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ABSTRACT
Bone remodelling is a complex biomechanical process, which has been studied widely based on
the restrictions of local continuum theory. To provide a nonlocal bone remodelling framework,
we propose, for the first time, a peridynamic formulation on the macroscale. We illustrate our
implementation with a common benchmark test as well as two load cases of the proximal
femur. On the one hand, results of our peridynamic model with diminishing nonlocality measure
converge to the results of a local finite element model. On the other hand, increasing the neigh-
bourhood size shows to what extent the additional degree of freedom, the nonlocality, can
influence the density evolution.
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1. Introduction

Bone remodelling is a continuously ongoing mechan-
ism of bone tissue to adapt its external and mainly
internal trabecular bone structure to mechanical and
biological alterations. In this process, the interaction
of various cell types (osteoblasts, osteoclasts and
osteocytes) plays a crucial role for bone formation
and resorption. Wolff (1892) postulated Wolff’s law
of bone remodelling to describe the functional adap-
tion of living material to external mechanical stimu-
lus. Cowin and Hegedus (1976) set the stage for
mathematically describing the coupling of bone evolu-
tion and mechanical stimulus with the first con-
tinuum model for bone remodelling.

The complex process of bone remodelling remains
an ongoing modelling challenge, as outlined by an
extensive literature review of Della Corte et al. (2020),
where different aspects of bone remodelling are
addressed. In this regard, the nature of the biological
stimulus that mainly controls the bone density evolu-
tion is one of the research focuses. George et al.
(2018) proposed a multiphysics stimulus dependent
on mechanical, molecular and cellular stimuli. In
order to capture the nonlocal cell to cell communica-
tion of bone sensor cells via a mechanosensory net-
work (Martin et al. 1998), Kumar et al. (2011)
focused on a nonlocal stimulus that implies spatial
averaging, whereas Giorgio et al. (2019) incorporated
a diffusive stimulus emerging from osteocytes.

Considering the attractor stimulus that determines
homeostasis, Papastavrou, Schmidt, Deng et al. (2020)
examined a non-constant and age-dependent
attractor stimulus.

Despite the already established nonlocal biological
stimulus of Kumar et al. (2011), the governing equa-
tions for the mechanical evolution equations have
been defined only in a local continuum form.
Nonlocal continuum theories, such as peridynamics
(PD) introduced by Silling (2000), can be used to cap-
ture and study nonlocal material behaviour. In con-
trast to classical continuum mechanics (CCM), the
material behaviour at every continuum point in the
peridynamic theory is affected by its finite-size neigh-
bourhood. Thus, the governing equations are obtained
in integrodifferential form based on the force density
resulting from interaction of continuum points
(Silling 2000).

PD was initially established to overcome singular-
ities appearing in fracture mechanics. In recent years,
the application of PD has expanded significantly, as
extensively reviewed by Javili et al. (2019). In the bio-
mechanical field, PD was already utilised for bone
modelling, while retaining the original intention for
predicting crack formation. Deng et al. (2009) studied
microcrack propagation and healing processes in cor-
tical bone using a nonlocal multi-scale field theory
and Ghajari et al. (2014) introduced a peridynamic
material model to analyse dynamic crack propagation
in orthotropic media like cortical bone.
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To the authors’ knowledge, the nonlocal material
behaviour of bone tissue regarding the remodelling
process has not been studied yet. Motivated by the
lack of a fully nonlocal material model, the objective
of this paper is to introduce a peridynamic formula-
tion for bone remodelling at the macroscale for the
first time by extending the local nonlinear evolution
equations of Kuhl and Steinmann (2003) in a peridy-
namic sense.

The paper is organised as follows. In Section 2, we
introduce the peridynamic equations for bone remod-
elling with the governing balance and constitutive
equations. Section 3 briefly outlines the computational
implementation. Subsequently, in Section 4, we dem-
onstrate the characteristics of our peridynamic formu-
lation with two numerical examples. First, we perform
a simple uniaxial benchmark test to validate our non-
local formulation. In a second numerical example, we
focus on the density distribution evolving throughout
the proximal femur. Here, we additionally examine
the influence of the prescribed boundary conditions
by comparing two load cases. The conclusion in
Section 5 summarises the main findings of the paper
and provides further outlook.

2. Problem definition

In the following, we model bone as a continuum
domain assuming that bone tissue is continuously dis-
tributed at the macro scale. We use the continuum-
kinematics-inspired peridynamic (CPD) formulation
of Javili et al. (2019) with only one-neighbour interac-
tions, which is equivalent to bond-based PD in the
framework of Silling (2000), and develop a nonlocal
formulation for bone remodelling. Thereby, we extend
the nonlinear equations for open systems as proposed
for local CCM, presented in Kuhl et al. (2003), Kuhl
and Steinmann (2003), and Papastavrou, Schmidt,

Deng et al. (2020), to their nonlocal counterparts
within a PD formulation.

