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ABSTRACT

An Efficient Broadcast Scheduling Algorithm for Pull-Based Mobile
Environments

K. Murat Karakaya 
M.S. in Computer Engineering 

Supervisor: Assoc. Pi'of. Özgür Ulusoy 
August 2000

Thanks to the cidvarices in telecommunications and computers, today mo­
bile computing becomes a significant means in every pace of life. Many people 
are now carrying portable devices such as laptop computers, Personal Digital 
Assistants (PDAs), and cellular phones. These mobile computing devices are 
supported by rapidly expanding telecommunication technology. Cellular com­
munication, wireless LAN and WAN, and satellite services are available for 
daily life applications, and portable devices make use of these wireless connec­
tions to contact with the information providers. Thus, a user does not need to 
maintain a fixed connection in the network and may enjoy almost unrestricted 
user mobility.

As the new and various mobile infrastructures emerge, users demand a new 
class of applications running in this environment. However, the narrow band­
width of the wireless communication channels, the relatively short active life 
of the power supplies of mobile units, and the mobility· of clients make the 
problem of data retrieval more difficult than that in wired networks. There­
fore, mechanisms to efficiently transmit information to vast numbers of mobile 
users are of significant interest. Data broadcasting has been considered one of 
the most promising ways of data dissemination in mobile environments. There 
are two basic data broadcasting approaches available: push cuid pull. In push- 

based broadcasting approach, data is broadcast to mobile users according to 
users’ profiles or subscriptions, whereas in pull-based bi'oadcasting approach, 
transmission of data is initiated by the explicit request of users.

In this thesis, we have focused on the problem of scheduling data items
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to broadcast in a j^ull-based environment. We have developed an efficient 
broadcast scheduling algorithm, and comparing its performance against several 
well-known algorithms, we have observed that our algorithm appecirs to be one 
of the best algorithms proposed so far.

Key words: Mobile computing, mobile database, data broadcast, broadcast 

delivery, pull-based, scheduling algorithm.



ÖZET

Çekmeye Dayalı Mobil Ortamlarda Etkin Bir Yayım Programlama
Algoritması

K. Murat Karakaya
Bilgisayar Mühendisliği, Yüksek Lisans 
Tez Yöneticisi: Doç. Dr. Özgür Ulusoy 

Ağustos 2000

Haberleşme ve bilgisayar teknolojilerindeki gelişmeler sayesinde bugün mo- 
bil sistemler hayatın her alanında önemli bir araç olmuştur. Şimdilerde, bir çok 
insan dizüstü bilgisayar, kişisel sayısal yardımcı ve cep telefonu gibi taşınabilir 
araçlar kullcinmaktadır. Bu tür mobil araçlar hızla gelişen haberleşme teknolo­
jisi tarafından desteklenmektedir. Hücresel haberleşme, kablosuz Yerel Alan 
Şebekeleri (YAŞ) ve Geniş Alan Şebekeleri (GAŞ) ile uydu hizmetleri günlük 
hayatta kullanılan uygulamalar için mevcuttur ve taşınabilir araçlar bilgi sağla- 
yıcılai'ci bu gibi kablosuz bciğlantıları kullanarak ulaşabilmektedir. Böylece, bir 
kullanıcının ağ üzerinde sabit bir bağlantı sürdürmesine gerek kalmamıştır. 
Artık kullanıcılar hemen hemen sınırsız hareketlilik imkanına kavuşmuşlardır.

Yeni ve değişik mobil altyapılar oluştukça, kullanıcılar bu ortamda çalışacak 
yeni uygulanuılar talep etmektedirler. Ancak, telsiz kanallarının dar olan bant 
genişliği, tcişmabilir araçların batarya sürelerinin göreceli olarak az olması ve 
kullanıcıların hareket halinde bulunmaları, kablolu ağlara göre veri iletişimini 
daha zor bir hale getirmektedir. Bu nedenle, bilgiyi çok geniş mobil kitlelere 
etkin olarak ulaştırabilecek mekanizmalar büyük önem arz etmektedir. Veri 
yayımı, mobil ortamlarda veri iletişimini sağlamakta en çok gelecek vaad eden 
yöntemlerden birisi olarak değerlendirilmektedir. Genel olarak, veri yayımında 
iki ana yciklaşım mevcuttur: itme ve çekme, itmeye dayalı veri yayımında, 

veri mobil kullanıcılara, kullanıcıların profiline veya üyelik bilgilerine göre 
yayımlanmciktadır. Diğer taraftan, çekmeye dayalı veri yayımında ise verilerin 
aktarımı kullanıcıların açıkça talep etmesi suretiyle gerçekleşmektedir.
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Bu tezde, çekmeye dayalı ortamlarda, veri yayımının programlanması prob  ̂
lemi üzerinde yoğunlaşılmış ve veri yayımını programlayan etkin bir algoritma 
geliştirilmiştir. Diğer bilinen algoritmalarla başarım sonuçları karşılaştırıldığın­
da, algoritmanın, şimdiye kadar önerilen en iyi algoritmalardan biri olduğuna 
kanaat getirilmiştir.

Anahtar sözcükler·. Mobil sistemler, mobil veritabanı, veri yayımı, çekmeye 

dayalı, programlama algoritmaları.
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Chapter 1

Introduction

During the hist two decades, advances in telecommunication and mobile com­
puting has enabled the increasing use of portable wireless computing devices. 
The rapidly expanding telecommunication technology has nuide cellular com­
munication, wireless LAN and WAN, and satellite services available for dciily 
life applications. Many people are now carrying portable computing devices cit 
the spectrum from a laptop computer to a Personal Digital Assistant (PDA). 
All these devices are equipped with an interface for wireless connection to in- 
formcition providers. The resulting mobile environment does not require a user 
to maintain a fixed connection in the network and eiicibles almost unrestricted 
user mobility.

As the new and various types of mobile infrastructures emerge, users demand 
new classes of applications running in this environment. Mobile and wireless 
aiDplications aim to provide the users the required data and services at any 
time and anywhere manner. The first class of mobile applications and services 
includes mail enabled applications and information services to iriobile users [22]. 

Users can receive and send electronic mail from any location at any time. Using 
user profiles, electronic news services can be delivered to users via e-mail. 

Information services provide the user with many diverging data sources such 
as airline schedules, movie programs, weather information, etc. Furthermore, 
the World Wide Web has emerged as a universal platform for developing and 
deploying dissemination-based applications. Users begin to feel the requirement
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Chapter 1. Introduction

of connection to Internet at every pace of life.

The fundamental usage of mobile environment is to have online access to a 
large number of databases via wireless networks. However, the narrow band­
width of the wireless communication channels, the relatively short active life 
of the power supplies of mobile units, and the mobility of clients make the 
problem of data retrieval more difficult than that in wired networks. There­
fore, mechanisms to efficiently transmit information to vast numbers of mobile 
users are of significant interest. Data broadcastinff has been considei'ed as one of 
the most promising ways of data dissemination in mobile environments. There 
are two bcxsic data broadcasting approaches available: push and pull. In push- 
based broadcasting approach, data is broadcast to mobile users according to 
users’ profiles or subscriptions, whereas in pull-based broadcasting approach, 
transmission of data is initiated by the explicit request of users.

In each type of the broadcasting approaches, a fundamental design issue is 
the schediding of the broadcast of data items to the requesting mobile users. 
Broadcast scheduling algorithms have been developed to determine which data 
item should be broadcast and when. The main performance evaluation crite­
rion of such scheduling algorithms is the responsiveness to the client requests. 
A good scheduling algorithm should deliver the requested data items to the 
clients as soon as possible. Although a number of methods which aim to min­
imize the average delay for retrieving data items have been proposed, most of 
those methods are based on the push-based data delivery which use the access 
probabilities of data items.

In this thesis, we have focused on the problem of data broadcast schedul­
ing in a ¡Dull-based environment and developed an efficient, easy-to-implement 
scheduling algorithm. Our algorithm utilizes an approximate version of the 
Longest Wait First (LWF) heuristic and implements it efficiently by a bucket­

ing scheme.

The remainder of the thesis is organized as follows. In Chapter 2, we first 
present the main idea behind data broadcasting and introduce the mobile com­
puting environment that we assume. Then, two main approaches of data broad­
casting are discussed. The current research on the scheduling algorithms is
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summarized in the last section of the same chapter. In Chapter 3, well-known 
data scheduling algorithms are examined in more detail. In Chapter 4, after 
discussing the intuition behind the LWF heuristic, we describe our ATWT 
heuristic and its implementation, the Bucketing scheduling algorithm. Perfor­
mance evaluation results of the proposed Bucketing scheduling algorithm are 
provided and compared with the results of other broadcast scheduling algo­
rithms in Chapter 5. Finally, in Chapter 6, concluding remarks are provided.



Chapter 2

Background and Related Work

In this chapter, we first present the fundamental idea behind broadcast 
delivery and introduce the mobile computing environment that we have used 
in our work. Then, two main approaches of data delivery by brocidcast are 
discussed. In the last section of the chapter, current research on scheduling 
algorithms of broadcast delivery is summarized.

2.1 Background

Broadcast technology has long been used to deliver information to a large num­
ber of users. The early practice of broadcast technology can be exemplified 
by the radio and television systems [36]. Having known the time schedule, the 
users can watch and/or listen to the programs. In this way, many users can 
receive information in a simple and effective way, which emphasizes the m<iin 
concept of the data dis.semination by broadcast delivery.
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2.1.1 Data Delivery by Broadcasting

Data broadcast can potentially satisfy the requests of many clients in a single 
transmission [35]. When some information is broadcast, all pending requests of 
the multiple users for that information are satisfied at the same tinae. Generally 
speaking, the broadcast approach can better utilize the limited bcindwidth of 
a channel and it is particularly suitable for dissemination of large volume of 
data to a large nurnber of mobile clients at the same time, when compared 
to unicast systems [25]. Traditional unicast (point-to-point) data services are 
unpractical because the existing infrastructures are far to meet the demand in 
both network bandwidth and server capacity, when the system load is high. 
Furthermore, if any infrastructure was deployed to satisfy the requirements, 
most of it would be underutilized and wasted during non-peak periods.

Broadcast-based delivery provides an important means for a wide range 
of applications which are related to dissemination of information to a large 
populcition of users. Such dissemination-based applications may be used in 
electronic commerce, electronic newsletters, mailing lists, road trciffic man­
agement systems, cable TV, and information feeds such as stock quotes and 
sports tickets [1, 3, 4]. Data delivery by broadcasting is supported by many 
new emerging infrastructures provided by satellite and cable technologies [20]. 
There are many mobile systems deployed overall the world (e.g., GSM [27], 
CDPD, CDMA, PDC, PHS, TDMA, FLEX, ReFLEX, İDEN, TETRA, DECT, 
DataTAC, Mobitex [20]). Information dissemination on the Internet has gained 
significant attention lately. Many commercial services have been developed and 
operated which enable the wireless dissemination of information available on 
the Internet (e.g., AirMedia [26], DirecPC [15], etc.). Furthermore, in order 
to enable mobile users to easily access and interact with information providers 
and mobile services, there are some protocols developed and deployed. One of 
the most important and widespread protocols is the Wireless Application Pro­

tocol (WAP) [28]. WAP has been designed aiming to provide easy and secure 
access to relevant Internet/intranet information and other services via mobile 

phones, pcigers, or other wireless devices.



