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ABSTRACT

IMPLEMENTATION OF A STATE-SPACE KALMAN
FILTER ON A DIGITAL SIGNAL PROCESSING
MICROPROCESSOR

M. Khaledul Islam
M.S. in Electrical and Electronics Engineering
Supervisor: Asst. Prof. Dr. Gurhan Saplakoglu
August 1990

A general software written in assembly language for the real-time implementa-
tion of state-space Kalman filter on Texas Instruments TMS320C25 fixed-point
digital signal processor is given. The software can accomodate dynamic system
having up to 14 state variables. As a specific application, the Kalman filter is
used to restore the sound of a flute embedded in white noise.
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OZET

DURUM UZAYI KALMAN FILTRESININ BIR SAYISAL
ISARET ISLEYICISINDE GERCEKLESTIRILMESI

M. Khaledul Islam
Elektrik ve Elektronik Mihendisligi Bolumu Yiksek Lisans
Tez Yoneticisi: Yrd. Dog. Dr. Gurhan Saplakoglu
Agustos 1990

Durum uzay: Kalman filtresinin ger¢ek zamanda, Texas Instruments’in TMS320-
C25 sabit noktali sayisal mikroiglemcisi ile gergeklestirilebilmesi igin simgesel
dilde yazilmig genel bir yazilim verilmistir. Yazilim durum degiskeni sayisi en
¢ok 14 olan dinamik sistemlere uygulanabilir. Kalman filtre, 6zel bir uygu-

lama olarak beyaz gtrultuyle bozulmus fliit sesinin yeniden elde edilmesi igin

kullanilmugtir.
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Chapter 1

INTRODUCTION

A brief introduction to the state-space Kalman filter and the digital signal pro-
cessors particularly Texas Instruments TMS320C25 is given in the first two
sections of this chapter. Section three discusses the choice of fized-point arith-
metic in real-time signal processing. The motivations behind choosing a digital
signal processor for the implementation of real-time fized-point Kalman filter

are described in section four.

1.1 The State-Space Kalman Filter

A discrete time I{alman filter is a recursive algorithm that calculates the linear,
unbiased, minimum mean squared estimate of the state of a dynamic system
from noise-corrupted observation data. The algorithm also allows random per-
turbations in the state evolution of the system. If the state perturbation noise
and the measurement noise are uncorrelated and Gaussian, then the filter pro-
vides the best performance among all the estimators in mean squared sense. A
very simple pictorial representation of the filter is given in Figure 1.1. Although
the name filter sounds like a misnomer, it is the universally accepted term to
describe the recursive algorithm that R. E. Kalman proposed back in 1960 [1].
The Kalman filter can be applied to any system that has a dynamic state-space
representation. Apart from the state estimation of the system, it can also be
used for system identification and deconvolution [2]. The wide spectrum of
applications span as diverse fields as the space-craft orbit determination [3]
and the demographic of cattle production [4]. Comprehensive treatment of the
Kalman filter and its applications can be found in [5], [6], [7], [8] -
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Figure 1.1: Kalman Filter

1.2 TMS 320 Digital Signal Processor Family

Since Intel introduced the 2920 in 1979, the first microprocessor specifically
tailored for digital signal processing applications, various VLSI digital signal
processor chips have been launched by Texas Instruments, NEC, AT & T, Mo-
torola and many others [9]. Among these, Texas Instruments TMS320 family
is one of the most widely used digital signal processors due to its relatively
low cost, powerful instruction set, inherent flexibility and comprehensive hard-
ware support. The family consists of three generations of fixed and floating
point digital signal processors. The second generation, which is considered in
next chapters, comprises of five 16-bit microprocessors - namely TMS32020,

TMS320025, TMS320C25-50, TMS320E25 and TMS320C26.