2.1. Kinematics

In accordance with the classical continuum theory, we
consider a continuum body in its material configur-
ation B0 � R

3 at time t0 � Rþ and in its spatial con-
figuration Bt � R

3 at t>t0 � Rþ as illustrated in
Figure 1. The boundary is denoted by oB0 and oBt,
respectively. The material coordinates X of the con-
tinuum points are mapped via the nonlinear deform-
ation map y to their spatial coordinates x as

x ¼ yðX, tÞ : B0 � Rþ ! Bt: (1)

In PD theory, every continuum point interacts
with continuum points in its finite neighbourhood,
the so called horizon H0 that is typically a spherical
neighbourhood of X defined by the radius d in the
material configuration. The horizon H0 is mapped to
its spatial configuration Ht as

Ht ¼ yðH0Þ: (2)

The horizon size d has an influence on the nonlocal
material behaviour at X and is consequently considered
a material parameter of PD. Note that the local con-
tinuum theory is recovered by a vanishing horizon size.

Quantities of neighbours within H0 are marked
with a superscript line f�gj

: The position vector in
the material configuration X

j 2 H0 is mapped via the
nonlinear deformation map y to the position vector
x
j 2 Ht in the spatial configuration. The line vectors
between the continuum point and any of its neigh-
bours are defined by

N
j
:¼ X

j�X and n
j
:¼ x

j�x, (3)

in the material and spatial configurations, respectively.
In the following, we derive the governing equations

in the material configuration. Therein, the material time

Figure 1. A continuum body in its material configuration B0 � R
3 is mapped to its spatial configuration Bt � R

3 via the nonlin-
ear deformation map y.
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derivative of a quantity f�g at fixed material placement
X is denoted by Dtf�g: Densities per unit volume are
denoted by f�g0: The material density q0 of the con-
tinuum point and q

j
0 of its neighbours are local con-

tinuum quantities. They are considered homogenised
versions of the underlying open-pored bone tissue.

2.2. Governing equations

In the following, we only state the balance equations
for our PD formulation. For the sake of completeness
the corresponding balance equations for CCM can be
found in Table 1.

2.2.1. Balance of mass
In our peridynamic formulation, the point-wise bal-
ance of mass is given by

Dtq0 ¼ R0, (4)

where q0 is the point density and R0 the scalar mass
source term. Note that similar to CCM we consider
the balance of mass as a local balance equation.
However, R0 can be a nonlocal quantity by its consti-
tutive equation. For the sake of simplicity, we do not
consider a mass flux term as proposed in Kuhl and
Steinmann (2003) and discussed in Papastavrou,
Schmidt, Deng et al. (2020).

2.2.2. Balance of linear and angular momentum
The point-wise balance of linear momentum equili-
brates the temporal rate of the momentum density
p0 ¼ q0v with the internal body force density bint0 and
the external body force density bext0 as

Dtp0 ¼ bint0 þ bext0 with bext0 :¼ �b
ext
0 þ vR0, (5)

where �b
ext
0 is the external body force density reduced

by the additional source term vR0 due the mass
source R0: The internal body force bint0 is given by an
integral of the pairwise force density p

j
between the

continuum point X and its neighbours X
j
over the

horizon H0 as

bint0 ¼
ð
H0

p
j
dV

j
, (6)

see Javili et al. (2019).
The reduced format of the balance of linear

momentum (5) is obtained by incorporating the bal-
ance of mass (4) into Eq. (5), resulting in

q0Dtv ¼
ð
H0

p
j
dV

j þ �b
ext
0 : (7)

In the following, we neglect the inertia term q0Dtv
as the time scales of the remodelling process and the
inertia are significantly different, see Frost (1987).
Body forces, induced by gravity, are neglected as well,
since the loads induced by locomotion are far greater
and the governing factor for the remodelling process,
see Jacobs et al. (1995). Accordingly, the balance of
linear momentum (7) is reduced to the equilibrium
condition for the internal body force densityð

H0

p
j
dV

j ¼ 0: (8)

The balance of angular momentum is obtained fol-
lowing the derivation outlined in Javili et al. (2019),
and reads eventuallyð

H0

n
j � p

j
dV

j ¼ 0: (9)

It is shown in Javili et al. (2019) that the balance
of angular momentum is satisfied a priori for one-
neighbour interactions when the pairwise force dens-
ity p

j ¼ fn
j
is coaxial to n

j
with a scaling f ¼ fðnj Þ,

which itself is an arbitrary (scalar) function of n
j
:

Since we fulfil this requirement in the following, the
balance of angular moment is satisfied a priori and is
here only stated for the sake of completeness.

2.3. Constitutive expressions

The constitutive equations for our peridynamic model
are obtained assuming isothermal conditions. In general,

Table 1. Comparison of governing equations in the peridynamic and classic continuum formulation.
PD CCM

balance of mass Dtq0 ¼ R0 Dtq0 ¼ R0

balance of linear momentum Ð
H0
p

j
dV

j ¼ 0 DivP ¼ 0

governing quantity
p

j
:¼ ow

j
0

on
j

P :¼ oW0
oF

volume-specific energy density
W0 ¼ 1

2

Ð
H0

q̂ j
0

q�0

� �n
w

j
0
PDdV

j W0 ¼ q0
q�0

h in
WCCM

0

mass source R0 ¼ c q0
q�0

h i�m
W0 �W�

0

� �
R0 ¼ c q0

q�0

h i�m
W0 �W�

0

� �
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the volume-specific energy density function at a con-
tinuum point in PD is given in integral form overH0 as

W0 ¼ 1
2

ð
H0

w
j
0 dV

j
, (10)

where w
j
0 is the volume-specific pairwise energy dens-

ity function with units Nm=m6: The weighting factor
of one half is introduced to avoid double counting of
energy between two continuum points, since we are
visiting every continuum point twice when consider-
ing the global form of the balance equations.

