents
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Figure 2.13: Electric field distributions of localised states in the photonic crystal.
Lower energy configuration(ω−). Electric field localizes on the low index regions.
Higher energy configuration(ω+). Electric field localizes in the high index regions

a multilayer dielectric film with high refractive indices (n2) and low refractive

index (n2). Electric field distribution at edges of band gap are shown in Fig.

2.13. Higher energy configuration standing wave, (ω+), localizes in high index

(n2) regions and lower energy configuration standing wave, (ω−), localizes in low

index (n1) regions.

Ion cores for electrons and index difference for photons results in similar ef-

fects. In the analogy with electronic band gaps and photonic band gaps, plas-

monic band gaps are due to the corrugation of the surface. If the surface where

the SPP propagates is peridocally corrugated, the corrugation act as scattering

centers since the effective index along the grating changes periodically. The pe-

riodic surface leads to scattering of SPPs. When the Bragg condition is met, a

band gap opens up. The localized SPPs have different configurations[14]. The

Fig. 2.14 represents two electric field distributions of SPPs at the edges of plas-

monic band gaps. Siminlar to photonic and electronic case, localization sides of

SPP on grating are different for two cases. As seen in Fig. 2.14a the positive

and negative charges are localized on the peaks. In the other case, the charges



CHAPTER 2. FUNDAMENTALS OF SURFACE PLASMON POLARITONS22

++ ++ ++------ --

E

++ ++ ++---- --

E

a)

b)

ω
−

ω
+

Figure 2.14: Electric field distributions of localised states on the grating. a)Lower
energy configuration. Charges localizes on the peaks. b) Higher energy configu-
ration. Charges localizes on the througs.
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are localized on the thoughs. The factor that determines the difference in energy

of the modes is the distortion in the field lines. Fig. 2.14b represents a more

distorted field distribution resulting in a higher energetic mode. Besides the en-

ergy difference between these two modes, their confinement behaviors are also

different which will be discussed with details in Chapter 5.

2.5 Dispersion of SPP on Periodic Surfaces

There is a momentum mismatch between free space propagating photon and

the excited bound plasmon, having the same energy. The dispersion curve for

light line lies above the dispersions of bound SPP as seen in Fig. 2.15a. As

we discussed in the previous section, excitation of SPP on flat metal surface is

forbidden. However, when we consider the dispersion of free photon in prism, its

dispersion line lies below the light line in air as seen in Fig. 2.15b. There is a

point where dispersion of SPP and dispersion of free photon in prism intersect.

SPP can be excited at that point. We can excite SPP resonances by the prism

coupling technique discussed above. The Fig. 2.15c shows the dispersion of SPP

on a periodic surface. The band gap formation takes place for periodic surfaces

at the edges of Brillion zone. However, the dispersion of SPP still lies above the

light line , the momentum mismatch condition prohibits the excitation of SPPs.

Applying the prism coupler technique, the SPP dispersion in Fig. 2.15c can be

observed. The Fig. 2.15d indicates the resulting dispersion curves. The periodic

surface is placed on the prism and SPP curve can be observed by scanning the

angle of incidence and wavelength.

2.6 Localization of SPP

In this section, we will review the physical principles behind the formation of

plasmonic cavities. We will make anology between photonic cavities in photonic

crystals and plasmonic cavities. Then, we will show the attempts to demostrate
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cavity formation in plasmonic structures in the literature.

It was announced that breaking the symetry in photonic band gap results

in localized modes in the photonic band gap[13]. Then photonic cavity forma-

tion is demonstrated in the microwave and optical regimes in one, two and three

dimensions[]. If we have a periodic multilayer dielectric as dicussed in the previ-

ous section before we observe a photonic band gap. However, we can break the

symetry along the photonic crystal by adding an additional dielectric layer in this

multilayer geometry. In this case a photonic cavity mode appears in the photonic

band gap. The physical reason behind this localization is the constructive inter-

ference of the photons for that specific wavelength. The conditions and length of

layers for the formation of this cavity is discussed in detail at [13].

Formation of plasmonic cavity can be also achieved by breaking the symetry in

plasmonic band gap structures. The use of Bragg gratings for localization of prop-

agating surface plasmons was suggested in 2007[15]. The cavity was composed

of a thin film surface. Both right and left side of the thin film was surrounded

by one dimensional Bragg gratings. The symetry breaking condition is satisfied

using a thin film area in the Bragg grating region. The physical reason behind

the localization of SPP is the constructive interference of SPP in the cavity region

similar to photonic case. The phase change experienced by SPP after a round-

trip in cavity should be equal to reflected phase shifts on the Bragg gratings at

the cavity. Then the cavity mode is achieved [15]. Similar approach was used to

suggest plasmonic cavities for applications in quantum electro dynamics [16].

The physical reason behind the cavity formation for SPPs is controlling the

phase changes experienced by SPPs. Removing grating ridges or using thin films

surrounded by Bragg gratings support this condition. Using Moire patterns also

enables localization of SPPs. Moire patterns having π shifts at its nodes acts

as plamonic cavities[17]. Another way to control phase changes and demonstrate

formation of plasmonic cavities is selectively coating the surface with a high index

dielectric[18]. Here the effective indices seen by SPPs on dielectric coated and

uncoated parts are different. This difference brings a phase shift and brings reso-

nance. Whenever a resonance condition is met, SPPs at that specific wavelength
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constructively interfere and a cavity mode is achieved. Experimental demonstra-

tion of plasmonic cavities on Moire surfaces and biharmonic gratings have been

achieved recently by our research group. The details of the experimental and

numerical results for Moire patterns and biharmonic gratings will be discussed in

Chapter 5.