A signiliccint facet of broadcast-based systems is their inherent communica­

tion asymmetry [2, 3]: the volume of data transmitted from server to user is 
much greater than the volume transmitted in the reverse direction. The com­
munication asymmetry can result from several factors [2]. Generally speaking, 
in wireless computing, a stationary server is often provided with a relative 
high-bandwidth channel which supports broadcast delivery to all mobile users 
located inside the geographical region it covers. The number of users with re- 
si^ect to the number of broadcasting server(s) is much more. The size of data 
requests is very small compared to the size of responses from the server. The 
requirement of updating and delivering new information can also cause the 
communication asymmetry. All the facts mentioned above impose constraints 
on the design of broadcast systems.

2.1.2 Mobile Environment

The architectural model of a mobile computing environment is pi’esented in 
Figure 2.1 [12, 13, 22].

In mobile computing, the geographical area is usually divided into regions, 
called cells, each of which is covered and serviced by a stationary controller. 
A mobile computer system consists of mobile units (computers) (MUs) and 
stationary computers (SCs). SCs are connected together via a fixed network. 
Some of SCs are equipped with wireless interfaces to communicate with the 
MUs and are called base (radio) stations or mobile support stations (MSSs). 
MSSs behave as entry points from MUs to the fixed network. SCs communicate 
over the fixed network, while MUs communicate with other hosts (mobile or 
fixed) via a wireless channel. MUs can consume and also produce information 
by querying and updating the online database stored on SCs. MSSs can be 
proxy servers on behalf of the other SCs or they can themselves be information 

servers.
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It is usually assumed in a mobile environment that there is a single broadcast 
channel dedicated to data broadcast. Users monitor this channel continuously 

to get the data item they require. If available, there can be a backchannel 

which enables MUs to send data requests to MSSs.
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Figure 2.1: Mobile computing environment.

The mobile environment has its inherited limitations and challenges such 
as [20, 22]:

• frequent disconnections due to some problems (e.g., short battery life, 
being out of coverage area) or demand of the mobile user,

• limited communication bandwidth,

• security and anonymity,

• mobility management and scalability.

The mobile computing research and development efforts consider all these 
limitations. For instance, since the bandwidth and the power of the portable 
devices are scarce resources and need to be carefully managed, efficient design 
of the query and update operations is of special importance. As a result of 
these limitations iuid characteristics of the mobile environment, the techniques 
required for the design of efficient and cost effective mobile systems are quite 
different from those developed for systems based on wired networks [22].



One of the most important topics in data dissemination is efficient broad­
casting of data. Generally speaking, the efficiency is determined mainly by 
the mean access time for data items. In this thesis, the main performance 
metrics aimed to minimize are overall mean waiting time, variance of waiting 
time and decision overhead h In Section 5.2, the importance and impact of 
the performance metrics are discussed in detail.

2.1.3 Push vs. Pull Based Systems

Chapter 2. Background and Related Work 8

There are two main approaches for data dissemination in broadcast systems; 
push-based and pull-based dissemination [1, 2, 22, 36].

In broadcast systems that make use of push-based data delivery, the infor- 
mcition server tries to predict the data needs using the knowledge provided by 
user profiles or subscriptions. The server constructs a broadcast schedule in 
which initiation of the data transmission does not require an explicit request 
from MUs. The server repetitively transmits the content of the broadcast 
schedule to the user population. MUs monitor the broadcast channel and re­
trieve the items they require as they arrive. That is, accessing the data does 
not require MUs to use the backchannel and is “ listen only" [22].

Push-based systems have the advantage of their inherent scalability. It is 
because the performance of any user receiving data is not directly affected by 
the other users that are also monitoring the broadcast channel. The main 
idea is that the information servers exploit their advantage in bandwidth by 
broadcasting the same data to multiple users simultaneously. Using this ap­
proach, the cost of data dissemination is independent of the number of users 
and their requests. The result is scalability and more efficient utilization of the 
bandwidth. Because of these benefits, many of the previous work on data dis­
semination in mobile systems are based on the push-based broadcast approach.

^There are also .some other metrics proposed recently such as the stretch metric in [6]. This 
metric is proposed to evaluate the potential benefits of preemptive scheduling. The stretch 
of a request is the ratio of the waiting time of a request to its service time, where the service 
time is the time to complete the request if it were the only job in the system. Preemptive 
scheduling involves interrupting a broadcast to service other requests before resuming the 
remainder of the original broadcast. The algorithm we propo.se is not a preemptive algorithm, 
so we do not use the stretch metric.
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One drawback of push-based systems is that, users receiving information 
from a broadcast channel are passive, in the sense that they do not communi­
cate with the server to inform it about their data needs. Therefore, the server 
lacks valuable information about actual data needs.

In contrast to push-based systems, in a pull-based environment, a system 
similar to traditional client-server is used. Clients explicitly request data items 
by sending messages to the server. The requests are compiled in a service 
queue, and a scheduling algorithm decides which data item is broadcast. After 
broadcasting, the requests for that page are removed from the queue.

Pull-based systems have the advantage of enabling MUs to be active in 
obtaining the data they require, rather than only monitoring the broadcast 
of a push-based server. On the other hand, pull-based systems may have two 
obvious drawbacks [2]. First, the usage of a backchannel to send the requests 
of MUs to MSSs can cause additional expense. Second, the server interrupted 
by continuous client requests can become a scalability bottleneck if the number 
of clients is large enough.

Besides these two main approaches, some researchers (e.g., [2, 16, 29, 31, 36]) 
hcive also proposed hybrid approaches in which push-based broadcast of data 
is combined with support for explicit user requests. The performance of a 
hybrid approach depends mostly on the allocation of bandwidth between the 
two types of data dissemination.

The focus of this thesis is a pull-based {on-demand) system. Perhaps the 
most important design issue in this approach is the method used for selecting 
data items from the user requests to broadcast. Although a number of methods 
which ciim to minimize the average delay for retrieving data items have been 
proposed, most of them are based on the push-based data delivery which use 
the access frequency probabilities of data items.
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2.2 Related Work

2.2.1 Early Work

With the increasing popularity of wireless computers, services, and underlying 
technologies, data broadcasting and scheduling algorithms have attracted the 
attention of researchers during recent years. Early studies on the problem of 
schedule design for broadcast information are performed by Ammar and Wong 
in the context of teletext and Videotext systems [10, 11, 36].

In [36], Wong proposes three alternative architectures for broadcast infor­
mation delivery systems: one-way broadcast (push), two-way interaction (pull), 
and one-way broadcast/two-way interaction (hybrid). These alternatives are 
compared with others using the performance metric of mean response time. 
For two-way interaction (pull) First-Come First-Served (FCFS) scheduling al­
gorithm and some heuristic scheduling algorithms are discussed. Longest Wait 
First (LWF’) heuristic has the best performance among all the alternatives tried, 
including the Most Requested First (MRF), MRF-Low (MRFL) and F’CFS. In 
recent works [9, 32], the LWF heuristic is shown to be a good choice for pull- 
based systems as well. Unfortunately, the straightforward implementation of 
LWF' incurs more scheduling overhead than that of other algorithms. In this 
thesis, we propose an approximation algorithm for LWF' by an alternative im­
plementation.

2.2.2 Datacycle and Broadcast Disks Projects

The Datacycle Project [17, 21] uses the broadcast paradigm to cichieve high 
throughput dcitabase systems. In the proposed architecture, the contents of 
the entire database are broadcast repeatedly over a high-bandwidth channel 
(such as an optical system) to data filters. Data filters listen to the channel 
and ¡perform complex associative search operations requested by clients. Com­
pared to Datacycle which broadcasts data using a flat disk to the clients, the 

Broadcast Disks project [1, 3, 37] suggests to employ a multi-level disk. Also, in 

Datacycle project the clients are allowed to communicate with the host using
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'"''upstream network” . In Broadcast Disks environment, there is no backchannel. 
As the broadcast medium, the Broadcast Disks project uses wireless connec­
tion.

The Broadcast Disks project integrates the use of bandwidth and client 
storage to improve response time. The main parts of the proposed system are 
multiiDle brocidcast programs and client cache management schemes. Prefetch­
ing techniques [4] are also employed to exploit broadcast programs more ef­
ficiently. In [2], Acharya et al. also study on integrating a backchannel to 
the system which enables the clients to explicitly request data items from the 
server. Therefore, the Broadcast Disks environment is transformed to be a 
hybrid system to investigate the effects of both the pull-based and push-based 
approaches.

In our work, we assume a pull-based system in developing a scheduling algo­
rithm. In the Broadcast Disks approach for push-based systems, besides broad­
cast scheduling, cache management of the clients is also taken into considera­
tion. In our system model, we focus our attention to the scheduling algorithm 
and its performance. For cache management and prefetching, the static broad­
cast program information is exploited in the Broadcast Disks project [5, 3]. 
However, the system we use for the broadcast program is dynamic, and the 
data item to be broadcast next is selected according to actual client requests 
rather than access probabilities as in Broadcast Disks. The clients are assumed 
to use ciny cache management scheme to improve the performance. The data 
item requests are filtered by the client cache and only the misses are directed 
to the server as requests. We use an approach like the one in [2] to measure 
the performance of scheduling algorithms over a specific client whose request 

pattern is different than that of others.

2.2.3 Work done by Vaidya et al.

Vaidya et cd. have worked on data broadcast scheduling algorithms extensively 
cuid proposed several scheduling algorithms [18, 19, 23, 24, 33, 34, 35]. In their 
work, the authors try to minimize the average waiting time and analyze the
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scheduling algorithms in the presence of communication errors, and a multi­
channel. One of the most important characteristics of the proposed algorithms 
is that the size of data items is taken into consideration. For various distribu­
tions of item size, the overall mean waiting time is observed. In their work, the 
mobile environment is supposed to be asymmetric in that the server has rela­
tively much more bandwidth available than that of clients. In the environment 
under consideration, the authors suggest that the transmission of information 
to the mobile clients can be performed efficiently by broadcasting the infor­
mation periodically. Therefore, their approach is based on push-based systems. 
On the other hand, the authors state that the scheduling algorithm [33] can be 
applied to a pull-based broadcast environment by replacing access probabilities 
with the number of pending requests for a data item. Taking this remark of 
the authors into account, we have modified and tested the algorithm proposed 
in [18, 33] as to schedule the broadcast in on-demand environments.

The same authors investigate how to achieve an optimal overall mean access 
time using the underlying assumptions such as arrival of client requests, de­
mand probability and equal spacing [33, 34, 35]. Equal spacing means that the 
time between two instances of an item on the broadcast is always equal. How­
ever, each data item can have different spacing. Assuming thcit instances of 
each item are equally spaced, they conclude in the theorem called Square-root 
Ride:

Square-root R ule: The access time is minimized when the fre­
quency of an item (in the broadcast schedule) is proportioiicil to the 
square root of its demand (characterized as demand probability) and 
inversely proiDortional to the square root of its length.

This theorem is accepted as a generalized version of a result presented· in [36]. 
As a result of the theorem, a lower bound on overall mean access time is formu­
lated. However, broadcasting equally spaced data items is not always possible 

and is hard to accomplish through all the cycles of broadcast. Nevertheless, 
the theorem can be used to derive a heuristic to select which item to broadcast.

Two different cilgorithms depending on the square-root rule are proposed: 
on-line and off-line algorithms [34]. The on-line algorithm determines which
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data item to transmit next in the broadcast. On the other hand, the off­
line algorithm selects the data items and prepares the broadccist program for 
a given cycle size. The difference between the two algorithms is thcit in the 
former changing the demand for data items can affect the scheduling easily, but 
in the latter, entire schedule is decided a priori and broadcast repeatedly. The 
algorithms are evaluated in the presence of transmission errors and multiple 
broadcast channels. When transmission errors are considered, it is suggested 
that large data items should be broadcast in smaller chunks. On the other 
hand, clients should manage the order of these packages, which is an overhead.