Modelling bone as open-pored hard tissue, the energy
density W0 in CCM is weighted with a power of the
nominal relative density, see Carter and Hayes (1977)
and Harrigan and Hamilton (1993). To apply this
approach to the nonlocal formulation in a peridynamic
sense, we weight the pairwise energy density w

j
0 with a

power of the nominal relative density, resulting in

W0 ¼ 1
2

ð
H0

q̂j
0

q�0

" #n

w
j
0
PDdV

j
with q̂j

0 ¼
1
2

q0 þ q
j
0

h i
,

(11)

where w
j
0
PD denotes the density-independent pairwise

energy density function that governs the purely mech-
anical material behaviour. The volume-specific energy
density w

j
0 from Eq. (10) is thus related to w

j
0
PD via

w
j
0 ¼

�
q̂j
0

q�0

�n
w

j
0
PD: (12)

Note that we additionally introduce the nominal
relative density in a nonlocal sense, as it is dependent
on the arithmetic mean density q̂j

0 of the density q0
at the continuum point and q

j
0 of its neighbours, and

the initial density q�0 at time t0. By doing so, we
maintain the definition of bond-based PD, where two

continuum points exert forces with same magnitude
on each other, as depicted in Figure 2. The exponent
n in Eq. (11) represents a material parameter for the
porosity of bone tissue. In CCM, it is determined
empirically, see Gibson (2005), and varies between
1 � n � 3:5: The mechanical material behaviour for
open-pored hard tissue is typically modelled with an
elastic energy density, see Gibson and Ashby (1982),
which motivates why we maintain the volume-specific
harmonic pairwise energy density function

w
j
0
PD ¼ 1

2
CL

�
l
L
� 1

�2
, (13)

between two continuum points, as it is widely used in
PD literature, see Silling and Askari (2005) or Javili
et al. (2019). The peridynamic material parameter C
for bond-based PD is an indicator for the resistance
against the change of bond length. Also, L ¼ jNj j and
l ¼ jnj j denote the bond lengths in the material and
spatial configurations, respectively.

The constitutive equation for the pairwise force
density p

j
acting on a continuum point due to mech-

anical interactions with a continuum point in its finite
neighbourhood is given by

p
j
:¼ @w

j
0

@n
j : (14)

Inserting Eq. (12) into (14), we obtain

p
j ¼

�
q̂j
0

q�0

�n
p

jPD with p
jPD :¼ @w

j
0
PD

@n
j : (15)

As bone tissue tends to reach a biological equilib-
rium state (homeostasis), the mass source function typ-
ically considers the difference between the weighted
volume-specific energy density W0 and the attractor

Figure 2. Resulting interaction forces between point x and neighbour x
j
in the spatial configuration (right) due to a deformation

of the material configuration (left). The interaction forces with the same magnitude are equivalent to bond-based PD in the
framework of Silling (2000).
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stimulus W�
0, see (Harrigan and Hamilton 1993; Kuhl

and Steinmann 2003; Papastavrou, Schmidt, Deng et al.
2020; Papastavrou, Schmidt and Steinmann 2020;
Schmidt et al. 2021). In the following, the mass source
term is given by

R0 ¼ c
q0
q�0

� ��m

W0 �W�
0

" #
, (16)

where the parameter c governs the rate of the biomech-
anical process. The stability of the mass source function
is thereby determined by the dimensionless exponent
m. The relation n<m ensures numerical stability, see
Harrigan and Hamilton (1993) and uniqueness of solu-
tions, see Harrigan and Hamilton (1994). Note that R0

in our PD formulation differs from the CCM formula-
tion only by the nonlocality of the volume-specific
energy density W0 in Eq. (11), see Table 1.

3. Computational implementation

The presented biomechanical PD model needs to sat-
isfy both balances of mass (4) and linear momentum

(8) at every space-time point, in addition to the angu-
lar momentum balance (9) that is a priori fulfilled.
Due to the time dependent and nonlinear coupled
equations, we use an implicit Euler scheme with an
incremental step of Dtnþ1 ¼ tnþ1�tn for the temporal
discretisation. The biological and mechanical residual
of our boundary value problem in a temporal discre-
tised form are given by

qRnþ1 ¼ �q0nþ1
þ q0n

þ c
q0nþ1

q�0

� ��m 1
2

ð
H0

q̂j
0nþ1

q�0

" #n

w
jPD
0nþ1

dV
j

2
4

�W�
0

#
Dtnþ1 _¼ 0, (17)

and

xRnþ1 ¼
ð
H0

�
q̂j
0nþ1

q�0

�n
p

jPD
nþ1dV

j
_¼ 0, (18)

for the time step tnþ1, indicated by the sub-
script nþ 1.