Chapter 3

Fabrication and Measurment

3.1 Fabrication of Plasmonic Structures

This section provides the methods for fabrication of plasmonic gratings and their

experimental characterization. Interference lithography is a widely used optical

technology to produce periodic surfaces on large areas. It is a cornerstone tech-

nology for most Bragg grating devices. The physics behind this technology is

the interference of two spatially coherent beams resulting in a standing wave pat-

tern. The standing wave pattern consists of periodic fringes representing intensity

maxima and minima. The two coherent plane waves overlapping in space and re-

sultant standing waves are recorded on a photosensitive polymer. The periodicity

is given by:

Λ =
λ

2sin(θ)
(3.1)

where Λ, λ and θ are periodicity of the grating, wavelength of the incoming

light and angle between beams. In principal, a perfectly periodic pattern which

is spatially coherent can be attained using this method. By spatially coherent

we mean that the positions of all peaks can be known whenever position of one

peak is known. The spatial coherence or in other words how the pattern is

perfectly periodic is related to spatial and temporal coherence of the interfering

beams. To support temporal coherence monochromatic light is needed. A laser

27
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Figure 3.1: The interference setup used for fabrication of gratigs. The laser beam
follows the lens-pinhole path. Expanded beam from pinhole reaches to Llyod
mirror

can be used. The spatial coherence guarantees uniform wavefronts of plane waves.

Using pinholes and spatial filters enables attaining uniform wavefronts. The Fig

3.1 illustrates the interference lithography we used for fabrication of gratings. A

HeCd laser at 325 nm is used as the illumination source. First, the fused silica lens

focuses the beam at its focal point, which is on order of mm’s. The focused beam

then goes through a 10 µm pinhole at the focal point of the lens. By using this

pinhole we are able to eliminate nonuniformities and improve spatial coherence

of the beam. The beam diverges after it passes through the pinhole and reaches

to the Lloyd mirror as seen in Fig.3.1. The periodic pattern is recorded on the

photosensitive polymer. The preparation of the sample can be summarized as:

First a photosensitive polymer (S-1800) is spun on to a 100 um thick lamella.

Then it is baked at 110 0C for one minute. After it is exposed at the interference

setup, we put it in the developer to attain actual pattern physically. One of

the problems with the interference lithography is that the interfering beams are

not exact plane waves. Since the pinhole acts as a point source, the beams are

actually spherical waves. This spherical behavior prevent obtaining perfectly

periodic structures. However this effect is a very small. The main advantage of

interference lithography is in making large area gratings, easily. The resolution

is ideally limited by λ/2 that is 162.5 nm = 325/2 nm usually not available by

optical lithography.

We use soft lithography to transfer the grating structures onto other sub-

strates and materials. The transfer method enables us to examine the effect of
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Figure 3.2: The steps of transferring a gratingin structure on photoresist on
OG146
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different thicknesses of metal films, dielectric films on the samples which have

exactly the same geometry. Using this method, we transfer grating structures

onto substrates which are resistive to chemicals such as acetone and these sub-

strates are suitable for photolithography processes. We can photolithographly

define patterns on these substrates, in our case leading to a cavity geometry,

otherwise making patterns on the grating structure in the photoresist may de-

stroy grating geometry. Soft lithography is a family of techniques for fabricating

or replicating patterns. Elastomeric stamps, molds and comformable masks are

used during soft lithography. The word soft comes from the usage of elastomeric

materials. Elastomers which are conformable and easily peel of surfaces are the

polymers which have elasticity property. The steps of the transferring process is

shown in Fig. 3.2. The master grating structure on the sample is recorded on a

photosensitive polymer (S-1800) which is spun on a 100 um thick lamella with in-

terference lithography, described above. Typically, the periodicity is 300 nm and

the size of the wafer is 2.4x3.2 mm. Liquid PDMS (Sylgard 184, Dow Corning) is

poured on top of the master grating which was cured for 2 hours at 750C. After

the curing procedure, the elastomeric mold is removed from the grating surface.

The low Young modulus of the PDMS makes the feature sizes. Due to thermal

expansion during the curing process the periodicity of the grating is reduced by

1− 2%. However, the uniformity is still preserved. The PDMS grating surface is

then ready to be used as a stamp and transfer the pattern onto a photocurable

prepolymer. The UV curable low viscosity prepolymer is spun on the lamella at

4300 rpm. The thickness of the polymer is around approximately 1 µm. The

PDMS stamp is placed onto the polymer spun lamella without any pressure. The

conformal contact on the surface leads to the attachment of PDMS to polymer

coated surface. Due to capillary action, OG 146 fills the groves of the PDMS in

seconds. The sample composing of PDMS and lamella is put under UV light for

2 minutes. The OG146 which was initially liquid is cured under UV light and

solidifies. After the curing process, the PDMS stamps was mechanically peeled

off. The solid polymer which has the pattern on the PDMS is left on the lamella.

Thus, the transfer of the grating is successfully completed. A 50 nm-thick Ag

film is evaporated on the samples to support metallic surfaces for excitation of

SPPs.
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Figure 3.3: The schematic of optical characterization of plasmonic structures.
SPP is excited by prism coupling technique.

3.2 Characterization of Plasmonic Structures

The characterization of samples was done by carrying out reflection measure-

ments. Fig. 3.3 represents a simplified schema of our measurement setup.We

used Kretchman geometry to overcome momentum mismatch and excite SPPs.

A BK7 right angled prism is used in the experiment. An index matching fluid

between the samples and the prism is used to minimize undesired reflections.

The reflection measurements are done with a recogfigured variable angle spec-

troscopic ellipsometer W-VASE32. The ellipsometer is connected to a HS-190

monochromator to provide quasi monochromatic light from a white light source.

The monochromator provides desired wavelengths for the system. There is an

arc lamp filled with high pressure (above the athmospheric pressure) Xenon gas.

When the lamp power is turned on, a high voltage pulse is sent through the lamp

causing an arc to start the lamp. Lower DC voltage maintains to support arc.