Compared with conventional microprocessors, the most striking feature in
TMS320 family is the use of parallelism and pipelining to enhance execution
speed. It uses Harvard-type architecture which separates program and data
memory spaces, eliminating the throughput bottleneck associated with the
shared-bus structure of general-purpose microprocessors. This structure en-
ables data fetching concurrent with the fetching of next program instruction
making the program execution faster. Another important difference is the fast
fixed-point multiplication unit available in TMS320 family. As a matter of
fact, the multiplier unit occupies most of the space(up to 40% in TMS32020)
on the chip. Some of the key features of the TMS320C25, the most widely
used member of the second generation which is considered in the subsequent

chapters, can be summarized as [10] :
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o 16 bit fixed-point operation with some provision for floating- point oper-

ation.

¢ 100 nanoseconds instruction cycle time which makes the microprocessor

capable of executing 10 million instructions per second(MIPS).

e single cycle multiply/accumulate instruction with data move option that

makes the digital filter realization very efficient.
e 544 words of on-chip RAM.
o 4K words of ROM that makes it a true single chip microprocessor.

e total 64K words of program memory space and 64K words of data mem-

ory space.
e 32 bit dedicated Central Logic Unit(CALU)

e 8 auxiliary registers with an Auxiliary Register Arithmetic Unit(ARAU)
that operates in parallel with CALU

e sixteen input and sixteen output ports

1.3 Why Fixed-Point Processor ?

All the members of the second generation TMS320 family perform 16-bit fixed-
point arithmetic. The fixed-point arithmetic is based on the assumption that
the location of the binary point is fixed. The @ notation is commonly used
to specify the location of the binary point. A binary number in @n format
is defined as having n bits to the right of binary point. For example in sign-
extension mode, the maximum and minimum numerical values represented by
Q15 format are hexadecimal 8000 and 7FFF or equivalently decimal -1 and
(1 — 271%) respectively. To get the @n representation of a fractional number,
the first step is to multiply it by 2" and round the result to an integer. The
2’s complement hexadecimal representation of the integer is the @n equivalent

of the corresponding fractional number.

Despite the fact that the fixed-point arithmetic has a limited dynamic range
as compared to floating-point arithmetic, it does have some appreciable advan-
tages in real-time applications. First of all, the fixed-point digital signal pro-
cessors are much faster and cheaper than their floating-point counterparts. In

floating-point arithmetic, errors due to arithmetic roundoff are introduced both
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in addition and multiplication whereas in fixed-point arithmetic such errors oc-
cur only in multiplication. The major disadvantage of a fixed-point processor
is the possibility of overflow. However, this problem can be overcome by using
appropriate scaling. To be more specific, the program can be written in such
a way that the occurance of overflow will depend solely on input samples. The
necessary scaling can be determined by simulating the system on a floating-
point computer before real-time operation. Although the scaling may cause
some loss in numerical accuracy, it is not usually significant. Another impor-
tant advantage of fixed-point arithmetic is the compatibility of the numerical
representation used in the fixed-point digital signal processors and the analog
interfacing devices. Most of the A/D and D/A converters available in the mar-
ket use either 2’s complement or offset binary format to represent numerical
values. This representation is very convenient when fixed-point arithmetic is
used in Q15 format, because the input or output samples can be interpreted as
@15 representations of voltages normalized to the peak magnitude of convert-
ers. The fact that the TMS320C5X, the 5th generation of the TMS320 family
to be launched in late 1990, will be again a fixed-point processor reflect the
preference of fixed-point arithmetic to floating-point arithmetic in real-time

signal processing applications [11] .

1.4 Real-time Kalman Filter on a Fixed-point Digital

Signal Processor

Implementation of a Kalman filter involves heavy computational complexities.
As far as conventional computers are concerned, the largest amount of program
execution time is taken by multiplications. And to make things worse, the
number of multiplications in Kalman filtering is proportional to the third power
of the state size of the system [6] . Hence running a state-space Kalman filter
on-line was not a realistic possibility until recently. Most of the real-time
applications reported so far are applied to the systems that do not require fast
execution times like navigation. The introduction of digital signal processors,
which have very fast multiply/accumulate instructions, has opened a new era

of real-time Kalman filter applications.

The TMS320 family is an ideal cost-effective choice for implementing real-
time Kalman filters. Implementation of a simple two-state tracking Kalman
filter on TMS32010, the first generation of TMS320 family, was reported [12].
Recently, implementation of a narrow-band Kalman filter on AT & T DSP32
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floating point processor has been published [13].