Figure 3. Schematic illustration of a unit square with prescribed displacement u ¼ ½uh uv� at the upper and lower edge in its
continuum form (a). The magnitude of the prescribed displacement in vertical direction juvj is a stepwise displacement function
(b). The spatial discretisation in FEM implies the discretisation of a continuum body B0 in a finite number of elements Xa (c) and
in PD in a finite number of collocation points Pa (d). In terms of the PD discretisation (d), Pm denotes the material and Pf the fic-
titious collocation points.
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Furthermore, we spatially discretise the domain
into a finite number of collocation points at which
we evaluate the discretised balance equations (17)
and (18). Hence, the integrals over the horizon H0

need to be replaced by a summation over quadra-
ture points representing the neighbourhood. In this
contribution, we use the collocation points as quad-
rature points in H0: Thus, the temporal and spatial
discretised residuals for the collocation point Pa

read
qRa

nþ1 ¼� qa0nþ1
þ qa0n

þ c
qa0nþ1

q�0

" #�m
1
2

X
i ¼ 1

i 6¼ a

N q̂j
0inþ1

q�0

" #n

q̂j PD
0inþ1

V
j
i

2
4

�W�
0

#
Dtnþ1 _¼ 0, (19)

and

x
R

a
nþ1 ¼

XN
i¼ 1
i 6¼ a

q̂j
0inþ1

q�0

2
4

3
5n

C
1

jNj
inþ1

j
� 1

jnj
inþ1

j

" #
n
j
inþ1

V
j
i _¼ 0,

(20)

where N is the number of (collocation) points in the
horizon H0: The quantities within the summation are
quantities related to point Pa and neighbour Pi: The
volume V

j
i assigned to each neighbour serves as

weighting factor for the numerical integration.
To solve the coupled nonlinear problem numeric-

ally, we use an iterative Newton–Raphson scheme. The
linearisation of the residuals (19) and (20) leads to

q
R

a
kþ1 ¼ q

R
a
k þ

@q
R

a

@qb

���
k|fflfflffl{zfflfflffl}

qqK
ab
k

Dqbk þ
@q

R
a

@xb

���
k|fflfflffl{zfflfflffl}

qxK
ab
k

	 Dxb
k _¼ 0,

(21)

and

x
R

a
kþ1 ¼ x

R
a
k þ

@x
R

a

@qb

���
k|fflfflffl{zfflfflffl}

xqK
ab
k

Dqbk þ
@x
R

a

@xb

���
k|fflfflffl{zfflfflffl}

xxK
ab
k

	 Dxb
k _¼ 0,

(22)

for the kth iteration. Next, we establish the global
residual (column) vector R ¼ q

R
x
R½ �T , where q

R

and x
R are assembled by the point-wise residuals follow-

ing �
R ¼ �

R
1 �

R
2 	 	 	 �

R
a 	 	 	 �

R
P½ �T with � ¼

fq, xg: The asterisk is introduced for the sake of brevity
and stands for the field variables q and x, respectively.

The global tangent of the system K is composed as

K ¼
qq
K

qx
K

xq
K

xx
K

� �
,

where the stiffness sub-matrices qq
K, qxK, xqK and

xx
K are assembled as following

��
K ¼

��
K

11 ��
K

12 	 	 	 ��
K

1b 	 	 	 ��
K

1P

��
K

21 ��
K

22 	 	 	 ��
K

2b 	 	 	 ��
K

2P

..

. ..
. ..

. ..
. ..

. ..
.

��
K

a1 ��
K

a2 	 	 	 ��
K

ab 	 	 	 ��
K

aP

..

. ..
. ..

. ..
. ..

. ..
.

��
K

P1 ��
K

P2 	 	 	 ��
K

Pb 	 	 	 ��
K

PP

2
666666666664

3
777777777775

with �� ¼ fqq, qx, xq, xxg:

Figure 4. Evolution of the mean value over all material points of the relative density ~q0 ¼ ½q0 � q�0�=q�0 for a fixed horizon size
d ¼ 0:05025 and varying ratios d=D ¼ f2:01, 2:5125, 4:02, 5:025, 8:04, 10:05g, resulting from a symmetrically applied step-
wise displacement function, schematically depicted in Figure 3.
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The resulting incremental update for the discre-
tised density qkþ1 ¼ qk þ Dqk and the discretised
placement xkþ1 ¼ xk þ Dxk are obtained by using
Dq Dx½ �T ¼ �K

�1 	 R at the kth iteration to solve the
system of equations from Eqs. (21) and (22) for the
unknown quantities Dqk and Dxk: The iteration
scheme is repeated until the norm of R falls below a
sufficiently small prescribed tolerance.

The detailed computation of the stiffness sub-
matrices qq

K
ab, qxKab, xqKab and xx

K
ab are given in

Appendix A. For more details on the computational
implementation we refer to Javili et al. (2020).

4. Numerical examples

We demonstrate the characteristics of our peridy-
namic bone remodelling formulation with two two-
dimensional numerical examples. First, we validate
the nonlocal formulation for the sake of demonstra-
tion with a simple geometry of a unit square under
symmetric displacement loading. Therein, we first
perform a convergence study concerning the integra-
tion over the horizon, where we fix the horizon size d
and vary the ratio d=D with D being the grid spacing
in vertical and horizontal directions. For a second
convergence study concerning the influence of nonlo-
cality, we fix the ratio d=D and vary d.

As a second numerical example, we illustrate the
resulting density distribution throughout the proximal
femur which occurs due to daily locomotion. To
highlight the influence of nonlocality in our peridy-
namic model for this realistic example, we vary the
horizon size d.