The lamp is mounted in the monochromator lamp housing. The focal length of

the monochramotor is 160 mm and effective aperture ratio is f/4.5. The spectral

range of the monochromator is 250-1700 nm. We have typically used the 500-

750 nm regime. The light is coupled from the exit of monochromator to a fiber

optic cable, where the beam is collimated and polarized. The fiber optic cable

enters the input unit where additional polarization states are added. Here we

do not list details of the ellipsometer such as autoretarders, analyzer etc. which

are also used for thin film thickness and refractive index measuresments. Since
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Figure 3.4: The reflection spectra of flat Ag film taken in the Kretchmann geome-
try for TE and TM modes. The minima in the TM case stand for SPP excitation
at metal-air interface

we perform only reflection measurements, important parts of the ellipsometer for

our experiments are limited to monochromators and detectors. The samples are

aligned in the x, y, z directions using a sample stage. The detector is placed at

the end of the detector unit, converts light energy into voltage. The goniometer

base together with the sample stage and input unit is used to precisely control

the angles of incidence with a precision of 0.0010 degrees. An experimental data

is shown from our measurements in Fig. 3.4. We look the SPP coupling on a flat

metal surface in the Krecthman geometry. We have carried measurement for TE

and TM modes seperately. The metallic film thickness is 50 nm. The results are

shown in Fig. 3.4. We observe an absorbtion peak around 600 nm at an angle

of incidence 420 indicating SPP excitation. For TE case there is no resonance

absorbtion.



Chapter 4

1D Grating Based Plasmonic

Cavities

In this chapter, a comparative study on grating based plasmonic band gap cavities

is presented. Numerically, we calculate the quality factors of the cavities based on

three types of grating surfaces; uniform, biharmonic and Moirè surfaces. We show

that for biharmonic band gap cavities, the radiation loss can be suppressed by

removing the additional grating component in the cavity region. Furthermore,

due to gradual change of the surface profile around the cavity region, Moirè

type surfaces support cavity modes with higher quality factors. Experimentally,

we demonstrate the existence of plasmonic cavities based on uniform gratings.

Effective index perturbation and cavity geometries are obtained by additional

dielectric loading. A quality factor of 85 is obtained from the measured band

structure of the cavity

4.1 Introduction

It is well known that metallic periodic structures exhibit modified transmission

and reflection spectra owing to the interaction of the propagating SPPs with the

periodicity. Many features of these SPPs that are excited on periodic metallic

33
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surfaces are extensively studied. Surface enhanced Raman scattering and pho-

toluminescence signals have already been observed on such structures [19]. In

contrast to localized SPPs on nanoparticles, propagating SPPs on periodic sur-

faces are also being studied in nanolithography and nanophotonic applications

[20]. Recently, plasmonic cavities that use Bragg reflectors and selective dielec-

tric loading have been under investigation[16][18][15]. In addition to uniform

gratings, biharmonic gratings and Moirè surfaces can be used to construct cavity

structures. Such cavities can localize plasmons and can lead to small group ve-

locities around the band edges. While these structures all localize the plasmons,

they exhibit different characteristics due to the difference in their design and the

mechanism of confinement.

On the other hand, metallic loss at visible wavelengths is a serious problem

that hinders the use of plasmons for applications that require long propagation

lengths and plasmonic lifetimes. Due to this same reason, current cavities with

relatively low quality factors need to be improved to meet expectations. Large

quality factors for SPPs, localized in cavities, are crucial for many applications.

A cavity designed for localization of SPPs with high quality factors can be used

to selectively enhance and suppress spontaneous emission rates of emitters and

may provide an ideal platform for cavity quantum electrodynamics (QED). SPP

cavities that are expected to work in the strong coupling regime with large Pur-

cell factor enhancements have been suggested. Quality factors as high as 1000

have been proposed [16]. Bragg mirrors used in so many photonic structures have

been suggested for simple confinement in one dimension and have been shown to

exhibit enhanced Purcell factors for applications in cavity QED. Such mirrors

have also been employed for SPP localization and characterized with scanning

near field optical microscopy to map the electric field distribution in and out

of the cavity. Results confirm the cavity formation and localization of the SPP

modes. Alternatively, using double exposure interference lithography, biharmonic

gratings were employed to localize SPPs. The quality factor of the demonstrated

plasmonic cavity was 37 due to metallic and scattering losses in the cavity [18].

Very recently, Moirè surfaces have been demonstrated to support SPP localiza-

tion at the nodes of a metallic Moirè surface. Smooth variation of the surface
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a)

b)

c)

Figure 4.1: Surface profile of a) uniform, b) biharmonic and c) Moirè gratings.
Note the selectively coated dielectric (red line) on the biharmonic and uniform
gratings and the cavity region. Localization takes places around the node of the
Moirè surface.

relief amplitude in these structures reduces radiative losses leading to relatively

high quality factors (Q=103) [17]. The increased quality factor is promising and

suggests further study. Experimentally, we demonstrate plasmonic cavity forma-

tion on uniform metallic gratings, which consists of a single periodic surface as

shown in Fig. 4.1a. Because surface plasmons are sensitive to the effective index

of the medium, localization on uniform gratings have been achieved by selectively

coating the metallic surface with silicon. To couple light to the surface plasmons,

Kretchman configuration is used to overcome the momentum mismatch between

surface plasmons and incoming light. The band gap is provided by the uniform

metallic grating while the prism allows the SPP excitation [14]. The character-

istics of the Q factor of plasmonic cavities on uniform, biharmonic gratings and

Moirè surfaces are studied numerically. The biharmonic grating, as shown in

Fig.4.1b, consists of two periodic surfaces with periodicites such that Λ1 = 2Λ2.
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SPP excitation and band gap formation are achieved by using the grating com-

ponents. The plasmonic cavity mode is obtained through selective loading of the

metallic surface. Numerical results indicate that as the amplitude of the larger

component is increased the quality factor decreases. The Moirè surface which

is a superposition of two periodic surfaces with slightly different periodicities as

shown in 4.1c also support plasmonic cavities. The phase shift at the nodes of the

surface leads to localization of the SPPs. The slowly varying grating amplitude

around the cavities results in higher quality factors. Different Moirè surfaces are

studied to compare their respective quality factors.