In this thesis, a general software written in TI assembly language version
5.0, is introduced to implement real-time Kalman filter on TMS320C25. The
software consists of a collection of matrix manipulation macros, consequently
can be modified to accommodate different Kalman filter algorithms. Efforts
have been made to make an optimal trade-off between user-friendliness and
execution speed of the software. As a matter of fact, our software is much
more efficient in terms of speed as compared to [13] although DSP32 runs at
a higher clock rate. Use of the software is thoroughly explained in chapter 3
along with illustrative examples. This chapter is preceded by chapter 2 which
contains a review of Kalman filter algorithms and a discussion of the problems
encountered in the implementation of the filter. As a specific application, real-
time implementation of state-space Kalman filter to recover the sound of a
flute embedded in white noise is described in chapter 4. Based on simulation
results, relationship between various filter parameters and their effects on filter

gain and bandwidth are investigated.



Chapter 2

A REVIEW OF THE KALMAN FILTER
ALGORITHMS

In this chapter, different Kalman filter algorithms are reviewed. A variety of
problems arise in real-time implementation of Kalman filter. Some of the most
likely problems are discussed in section two . Several criteria which can be used

as tests for performance evaluation of the filter are described in section three.

2.1 The Kalman Filter

Since R. E. Kalman published his landmark paper in 1960, it arouse great
interest among researchers. The material is now well covered in literature
[5],16],[71,[8],[14],[15],(16]. A number of algorithms have been proposed as an
alternative to the original I{alman filter algorithm. These algorithms make a
trade-off between the numerical stability and the computational requirements.

In the following sub-sections, some of the widely used algorithms are reviewed.

2.1.1 Notational Convention

The notational conventions used in the subsequent sections as well as in the
following chapters are summarized below :

e vectors are lower-case letters with bars.

e matrices are upper-case letters with hats.

e [-]7 denotes transposition.
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¢ [-]7! denotes inversion.

e Z(5 | k) is the estimate of Z(j) given the observation sequence
{§(n):n=0,1...k}.

e E{-} is the expectation operator.

2.1.2 The Algorithms

The Kalman filter requires that the relationship between the process to be

estimated and the observation must be of the following state-space form :

z(k +1) = d(k)z(k) + G(k)w(k), (2.1)

g(k) = H(k)&(k) + 3(k), (2.2)

where
z(k) = N X 1 state vector at time t; ,
®(k) = N x N state-transition matrix at time ¢y ,
(k) = N x L process noise matrix at time ¢ ,
(k) = L x 1 process noise vector at time ¢; with known covariance matrix

H(k) = (M x N) observation matrix at time ¢y,

5(k) = M x 1 observation noise vector at time t; with known covariance matrix
R(k).

Furthermore, the noise vectors are assumed to be white and uncorrelated with

each other i. e. ,

E{w()aT ()} ={ Qi ihi=y (2.3)

0 otherwise

A

R, if,e=y

0 otherwise

E{u(i)5" ()} = {
E{w()vT(j)} = 0for Vi and j, E{z(0 | 0)wT(:)} = 0 for V1, E{z(0 ] 0)57(z)}
= 0 for V1.

With these assumptions and notational conventions, some of the widely

used Kalman filter algorithms are described in the subsequent subsections.
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Standard Kalman Filter

This is probably the most widely used form of the Kalman filter algorithm and
is essentially the one that Kalman derived in 1960. It can be described in the

prediction-correction form as :

e Step 1 : Initialization - & = 0; Input (0| 0), P(0 | 0)
e Step 2 : Prediction -
state prediction : &(k + 1 | k) = &(k)z(k | k) (2.5)
covariance prediction :
P(k+1|k)=&k)P(k| k)BT (k) + G(k)Q(k)GT (k) (2.6)
e Step 3 : Measurement - read g(k + 1)

e Step 4 : Innovation -

innovation sequence :
pk+1)=g(k+1) - Hk+ 1)k +1]k) (2.7)
innovation covariance :