For both examples we compare the PD results with
a respective CCM solution, obtained using the finite
element method (FEM). Therein, we utilise a St.
Venant–Kirchhoff material model that is appropriate
to compare with the harmonic energy density in Eq.
(13). Thus, the volume-specific energy density of a
compressible Neo–Hooke-type material WCCM

0 ¼
WNeo

0 , commonly used for bone remodelling in
Buganza Tepole and Kuhl (2016), Kuhl and
Steinmann (2003), Papastavrou, Schmidt, Deng et al.
(2020), Papastavrou, Schmidt and Steinmann (2020)
and Schmidt et al. (2021), is replaced by the St.
Venant–Kirchhoff energy density

WCCM
0 ¼ WStVK

0 ¼ 1
2
k TrðEÞ½ �2 þ lTrðE2Þ with

E ¼ 1
2
FTF� 1½ �,

(23)

and the classical Lam�e constants k and l. The
Green–Lagrange strain tensor E is a function of the
deformation gradient F :¼ Grad y: With respect to
the equations given in Table 1, we thus equate the
energy density WCCM

0 with WStVK
0 for the CCM model.

We expect that the PD results converge towards the
local solution when a small horizon size is used com-
pared to the domain size. It is worth mentioning that
a comparison of a FEM simulation with a
Neo–Hookean and a St. Venant–Kirchhoff material
model does not result in significant differences in the
density evolution. For all FEM simulations we use the
formulation presented in Papastavrou, Schmidt, Deng
et al. (2020) and Papastavrou, Schmidt and
Steinmann (2020) with a bi-linear element expansions
and a 2� 2 Gauss quadrature rule.

Figure 5. Evolution of the mean value over all material points of the relative density ~q0 ¼ ½q0 � q�0�=q�0 for a fixed ratio d=D ¼
3:01 and varying horizon size d ¼ f0:00940625, 0:0188125, 0:037625, 0:07525, 0:1505, 0:301g, resulting from a symmetrically
applied stepwise displacement function, schematically depicted in Figure 3.
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4.1. Unit square

We prescribe a displacement �u ¼ �uðtÞ on the upper and
lower edge of a unit square in vertical direction, which is
increased stepwise over time, as schematically depicted
in Figure 3. For prescribing Dirichlet boundary condi-
tions in PD, we add a fictitious material layer with thick-
ness d, as depicted in Figure 3d. The displacement at the
fictitious points Pf are set such that the required bond
stretch is reflected in the material layer. The initial dens-
ity of the unit square is uniformly set to q�0 ¼ 1:0 and
the Young’s modulus to E¼ 1.0. The peridynamic
material parameter C is computed according to E by
comparing the energy densities in Eqs. (13) and (23) for
a biaxial deformation.

Note that E and C are initial homogenised parame-
ters, since the presented model is homogenised at the
macroscale. Although the homogenised stiffness
parameters, E and C, enter the energy density functions

WCCM
0 and w

j
0
PD, respectively, as constant parameters,

the stiffness of the material varies in time due to the
weighting with the time-dependent relative nominal
density, see Table 1. A detailed discussion on the con-
version between the true material parameters at the
microscale and homogenised (nominal) ones at the
macroscale is addressed in Schmidt et al. (2021).

With only one-neighbour interactions (or bond-
based PD) the Poisson ratio is fixed to 1/3 as demon-
strated in Javili et al. (2020), and it is set accordingly
for the FEM simulation. We simulate four loading steps
with a load-step time of T¼ 2 and an incremental time
step of Dt ¼ 0:1: As we prescribe a displacement func-
tion �uðtÞ instead of a force function, as considered in
Kuhl et al. (2003), Kuhl and Steinmann (2003),
Papastavrou, Schmidt, Deng et al. (2020), Papastavrou,
Schmidt and Steinmann (2020) and Schmidt et al.
(2021), we adjust the material parameters for the mass

Figure 6. Schematic illustration of two load cases applied on the proximal femur. First load case with point-wise Neumann boundary
conditions (top left) at four points P1, P2, P3 and P4. Second load case with forces M and J that are applied as distributed forces for the
force-controlled simulation (bottom left). The resulting displacements u1, u2, u3 and u4 of the first load case and uM and uJ of the
second load case are prescribed as Dirichlet boundary conditions for the displacement-controlled simulations (right).
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source term to obtain an appropriate density evolution.
The density growth velocity parameter is set to
c¼ 1000, the attractor stimulus to W�

0 ¼ 0:01 and the
exponents to n¼ 2 and m¼ 3, respectively.