A large broadcast bandwidth can be divided into multiple channels to use 
the bandwidth efficiently. Clients can listen to one or more of these channels 
depending on their capacity and/or interests. The algorithms are also modified 
to use a number of channels [18, 19, 34].

The performance of the proposed algorithms is compared against the opti­
mal overall access time derived from mathematical analysis. Simulation results 
of the proposed algorithm are close to optimum values. It is also shown that 
the proposed algorithm is robust in the presence of transmission errors and 
multiple broadcast channels [33].

In [23], Jiang and Vaidya investigate how the variance of response time can 
be minimized. They point out that other researchers have usually focused on 
the ovei'cill mean response time of scheduling algorithms as the main perfor­
mance metric. The variance of response time affects the Quality of Service. 
Since not all the clients follow the same request pattern with the whole client 
population, the perceived waiting time can change for different request pat­
terns. Therefore, it is asserted in [23] that if a client’s pattern is much different 
than the average ¡^cittern, its own waiting time may be greater than the overall 
mean waiting time. The authors derive a new relation to minimize the vari­

ance using the assumptions stated above. The algorithm presented in [33] is 
modified to exploit the new relation. The result of the work shows that there 
is a trade off between mean access time and variance of response time. When 
one of these two metrics is minimized, the other tends to be maximized. The 
authors claim that the algorithm, which minimizes the variance of Wciiting time 
can be adapted to pull-based systems as well.



Chapter 2. Background and Related Work 14

In a more recent work, Jiang and Vaidya focus more on the individual client’s 
waiting time [24]. In previous works, the clients are supposed to request a data 
item and wait until it is broadcast. However, the situation can be diiferent 
in practical applications. After a certain amount of time, the client can give 
up requesting the data item. Such ^Hmpatienf’ clients require the scheduling 
algorithm to take into account the service ratio. Service ratio is formulated 
as the fraction of requests that are satisfied before the client withdraws. A 
cost model is used to maximize the service ratio. The cost in the model is 
the waiting time. As an analytical result, there is a trade off between mean 
waiting time and service ratio. The new algorithm considering the service ratio 
is compared with the previous algorithm proposed in [33], and observed to have 
better service ratio. Nevertheless, the overall mean waiting time experienced 
with the new algorithm is worse.

Hameed and Vaidya have developed another broadcast scheduling algo­
rithm [18, 19] based on the fair queuing algorithm. The authors relate the 
scheduling algorithm with the packet fair queuing algorithms. In the fair queu­
ing problem, there are many input channels or queues that use one output 
channel. The problem is to select from which channel (queue) the item should 
be transmitted on the output channel. There are two conditions that need to 
be satisfied [19]:

• Ecich input queue should use at least a predetermined amount of the 
output channel bandwidth.

• Bandwidth allocation between the input queues· should be evenly dis­
tributed, rather than being bursty.

Vaidya et al. point out in the works [33, 34, 35] that they derive .a lower 
bound on the overall mean access time under the assumption of equal spacing 
of data items. The similarity between the scheduling problem and the fair 

queuing problem is the usage of the output channel (broadcast bandwidth) and 
spacing the items evenly. The basic algorithm adapts the solution presented 
in [14] for the fair queuing problem to the broadcast scheduling algorithm. The 
algorithm first determines the spacing for each data item. Then, the item with 
the nearest broadcast time is selected. The broadcast time is calculated by
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adding the spacing to the last broadcast time. The algorithm’s average time 
complexity is shown to be O(log M), where Mis the number of data items in the 
database. This algorithm significantly improves the time-complexity over the 
previously proposed broadcast scheduling algorithms [.34, 35] of the authors. 
By using the base algorithm for environments that are prone to transmission 
errors and hcive multiple broadcast channels, new near optimal algorithms are 
proposed.

2.2.4 A  Recent Work: R xW

The work which is most related to our thesis is the one performed by Aksoy and 
Franklin [8, 9]. Aksoy and Franklin focus on pull-based systeixis and propose 
a scheduling algorithm which improves and unifies FCFS and MRF heuristics. 
The algorithm, called RxW, selects the data item with the maximal product 
of the pending requests number and the waiting time of the first request for 
that item. RxW is purely an on-demand scheduling algorithm. The authors 
investigate the algorithm’s performance under the criterion they define in their 
work. Noticing implementation issues, the authors also propose variants of the 
main algorithm.

In our work, we mainly focus on the same problems. The system model 
and assumptions used in [8, 9] look like ours, but there are some different 
parameters and performance criteria considered in our work. We summarize 
and discuss RxW algorithm in more detail in Chapter 3.



Chapter 3

Previous Broadcast Scheduling 
Algorithms

3.1 Main Heuristics: FCFS, MRF, MRFL, 
LWF

There cire not many scheduling algorithms proposed for pull-based broadcast 
systems. In the first work in that direction, the pull-based approach is called as 
two-way interaction and the performance of a number of scheduling algorithms 
is discussed [.36]. The heuristics used in the two-way interaction scheduling 
algorithms are as follows [3

• The well-known First-Come First-Served (FCFS) heuristic has been mod- 
ihed such that if a page was requested and placed in the service queue, a 
new request for that page is ignored. In other words, new requests to a 
page which has been already queued are placed in the same queue position 
with the first request. In this way, redundant brocidcasts of the same page 
are avoided [9].

• Another heuristic proposed to be used in broadcast scheduling algorithms 
is Most Requested First (MRF). As the name of the heuristic implies, the 
page with the largest number of pending requests is selected to broadcast.

16
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In MRF, it is required to record the number of pending requests to a page, 
whereas in FCFS it is not.

• The MRF heuristic is configured to break ties in fcivor of the page with 
the lowest request probability if the request probabilities of the pages are 
available to the scheduling algorithm. This version of the heuristic is 
termed Most Request First Lowest (MRFL).

• The heuristic which selects the page with the largest total waiting time of 
all pending requests is the Longest Wait First (LWF) heuristic.

These main heuristics for pull-down systems are evaluated in [36] and it is 
concluded that when the system load is light, the mean response time is not 
sensitive to the scheduling algorithm used. This is due to the fact that in light 
loads, few scheduling decisions need to be made. On the other hand, when the 
system load is high and the page request probabilities follow Zipf’s Law [38], 
LWF has the best performance, whereas FCFS has the worst.

3.2 R xW  Algorithm

Aksoy and Franklin have also focused on pull-based systems and proposed a 
scheduling algorithm which improves and unifies F’CFS and MRF heuristics [8, 
9].

In their work, the authors first discuss the criteria for evaluating scheduling 
algorithms. They propose to use some performance metrics under three main 
topics, which are responsiveness, scalability and robustness:

• The responsiveness criterion consists of metrics related to the satisfaction 
of user requests such as average wait time, worst case wait time and deci­

sion overhead. The authors define average wait time as the average time 
from the instant that a client request arrives at the server, to the time that 

the item is broadcast. The worst case wait time is defined as the maxi­
mum amount of time that a user request waits before being scitisfied. The
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reason to use this criterion is to check if the algorithm causes starvation 
of some requests, which is an important property for interactive applica­
tions. The decision overhead is the time taken to make a new scheduling 
decision. Broadcast of requests should follow each other without ciny time 
gap to make full use of the broadcast bandwidth. Therefore, the decision 
must be done in an amount of time that is less than the broadcast time 
of a delta item.

• The scalability of the proposed scheduling algorithms is tested when the 
request arrival rates, database size and broadcast rate are varied. These 
parameters are imjDortant characteristics of the mobile environment and 
combination of them can construct a new environment in which the schedul­
ing algorithm should opei’ate efhciently.

• The effectiveness of approximations and heuristics used in the scheduling 
algorithms should not be lost when the environment parameters change. 
This property is called the robustness of the algorithm.

The authors present a summary of the scheduling algorithms proposed 
in [.36] and discuss the advantage and disadvantage of them in the view of 
the criteria given above. They conclude that the LWF heuristic has the best 
performance according to overall mean waiting time. However, the authors 
also point out that the straightforward implementation of the heuristic is not 
practical. On the other hand, other heuristics have their own drawbacks. The 
FCFS heuristic serves the page according to its arrival time without consid­
ering the popularity of the page. The MRF heuristic.serves the hottest (i.e., 
most requested) page first, and can caupe starvation of cold (unpopular) pages. 
LWF balances the service to hot and cold pages according to their total wait­
ing time in the service queue. A page is broadcast either if it is requested by 
many clients or it is awaited for a long time. This balance causes the LWF 
heuristic to have a good overall mean waiting time. After observing this fact, 
they suggest to integrate the heuristics FCFS and MRF in a practical way to 

combine their advantages and eliminate the disadvantages.

As a result, the authors propose the RxW heuristic which balances the
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selection criterion between the number of pending requests and the first re­
quest arrival time of a data item. Basically, RxW would select a data item to 
broadcast either if it is a hot item or it has at least one long awaited request. 
Therefore, the RxW heuristic computes the product of the total number of 
pending requests (R) and waiting time of the first request ( IT) of that data 
item, and selects the data item with the maximum RxW value.

The direct imiDlementation of the RxW heuristic is the exhaustive RxW  
algorithni. In the exhaustive RxW algorithm, each requested page has an 
entry in a hash table with two data fields which are the total number of pending 
requests (R) and waiting time of the first request ( IT) of that data item. When 
a request arrives, if it is the first request for that page, a new entry for the 
page is created. The page’s R field is set to one, and W  field is assigned the 
current time. Otherwise, if the entry for that page is already created, only the 
R field is incremented by one without modifying the W field. In order to select 
a page to brocidcast, all the entries are examined and their RxW values are 
computed. The page with the maximum RxW value is broadcast.

It is clear that the exhaustive RxW algorithm runs in 0(N) time, where N 
is the number of the items in the hash table. To improve the running time, a 
pruning technique is employed by changing the implementation of the heuristic. 
In the new algorithm, called maximal RxW, the authors apply two lists, W and 
R lists; one is increasingly ordered according to arriving time of requests (as in 
FCFS), and the other is decreasingly ordered according to the pending request 
numbers of each page (as in MRF). The maximal RxW algorithm scans these 
two lists in turn to find the entry with the maximal RxW value. The pruning 
technique prevents the algorithm searching all the entries of the R and IT lists 
by setting limits on the values of entries in both lists. If the maximal RxW 
algorithm encounters an entry with less or equal value to the limit value on a 
list, then it ceases to search and returns the data item with the largest RxW 
value computed so far to broadcast.

The maximal RxW algorithm begins to search with the R list. After com­
puting the RxW value of the first entry in the R list, the M AX  variable is set 
to that value. In order to determine the limit value for the Wlist, the MAX  
value is divided by the next entry of the R list. Since the R list is sorted in
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descending order, it is known that for any unexamined entry to have an RxW 
value greater than MAX, it must have a W  value greater than MAX/R. There­
fore, the entries with the W  value less than the limit are not to be considered 
in searching the largest RxW value, and this truncates the Wlist. The limit on 
the R list is set by a similar reasoning. The maximal RxW algorithm searches 
the lists until it hits a limit or it reaches half of the lists. Then, it is known 
that M AX  holds the maximal RxW value. In the experimental results provided 
in the work, it is observed that the pruning technique checks only %27 of the 
entries to find the entry with the maximal RxW value.