Clk+1)=Hk+1D)Pk+1|E)AT(k+1)+ R(k+1) (2.8)

o Step 5 : Computation of Kalman gain -

Kalman gain : K(k+1)=P(k+1|k)HT(k+1)C Y (k+1) (2.9)

e Step 6 : Correction -
state correction :

Fh+1]k+1) = - K(k+DHKE+DE(k+1 | k)+

K(k+ Dg(k+1) (2.10)
covariance correction :

Plk+1k+1)=[T-K(k+DHK+D)PE+1]E)  (2.11)

o Step 7: Continuation - k=£k+1, go to Step 2

A major drawback of this algorithm is the fact that the covariance matrix
P(k +1|k+1) is prone to numerical roundoff errors and may loose positive
definitiveness resulting in serious errors. Even the symmetry of P can be lost

in a few iterations as a direct result of fixed-length numerical computations

[18].
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Stabilized Kalman Filter

This method is superior to the standard Kalman filter since it is less sensitive
to numerical roundoff. As expected, the price paid for it is more computational
burden. The steps of the algorithm are the same as the standard one except
the covariance correction in step 6. In this case, the filtered estimate of the

error covariance matrix is computed as,

A

Plk+1]k+1)=K(k+1)R(k+ 1)Kk +1)T+

= K(k+DHE+DIPE+1| B -Kk+DHKE+D)T  (212)

This expression of P in the form of sum of two symmetric matrices is called
“Joseph form”. Numerical computations based on this form are better condi-
tioned and symmetry as well as positive definitiveness of matrix P are preserved

[17).

Sequential Kalman Filter

The sequential algorithm refers to the technique of processing the measure-
ment vector §j(k) one component at a time as opposed to the batch processing
where all the elements of the observation vector are treated at the same time.
The beauty of this algorithm is that the direct computation of inverse of the
innovation covariance matrix C is avoided. This results in appreciable amount
of computational savings. The sequential algorithm can be applied when the
covariance matrix of observation noise, £(k) is diagonal. However, this is not
a big constraint, since the observation §(k) can always be transformed to an
uncorrelated process say §(k) with a diagonal covariance matrix R(k) by a

nonsingular transformation D(k). In doing so, the observation equation ,
(k) = Hz(k) + o(k) (2.13)
becomes‘,
(k) = Hz(k) + o(k) (2.14)
where, (k) = D(k)g(k)

)7 (k),
E{5()TT ()} = D(k)R(k)
[14].

H(k) = D(R)H(k), (k) = D(k)5(k) such that
DT(k

T(k). Details of the algorithm can be found in
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Square Root Algorithm

As compared to the previous algorithms, the square root filter is better from
an accuracy point of view. The reason is that square-rooting a small number
yields a large number and vice versa, thus computations are carried out more
precisely. The core of this algorithm is the Choleski decomposition which
decomposes a non-negative definite symmetric matrix A into the product of a

lower triangular matrix A and its transpose such that,
A= A°(A%)T (2.15)

If all the components of the measurement vector are treated at the same time
as in the standard and the stabilized filter, the inversion of a lower triangular
matrix is needed. On the other hand, the sequential processing can be incorpo-
rated into the square root algorithm thus making a good compromise between

the computational requirements and the numerical accuracy[14].

A comparison between these algorithms in terms of memory requirements
and execution speed can be found in [18]. However, the comparison is based on
the assumption that the multiplication takes thrice as much time as addition

which is the case with general-purpose computers.

2.2  Practical problems in real-time Kalman filtering

Some of the usual problems encountered in real-time Kalman filtering are de-

scribed in the following subsections.