4.2 Fabrication and Experiment

Fabrication of a uniform grating was achieved with an interference lithography

setup as we discussed in Chapter 3. We, first spin a photosensitive polymer

(S1800) on 170 µm thick microscope lamella and bake the photosensitive polymer

at 1100C for 1 minute. A 325 nm He-Cd laser was used to record periodic struc-

tures on the photosensitive polymer using Lloyd’s mirror configuration. Once the

structures were developed, they were transferred onto a photocurable polymer

(OG146) by the nanoimprint technique. Biharmonic gratings and Moirè surfaces

require double exposure of the periods. A 50 nm thick silver film was evaporated

on the OG146 polymer to support the surface plasmons. The lamellae was then

mounted on the base of the prism with the metallic side up and index matching

fluid was used between the prism and the lamallae. The BK7 prism allows in-

coming photons to couple to the plasmons. The coupling condition is satisfied at

a specific wavelength and angle of incidence. This condition is given by

kSPP = nEFF k0 = npk0sin(θ) (4.1)

where kspp and neff are the wavenumber and the effective index of the SPPs. k0,

θ and np are the free space wavenumber of incident photon, angle of incidence

and refractive index of the prism, respectively. The dispersion curves of SPPs

are constructed by measuring the coupling wavelength and angle. We used a

spectroscopic ellipsometer (VWASE32) for precise reflectivity measurements. The
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Figure 4.2: Reflectivity spectra of a) flat metallic surface, b) uniform metallic
grating, c) uniform metallic grating coated with 10 nm of silicon.

reflection measurements at different angles of incidences result in two dimensional

reflectivity maps. In order to construct the band structure with high resolution,

we scanned the 500-750 nm wavelength range at various angles of incidence with

a resolution of 0.2 apart.

4.3 Uniform Plasmonic Band Gap Cavities

In Fig.4.2, wavelength dependent reflection spectra of three different structures

are shown with the corresponding experimental configurations. Fig. 4.2a shows

the reflection spectra of the TM polarized light from a flat metal surface. As ex-

pected, we observed the plasmon resonance at the wavelength of 580 nm. How-

ever, periodic structure on the surface modifies the dispersion relation. This

modification is manifested in the reflection spectrum of a uniform grating and is

shown in Fig. 4.2b. Propagating SPPs interact with the grooves of the grating

and are backscattered. This leads to the formation of standing SPP waves on the

uniform grating. Symmetry suggests the presence of two standing waves, labeled

λ− and λ+, with two different energies. One localizes on the peaks and the other

on the troughs of the periodic structure [11]. A band gap is opened up due to the

energy difference between λ− and λ− modes. The gap is located approximately

at 600 nm with the band edges observed at 560 and 635 nm. The width of the

band is 23 nm. When the uniform metallic grating is coated with a thin layer of

silicon, the effective index experienced by the SPP mode increases, and opens up

the band gap. The reflectivity spectra of the uniform metallic grating coated with
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Figure 4.3: Schematic representation of simulated structure for a) flat metallic
surface, b) uniform metallic grating. FDTD simulation results of reflectivity
measurements for c) flat metallic surface, d) uniform metallic grating

10 nm of silicon is shown in Fig. 24.2c. Red shift of the spectrum and opening up

of the band gap are clearly observed. The red shift is due to the effective index

change, induced by silicon. The widening of the band gap comes from different

confinement properties of λ− and λ+ modes on the grating surfaces. The low

frequency mode is confined closer to the surface of the samples while the higher

frequency component has a longer evanescent tail.

The different confinement behavior of λ− and λ+ can be understood better

with the numerical investigations. We have employed the Lumerical software pro-

gram to examine the plasmonic characteristics of the structures. The program

uses finite difference time domain (FDTD) technique to obtain optical charac-

teristics of the structure. The details of the computational method is given in

Appendix A. We have used nonuniform mesh around metal-dielectric interfaces,

λ/10 mesh size is used for uniformly meshed parts of the simulation area and

2.0 nm mesh size is used for the nonuniform meshing area. We first studied the

surface plasmon excitation on a flat metal surface. The simulation geometry is
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Figure 4.4: Electric field distributions of surface plasmon polariton at band edges.
a) Higher energy configuration for λ− b) Lower energy configuration for λ+ Elec-
tric field intensities at the metal-air interface c) Higher energy configuration for
λ− d) Lower energy configuration for λ+

shown in Fig.4.3a and b. We launch a Gaussian wave from a dielectric medium

and look at the power of the reflected light from metal-air interface. The power

of reflected light is read through the monitor in the simulation domain. The re-

fractive index of the dielectric medium is 1.56 and the value of dielectric function

of the metal is taken from Palik [21]. The metal thickness is 50 nm. The reflec-

tivity maps of the flat metal surface is studied for both TE and TM polarization

states. In Fig.4.3c the reflectivity maps taken at θ = 45 are shown. The SPP

excitation is seen for only TM polarized case, as expected. Next, we have inserted

a uniform grating with a periodicity of 290 nm and amplitude of 20 nm similar

to the experiment we described above. The geometry in the simulation is shown

in Fig.4.3b. The reflectivity spectra for uniform grating is shown in Fig.4.3 The

λ− = 589 nm and λ+ = 628 nm are labelled with red lines. Then we have studied

the electric field configurations of λ− and λ+. Fig.4.4a and Fig.4.4b shows the

electric field distributions of λ− and λ+ respectively. λ+ localizes on the peaks
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Figure 4.5: Dispersion maps of uniform metallic gratings in the Kretchman con-
figuration without Si coating (a) and with 20 nm Si coating (b)

and λ− localizes on trougs. 4.4c-d shows the confinement behavior of λ− and λ+.

λ+ shows a more confined behavior than λ−. So λ+ becomes more sensitive to sur-

face properties. Then coating the surface with Si increases the energy difference

between λ− and λ+ resulting in widening the band gap width while the central

wavelentgth of the band gap shifts slightly to longer wavelengths. This property

of band edges allows one to effectively tune the SPP band gap width and position

by adjusting the thickness of the dielectric layer. A series of experiments with

uniform metallic gratings coated with different silicon thickness were performed

and the reflectivity of the samples were measured. The position and width of the

band gap were determined. Effective index of the structure was calculated from

the center of the band gap, since nEFF = npsin(θ).

Experimentally, we construct the band structure for both the uniform metal-

lic grating and that of the dielectric loaded grating in Fig. 4.5. The set of

measurements were interpolated using linear interpolation. Both the shift of the

band gap in terms of angle of incidence as well as widening of the band gap

is observed. Fig. 4.5a is the experimental band structure of a uniform metallic

grating in the Kretchman geometry. The band gap is centered at 603.0 nm with a

width of 23.0 nm. The coupling angle indicating varies between 42.00 and 44.00,

the corresponding effective index nEFF is 1.03. The result for 20.0 nm silicon

loaded uniform metallic grating is given in Fig4.5b. The center of the band gap

is shifted to 668.0 nm and the width is increased to 36.0 nm. The coupling angles
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Figure 4.6: Effective index and width of the band gap of a uniform metallic
grating as a function of silicon loading

also change to satisfy the resonance condition. nEFF becomes 1.15 at 49.60 for

this case.