Furthermore, the authors develop a parameterized version of the algorithm 
in which the percentage a of the entries to be compared can be identified. For 
instance, if the parameter a is set to 0, then only the first entries of both lists 
are considered in the comparison and the one with the largest RxW value is 
broadcast.

The results of simulation experiments are discussed in the view of the cri­
teria given above. It is observed that the less entries the algorithm compares, 
the more the mean waiting time worsens. That is, the parameterized version 
of the algorithm with low values of a causes worse mean waiting time than the 
maximal RxW algorithm. On the other hand, the comparative performance 
results observed with the worst waiting time is the opposite; i.e., the parame­
terized version of the algorithm causes smaller worst waiting time compared to 
the maximal RxW algorithm. Another benefit of the parameterized version of 
the algorithm is the low scheduling decision overhead compared to the maximal 
RxW algorithm.

As a result, the authors conclude that the proposed RxW algorithm provides 
good performance across all of the criteria considered and can be tuned to trade 
off the average and worst case waiting times by using the parameterized version 

of the RxW algorithm.



Chapter 4

Bucketing Algorithm

We have aimed to develop a scheduling algorithm which can minimize both the 
mean waiting time and its variance, as well as is robust and easy to implement. 
The related work has shown that the Longest Wait P'irst (LWF) heuristic is 
the best compared to other proposed algorithms with respect to the main per­
formance criterion, mean waiting time. Therefore, in this chapter, we first 
try to identify the reasoning behind the good performance of the LWF heuris­
tic. Then, on the basis of our observation, we describe a new heuristic which 
we name Approximate Total Waiting Time (ATWT). The proposed ATWT 
heuristic is implemented using a bucketing scheme and the resulting algorithm 
is termed the Bucketing Algorithm. We also present a variant of the heuristic 
to handle unequal page sizes, as well as a modihi'd version of it that Ccin be 
tuned to trade off performance with the mean waiting time and the variance 
of the waiting time.

4.1 Intuition Behind the Longest Wait First 

Heuristic

In [9] and [36], it is stated that the LWF heuristic has better performance than 
other proposed heuristics when the overall mean waiting time is considered. 
However, the implementation of LWF is subject to more scheduling overhead

21
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than that of other competing heuristics. This is because, the LWf' heuristic 
should calculate the total waiting time of each requested page to decide which 
page to broadcast next. The computation can easily become a bottleneck 
for a system in which the broadcasting of a page takes less time than the 
time required for the calculation of the pending requests’ waiting time. For 
example, if the system is characterized by a large database, a high-bandwidth, 
relatively small page sizes, and almost uniformly distributed requests, then the 
computation can lead to cease the broadcasting. Since time is precious, this 
would not be acceptable.

Other heuristics have their own drawbacks. The First-Come First-Served 
(FCFS) heuristic serves the page according to its arrival time without consid­
ering the popularity of the page. The Most Requested First (MRF) heuristic 
serves the hottest (i.e., most requested) page first, and can cause starvation of 
unpopular pages. LWF balances the service to hot and cold pages according to 
their total waiting time in the service queue. A page is broadcast either if it is 
requested by many clients or it is awaited for a long time. This balance causes 
the LWF heuristic to have a good overall mean waiting time. This conclusion 
is reasonable and stated by some other researchers as well [9, 36]. In the rest 
of this section, we present a different view in proving the effectiveness of the 
LWF heuristic.

As we focus on minimizing the overall mean waiting time of the pending 
requests, we may try to keep the overall mean waiting time as low as possible. 

For this reason, the page which contributes to the overall waiting time most 
may be selected to broadcast at each broadcast cycle. If a page has a nega­
tive effect on system’s waiting time, by selecting and broadcasting it, we may 
prevent it to worsen the situation. Because, if the pending requests of that 
page wait longer, then they can contribute more to the overall waiting time. 
Therefore, we may propose a method to determine the effect of each requested 

page on the overall mean waiting time.

It is assumed that the time (t) is measured by a specific unit called tick and 
each page takes one tick to broadcast. Therefore, each cycle of broadcast can 
be enumerated by the successive values of ticks such that while time t shows 
the current time, the next cycle of the broadcast takes place at time l-fl. Let
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the overall mean waiting time of the system at time t be M(t), the satisfied 
requests’ total waiting time until time t be W(t), and the number of satisfied 
requests until time t be R(t). Then,

M (t) = W (t)
R(t) ( 1)

Furthermore, let an individual requested page be associated with similar 
parameters such that Mp(t) is the mean waiting time for page p, Wp(t) is the 
total waiting time of the pending requests and Rp(t) is the number of the 
pending requests for that page at time t. That is, for a requested page p, the 
mean waiting time is formulated as

Mpit) =
Wpjt)
Rp(t) ( 2 )

Now we can relate the overall mean waiting time of the system with an 
individual page’s effect on it. If we select and broadcast page p, then the mean 
waiting time of the system at the next broadcast cycle will be

 ̂ R{t) +  Rp{t) (3)

The total number of satisfied requests for all pages will be sufficiently larger 
than the number of pending requests to a single page after broadcasting a con­
siderable number of pages. Therefore, we may ignore Rp(t) in the summation 
R(t)+Rp(t) of Formula 3. Then, the formula becomes

M {t +  1) -
W {t) -H Wp{t)

m
where R{t) > >  Rp{t)

, ,  W (t) Wp{t)
R{t)

M {t +  l) =  M{ t ) A

R{t)

w A t)
R{t)

(4)

(5)

( 6 )

Formula 6 implies that the page with the largest total waiting time would 
have the largest effect on the system’s overall mean waiting time. So, if we do
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not select this page to broadcast, its waiting time can get larger worsening the 
overall performance. If we want to minimize the overall mean waiting time, we 
should select a page with the largest value of Wp(t). This observation could be 
another way of confirming the fact that the LWF heuristic is the best among 
all heuristics proposed for broadcast scheduling.

However, as mentioned before the direct implementation of the LWF heuris­
tic can cause a considerable overhead. Therefore, we try to devise an approxi­
mation for the implementation of LWF.

The problem with the implementation of the LWF heuristic is the require­
ment to compute the total waiting time for each data item with pending re­
quests. At each time click, this value of a data item changes even if there is 
not any new request for the item. We try to find an approximate formula to 
calculate the total waiting time on a data item. Normally, we should record 
the arrival time of each request to a page. Whenever the total waiting time 
of a page is needed, we subtract the requests’ arrival times from the current 
time to find the waiting times of each request. Then, these waiting times are 
summed up to find the total waiting time for that page. It is clear that this 
computation is not a negligible overhead for the system.

4.2 Approximate Total Waiting Time

In order to decrease the amount of computation, we assume that all requests for 
a page come at the same time as the first one. That is, we only keep the arrival 
time of the first request for each page. When we need to compute the total 
waiting time of a page, we can simply multiply the number of pending requests 
with the elapsed time since the first request arrived. This approximation gives 
us the upper bound of the total waiting time of a page. If the clients’ requests’ 
arrival is governed by the Poisson process, then it follows that if a page is 
broadcast r time units after the arrival of the first request to it, the mean 

waiting time for pending requests for this page is | [33, 10]. This fact gives an 

approximation to compute the total waiting for a page as follows:
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W ,(t) =
t - A , Rp{t) (7)

where t is the current time, Ap is the first request arrival time, and Rp{t) is the 
total number of pending requests for page p at time t. Wp{t) is the approximate 
total waiting time of page p. The LWF heuristic needs to compute the total 
waiting time for every page to select the one with the largest value. We can 
drop the division by 2 in Formulation 7 to simplify the calculation since Wp{t) 
of each page will be compared. This finalizes the basic formulation, that we 
call Approximate Total Waiting Time (ATW T), to select the data item which 
has the most adverse effect on the overall mean waiting time of the system. 
ATWT enables us to record less information and do less computation. Through 
simulation experiments, we show in Section 5.3 that this approximation works 
well.

The cipproximation we provide for total waiting time has also been suggested 
by Aksoy and Franklin but through completely different reasoning cind obser­
vations from ATWT [9]. In deriving their approximation, they point out the 
drawbcicks of the FCFS and MRF heuristics, and the implementation overhead 
of the LWF heuristic. They suggest to integrate the heuristics FCFS and MRF 
in a practical way to combine their advantages and prevent the disadvantages. 
As a result, they propose the RxW heuristic which balances the selection cri­
terion between the number of requests and the arrival times. In implementing 
the heuristic, they apply two lists; one is ordered according to arriving time 
(FCFS) of requests and the other is ordered according to the pending request 
number (MRF) of each page. This data structure is also different from ours 
that is discussed in Section 4.4.

4.3 Finding the Maximal ATW T

Even if we simplify the calculation of total waiting times of pages, we still suffer 
from the evaluation of this formula for each page being requested to find the 
pcige with the maximum ATWT value. Therefore, the direct implementation 
of the heuristic we propose above has a time complexity of 0(N), where N is
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the total number of requested pages.

In order to avoid the calculation of each requested page’s ATWT, we use a 
method which selects a few pages and calculates only their ATWTs to select the 
page with maximal ATW T  value. Our implementation is bcvsed on a bucketing 
technique h

We classify the pages according to the number of pending requests associated 
with them. All the pages that lie in bucket i will have pending request numbers 
ranging between 2*“  ̂ and 2®-l. The number of buckets is limited by the number 
of pending requests for distinct pages. There will be \log{R+ f )] buckets of 
pages, where R is the number of pending requests of the most requested page 
in the system. In each bucket, the pages are ordered according to their first 
request arrival time. The first page of each bucket is the first requested page 
within that bucket.

Whenever we need to find the page with the maximal ATWT, we compare 
only the ATWT values of the first pages of each group. Since the number 
of buckets is logarithmic with respect to the most requested page’s request 
number, we would examine very few candidates. The page with the largest 
ATWT value is selected among the first entries of all buckets.

It can be shown that the bucketing scheme results in selecting a page with 
an ATW T value which is at least half of the maximum ATWT value. In bucket 
i, it is given that the total number of requests of pages is ranging between 2‘~̂  
and 2’ -l. That is, the total request number of a page is at most two times 
larger than that of any other page that lies in this bucket. Let page pi be the 
first entry in the bucket. Page pi has the arrival time Ap, which is less than 
or equal to the arrival times of other entries of bucket i. Furthermore, assume 
that page p„i has the maximum ATWT value in this bucket. In the worst case, 
page Pm can have a total number of requests twice larger than that of page pi 
and the first request arrival time of page pm can be equal to that of page pi.

 ̂There exist some similar bucketing schemes proposed in different contexts in the litera­
ture (e.g., [7, 33]). As an example, in [7], the bucketing technique is used in the context of 
Web object caching. The authors propose to extend the Least Recently Used (LRU) policy 
to handle varying size objects. They group the Web pages according to their size and each 
bucket of pages is treated as a separate LRU list. The bucketing scheme used in that work 
is called The Pyramidal Selection Scheme.
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That is,

^ P m  <  2 * i?pj

^Pm ^Pl

( 8 )

(9)

The maximum ATWT value of bucket i, which is the ATWT of page pm is:

{i -  ^Pm) * R\P m ( 10)

Using inequalities 8 and 9, we obtain:

(t -  ^ P m )  *  Rpm < { t -  ^ P m )  *  ( 2  *  Rpi  ) ( 11)

and thus

(t -  < {t -  A „ )   ̂R,, ( 12)

This concludes that the first entry of each bucket has an ATWT value which 
is at worst half of the maximum ATWT value in that bucket.

In practice, the maximal ATWT value found by the bucketing method and 
the maximum ATWT value are close to each other, so that the performance 
is not affected much by this selection. We prove this fact through simulation 
experiments in Chapter 5. The results show that the bucketing technique 
is a good way to decrease computation considerably without degrading the 

perforrncince much.