2.2.1 Roundoff Errors

As with all digital hardware of finite word-length, fixed-point implementation
of Kalman filter is not immune from unavoidable roundoff errors. Due to
recursive nature of the algorithm, these errors may be quite significant. One
of its worst consequences reported by many researchers, is that the covariance
matrix P may become negative definite due to the accumulation of roundoff
errors [16]. This leads to instability of the filter. One solution is to add
some process noise i. e. to perturb the evolution of the state by a random
disturbance even if the system is known to be deterministic. In doing so, the

positive definite () matrix prevents the error covariance matrix P from going
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negative as evidenced from the prediction step of the algorithm. This imposed
uncertainty leads to a degree of suboptimality, but it is better than having the
filter diverge. Another solution is to symmetrize P(k+1 | k) and P(k+1 | k+1)
matrices at each iteration step. Since covariance matrix must be symmetric,
any form of asymmetry can be attributed to roundoff errors. The symmetry
problem is automatically solved if, in implementation symmetry of covariance
matrix is assumed and only the lower (or the upper) triangular part is used
and updated in all operations. Another way is the square root algorithm which
propagates the square root of P rather than the P itself. Various other methods

have been proposed to encounter this problem [19], [20].

2.2.2 Model Mismatch

Inaccuracy in system-modeling can severely deteriorate the filter performance.
The errors associated with model mismatch can be minimized to certain extent
by adding fictitious process noise. A more effective way to accomplish this is to
use fading memory filter which takes into account the gradual change in system
parameters by exponentially diminishing the effects of older data on recent cal-
culations [17]. Basically this means that as one moves along time, the strength
of corrupting noises in prior iterations are artificially increased before their
influence is brought into current estimation of the states. For example, if the
conventional Kalman filter provides state estimates at time ¢; based on obser-
vation noise sequence R(ty), R(t2) ... R(t;) then the fading memory filter would
do so using the exponentially decaying sequence e’ R(t), e°2R(t3) . .. €7 R(t;).
The term €% is called the “ forgetting factor ” since it determines how heavily

the recent data are overweighed. It can be shown that the fading memory

)

has the same steps as conventional Kalman filter with a minor change in the

prediction of error covariance matrix P(k + 1 | k) which in this case is given

by,
P(k+1]k)=dRk)Pk| k)BT (k)e + G(R)QR)GT (k). (2.16)

For completeness, the derivation of the discrete time fading memory is given

in Appendix A following [21].

2.2.3 Observability Problems

This problem arises when the system is not observable i. e. one or more of

the state variables(or their linear combinations) are hidden from the view of
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the observer [16]. As a result, if the unobserved states are unstable, the corre-
sponding estimations will be unstable. The occurance of such a problem can be
evidenced by the unbounded growing of one or more diagonal entries of error

covariance matrix.

2.3 Tuning of Kalman Filter

The estimates of states of a system as provided by Kalman filter is optimal
only if the filter is properly “tuned”. A couple of parameters can be checked to
ensure that the filter is operating properly. A necessary and sufficient condition
for the Kalman filter to be working properly is that the innovation sequence
must be zero-mean and white [8]. This can be easily checked in practice. The
square roots of the diagonal entries of the covariance matrix P represent the
root-mean-square(RMS) error associated with the states [2]. If the filter is
properly tuned, the diagonals should reach steady-state values irrespective of
initial assumption P(0 | 0). This arises from the fact that as long as the filter
is stable and the state-space model is completely controllable and observable,
then P attains a steady state value [8]. It should be noted that initial guesses
on the state vector Z(0 | 0) and covariance matrix P(0 | 0) are not important
in tuning the filter since their effects are reduced as more observation data are

processed.



Chapter 3

A GENERAL SOFTWARE FOR
FIXED-POINT IMPLEMENTATION OF
REAL-TIME KALMAN FILTER

In this chapter, a general software written in TI assembly language for the
implementation of fized-point Kalman filter on TMS320C25 digital signal pro-
cessor 1s introduced. Use of macro library for various implementations of the
filter algorithms are described and illustrated with examples. A comparison

between these approaches is discussed in the last section.

3.1 A Software for Kalman Filter : An Introduction

A very general user-friendly software in the form of macros is written in Texas
Instruments(TI) assembly language version 5.0 for TMS320C25 digital signal
processor in order to implement real-time fixed-point Kalman filter having as
many as 14 states. Any of the filter algorithms discussed in chapter two can
be implemented using these macros. As a matter fact, the extensive macro
library provides the user with a wide choice implementations. To incorporate
the macros in the main program, the user does not have to be an expert of TI
assembly language. As illustrated with examples in the next sections, only a
little knowledge of TMS assembler directives and its memory configuration is
enough to efficiently use the macros in filter algorithm. Since one of the prime
concerns in the implementation of real-time Kalman filter is execution speed,
macros are preferred to subroutines at the expense of considerable demand on
program memory. The macros are written in such a way that they fully exploit

the unique architecture of the TMS microprocessor. Some of the steps in the

13
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filter realization are rearranged to make them more suitable to TMS structure.
The macros are written with the assumption that all numerical computations

are carried out using fixed-point Q15 format.