The increase in nEFF causes significant changes in the coupling conditions.

Larger angle of incidences for incoming photons are needed to compensate for

the momentum mismatch in the silicon loaded case. We summarize the results

in Fig. 4.6. The effective index of SPPs can be seen to tune from nEFF =1.03

to nEFF =1.24 due to silicon loading and the width of band gap is observed to

change from 23.0 nm to 50.0 nm.

Band gap occurs due to destructive interference between forward and back-

ward propagating SPPs in the uniform metallic grating. Constructive interference

at a specific wavelength in the band gap can be attained by tuning the relative

phases of the propagating waves. Local perturbation of the effective index can

lead to these phase changes and enable a localized state in the band gap, called

the cavity mode. Having already demonstrated the ability to control the effective

index, we design a SPP cavity for the wavelengths in the band gap, using the
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Figure 4.7: Reflectivity spectra a) and band structure b) of uniform metallic
grating with the cavity structure. Note the cavity state in the band gap localized
due to selective loading of uniform metallic grating

resonance condition:

L∆ = (2m + 1)
λ

4
(4.2)

where L is the length of the cavity, ∆n is the effective index difference and λ

the central wavelength in the band gap. We start the fabrication of the cavity

by photolithographically defining the cavity geometry on the uniform metallic

grating. The sample has a number of cavities with the same geometry separated

by 10 micrometers in an area of 10 × 10mm2. A silicon layer with a nominal

thickness of 18.0 nm was deposited on the surface outside the cavity regions. The

effective refractive index of SPPs for silicon-coated and uncoated regions of the

metallic grating are determined to be n0 = 1.03 and n1 = 1.14 respectively. High

resolution reflectivity spectra of these samples were measured as a function of the

angle of incidence. The results are shown in Fig.4.7. To clarify cavity formation,

we constructed band diagrams of uniform gratings with the cavity. The observed

band structure without the cavity is modified with the inclusion of a cavity state

in the middle of the band gap, Fig.4.7b. This is the result of an additional

absorption peak observed in the reflection spectrum of the cavity, Fig.4.7a. We

observe the cavity mode at 655.0 nm for 4.40 m cavity length when m=1. The Q

factor is calculated as 85 while the full-width-at-half-maximum of the absorption

peak is 7.7 nm. We have employed the Lumerical software package to examine the

effect of the cavity structure on the Q factor, as well as on plasmonic bandgap

width and effective index. The simulation geometry is shown in Fig.4.8. The
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Figure 4.8: Schematic representation of simulation geometry

Fig. 4.9 represents the interface of the program where the simulation domain is

seen. The Fig. 4.10 represents the source properties dialog box. The surface

plasmon polariton mode is excited at the metal-air interface which propagates

through the structure of interest. The reflection spectrum along the excitation

axis is attained from FFT analysis. We have studied gratings with a periodicity

of 290.0 nm with amplitudes changing from 5 nm to 50 nm. The propagation

of SPP are forbidden for the wavelengths around λ = 580nm. The width of

the band gap is increased from 3.5 nm to 70.0 nm by changing the amplitude

of the grating. As the amplitude increases SPP are scattered more effective

and the width of the band gap increases. This is analagous to the dependence

of the photonic band gap on the refractive index difference of dielectric layers,

∆n. We have used the grating with a modulation depth of 20.0 nm since the

corresponding bandgap width is similar to the experimental case. Varying the

thickness of the evaporated Si on the grating structure, we studied the effective

index and the band gap width. The SPP effective mode index increased from

1.0356 to 1.1110 as the Si thickness was increased to 18 nm. Similarly, the

band gap width is also increased from 18.7 nm to 38.1 nm. This behavior is

summarized in Fig.4.12 and consistent with the experimental results shown in

Fig.4.6. Selectively loaded cavity geometry on the grating structure was studied

under resonance as introduced in Eq.4.2. The expected minima in the band gap

region, where normally no SPP excitation is allowed, was observed at 652.0 nm

for a cavity length of 2.4 µm with a dielectric thickness of 14.0 nm for m=0. The

small difference between the expected cavity length of 2.2 µm and the observed
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Figure 4.9: The interface of the simulation domain

Figure 4.10: The interface of the source properties dialog box
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Figure 4.11: FDTD simulation results for the width of the band gap as a function
of grating amplitude

Figure 4.12: FDTD simulation results for the nEFF and the width of the band
gap as a function of dielectric loading on the surface
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a)

b)

Figure 4.13: a)Schematic reprasantation of the plasmonic cavity structure on
uniform grating. b) FDTD simulation of the electric field distribution in a cavity
illuminated with the cavity mode

cavity length of 2.4 µm, is due to differences between effective indices of SPPs

on corrugated and flat surfaces, since we calculate the effective indices for a

flat surface but measure it on the cavity geometry of the grating surface. The

cavity geometry and field profile of the cavity mode is illustrated in Fig.4.13a

and Fig.4.13b respectively. The localization of the field inside the cavity can

be clearly seen. The electric field distribution is slightly asymmetric since the

excitation was done from the side of the structure. We also studied the effect

of metal thickness on the quality factor of the cavity. The SPP excitation is the

same as above. The quality factor changes from 40 to 70 as the thickness of metal

layer changes from 40 nm to 1 µm. This behavior can be understood through the

radiation losses through the dielectric layer. While the thickness is small SPP

reradiates into the dielectric layer as photons. The quality factor converges to

its maximum value after 80 nm of metal thickness since this thickness limits the

radiation of SPP into dielectric layer.
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Figure 4.14: FDTD simulation results for the quality factor of the plasmonic
cavity on uniform metallic grating as a function of thickness of metallic layer

4.4 Biharmonic Plasmonic Band Gap Cavities

Biharmonic gratings are formed by superimposing two uniform gratings with dif-

ferent periodicities. The grating periods are chosen such that Λ2 = 2Λ1,where Λ2

is used to couple SPP, Λ1 is used to form plasmonic band gaps. The schematic

representation of a biharmonic grating is shown in Fig.4.15. The biharmonic

geometry can also be recorded on a photoresist using interference lithography.