4.4 Bucketing Algorithm

The data structure used for each requested page in the Bucketing algorithm 
is illustrated in Figure 4.1. The field A holds the arrival time of the first
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request, and the field R holds the number of pending requests for that page. 
Each bucket is a linked list of requested pages. Pages are ordered in the linked 
lists according to the first request arrival time. The fields Prev and Next are 
pointers to the previous and next pages in the linked list

A

Prev First Ret|ue.sl 
Arrival Time Next

Prcviou.s page R Next page
according to Total number 

of pending
according to

A value rcque.st.s A value

Figure 4.1: Page data structure.

Entries for pages are placed in the buckets by mapping the total number of 
requests to the bucket number. A page with a total request number i will be 
placed to bucket [log{i)\ +  1 . Pbr example, while a page with three pending 
requests is placed to the second bucket, a page with .32 pending requests lies in 
the sixth bucket. In other words, bucket i contains entries for the pages with 
the pending request numbers varying between 2'“  ̂ and 2®-l. A snapshot of the 
Bucketing algorithm’s data structure is provided in Figure 4.2.

The Bucketing algorithm works as follows: When a request arrives to the 
server, if it is the first request for the page, its arrival time is recorded to the 
A field of the page data structure and the number of pending requests (R) is 
set to one. The page is placed at the end of the linked list in the first bucket 
■since its R value is 1.

Otherwise, if the page was requested and not yet broadcast, the number 
of pending requests (R) is incremented by one. Then, if the page does not 
belong to the existing bucket anymore, it is moved to the cippropriate bucket 
according to its R value. The page is then inserted in the linked list of this 
bucket with respect to its A value.

In the selection of the page to broadcast, only the first page of each bucket 

is examined. The page with the largest ATWT is broadcast and removed from 
the bucket. The bucketing scheme reduces the decision overhead considerably

^For performance concerns, instead of using a linked list data structure, a heap data 
structure can also be implemented to store the items in each bucket. However, for the sake 
of .simplicity we prefer to implement linked list data structure in the simulation.
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Buckel No.

Figure 4.2: The pages are in buckets of exponentially increasing total request 
number.

without deteriorating the quality of the produced broadcast.

We have also implemented a variant of the Bucketing algorithm, called k- 
depth Bucketing algorithm, in which we examine the first k entries of each 
bucket. By comparing more entries, it is expected to have more accurate 

ATWT. The results obtained from the simulation of k-depth Bucketing al­
gorithm in Section 5.8 indicate that when we increase the depth, the overall 
mean waiting time is improved, however, the decision overhead increases as 
well. This ti’cide-off can be managed by setting k to different values.

4.5 Handling Pages with Unequal Sizes

As discussed in Chapter 3, it is assumed that the sizes of data pages are 

uniform. In this section, we examine the situation in which the pages do 
not have to have the same size.

Vaidya et al. proposed several scheduling algorithms to broadcast data
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items with unequal size [19, 33, 34, 35]. After mathematical derivations, the 
authors suggest heuristics in which the data item size is inversely proportional 
to the selection criterion.

In our simulation results, we observed that the overall mean waiting time 
is approximated well when the ATWT value of a page is divided by the size of 
that page. In this variant of the heuristic, the modified ATWT value of a page 
p is computed as:

{t -  Ap) * Rp(t)
(13)

where Sp is the size of page p. The intuition behind (13) is to give precedence 
to small sized pages in selecting the page to broadcast. This was observed to 
reduce the total waiting time of other requests [19].

4.6 Minimizing the Variance of Waiting Time

Like many other researchers, we have so far focused on the overall mean waiting 
time achieved by the proposed heuristic. However, there is another important 
performance metric that should be considered. Variance of the waiting time 
is the second criterion we would like to minimize. This performcince metric 
also affects the Quality of Service. Since not all clients follow the same request 
pattern, the waiting time perceived by an individual client might be different 
from the overall mean waiting time.

We have investigated the variance of waiting time caused by ATWT and 
several other heuristics, and the effect of variance on the individual waiting 
times through simulation. One of the most important results we obtained is 
the inverse relation between the overall mean waiting time and the variance of 
waiting time in such a way that, if a heuristic is good at one of the two metrics, 
it is not good at the other. For example, FCFS hcis better performance than 
most of the heuristics we examined according to the variance of the waiting 
time metric, however, it has worse performance when the overall mean waiting
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time is considered. A similar observation for push-based systems is declared by 
.Jiang and Vaidya as well. In [23], the authors investigate how the variance of 
response time can be minimized. The algorithm presented in [33] is reformu­
lated considering the variance metric and a new algorithm called a-algorithm 
is proposed. It is shown in that work that there is a trade-off between the 
mean waiting time and the variance of waiting time. When one of these two 
metrics is minimized, the other tends to be maximized. The authors claim 
that the algorithm can be adapted to pull-based systems as well. We modify 
the cornputcition of ATWT in our heuristic in a way similar to that suggested 
in [23] as follows:

(t -  Ap)“ * Rp{t) (14)

where a can be assigned different values in order to tune the variance of waiting 
time and the mean waiting time. For instance, when a is set to 1, the original 
ATWT heuristic is obtained and the overall mean waiting time is attempted 
to be minimized. On the other hand, when a is set to higher values than 1, 
the heuristic attaches more importance to the first request arrived time than 
the total pending request number as in the FCFS heuristic, and the variance 
of the waiting time is attempted to be minimized. As a result, there are two 
extreme cases in which one of the two metrics is the best.

Through simulation experiments, we observe that although the a parameter 
values used in [23] is different from that in our work, the results and implica­
tions are very similar. By setting a to different values, the system performance 
can be optimized according to the chosen performance metric.

In order to see the impact of the variance in the Wciiting time over an in­
dividual client’s waiting time, we have also simulated a client whose access 
pattern deviates from the the rest of the client population. We have observed 
that if the Vciriance of mean waiting time is minimized, then the waiting time 

perceived by the client can be improved.
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Performance Evaluation

We have simulated the mobile environment introduced in Section 2.1.2 and 
performed extensive experiments in order to evaluate the performance of the 
Bucketing algorithm relative to other scheduling algorithms. The simulation 
program was written in CSIM [30]. The simulation model and the performance 
results are jDrovided in the following sections.

5.1 Simulation Model

Our simulation model consists of three main components: a mobile support 
station (MSS), a population of mobile units (MUs), and communication chan­

nels as depicted in Figure 5.1. MSS, which is a pull-based server, contains the 
necessary parts and mechanisms to simulate the broadcast delivery. Published 
requests are kept in the service queue. The online database stores the shared 
data items. The decision process is performed by a scheduling algorithm. Client 
population represents MUs within the cell. The communication channel is a 
two-way medium. In the broadcast channel, selected data items are delivered 
to MUs, whereas the backchannel is used to send data requests of MUs to MSS.

Simulation parameters and their values are summarized in Table 5.1. We 
assume that MSSs are information servers and they serve the demands of MUs 
from the database located on themselves. Let dbSize be the total number of

32
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Figure 5.1: Simulation system model.

Symbol Description Default Range Unit
A Mean Req.Arrival Rate 10 [ 10 - 100 ] req./tick
0 Request Pattern Skewness 1. 0 [O.l-l.O]

dbSize Database Size 1,000 [1 ,000-10 ,000] pages
pSize Page Size tick

Table 5.1: Simulation parameters

available data items at the MSS. Data items are numbered from 1 to dbSize, 
where a data item is, for example, a web page or a file. We use the terms data 
item and page interchangeably, since the information server can be a database 
or web server.

The requests of MUs are represented by a single request stream. The request 
arrivals are assumed to be Poisson with a mean value of A. By increasing A, we 
can simulate a higher system load. MUs may exhibit data locality, querying a 
particular subset of the database repeatedly [13, 22]. This subset is a hot spot 
for an MU. In general, a user may request multiple items simultaneously and 
would expect to receive mutually consistent versions of the requested items. 
In this thesis, similar to many of the past work, we consider the case where a 
user demands only one item per request, and unless the user gets the item, a 
new request is not initiated. Furthermore, we assume that MUs can cache the 
requested data items. Caching of frequently accessed data items is essential to 
reduce the contention on the narrow bandwidth wireless channel between a user 
and a server. In our work, the effect of transmission errors is not considered.
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We assume that when a data item is broadcast, all the users requesting that 
item receive it completely.

It is assumed that access probabilities follow the Zipf [38] distribution over 
the database items as in many other related work (e.g., [3, 9, 36]). Data 
items are supposed to be ordered in the database according to their access 
probabilities in decreasing order, i.e., the most favorite data item is in the 
first place in the database. Zipf’s law states that the relative probability of 
a request for the ¿’th most popular data item is proportional to |, where i is 
between 1 cuid the total number of data items in the database {dbSize). The 
Zipf distribution can be formulated to show the demand probability of each 
data item cis below:

Pi = ( 1)

where 0  is a parameter termed access skew coefficient [35]. By changing the 
value of access skew coefficient 0 , different Zipf distributions can be obtained. 
For instance, if 0  is set to zero, Zipf distribution turns out to be a uniform 
distribution with Pi =  l/dbSize.

The time to broadcast a data item is calculated by a specific time unit 
called tick. Instead of specifying the bandwidth of the broadcast channel, we 
assume that page sizes (pSize) are equal and each page can be transmitted in a 
specified number of ticks. The use of tick as a time unit enables us to compare 
easily the results of systems with different properties such as bandwidth and 
data item size. We assume that each page is broadcast in one tick, when the 
size of all the pages is the same. Mean Waiting time is measured by the number 
of ticks.

MSS selects the data item to broadcast under the control of a scheduling 
algorithm and then initiates the broadcast. Since the model is a pull-based 
system, after completing the broadcast, the scheduling algorithm removes the 
request for the broadcast data item from the queue. Then, the requests in the 
service queue are processed to select another data item to be delivered.
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For evaluating a broadcast scheduling algorithm for a particular set of pa­
rameters, the broadcast schedule is produced for at least 30,000 cycles h Fur­
thermore, we run each configuration ten times and use the averages as final 
estimates.

Database (dbSize) is assumed to consist of 1,000 data items. However, in 
order to examine the effects of database size on performance, dbSize is increased 
up to 10,000.

5.2 Performance Criteria

We have evaluated our Bucketing algorithm and compared it with other schedul­
ing algorithms with respect to the following performance criteria:

• Waiting time of a request is defined as the duration of time from when the 
request is made until the desired data item begins to be transmitted on the 
channel. The primary performance metric used in evaluating the quality 
of the broadcast scheduling algorithms has long been the overall mean 
waiting time. It is because the minimization of the waiting time reduces 
the idle time of MUs. Since portable devices have scarce resources cind the 
connection cost is high, users should get the response as soon as possible.

• Variance of waiting time can also be taken into consideration to evaluate 
the Quality of Service experienced by any user, where the overall mean 
waiting time is an indication of the idle time for the whole user population. 
An individual user whose request pattern is different from the overall 
pattern may be associated with a different mean waiting time than the 
overall mean waiting time [23].

• Worst waiting time is defined as the maximum amount of time that any 

user request waits before being satisfied. The reason to use this criterion

^We have observed the mean waiting times and found out that for all the scheduling 
algorithms the mean waiting time is stabilized at most after the first 5,000 broadcast ticks 
for the given values of simulation parameters. In order to record more accurate values of the 
worst waiting time and variance of waiting time, and to check if starvation occurs, we have 
run the simulation for a considerably larger time period, i.e., for 30,000 broadcast ticks.
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is to check if the algorithm causes starvation of some requests, which is 
an important property for interactive applications [9].