3.2 The Storage Strategy Used in the Software

A general storage strategy is used for storing scalars, vectors, matrices in all
the macros. It is assumed that maximum allowable size of a matrix is 14 x 14.
For matrices, the entries of a row are stored in consecutive places whereas those
of a column are stored hexadecimal 10 (decimal 16) places apart in memory.
The only exception to this rule is the storage of diagonal matrices. In this
case, the diagonal entries are stored in successive memory locations. When we
say that a matrix A is stored at “Loc_of_A” in data memory, we simply mean
that A(1,1) is stored right at “Loc_of_A” and the remaining entries are stored
relative to this location. For example, storing A at hexadecimal 211(denoted
as 211h) means that A(1,1) is stored at 211h, A(1,2) at 212h, A(2,1) at 221h
and so on. The same storage strategy holds for vectors i. e. elements of a row
vector are stored in consecutive places whereas those of a column vector are
placed hexadecimal 10 places apart. This storage strategy facilitates eflicient
use of memory and at the same time enables the user to visualize everything in
terms of the usual indexing used in vectors and matrices. Example 1 illustrates
how this can be used to store different matrices and vectors in compact form
in the memory.

Example 1
Let us suppose that Ais a 6 x 8 matrix, B is a 7 X 7 matrix, D is a 8 x 8

diagonal matrix, & is a 1 x 8 row vector and f is a 8 x 1 column vector. Now if
the available memory starts from 300h, then all these parameters can be stored

in a compact form as illustrated by Figure 3.1.

(300h)=A(1,1) ... (307h)=A(1,8) [(308h)~B(1,1) ... (30Eh)=B(1,7) | (30Fh)=f(1)
(310h)=A(2,1) ... (317h)=A(2,8) ((318h)=B(2,1) ... (31Eh)=B(2,7) | (31Fh)=f(2)
(350h)=A(6,1) ... (357h)=A(6,8)

(360n)=D(1,1) ... (367h)=D(8,8) [(368h)=B(7,1) ... (36Eh)=B(7,7) | (36Fh)=f(7)
(370h)=e(1) .... (377h)=e(7) (378h)=e(8) | unused 6 locations| (37Fh)=f(8)

Figure 3.1: Compact Storage Scheme of Example 1
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3.3 The Macro Library

The extensive macro library provides a variety of implementation of the Kalman
filter. Appendix F contains all the macro codes which are written with exten-

sive comments.

3.3.1 General Matrix Macros

A brief summary of the general macros is given below :

1. Make necessary Initialization

e macro : Makelnit
e operation : Make general initializations that are used by all macros

¢ description : make necessary initialization for fixed-point Q15-based

numerical computation
2. Scalar Addition or Subtraction

e macro : ScalAorS Location, OPTION

e operation :
(a) [ACCH] + [Location] — [ACCH], if OPTION = 0
(b) [ACCH] - [Location] — [ACCH], if OPTION =1

e description : add (or subtract) a scalar value stored at “Location”
to (or from) high accumulator(ACCH)
3. Vector Addition or Subtraction