After the grating is developed, it is transferred onto a polymer (OG146) and

a 50.0 nm metallic thin film is evaporated on the surface to create the metal-

lic surface. These structures have been shown to support plasmonic band gaps

and plasmonic cavities through selectively loading of dielectrics, by our research

group. There, we have then argued that the grating component which has larger

periodicity can lead to radiative losses causing a low quality factor. Our analy-

sis suggested that reducing the grating amplitude can lead to an increase in the

quality factor. In order to verify these proposals, we have studied the properties

of the biharmonic gratings with FDTD simulations using Lumerical software. We

construct a biharmonic grating with periodicities λ2 = 580 nm with a modulation
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Figure 4.15: Schematic representation of biharmonic grating

depth of h2 = 20.0 nm, λ1 = 290 nm and with a modulation depth of h1 = 20.0

nm, selectively loading the surface with a dielectric with a refractive index of

2.4. The structure under study is depicted in Fig.4.16a. A clear cavity mode in

the band gap and the associated electric field intensity in the cavity is shown in

Fig.4.16b. The confinement characteristics of the biharmonic cavity are summa-

rized in Fig.4.16. In addition to the field distribution in Fig.4.16b, we study the

change of the Q factor with the amplitude of the larger period, h2. The results

are shown in Fig.4.17. As we increase the amplitude of this component from 0.0

nm to 40.0 nm, we observe a decrease in the quality factor from 70.0 to 40.0.

This is most likely due to out-of-plane radiative losses caused by this additional

grating component. This idea is supported by the quality factors observed on

uniform gratings reported above.

4.5 Moirè Surfaces

Moirè surfaces are geometries that consist of two gratings with slightly different

periods as shown in Fig.4.18. The Moire surface can also be expressed as a
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a)

b)

Figure 4.16: a)Schematic represantation of the plasmonic cavity structure on a
biharmonic grating. b) FDTD simulation of the electric field distribution in a
cavity illuminated with the cavity mode.

Figure 4.17: FDTD simulation result for dependence of quality factor (Q factor)
on grating amplitude h2
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Figure 4.18: The Moirè pattern formation

superposition of a uniform grating and an envelope function which generates a

superperiodicity, D, which is representative of the surface profile. The final Moire

surface can be represented by:

S(x) = cos(Gx)sin(gx) (4.3)

where g = 2π
d

= 2πΛ1+Λ2

Λ1Λ2
,G = 2π

2D
= Λ1−Λ2

Λ2Λ1
, d and D are the uniform periodicity

and the periodicity of the superstructure (half the periodicity of the envelope

function). It has been shown that Moire surfaces can also support plasmonic

cavities. There are π phase shifts at the nodes of the Moire surfaces that lead

to SPP localization. Experimentally, we have shown that these surfaces support

slow surface plasmons [17]. Here, we show the results of the simulation of the

cavity state on the Moire surfaces. A Moire surface consisting of a grating period

of Λ1 = 317.2 nm with a modulation depth of 10.0 nm and a grating period

of Λ2 = 325.0 nm was chosen. We study the effect of surface profile on the Q

factor interms of half of the superperidiocity, D. We observe a cavity mode at

656 nm with a quality factor of 112 on a Moire surface with d = 321 nm and

D = 13.6 µ. The electric field distribution can be seen in Fig.4.19b. In this
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a)

b)

Figure 4.19: a)Schematic representation of the plasmonic cavity structure on
Moirè surface b) FDTD simulation of the electric field distribution in a cavity
illuminated with the cavity mode.

regime, cavities are weakly coupled and slow variation of the grating amplitude

leads to high quality factors. As we decrease the superperiodicity, the coupling of

cavities increases and the quality factor decreases. The cavity Q factor observed

on a Moire surface is relatively high when compared with a cavity on a uniform

grating. It is also consistent with the Q factors calculated for the biharmonic

grating cavities when the amplitude of the second component in the biharmonic

grating is small. High Q-factor performance of the Moire surface is consistent

with our assertion that removing the second component or using a slowly varying

envelope function reduces out-of-plane scattering and leads to higher Q-factors.
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Figure 4.20: FDTD simulation result for dependence of Q on superperiodicity D



Chapter 5

Conclusions and Future Work

In this chapther, we report the preliminary results of our study on two-

dimensional plasmonic crystals. We will remark the conclusions we have arrived

and make a plan for future work. Two dimensional metallic gratings were fabri-

cated and excited the SPP resonances in the Kretchman configuration. The goal

of the study was to show theexistence of plasmonic band gaps along the symetry

axes of 2D dimensional plasmonic crystal and propose cavity geometries for the

structures.

5.1 Introduction

In Section 4.1, the modified transmission and reflection spectra of propagating

SPPs with the 1D crystals was discussed. In particular, to get a maximum effect

for surface enhancement of Raman scattering and photoluminescence signals a full

plasmonic band gap is required [22]. In this regard, experimentally and theoreti-

cally, full plasmonic band gaps for two dimensional gratings are shown[23][22][24].

Recently, in plasmonic crystals composed of triangular lattices composed of gold

bumps and the effect of surface geometry are studied[25]. Numerically,dependence

of central wavelength and width of the band gap on the structural properties of the

plasmonic crystal composed of cylinders is studied. Experimental enhancement

53
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a) b)

α

Figure 5.1: a)The configuration of the sample for the first exposure b)The con-
figuration for the second exposure. Black and white regions are schematic repre-
sentation of interference pattern

in the florescence of methylmethacrylate on two dimensinal plasmonic structures

is shown. As we discussed in Section 4.1 metallic loss at visible wavelengths is

a serious problem that hinders the use of plasmons for applications that require

long propagation lengths and plasmonic lifetimes. The plasmonic cavities seem to

overcome this problem. Recently, plasmonic cavities in 1D plasmonic structures

are being studied both experimentally and theoretically extensively. This section

investigates plasmonic band gap formation on 2D square lattice plasmonic struc-

tures. We propose a cavity geometry based on the technique which selectively

loads the surface with a dielectric layer.