• Scheduling algorithms examine the requested data items to select one of 
them to broadcast. In this process, decision making may take an impor­
tant cimount of time of the scheduling algorithms and might cause time 
gaps between broadcasts, which leads to an inefficient use of the broadcast 
channel. Decision overhead is the time taken by the computation which 
should be done for selecting a data item to broadcast next. The decision 
overhead of a good scheduling algorithm should not be high.

5.3 Evaluation of Approximations used in the 
Bucketing Algorithm

As discussed in ChaiDter 4, the ATWT heuristic and its implementation through 
the Bucketing algorithm, are based on two approximations. We have suggested 
to use Approximate Total Waiting Time (ATWT) instead of computing the 
actual total waiting time in order to decrease the computation overhead. Even 
if we simplify the calculation of total waiting time, we still need to evaluate 
the ATW T value for each data item being requested to find the page with the 
maximum ATWT value. In order to avoid the calculation of each requested 
page’s ATWT, we use the bucketing scheme which selects a few pages and 
calculates only their ATWTs to select a page with maximal A'PWT value. In 
our first experiment, we evaluate the impact of these approximations on the 
system performance.

First, we compare the ATWT value with the actual total waiting time. For 
the parameter values given in Table 5.1, the corresponding values obtained for 
the ratio of ATWT to actual waiting time are displayed in Figure 5.2.

As seen in Figure 5.2, the ATWT value is at least 73% of the actual total 
waiting time. If the system workload is high, the approximation of ATWT 
to the actual value is even better. As discussed in the derivation of ATWT 

in Section 4.2, we suppose that the clients’ requests’ arrival is governed by
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Figure 5.2; Ratio of the ATWT value to the actual total waiting time.

the Poisson process. However, the distribution of the requests over the data 
items is not uniform, and we assume that it is a Zipf distribution [38]. In 
light workloads, as the distribution is not uniform, some data items are more 
frequently requested, compared to the others. This leads the approximation to 
predict less accurate values. On the other hand, when the system load is high, 
i.e., there are more requests in a given time period, even cold data items get 
frequent requests, which enables the approximation to display more accurate 
results.

We have used the second approximation in implementing the ATWT heuris­
tic, which is the bucketing scheme. Instead of searching all the data items’ 
ATWT values to find an item with the maximum value,'we group in the buckets 
the data items according to their pending total request numbers, and compare 
only ATWT values of the first entries in the buckets. Therefore, the bucketing 
scheme selects a data item with a maximal  ̂ ATWT value.

We have also compared the maximal ATWT found by the bucketing scheme

^The A T W T  value found by the bucketing scheme may not always be the maximum. On 
the other hand, it is shown in Section 4.3 that the maximal A T W T  value is close to the 
maximum A T W T  value.
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Figure 5.3: Approximation of maximal ATWT to maximum ATWT.

and the maximum ATWT existing in the system. Furthermore, we have eval­
uated the effect of using more accurate values of ATWT on the overall mean 
waiting time of the system. Using the same parameter values provided in Ta­
ble 5.1, we have observed that the ratio of the maximal ATWT to the maximum 
ATWT is around 0.75 (see Figure 5.3).

The result obtained for this ratio seems to be unrelated with the workload 
of the system. It might be asserted that the approximation is low, but the 
effect of the selection of a data item with a smaller ATWT value than the 
maximum value is not much influential on the observed overall mean waiting 
time. In order to see this effect, we have increased the depth pi’operty of the 
bucketing scheme and observed that the maximal values are getting very close 
to the maximum values (see Table 5.2)'.

Even if the approximation of the maximal ATWT to the maximum. ATWT 
is not very accurate, the overall mean waiting time does not worsen much. In 
other words, using the maximal ATWT instead of the maximum ATWT does 
not deteriorate the performance of the scheduling algorithm deadly. Therefore, 
the approximation is practical to be used, considering the decision overhead

^It could be argued that if the higher approximation of maximal A T W T  does not yield
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Depth Approximation of Maximal ATWT Mean Waiting Time
50 98.6% 214.1
25 87.1% 215.6
10 79.9% 216.3

77.4% 217.5

Table 5.2; Effect of using maximal ATWT on overall mean waiting time.

5.4 Mean Waiting Time

In this section, we examine one of the most important performance criteria, 
waiting time of a request which is defined as the duration of time from when 
the request is made until the desired data item begins to be transmitted on 
the channel. The importance of this metric for the scheduling algorithms has 
been discussed in Section 5.2.

In the first experiment, we have implemented our Bucketing algorithm as 
well as four other scheduling algorithms which are discussed in detail in Chap­
ter 3. Performance results of the scheduling algorithms in terms of the mean 
waiting time are displayed in Figure 5.4 for the simulation parameter values 
given in Table 5.1.

In this experiment, the mean request arrival rate (Л) is varied from 10 
requests per tick to 100 requests per tick. The database size is 1,000 pages. 
In this figure, it can be seen that the mean waiting time for all the algorithms 
is increasing while the request arrival rate is getting higher. However, after a 
certain rate, it levels off. This result was ¿ilso observed in [9].

As can be observed in Figure 5.4, the Most Requested First (MRF) and

a significant improvement on the mean waiting time, then it is questionable to try to select 
an entry with the maximum A T W T . It is reminded that A T W T  itself is an approximation 
of LWF. It does not always mean that when a data item with the maximum ATW'F is 
selected, the data item should have the maximum total waiting time as LWF requires. 
This observation is due to the approximation made in the computation of A T W T. The 
improvement observed in the mean waiting time seems to be small, but it does not mean it 
is not significant. Because, even the depth is one, and even the approximation of maximal 
A T W T  to maximum A T W T  is not at higher level, we have the mean waiting time very close 
to the original LWF algorithm (.see Figure 5.4) .
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P'igure 5.4: Mean waiting time of several algorithms.

First-Come First-Served (FCFS) algorithms have much larger mean waiting 
time than the other algorithms. The Longest Wait First (LWF), RxW, and 
Bucketing algorithms are characterized by almost the same mean waiting time. 
The largest difference between any two of these three algorithms is not more 
than 0.8%. In order to see the difference between these three algorithms, 
P'igure 5.5 with a smaller scale of mean waiting time is provided.

Even if LWF is a good algorithm with respect to the mean waiting time 
metric, it has some drawbacks as discussed in Chcipter 4. The straightforward 
implementation of the LWF heuristic is not practical for large databases and 
high-speed broadcast channels. We give the results of the LWF algorithm in 
the experiments for comparison with its approximation Bucketing algorithm 
and the other algorithms, i.e., FCFS, MRF, and RxW. The first observation 
about the algorithms shows that RxW and Bucketing algorithm are the only 
two algorithms which are practical to implement and satisfactory in terms of 
mean waiting time results. FCFS has the best values for some metrics, like 
variance of Wcuting time and worst waiting time, but we can not use it due 
to its uncicceptable results for the main performance metric, the mean waiting 

time. Therefore, in evaluating the performance of the algorithms, we have 
concentrated on the results of RxW and Bucketing algorithms.
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Figure 5.5: Mean waiting times of the LWF, RxW, and Bucketing algoi'ithrns.

5.4.1 Impact of Database Size

An important system parameter that could affect the performance is the num­
ber of data items in the database. A good scheduling algorithm should handle 
different datcibase sizes without degrading the mean waiting time. In order to 
see the performance of scheduling algorithms in the case of a larger database, 
we conduct an experiment by increasing dbSize from 1,000 to 10,000 pages (see 
Figure 5.6).

In the experiment, we have fixed access skew coefficient (0 ) at 1.0 and mean 
request arrival rate (Л) at 10 requests per tick. As the database size increases, 
the mean waiting time increases as well. We have incremented dbSize param­
eter by ten times and observed that the mean waiting time of the algorithms 

rises only five or six times. The result shows that there is not much difference 
between the scalability of the algorithms with respect to database size, when 
the system workload is light. Similar results are obtained when the system 

load is high (i.e., A=100) as depicted in Figure 5.7

In another experiment, we have fixed dbSize at 10,000 and changed the 

mean request arrival rate from 10 requests per tick to 100 requests per tick to
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dbSize

Figure 5.6: Mean waiting times when dbSize is incremented up to 10,000.

Figure 5.7: Mean waiting times when dbSize is incremented up to 10,000 with 
higher system workload.
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Figure 5.8: Mean waiting times when dbSize is 10,000.

examine if the scheduling algorithms yield different mean waiting times. As 
seen in Figure 5.8, the mean waiting time pattern shown in Figure 5.4 does 
not change much.

Concerning the time required to perform the simulation experiments, we 
have preferred to use a default database size of 1,000 pages for ¿ill other exper­
iments without losing generality.

5.4.2 Impact of Access Skewness

We have also conducted several experiments to observe the effect of the access 
skewness parameter on the mean waiting time. In the experiment, we fix the 
request arrival rate at 10 requests per tick and vary the access skew coefficient 

(9) from 0.1 to 1.0. As seen in Figure 5.9, except FCFS, mean waiting time 
values of the algorithms are getting considerably smaller as the skewness of the 
Zipf distribution is increased. This result is due to the fact that, the highly 
skewed request distribution (i.e., 9 >  0.7) leads to the existence of many pend­
ing requests to a few data items, and broadcasting one of the most requested
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Figure 5.9: Changing .skewness of request distribution over database.

data items satisfies many pending requests. RxW, LWF and Bucketing algo­
rithms take the number of pending requests into account, and this property 
causes more efficient use of the broadcast channel. However, when 0 is 0.1, the 
distribution reduces to almost uniform distribution, and each data item has 
almost the same pending requests. In that case, all the scheduling algorithms 
lead to almost the same mean waiting time.

The FCF,S algorithm does not consider the pending request number in 
broadcast scheduling, so that the mean waiting time obtained with this al­
gorithm does not improve much when the access skewness increases.

5.4.3 Impact of Page size

As mentioned in Chapter 2, when evaluating the performance of the scheduling 
algorithms, it is assumed that the size of each data item in the database is 
the same. However, this assumption may not be true for some applications. 
Therefore, we have conducted several experiments by relaxing this assumption 
to observe the effect of the database consisting different sizes of pages on the 

the scheduling algorithm’s performance.



Chapter 5. Performance Evaluation 45

As discussed in Section 4.5, we have modeled the case of varying page size 
by adapting an approach by Vaidya et al. [19] into our heuristic, and modifying 
the ATWT formula as

{t — Ap) * Rp(t)
( 2 )

where Sp is the size of page p. The intuition behind this modification is to 
broadcast the small sized page first in order to reduce the total waiting time 
of other requests.

In order to simulate the mobile environment in which the size of data items 
in the database is not fixed, we have assigned different values to each data item 
size. In the experiments of this section, it is assumed that the page size (pSize) 
is varying between 20 KB and 400 KB, and the bandwidth of the broadcast 
channel is 2 Mb per second.