In the following section, we discuss two conver-
gence studies. First, we fix the horizon size to d ¼
0:05025 and vary the grid spacing D ¼ f0:025, 0:02,
0:0125, 0:01, 0:00625, 0:005g resulting in ratios

Figure 7. Distribution of the relative density ~q0 ¼ ½q0 � q�0�=q�0 for the simulations of the first load case. The resulting relative
density distribution throughout the proximal femur is given for different time points t ¼ f10, 100, 190, 280g and horizon sizes
d ¼ f0:301, 0:601, 0:901, 1:201g at fixed D ¼ 0:1: In the top row, the CCM results are depicted for comparison.
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d=D ¼ f2:01, 2:5125, 4:02, 5:025, 8:04, 10:05g: We
expect that with increasing ratio d=D the solution
converges to a more accurate solution as the number

of neighbours and thus integration points in the hori-
zon increases. The resulting mean value over all
material points of the relative density ~q0 ¼

Figure 8. Distribution of the absolute change Dabs ¼ ~q0PD�~q0FEM for the simulations of the first load case. The resulting absolute
change throughout the proximal femur is given for different time points t ¼ f10, 100, 190, 280g and horizon sizes d ¼
f0:301, 0:601, 0:901, 1:201g at fixed D ¼ 0:1: In the top row, the CCM results are depicted for comparison.
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½q0�q�0�=q�0 over time t is shown in Figure 4. For all
depicted ratios, a similar temporal evolution of the
relative density is obtained. The relative density
decreases (bone resorption) in the first loading step,

0 � t � 2, and increases (bone formation) in all sub-
sequent ones. On the right side of Figure 4, an add-
itional enlarged view for 7 � t � 8 is shown to
visualize the differences of the resulting relative

Figure 9. Distribution of the relative density ~q0 ¼ ½q0 � q�0�=q�0 for the simulations of the second load case. The resulting relative
density distribution throughout the proximal femur is given for different time points t ¼ f10, 100, 190, 280g and horizon sizes
d ¼ f0:301, 0:601, 0:901, 1:201g at fixed D ¼ 0:1: In the top row, the CCM results are given for comparison.
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density evolution more clearly. As expected, the
results converge with increasing number of neigh-
bours within the horizon. The largest differences can

be seen between the ratios d=D ¼ 2:01 and 2.5125.
The differences between the larger ratios are no lon-
ger as significant compared to the smallest ratios that

Figure 10. Distribution of the absolute change Dabs ¼ ~q0PD�~q0CCM for the simulations of the second load case. The resulting abso-
lute change throughout the proximal femur is given for different time points t ¼ f10, 100, 190, 280g and horizon sizes d ¼
f0:301, 0:601, 0:901, 1:201g at fixed D ¼ 0:1: In the top row, the CCM results are given for comparison.
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are depicted in Figure 4. The convergence study indi-
cates to choose a sufficiently large ratio for an
adequate number of integration points within H0:

Next, we study the influence of nonlocality by
varying the horizon size d with constant ratio d=D ¼
3:01: The ratio d=D is fixed to have a constant num-
ber of integration points within the horizon for all
simulations. We expect that the solution converges
towards the CCM solution with diminishing horizon
size. In Figure 5, the mean value over all material
points of the relative density ~q0 over time t for d ¼
f0:00940625, 0:0188125, 0:037625, 0:07525, 0:1505,
0:301g is compared to the local solution with a St.
Venant–Kirchhoff material model. As expected, the PD
solution converges towards the local solution with
decreasing horizon size. The remaining difference
between the smallest horizon size and the local solu-
tion results from the slightly different energy densities
used in the CCM and the PD model. Note that we
need to make assumptions regarding the resulting
deformation state in order to compute the peridynamic
material parameter C from the Young’s modulus E by
comparing the two energy densities of Eqs. (13) and
(23). The conversion of the material parameters C and
E leads to a small error, which affects the modelled
material stiffness and thus the density evolution. The
deviation between the local and nonlocal solution add-
itionally results from the disparities between the mod-
els regarding the application of boundary conditions
and the so called surface effects. The latter describes
the effect that collocation points at the surface do not
have a full horizon. In terms of the unit square, surface
effects mainly occur at the left and right edge.
However, these surface effects are not a drawback of
our nonlocal model, but rather a characteristic feature
that are mentioned only as one of the reasons for the
remaining small deviation from the local solution.

4.2. Proximal femur

The second example is motivated by the 2D bench-
mark problem of the proximal femur, used in Carter
and Beaupr�e (2000), Kuhl et al. (2003), Kuhl and
Steinmann (2003), Papastavrou, Schmidt, Deng et al.
(2020), Papastavrou, Schmidt and Steinmann (2020)
and Schmidt et al. (2021). For the first load case, we
combine the loading on the proximal femur that occurs
due to various activities, as identified by Carter and
Beaupr�e (2000). In accordance to Kuhl et al. (2003),
Kuhl and Steinmann (2003), Papastavrou, Schmidt,
Deng et al. (2020), Papastavrou, Schmidt and
Steinmann (2020) and Schmidt et al. (2021), we apply
the resulting forces of the combined loading on the
proximal femur, as schematically depicted in Figure 6
(top left). Thereby, compressive forces on the femur
head due to the contact with the pelvis and one tensile
load on the greater trochanter, arising from the
attached muscles, can be distinguished. As we restrict
the presented PD formulation to Dirichlet boundary
conditions, we first perform a force-controlled FEM
simulation to obtain displacement values for the PD
model. As depicted in Figure 6 (top right), we prescribe
the obtained displacement values u1, u2, u3 and u4 dir-
ectly at the loaded points P1, P2, P3 and P4 of the ori-
ginal benchmark problem.