¢ macro : VectAorS M, Locof_a, Loc_of-b, OPTION

e operation :
(a) @ + b — &, if OPTION = 0
(b) @ - b — a,if OPTION =1

o description : add (or subtract) an M x 1 column vector b stored
at “Loc_of_b” in data memory to (or from) another M x 1 column

vector a stored at “Location_of_a” in data memory and store the

resulting vector in a@’s place

4. Vector Multiplication or Division by scalar
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e macro : VectMorD M, Loc.of_a, Loc.of.c, OPTION
e operation :
(a) ax [ACCH] — ¢, if OPTION =0
(b) a+ [ACCH] — ¢, if OPTION =1
o description : multiply (or divide) an M x 1 column vector a stored

at “Loc_of-a” in data memory by a scalar stored in upper-half of

accumulator and store the resulting vector ¢ at “Loc_of ¢” in data

memory
5. Vector Vector Multiplication

e macro : VecVecMl M, Loc.of_a, Loc_of_b, Loc.of.C, OPTION
e operation :
(a) @(row vector in data memory)xb(column vector in data mem-
ory) — [ACCH] , if OPTION = 0
(b) @(column vector in data memory)x [b(column vector in data
memory)]T — C(only the lower-half) , if OPTION = 1
(c) @(row vector in program memory)xb(column vector in data

memory) — [ACCH], if OPTION = 2

e description : find inner-product (or outer-product) of two vectors @
and b stored at “Loc.of.a” and “Loc.of_b” respectively and store the
inner-product in high accumulator (or the lower-half of the outer-

product at “Loc.of-C” in data memory)

6. Matrix Addition or Subtraction

e macro : Mat_AorS M, Loc.of A, Loc_of B, OPTION
e operation :
(a) A(lower-triangular matrix)+B(lower-triangular matrix)
— A, if OPTION = 0
(b) A(lower-triangular matrix)—B(lower-triangular matrix)
— A, if OPTION =1
(c) A(lower-triangular matrix)+B(diagonal matrix) — A,
if OPTION =2
o description : add (or subtract) an M x M lower-triangular matrix
or diagonal matrix B located at “Loc_of_B” in data memory to (or
from) an M x M lower-triangular matrix A located at “Loc_of-A”
in data memory and store the resulting lower-triangular matrix in

A’s place
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7. Matrix Matrix Multiplication between program memory and data mem-

ory

¢ macro : MtMtMlpd M, N, P, Loc_of A, Loc_of B, Loc_of C,
OPTION.1, OPTION_2

e operation :

(a) A(in program memory)x B(in data memory) — C,
if OPTION_1 = 0 and OPTION2 =0
(b) [A(in program memory)xB(in data memory)]T — C,
if OPTION.1 = 1 and OPTION2 =0
(c) A(in program memory)x B(in data memory) — C(only the
lower-half), if OPTION_1 = x(don’t care) and OPTION.2 =1
¢ description : multiply an M X N matrix A stored at “Loc_of A” in
program memory by an N X L matrix B stored at “Loc_of_B” in data
memory and store the resulting matrix or its transpose or the only
the lower-half of resulting matrix (if it is known to be symmetric

beforehand) at “Loc.of.C” in data memory
8. Matrix Matrix Multiplication between data memory and data memory

e macro : MtMtMldd M, N, S, T, Loc_of_A, Loc_of B, Loc_of_C,
OPTION_1, OPTION.2

e operation :

(a) A(in data memory)x B(in data memory) — C ,
if OPTION.1 = 0 and OPTION.2 = 0
(b) [A(in data memory)xB(in data memory)]T — C ,
if OPTION.1 =1 and OPTION.2 = 0
(c) A(in data memory)x B(in data memory) — C(only the
lower-half), if OPTION.1 = 0 and OPTION.2 =1
(d) AT(in data memory)xB(in data memory)— C,
if OPTION.1 =1 and OPTION.2 =1

¢ description : multiply an M x N matrix A (or its transpose) stored
at “Loc.of A” in data memory by an S x T matrix B stored at
“Loc_of_B” in data memory and store the resulting matrix or its
transpose or the only the lower-half of resulting matrix (if it is known
to be symmetric beforehand) at “Loc_of.C” in data memory. Note
that for the first three options, N = S, else M = S

9. Fill upper-half of a Matrix from its lower-half
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e macro : Fill.Mat M, Loc_of_A
o operation : A(lower-triangular matrix) — A(symmetric matrix)
o description : fill the upper-half of a M x M lower-triangular matrix