5.2 Fabrication and Experiment

Fabrication of the 2D grating was achieved with an interference lithography setup

as we discussed in Chapter 3. The preparation method of the sample is similar

to the techniques we discussed in Section 4.2. We, first spin a photosensitive

polymer (S1800) on 170 m thick microscope lamella and bake the photosensitive

polymer at 1100C for 1 minute. A He-Cd laser operating at 325 nm was used

to record periodic structures on the photosensitive polymer using Lloyd’s mir-

ror configuration. To produce 2D gratings, we used double exposure interference

lithography. We rotate the sample with a degree of α after the first exposure as
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shown in Fig.5.1. The angle between the incoming beams , θ, is the same for two

exposures so the periods, Λ = 390 nm, we have recorded during two exposures

is the same resulting a square lattice type plasmonic crystals. By this technique,

under appropiate rotation angles α and periods Λ it is possible to record rectan-

gular and hexagonal lattices also. Once the structures were developed, a 50 nm

thick silver film was evaporated on the samples to support the surface plasmons.

The lamella was then mounted on the base of the prism with the metallic side up.

Index matching fluid was used between the prism and the lamallae. The BK7

prism allows incoming photons to couple to plasmons. The coupling condition

is satisfied at a specific wavelength and angle of incidence given by Eq.4.1. The

reflectivity maps are measured and constructed by measuring the coupling wave-

length and angle. We used a spectroscopic ellipsometer (VWASE32) for precise

reflectivity measurements.

5.3 Diffraction in 2D Plasmonic Crystals

The direct and reciprocal space of 2D square lattice is shown in Fig. 5.2a and

Fig. 5.2b respectively. The primitive translation vectors are a1 = (a, 0) and a2 =

(0, a), these two vectors span all the direct space. The corresponding reciprocal

lattice vectors for k-space are b1 = 2π
a1

= 2π( 1
a
, 0) and b2 = 2π

a2
= 2π(0, 1

a
). From

the primitive vector of reciprocal lattice, b1 and b2, the Brillouin zone can be

constructed as a square in Fig 5.2b. We can define the symetry points Γ, M

and K. The irreducible Brillouin zone can be constructed as the triangle defined

by Γ = (0, 0), M = (1
2
, 1

2
) and K = (1

2
, 0) points in the b1 and b2 basis. To

characterize the optical properties of the 2D plasmonic crystal, we will concentrate

on the in-plane scattering of SPP due to square lattice on the surface. For the

general case the scattering condition for SPPs can be written as:

ks
SPP = ki

SPP + kG (5.1)

where ks
SPP , ki

SPP , kG are the wavevector of scattered SPP, the wavevector of

incident SPP and the Bragg wavevector of the plasmonic crystal, respectively.

kG is given by kG = mb1 + nb2 where m and n equal to -1,1 or 0. We study the
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a) b)

a1

Figure 5.2: a) Schematic direct space of a square lattice b)The first Brillouin zone
of a square lattice. Two symetry axes ΓM and ΓK are shown. The irreducible
Brillouin zone is shown as blue ΓMK triangle.

scattering conditions in the irreducible Brillouin zone which can be generalized

for the whole crystals. The corresponding Bragg wavevector for the irreducible

Brillouin zone shown in Fig. 5.2b is kG = b1 + b2. SPPs with wavevectors

originating from Γ point and terminating on the MK plane satisfy the resonance

condition for Bragg scattering. The Bragg condition for SPPs can be written as:

| kSPP | cos(φ) =
1

2
| b1 + b2 | (5.2)

where φ is the angle between the kSPP and ΓM line. The SPPs satisfying the

condition above are all Bragg reflected and plasmonic band gaps are opened at

those directions. The SPP propagating along the ΓK direction, the center of the

gap is found from Eq. 5.2 as:

λSPP = 2a (5.3)

and for the ΓM direction, corresponding resonance is given by:

λSPP =
√

2a (5.4)

We carried on reflection measurements with the above configuration. The orien-

tation of the sample with respect to prism prism is crucial shown in Fig.5.3. By

rotating the sample, we can extract the information along any direction. Here
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ΓΜ

ΓΚΓΜ

ΓΚ

a) b)

Figure 5.3: Two different orientation of sample with respect to prism surface.
a)Excitation of SPP along ΓK axis. b)a)Excitation of SPP along ΓM

we look at two symetry axis ΓK and ΓM . Fig.5.3a depicts the orientation where

the reflectivity map of ΓK axis is measured. Note that ΓK axis is parallel to

the x-axis. The center of the plasmonic band gap is located at 780 nm. The

blue shift for λ− and red shift for λ+ is seen as the angle of incidence increases.

Rotating the sample with 450, ΓM axis is parallel to the x-axis in this case as

shown in Fig.5.3b. The reflectivity map of this axis is measured and shown in

Fig.5.5. We observed different resonances at these measurements. The expected

plasmonic band gap should be centered aroun 558 nm. We observed dips around

551 nm and there are no dips from 563-572nm. We identify that part as the

plasmonic band gap along ΓM direction. However, there are additional minimas

in the reflecivity maps. This behavior is still being studied.

5.4 Cavity Geometry

Here, we propose the application of the technique which we used to demonstrate

plasmonic cavity formation on uniform gratings with 2D crystals. The dielectric

layer which will be deposited on the surface will increase the effective index of

the SPPs. Then selectively loading the surface will enable localization of SPPs

as discussed in Section. 4.3. The geometry of the cavity should be chosen taking
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Figure 5.4: The reflectivity maps for different angle of incidences for the ΓK axis

Figure 5.5: The reflectivity maps taken at different angle of incidences for ΓM
axis
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ΓΜ

ΓΚ

Figure 5.6: The schmatic representation of plasmonic cavity in square lattice

into account Bragg condition along two symetry axis 5.3 and 5.4 and resonance

condition Eq. 4.2. We assume that ∆n will be constant for a range between the

center of the gaps at two symetry axis ΓM and MK. Then the only parameter in

Eq. 4.2 changing for symetry axis is the wavelength, λ. Their ratio
λΓK

SPP

λΓM
SPP

equals

to
√

2. The proposed geometry is the square and the orientation of this square

is shown in Fig. 5.6 should be as follows. The diagonal of the cavity should be

paralel to the ΓK line.