The second load case, schematically illustrated in
Figure 6 (bottom), is motivated by investigating the
influence of the prescribed boundary conditions on
the density evolution throughout the proximal femur.
The boundary conditions are adopted from the load
case used in Nackenhorst (1997). Here, a resulting
tensile force M from the attached muscles acts on the
greater trochanter and a resulting compressive force J
from the hip joint on the femur head. Both forces are
distributed among a small region, as indicated in
Figure 6 (bottom left). The displacement values uM

Figure 11. Comparison of resulting relative density distribution of the CCM and PD simulations at t¼ 280 for both load cases.
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and uJ obtained from a force-controlled FEM simula-
tion are used to prescribe Dirichlet boundary condi-
tions for the displacement-controlled simulations. In
addition, we apply appropriate boundary conditions
at the bottom edge to avoid rigid body motion in
both load cases.

Initially, we assume a homogenous distribution of
bone density with an initial density q�0 ¼ 1:2, as sug-
gested in Kuhl and Steinmann (2003). The initial
Young’s modulus is uniformly set to E¼ 500, as in
Carter and Beaupr�e (2000), Kuhl and Steinmann
(2003), Papastavrou, Schmidt, Deng et al. (2020) and
Papastavrou, Schmidt and Steinmann (2020). The
peridynamic material parameter C is computed
according to the conversion of the energy densities in
Eqs. (13) and (23), as mentioned in Section 4.1. We
set c¼ 1, W�

0 ¼ 0:01, n¼ 2 and m¼ 3, as suggested in
Kuhl and Steinmann (2003) and Papastavrou,
Schmidt, Deng et al. (2020). The Poisson’s ratio is
typically set to m ¼ 0:2 for cancellous bone, see Carter
and Beaupr�e (2000). Regarding the presented PD
model, we are however restricted to m ¼ 1=3: We dis-
cretise the total simulation time T¼ 280 with an
incremental time step of Dt ¼ 0:2: The prescribed
boundary conditions are applied linearly within the
first 10 time increments.

For a structured spatial discretisation of the femur
domain we use a grid spacing D ¼ 0:1, leading to
21,652 material (collocation) points for the PD model
that additionally serve as discretisation nodes for the
bi-linear elements of the FEM mesh. We examine the
influence of nonlocality in the presented peridynamic
formulation by increasing d ¼ f0:301, 0:601, 0:901,
1:201g while having a constant grid spacing D ¼ 0:1
that leads to a sufficiently fine mesh. We use a smallest
ratio of d=D ¼ 3:01, for which we assume to obtain a
sufficiently high accuracy of the integration over the
horizon. Note that a ratio d=D
3 is commonly used in
PD literature to minimise the computational effort
while ensuring an adequate accuracy, see Silling and
Askari (2005).

In the following, we first compare the resulting
relative density distributions of the two load cases. In
a second step, we evaluate the results with two radio-
graphs of the proximal femur that can be found in
Jacobs et al. (1995) and in Parkinson and Fazzalari
(2013), respectively.

Resulting density distributions of both load cases
An overview of the relative density distributions for
the first load case is given in Figure 7 for four differ-
ent time points t ¼ f10, 100, 190, 280g: In the top

row, the CCM results are added for comparison. In
order to emphasise the differences between the CCM
and PD results more clearly, the absolute change
Dabs ¼ ~q0PD�~q0CCM is depicted in Figure 8. The corre-
sponding results for the second load case are given in
Figures 9 and 10, respectively. Note that the results
are displayed at the collocation points.

For both load cases and for all horizon sizes d we
obtain the characteristic dense distribution evolving
from the femur head and greater trochanter distally
to the medial and lateral cortex due to the mechanical
loading conditions, see Figures 7 and 9. It can be
seen that the direction of loading and location of the
mechanical boundary conditions determine the
growth direction of the trabecular bone tissue. A
loose density distribution in the intertrochanteric
region occurs for the first load case and all horizon
sizes. In contrast, for the second load case we obtain
an increase in bone density in the intertrochanteric
region, whereby a small region with slightly decreas-
ing bone density evolves, observable by the bluish
region in Figure 9. Comparing the results of the
smallest horizon size d ¼ 0:301 with the CCM results,
we obtain mainly small absolute changes of �0:1 �
Dabs � 0:1 for both load cases, particularly for the ear-
liest depicted time point t¼ 10, see Figures 8 and 10.
The amount of absolute change slightly increases with
time progressing, as indicated by the reddish and blu-
ish regions of Figures 8 and 10. With increasing hori-
zon size, equivalent to a more nonlocal material
behaviour, we observe bigger differences with respect
to the CCM results. Here, absolute changes of
jDabsj>0:3 occur, particularly at the greater trochanter
and femur head. The bone formation and resorption
is amplified near the Dirichlet boundary condition at
the femur head with increasing horizon size for both
load cases, compare Figures 7 and 9, respectively.
Additionally, a significant difference between both
load cases in terms of the resulting absolute changes
can be identified, compare Figures 8 and 10.

Note that the results for t¼ 10 in Figures 7 and 8
show that the spherical increase in density at the
boundary regions, both at the greater trochanter and
femoral head, indicates the spherical shape of the
horizon H0 used for the PD model.

Comparison with radiographs of proximal femur
from literature
We evaluate the resulting density distribution of the
CCM and PD simulations by a comparison with two
radiographs of the proximal femur that can be found
in Jacobs et al. (1995) and in Parkinson and Fazzalari
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(2013), respectively. To this end, we consider the
evolving relative density distribution of both load
cases at t¼ 280 of Figures 7 and 9 that are depicted
together in Figure 11 for better comparison.