We have conducted two experiments to observe the impact of the size distri­
bution on the overall mean waiting time. In both experiments, each item size 
is determined by a linear function. In the first experiment, the size of popular 
pages is smaller compared to the unpopular pages. It is reminded that we have 
assumed in Section 5.1 that data items are ordered according to their access 
probabilities in decreasing order, i.e., the most favorite data item is in the first 
place in the database. Therefore, in the first experiment, the size of the first 
page in the database is assigned the smallest value, whereas the size of the last 
page is assigned the largest value. The size of the pages (sp) in between them 
is increased linearly using the following formula:

Sp  --
sizejrnin +  ( 
sizesnax

Size-.max—Size ̂ min
dbSize ) * (p — 1) if 1 < p < dbSize — 1, 

if p =  dbSize.
(3)

where p is the index of the page between 1 and the total number of data items 
(dbSize) in the database, size.max and sizejmin correspond to maximum and 
minimum page sizes, and they are set to 400 KB and 20 KB in the experiments, 
respectively. In other words, the size of data items in the database is associated 

with increasing values from 20 KB to 400 KB.
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Figure 5.10: The page sizes are increasing linearly.

The mean waiting time results obtained for this configuration are provided 
in Figure 5.10.

Contrary to the first size distribution, in the second experiment the size of 
pages is linearly decreasing:

sizerrnax -  * (p -  1) if 1 < P < dhSize -  1,
sizejmin \i p — dbSize.

(4)
In other words, the size of the most popular pages is larger than the size 
of unpopular pages. The experienced mean waiting time is depicted for the 
scheduling algorithms in Figure 5.11, when the size distribution is linearly 
decreasing.

S'}) —

In both experiments, the modified ATWT heuristic of the Bucketing schedul­
ing algorithm provides the best mean waiting time results. The Bucketing 
algorithm produces less mean waiting time than that of the RxW algorithm 
about 5% in decreasing page size distribution, whereas this improvement is up 
to 13% when increasing page size distribution is employed.

As seen in Figure 5.11, when the size of hot pages is larger, the experienced 
mean waiting time becomes longer. On the average, when the decreasing size
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Figure 5.11: The page sizes are decreasing linearly.

distribution is employed, the mean waiting time is twice as much as the mean 
waiting time obtained with the increasing size distribution. This is due to the 
fact that as the popular pages are broadcast frequently, they make the requests 
to unpopular pages wait longer.

5.5 Variance of Waiting Time

In Section 4.6, we have discussed the importance of the i/ariance of waiting time 
on the Quality of Service, and modified our algorithm to handle the trade-off 
between mean waiting time and variance of waiting time. The ATWT value 
used as a selection criterion in the Bucketing algorithm has been modified as 
follows:

(t -  Ap)°‘ * Rp(t) (5)

where a can be set to different values to yield a good broadcast scheduling 
with respect to the desired criteria. For instance, if a is set to 1, the original 
ATWT heuristic is obtained and the overall mean waiting time is attempted
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Figure 5.12: Impact of a parameter on variance of waiting time.

to be minimized. On the other hand, when a is assigned higher values than 
1, the heuristic attaches more importance to the first request arrival time as 
in the FCFS heuristic and the variance of the waiting time is attempted to be 
minimized. As a result, there are two extreme cases in which one of the two 
metrics is the best.

In Figures 5.12 and 5.13 the results for the variance of waiting times and 
the mean waiting time of the Bucketing algorithm are presented, respectively. 
In this experiment, the a parameter is varied from 0.5 to 3.0, while using the 
other default parameter values given in Table 5.1. As seen in the figures, the 
trade-off between the mean waiting time and the variance of waiting time is 
clear. For higher values of a, the variance is improving, on the other hand, 
the rnecin waiting time of the algorithm is getting worse. The mean waiting 
time of the algorithm improves while the a parameter is increased from 0.5 
to a certain value, which is 0.9 in our experiment. Then, for the values larger 
than this threshold, the mean waiting time begins to worsen again. This result 

is due to the fact that for the a values higher than 1, the modified ATWT 
heuristic in Formula 5 attaches more importance to the waiting time of the 
first request than the total number of pending requests of a page. Therefore, 
the heuristic selects the pages similar to those selected with the FCFS heuristic.
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Figure 5.13: Impact of a parameter on mean waiting time.

On the other hand, when the a value is set to values lower than 1, the heuristic 
behaves in favor of the most requested pages like MRF. As a result, when the 
a value becomes farther than 1, the experienced mean waiting time becomes 
more similar to that of one of the two algorithms. We have seen in Figure 5.4 
that for the mean request arrival rate (A) of 10 requests per tick, MRF leads to 
worse mean waiting time than FCFS. As can be seen in Figure 5.13, when we 
set a to 0.5, we get worse mean waiting time compared to the Vcilue obtained 
by setting a to 1.5. This observation also supports the relationship between 
the a value and the resulting mean waiting time.

We have also conducted an experiment to observe the varicince with the other 
algorithms and to compare the improvement gained by the modified ATWT 
in (5). The results obtained in the experiment is depicted in Figure 5.14. The 
algorithms. Bucketing, RxW, and LWF, which have the best mean waiting 
time results, have higher variance values. The FCFS algorithm has the lowest 
degree of variance observed, due to the fact that in the worst case, the algorithm 

broadcasts any requested data item after broadcasting the whole set of data 
items in the database. That is, for the waiting time of a request, there is an 
upper bound which is determined by the database and data item size. This 
upper bound also limits the variance of the waiting time. However, we can
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Figure 5.14: Variance of waiting time.

not claim this argument for the other algorithms in which, a data item can be 
broadcast many times before a data item is being broadcast.

After modifying our algorithm’s heuristic as in (5), the new performance 
results obtained are presented in Figure 5.15. In this experiment, we have set 
the a value to 2. For higher workloads, the modified algorithm has even better 
variance of waiting time than that of FCFS.

However, as discussed above, the mean waiting time of the modified algo­
rithm has become slightly worse (see Figure 5.16). With a greater value for a 
(e.g., .3), variance of the waiting time can be further, decreased, however, the 
mean waiting time would become worse.

In order to see the impact of the variance of waiting time on the mean wait­
ing time, we have conducted several experiments. As presented in Section 5.1, 

it is supposed that each client has an interest with all the data items in the 
database with different access probabilities determined by the access skew co­
efficient (0 ) parameter. However, in reality, it would be the case that, some 
clients are interested in only a portion of the database.

We have simulated a scenario such that there is a client who is requesting
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Figure 5.15; Comparing Bucketing algorithm when Ci=2.

Figure 5.16; Mean waiting time of Bucketing algorithm with a=2.
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Figure 5.17: Mean waiting time of a client with different off-set values.

only a limited number of data items. We assume that these data items are 
located in the database consecutively. The number of data items requested 
by the client is termed as the request range. In previous experiments, we have 
supposed that each client’s request range is between 1 and dbSize, where dbSize 
is the total number of data items in the database. For this experiment, the 
request range is specified as 50 data items. In Section 5.1, we have assumed that 
data items are ordered in the database according to their access probabilities 
such that the most probably requested data item is in the first entry, whereas 
the data item with lowest access probability is the last entry of the database. 
In the experiment, we select an off-set parameter which is the first data item 
of the client’s request range. The client’s requests are distributed over data 
items in the request range according to the distribution with 0=1.0.

As seen in Figure 5.17, the client has different mean waiting time values from 
the rest of the client population. It is reminded that for the same parameter 
values, the mean waiting time of the client population experienced for the 
Bucketing, RxW, and LWF algorithms is about 217 ticks. As the client request 
range goes away from the hot data items, the mean waiting time increases. The 
three algorithms. Bucketing, RxW, and LWF have almost the same values, 

whereas the Bucketing algorithm with a —2 has the lowest values. The fact
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is that the Bucketing algorithm with a=2  has the lowest variance of waiting 
time values among all the algorithms (see Figure 5.15), and this leads to the 
fact that the client’s mean waiting time is not affected as much as the other 
algorithms. The difference between mean waiting time values obtained by 
diiferent algorithms is small when the off-set value is chosen within the range 
of hot pages. On the other hand, when the client is requesting cold pages 
(e.g., for the off-set values greater than 500 pages), the difference is getting 
noticeable. For instance, the mean waiting time of the Bucketing algorithm 
with a=2  is about 30% less compared to other algorithms for the off-set value 
900.

Another important result obtained from the experiment is that the mean 
waiting time experienced by the client is up to four times compared to the whole 
client population when the Bucketing, RxW, or LWF algorithm is implemented 
as the scheduling algorithm. However, if the Bucketing algorithm with a —2 
is employed, the degeneration observed in the mean waiting time is limited to 
about 3 times of the original one.

5.6 Worst Waiting Time

The reason to evaluate this criterion is to check if the proposed scheduling 
cilgorithm causes starvation of any request, which is an important property 
that should be avoided in interactive applications cis discussed in Section 5.2. 
Figure 5.18 displays the results for the longest waiting time experienced by any 
MU during the whole simulation time. For the default values of the simulation 
parameters presented in Table 5.1, FCFS has the lowest worst waiting time 
among all the algorithms. As discussed above, when FCF’S is employed as the 
scheduling algorithm, any requested data item will be broadcast after the data 
items previously requested and the number of these data items is limited by 
the database size. In other words, the largest possible worst waiting time of a 
request is the time taken by broadcasting all the database items. However, for 
other algorithms, it could be possible that a request waits while some of the 
data items are broadcast multiple times. The Bucketing algorithm has lower 
worst waiting time than that of the RxW algorithm with changes between 3%
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Figure 5.18: Worst waiting time.

and 21%.

The worst waiting time values observed with the algorithms are presented 
in F’igure 5.19 as dbSize is varying between 1,000 and 10,000 with A=50. In 
the figure, again F'CFS has the lowest worst waiting time for cdl the values of 
the dbSize parameter. MRF leads to unfair usage of the broadcast band for 
some requests and makes them wait for unacceptable periods. Our algorithm 
produces better results compared to the RxW, LWF, and MRF' algorithms. 
The worst waiting time of the Bucketing algorithm is less than those of the 
RxW cind LWF algorithms up to 20%.

5.7 Scheduling Decision Overhead

As discussed previously, a good scheduling algorithm should not have much 
scheduling decision overhead. Otherwise, while the scheduling algorithm wastes 
its precious time to decide which data item to broadcast next, time gaps can 

occur between broadcasts, which leads to an inefficient use of the broadccist 

channel.
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Figure 5.19: Worst waiting time for different dbSize values.

In order to evaluate the decision overhead of the scheduling algorithms, 
we have examined the number of requests scanned for selecting one of them 
to broadcast. If the number is large, the decision takes much time and may 
become a bottleneck.

We have compared the average number of data items scanned by three 
algorithms: LWF, RxW, and Bucketing, using the parameter values provided 
in Table 5.1. The system workload is increased by varying A value from 10 to 
100. FCFS is not included in this experiment. It only broadcasts the request 
that has arrived first, and does not need to compare any entry. On the other 
hand, its overall waiting time is so bad that it is not a competitive algorithm 
to be used.

As seen in Figure 5.20, LWF has the highest decision overhead,· while the 

Bucketing algorithm has the lowest decision overhead. The overhead of the 
RxW algorithm is in between. Compared to other algorithms, the Bucketing 
algorithm examines significantly fewer number of requests at each scheduling 
decision. For a request rate of 10 requests per tick, the LWF algorithm com­

pares L30 times more entries and the RxW algorithm compares 36 times more 
entries than that of the Bucketing algorithm. In [9], approximate versions of
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Figure 5.20: Decision overhead.

the RxW algorithm are proposed and they are shown to lead to less compar­
isons in deciding which data item to broadcast. However, these approximate 
versions have worse mean waiting times compai’ed to RxW. The Bucketing al­
gorithm, as discussed in Section 5.4, produces almost the same mean waiting 
time as RxW, while leading to less scheduling decision overhead.