5.5 Conclusions

In this thesis, we couple to a metallic grating using a prism and tune the band

gap by loading the metallic surface with a high index dielectric. Considering that

the band gap tunability is an important issue for future device work, demon-

stration of its control through proper choice of a dielectric is crucial. We also

observe that selective use of dielectric loading leads to cavity formation. We

have thus designed and fabricated a SPP cavity on a uniform metallic grating

through selective loading of the metallic surface with silicon. Spectral reflectivity

measurements in the Kretchman configuration permit us to construct the band

structures of the samples with and without cavity. A cavity state is observed in

approximately the middle of the band gap on samples with the cavity which exists
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only for a small range of wavelengths and angle of incidences. A detailed analysis

of the quality factor of grating based plasmonic cavities is made. Contributions

to the Q factor in the cavity are summarized as absorption loss and radiation

loss. Metallic absorption loss can only be improved using different metals having

low loss coefficients. Radiative loss is dominated by the out-of-plane scattering.

We have shown that the loss due to the out-of-plane radiation in the plasmonic

band gap cavities on biharmonic gratings can be overcome by decreasing the

strength of the grating components inside the cavity. Localization of SPPs in

cavities is ultimately related to group velocity control of SPPs where exciting

new physics is expected as well as to applications in enhancement of electromag-

netic interactions leading to sensors with higher sensitivities. The simple design

and fabrication process of the grating based cavities permit mass production of

such samples.
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Appendix A

Fundamentals of Finite

Difference Time Domain

This chapter reviews the Finite Difference Time Domain technique for solving

initial boundary value problems of Maxwell’s equations.

Maxwell’s equation set for an isotropic medium are:

∂B

∂t
+∇× E = 0 (A.1)

∂D

∂t
−∇×H = J (A.2)

B = µH (A.3)

D = εE (A.4)

(A.5)

where J,µ and ε are defined for every point of the space at any time. The Eq.A.1

and Eq.A.2 results with six sclar equations when we take the curl(∇x) of E and

H.

−∂Bx

∂t
=

∂Ez

∂y
− ∂Ey

∂z
(A.6)

−∂By

∂t
=

∂Ex

∂z
− ∂Ez

∂x
(A.7)

∂Bz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
(A.8)
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∂Dx

∂t
=

∂Hz

∂y
− ∂Hy

∂z
− Jx (A.9)

∂Dy

∂t
=

∂Hx

∂z
− ∂Hz

∂x
− Jy (A.10)

∂Dz

∂t
=

∂Hy

∂x
− ∂Hz

∂y
− Jz (A.11)

(A.12)

Any field component of space and time can be discretisized as follows:

F (i∆x, j∆y, k∆z, n∆t) = F n(i, j, k) (A.13)

Then Eq.A.7 can be written as:

Bn+1/2
x (i, j + 1

2
, k + 1

2
)−Bn−1/2

x (i, j + 1
2
, k + 1

2
)

∆t

=
En

y (i, j + 1
2
, k + 1)− En

y (i, j + 1
2
, k)

∆z

−En
z (i, j + 1, k + 1

2
)− En

z (i, j, k + 1
2
)

∆y
(A.14)

similarly Eq.A.10 can be written as

Dn
z (i + 1

2
, j, k)−Dn−1

x (i + 1
2
, j, k)

∆t

=
Hn−1/2

z (i + 1
2
, j + 1

2
, k)−Hn−1/2

z (i + 1
2
, j − 1

2
, k)

∆y

− Hn−1/2
y (i + 1

2
, j, k + 1

2
)−Hn−1/2

y (i + 1
2
, j, k − 1

2
)

∆z
(A.15)

+Jn−1/2
x ∗ (i +

1

2
, j, k) (A.16)

Similar expression for Eq.A.8A.9A.11A.12. The grid sizes are chosen such that

electromagnetic field does not change significantly in one step. The criteria for

the stability is:

√
(∆x)2 + (∆y)2 + (∆z)2 > c∆t =

√
1

εµ
∗∆t (A.17)

To get accurate results this criteria has to be met. Now we will concentrate on

the application of the method in two dimensional systems since we usually have

a homogeneous medium along one axis. Here we assume the field components do
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not depend on the z cordinate.ε and µ is constant along the z axis and J = 0.

The electromagnetic fields can be decomposed into transverse electric(TE) and

transverse magnetic(TM) fields. We will show the equations that are solved in

the case of TE mode. For TE mode:

Hx = Hy = 0

Ez = 0

−µ
∂Hz

∂t
=

∂Ey

∂x
− ∂Ex

∂y
,

ε
∂Hz

∂y
=

∂Ex

∂t
∂Hz

∂x
= ε

∂Ey

∂t
(A.18)

We can write the difference equations for TE as:

Hn+1/2
z (i +

1

2
, j +

1

2
)−Hn−1/2

z (i +
1

2
, j +

1

2
) =

− 1

Z

∆τ

∆x
[Ey

n(i + 1, j +
1

2
)− Ey

n(i, j +
1

2
)]

+
1

Z

∆τ

∆y
[Ex

n(i +
1

2
, j + 1)− Ey

n(i +
1

2
, j)]

En+1
x (i +

1

2
, j) = En

x (i +
1

2
, j) (A.19)

+Z
∆τ

∆y
[Hz

n+1/2(i +
1

2
, j +

1

2
)−Hn+1/2

z (i +
1

2
, j − 1

2
)]

En+1
y (i, j +

1

2
) = (A.20)

−Z
∆τ

∆x
[Hn+1/2

z (i +
1

2
, j +

1

2
)−Hn+1/2

z (i− 1

2
, j +

1

2
)] (A.21)

These equations are solved step by step when the initial boundary conditions

are given. In our case the initial boundary conditions are incident waves such as

plasmon filed on metal-air interface or a gaussian beam which is incident on to a

prism-air interface.