In both load cases, we obtain the dense distribution
of cortical bone on the lateral and medial cortex for
all horizon sizes. However, the increase in relative
density is amplified at the lateral cortex for the
second load case. Next, comparing the relative density
distribution at the conjunction of the femoral neck
and greater trochanter with the radiographs of Jacobs
et al. (1995) and Parkinson and Fazzalari (2013),
respectively, we receive better results with the second
load case and particularly with increasing horizon size
as the bone density increases in this region indicating
the formation of cortical bone, see Figure 11. The
relative density distribution in the intertrochanteric
region is better captured by the second load case as
all simulations replicate the secondary tensile and
compressive group as well as the principle tensile
group. In the first load case, on the other hand, the
formation of the principle tensile group is apparent
with increasing horizon size. The characteristic
Ward’s triangle, a region with lower bone density, is
only captured by the simulations of the second load
case, where we obtain a higher decrease in density for
the more nonlocal PD simulations. However, the loca-
tion of Ward’s triangle is shifted laterally with
increasing horizon size compared to the CCM result.

The second load case tends to overestimate the
bone density distribution in the intertrochanteric
region compared to the radiograph of Jacobs et al.
(1995), but is in good accordance with the radiograph
of Parkinson and Fazzalari (2013). The first load case,
on the other hand, cannot replicate the dense trabecu-
lar bone distribution present in the intertrochanteric
region of the radiograph published in Parkinson and
Fazzalari (2013). Here, the simulation results are in
better accordance with the radiograph of Jacobs et al.
(1995), even though typical characteristics, such as
Ward’s triangle or the secondary compressive and
tensile group, are not present in the CCM nor the PD
simulations for the first load case.

The presented example of the proximal femur shows
to what extent the additional degree of freedom, the
nonlocality, in our PD model can influence the density
distribution throughout the proximal femur.

5. Conclusions

In recent years, a variety of mathematical formula-
tions have been proposed to describe the process of

bone remodelling, where the classical continuum the-
ory has served as the underlying framework for mod-
elling bone as a continuum at the macro level. As an
extension to the nonlinear local model of Kuhl and
Steinmann (2003), we presented a nonlocal formula-
tion for bone remodelling for the first time using PD.

We have performed two convergence studies on a
unit square to validate our formulation. The first
study has shown that the solution converges with
increasing number of (collocation) points within the
horizon. The second convergence study has demon-
strated that with diminishing horizon size the PD
solution converges towards the CCM solution. As a
second numerical example, we simulated two load
cases with a 2D proximal femur model. Here, we
have shown that the PD results with the smallest
horizon size are in good accordance with the CCM
results. With increasing horizon size the relative dens-
ity distribution obtained by the CCM simulation and
thus characteristic for the applied load case remains,
where in the first load case the formation of the prin-
ciple tensile group is indicated with increasing hori-
zon size as outlined by a comparison of all simulation
results and two radiographs of the proximal femur
from literature. For the second load case, the forma-
tion of cortical bone at the greater trochanter and
femur neck is better captured with the more nonlocal
PD simulations. A comparison of the two load cases
regarding both the CCM and PD results highlighted
the significant influence of the applied mechanical
boundary conditions. Comparing the resulting relative
density distributions with two radiographs from lit-
erature additionally showed that the second load case
better replicates the main characteristics of the density
distribution throughout the proximal femur and
emphasised the importance of patient-specific simula-
tions and evaluation of results. Note that an investiga-
tion regarding the load case and applied mechanical
boundary conditions on the proximal femur are not
within the scope of this contribution. Nevertheless, an
extensive study on the load case and resulting density
distribution shall be of interest in future research. For
this, the local continuum model for bone remodelling
is sufficient as the CCM and PD simulations resulted
in a relative density distribution characteristic for the
load case. In this contribution, however, we focused
on demonstrating the influence of nonlocality on the
relative density distribution of our PD model and
therefore limited ourselves to the two presented
load cases.

In summary, the presented nonlocal formulation
enables to model and investigate nonlocal material
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behaviour during bone remodelling by varying the
horizon size. Reasonable results were obtained in both
numerical examples for all presented horizon sizes. In
this contribution, we focused on illustrating the main
aspects of the peridynamic formulation with two
numerical examples. In future research, the nonlocal
characteristic of bone remodelling shall be further
examined while applying more realistic loading condi-
tions and material behaviour in order to fully capture
the density distribution of the proximal femur.
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Appendix A. Stiffness matrices for biomechanically coupled bone remodelling problem

The stiffness matrices qq
K

ab and qx
K

ab of the linearisation of the residual q
R

a (21) are computed by

qq
K

ab ¼ oqRa

oqb
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and
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where we omit the subscript nþ 1 for better readability as the tangents only depend on quantities of tnþ1: The partial
derivatives

oq̂j
0i

oqb
¼ 1

2
½dab þ dib� and

on
j
i

oxb
¼ ½dib � dab�, (A3)

are given in terms of the Kronecker delta

dij ¼ f 1 i ¼ j
0 i 6¼ j

:

The stiffness matrices xq
K

ab and xx
K

ab of the linearisation of x
R

a (22) read
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and
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