5.8 Improving the Bucketing Algorithm

We have tried to improve the mean waiting time oi our Bucketing iilgorithrn 
and implemented the depth approach as presented in Section 4.4. There is 
a trade-off between the decision overhead and the mean waiting time in this 
approach. As we increase the search depth, we need to compare more entries 

of ATW T values, and we obtain lower mean waiting time (see Figure 5.21 and 

Table 5.2).

When we set the depth parameter to 50, the resulting mean waiting time ol 
the Bucketing algorithm is smaller than to that of the RxW algorithm as seen 

in Figure 5.22.
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Figure 5.22: Bucketing algorithm with depth=50 and the other competitive 
algorithms.
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5.9 Implementing A Push-Based Algorithm

We have summarized the related work done by Vaidya et al. in Section 2.2.3. 
The authors have worked on data broadcast scheduling algorithms extensively 
and proposed several scheduling algorithms [19, 35]. Vaidya et al. suggest that 
the transmission of information to the mobile clients can be performed effi­
ciently by broadcasting the information periodically. Therefore, their schedul­
ing algorithms are based on a push-based approach. On the other hand, the 
authors claim that the scheduling algorithm in [33] can be ap2rlied to a pull- 
based broadcast environment by replacing access probabilities with the num­
ber of pending requests for a data item. However, they do not implement the 
algorithm in a pull-based environment and evaluate it against the other algo­
rithms. To observe the performance of the algorithm proposed by Vaidya et 
al. in [33, 18] for push-based systems, we have modified and implemented it as 
to schedule the broadcast in an on-demand environment.

The authors have offered to use a decision rule to select which data item 
to be broadcast next [33]. In the first algorithm they propose, which is called 
Algorithm A, the decision rule is determined as follows:

G(z)=̂ ( Q - E ( i ) f * p ,
li

(6)

where Q denotes the current time, R(i) is the last broadcasting time, pi is 
the access probability, and li is the size of item i. The data item with the 
maximum G(i) value is selected to broadcast. It is assumed in the push-based 
systems that the access probabilities of each data item are known beforehand. 
However, in the j^ull-based systems, scheduling algorithms utilize the total 
number of pending requests for each data item, and access probabilities are 
assumed to be dynamic or unknown to the scheduling algorithms.

In the implementation of Algorithm A in a pull-based system, we have 

used the total pending request number (Rp) of a page instead of the access 
probability (pi). Furthermore, as a default, we do not consider the page size 
and assume that the size of all pages are the same. Therefore, the /,■ parameter
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Figure 5.23: Comparing Algorithm A with pull-based algorithms.

of the decision rule in equation (6) is omitted.

The observed mean waiting time results are provided in Figure 5.23. The 
results show that the proposed algorithm does not provide better mean wait­
ing time compared to the three algorithms we have experimented so far. An 
important point to be mentioned about is the fact that when the request rate 
is getting high, the difference between the performance of Algorithm A and the 
other algorithms decreases. However, even if we have increased the A parameter 
value up to 250, the mecin waiting time of Algorithm A is still worse.

We would like to make some comments on the decision rule in equation 
(6). After modifying the formula to work in pull-based environments, the 
decision rule attaches more importance to the duration than the total number 
of pending requests by taking its second power. However, the other algorithms, 
LWF, RxW, and Bucketing, do not give special importance to the duration.

Another comment that might be made is that, after modifying the lormula 
to work in pull-based environments, if the second power of the subtraction is 
removed, then the formula becomes very similar to the one used in Bucketing 
and RxW scheduling algorithms. The only difference is that in the decision 

rule of Algorithm A, the duration used begins from the time that the delta
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item is last broadcast, whereas Bucketing and RxW scheduling algorithms are 
concerned with the time when the first request for that page cirrives.



Chapter 6

Conclusion

In this thesis, the problem we attack is the design of a broadcast scheduling 
algorithm which efficiently meets the demands of a mobile computing envi­
ronment and mobile users. We have first proposed a new broadcast scheduling 
heuristic, Approximate Total Waiting Time (ATWT), which is an approximate 
version of the Longest Wait First (LWF) heuristic [36]. Then, we have devel­
oped an algorithm called the Bucketing algorithm to implement the ATWT 
heuristic by using a bucketing scheme. Finally, we have done extensive simula­
tion experiments to evaluate the performance of our algorithm, and to compare 
the performance results against those of previously proposed scheduling algo­
rithms.

Considering the performance results, the first remark to be done is that 
the most competitive algorithm to our algorithm is RxW [9]. The other al­
gorithms, except LWF, do not produce good results with respect to the main 
performance criterion, the overall mean waiting time. Although, the LWF al­
gorithm has better performance than all the others, it hiis serious drawbacks 
which prevent its practical usage. However, as a yardstick we have also pro­
vided its performance results. In this chapter, we mainly focus on summarizing 

the comparative performance results of the Bucketing algorithm and RxW.

The Bucketing algorithm has a run time complexity of 0{\log{R -(- i ) ] ) ,  
where R is the number of pending requests on the most requested page in
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the system. The exhaustive RxW algorithm runs in 0{N)  time, where N is 
the number of requested data items, whereas the maximal RxW algorithm 
which applies a pruning technique can eliminate %73 of the entries to find the 
entry with the maximal RxW value. Since the running time of the Bucketing 
algorithm is logarithmic with respect to the number of requests on the most 
requested page, it is faster than RxW.

Performance results of the Bucketing algorithm in terms of the main perfor­
mance metric (i.e., overall mean waiting time), are very close to those of RxW. 
Furthermore, we can obtain better results by implementing the k-depth Buck­
eting algorithm. As presented in Section 5.8, when we set the depth parameter 
to 50 for the given simulation parameter values, the resulting mean waiting 
time of the Bucketing algorithm is less than that of the competing algorithm 
RxW.

We have also observed the impact of several different system parameters, 
such as the database size and access skewness parameter, on the overall mean 
waiting time achieved. The results obtained with the database size experiment 
have shown that there is not much difference between the scalability of the 
algorithms with respect to the database size. The effect of the access skewness 
parameter on the mean waiting time has been examined by varying the access 
skew coefficient [6). It has been observed that the mean waiting time values 
of the RxW and Bucketing algorithms decrease as the skewness of the Zipf 
distribution is increased. This result is due to the fact that, the highly skewed 
request distribution leads to the existence of many pending requests to a few 
data items, and broadcasting one of the most requested data items satisfies 
many pending requests.

We have also conducted several experiments by setting the pages of the 
database to different sizes. The ATWT heuristic has been modified ciiming to 

consider the size of individual pages in the computation of the ATWT value. 
The Bucketing algorithm with the modified ATWT heuristic has resulted in 
the best mean waiting time experienced for different size distributions. The 
improvement in the mean waiting time has been up to 13% when increasing 

page size distribution has been employed.
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In order to handle the trade-off between the performance measures mean 
waiting time and variance of waiting time, we have modified the selection crite­
rion of our algorithm. As a result of this modification, the system’s performance 
can be adjusted to obtain required results for the given metrics. A parameter 
(a) is used by the algorithm for this adjustment. For instance, we can get very 
low values of the variance of waiting time metric by setting the a parameter 
of the algorithm to values larger than 1.

The wo7'st waiting time performance metric has also been used in evaluations 
to check if any of the scheduling algorithms evaluated causes starvation of any 
request. The worst waiting time result obtained with the Bucketing algorithm 
has been observed to be less than that of the RxW and LWF algorithms up to 
20%.

We have also implemented a push-based broadcast scheduling algorithm pro­
posed by Vaidya et al. [33] by applying the required modifications to be used 
in an on-demand environment. The performance results obtained show that 
this algorithm does not provide better mean waiting time compared to other 
algorithms we have experimented with so far.

After evaluation of the simulation results obtained with the Bucketing schedul­
ing algorithm, relative to the performance of the other well-known broadcast 
scheduling algorithms, we have concluded that the Bucketing algorithm is one 
of the best algorithms that can be used in pull-based broadcast environments.

One possible direction for future research is to extend the Bucketing algo­
rithm to handle transmission errors and to support multiple broadcast chan­
nels. In order to reduce transmission errors, large data items can be broadcast 
in smaller packets. Multiple broadcast channels might provide better perfor­
mance results. Database can be partitioned and each partition can be broad­

cast on a different channel.



Bibliography

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data 
management for asymmetric communication environments. In Proceedings 
of ACM SIGMOD, pages 199-210, May 1995.

[2] S. Acliarya, M. Franklin, and S. Zdonik. Balancing push and pull for data 
broadcast. In Proceedings of ACM SIGMOD Conference, Tuscon, Arizona, 
May 1997.

[3] S. Acharya, M. J. Franklin, and S. Zdonik. Dissemination-based data 
delivery using broadcast disks. IEEE Personal Communications, 2(6):50- 
60, December 1995.

[4] S. Acharya, M. J. Franklin, and S. Zdonik. Disseminating updates on 
broadcast disks. In 2Snd International Conference on Very Large Data 
Bases (VLDB’96), Bombay, India, September 1996.

[5] S. Acharya, M. J. Franklin, and S. Zdonik. Prefetching from a broadciist 
disk. In I2th International Conference on Data Engineering (ICDE’96), 
New Orleans, LA, February 1996.

[6] S. Acharya and S. Muthukrishnan. Scheduling on-demand broadcasts: 
New metrics and algorithms. In Eourth Annual ACM/IEEE International 

Conference on Mobile Computing and Networking, 1998.

[7] C. Aggarwal, J. L. Wolf, and P. S. Yu. Caching on the world wide web. 
IEEE Transactions on Knowledge and Data Engineering, 11(1):94-107, 

January/February 1999.

64



BIBLIOGRAPHY 65

[8] D. Aksoy and M. Franklin. Scheduling for large-scale on-demand data 
broadcasting. In Proceedings of the IEEE INFOCOM Conference, pages 
651-659, March 1998.

[9] D. Aksoy cind M. Franklin. Rxw: A scheduling approach for large-scale on- 
demand data broadcast. ACM/IEEE Transactions on Networking, 7:846- 
860, 1999.

[10] M. H. Arnmar and J. W. Wong. The design of teletext broadcast cycles. 
Performance Evaluation, 5:235-242, November 1985.

[11] M. H. Ammar and J. W. Wong. On the optimality of cyclic ti'cinsmission 
in teletext systems. IEEE Transactions on Communications, 35:68-73, 
January 1987.

[12] D. Barbara. Mobile computing and database: A survey. IEEE Trans­

actions on Knowledge and Data Engineering, 11(1):108-117, January- 
February 1999.

[13] D. Barbara and T. Imielinski. Sleepers and workaholics: Caching strategies 
in mobile environment. ACM SIGMOD RECORD, 23(2), May 1994.

[14] J. C. R. Bennett and II. Zhang. Wf2q: Worst-case fair weighted hiir 
queueing. In INF'OCOM’96, March 1996.

[15] Hughes Electronics (GMH) company DirecPc Home page. 
http://www.direcpc.com /, 2000.

[16] A. Datta, A. Celik, J. G. Kim, D. E. VanderMeer, and V. Kumar. Adaptive 
broadcast protocols to support power conservant retrieval by mobile users. 
In Proceedings of the Thirteenth International Conference on Data Engi­

neering, pages 124-133, Birmingham U.K, April 7-11 1997. IEEE Com­

puter Society.

[17] T. F. Bowen et al. The datacycle architecture. Comm,unication of ACM, 

35(12):71-81, December 1992.

[18] S. Harneed and N. H. Vaidya. Log-time algorithms for scheduling single 
and multiple channel data broadcast. In Proceedings of the Third Annual

http://www.direcpc.com/


BIBLIOGRAPHY 66

ACM/IEEE International Conference on Mobile Computing and Network­
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