A stored at “Loc.of_A” in data memory with its lower-half and

thereby symmetrize the matrix
10. Matrix Copying

¢ macro Mat_Copy M, N, SOURCE, DEST
o operation : A(at SOURCE in data memory) — A(at DEST in
data memory)

o description : copy an M x N matrix A stored at “SOURCE” in data

memory to “DEST” in data memory

11. Move from Program memory to Data memory

¢ macro : Move P.D M, N, SOURCE_P, DEST_D
o operation : A(at SOURCE_P in program memory) — A(at DEST_D
in data memory )

o description : move an M x N matrix A stored at “SOURCE_P” in
program memory to “DEST_D” in data memory

12. Q15 Division

e macro : Q15_Div
e operation : [ACCH] =+ [065h] — [ACCL]
e description : divide a Q15 number stored in high accumulator(ACCH)

by another Q15 number stored at 065h of data memory and store
the result in low accumulator(ACCL)

13. LU-Factorization of a symmetric matrix

e macro : LU.Fact M, Loc_of A, Locof C

o operation : A(lower-traingular matrix) — C=LxU=4

e description : From the knowledge of lower-half of a symmetric ma-
trix A stored at “Loc.of_A” in data memory, perform LU decom-
position such that ¢ = [ x U = A, and store it in compact form
at “Loc-of_C” in data memory, where [ is the lower-triangular half
and U is the upper-triangular half of ¢. The diagonal entries in
C correspond to those of f,, whereas diagonals of U are not stored

since they are known to be 1’s
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14. solve a system of equation by ForWard substitution

e macro : For.Ward M, N, Loc_of L, Loc.of B, Loc.of_Y
e operation : solve ¥ from [V = BT

e description : using forward substitution, solve ¥ from LY = BT,
where L is an M x M lower-triangular matrix stored at “Loc_of L”
in data memory and B is an N x M matrix stored at “Loc_of_B” in

data memory. Y is stored at “Loc_of.Y” in data memory
15. solve a system of equation by BackWard substitution

e macro : Bck-Ward M, N, Loc_of U, Locof Y
e operation : solve X from UX =V

e description : using backward substitution, solve X from UX =V
where U is an M x M upper-triangular matrix with diagonals as 1’s
stored at “Loc_of _U” in data memory and Y is an M x N matrix
stored at “Loc_of_Y” in data memory, and store X in ¥’s place

16. find Square-Root of a Q15 number

e macro : Sqr-Root
e operation : /[ACCH] — [ACCL]

e description : find the square-root of a Q15 number stored in high
accumulator(ACCH) by Newton-Raphson method and store it in
low accumulator(ACCL)

17. Choleski factorization of a symmetric matrix

e macro : Choleski M, Loc_of_ A
o operation : A(lower-traingular matrix) — ¢ = A°(A°)T

e description : From the knowledge of lower-half of a symmetric ma-
trix A stored at “Loc.of_.A” in data memory, perform Choleski-
decomposition such that A = A°(4°)T and store the lower-triangular

matrix A in A’s place
18. perform Sequential Processing

e macro : Seq-Proc M, N, Loc_of H, Loc_of_P, Loc_of_R, Loc_of_y,
Loc_of_x, Loc_of k, temp_1, temp.-2

e operation : find the filtered estimates by sequential processing
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o description : for vector observation case, find filtered estimates of

the state vector Z(k+ 1|k + 1) and the error covariance matrix
P(k + 1|k +1) by sequential processing as discussed in last chap-
ter, where M x N matrix H, N x N matrix P, MxM diagonal matrix
R, M x 1 column vector § and N x 1 column vector Z are stored
at “Locof H”, “Loc.of P”| “Loc.of R”, “Loc.of_y” and “Loc_of.x”
in data memory respectively. The intermediate result k is stored at
“Loc_of k” whereas “temp_1” and “temp_2” are N x N and N x 1

storage locations used for temporary storage.

3.3.2 Some Special Macros

To get rid of unnecessary computations like multiplication with ones and zeros
or addition with zeros, some special macros are written when state transition

matrix & have the following block diagonal structure :

{‘31 | 0 | | 0
0 | & | |
b=1|_- - __ __ ,&J_[ ‘Z ﬁJJ (3.1)
—P; @
| | | 0
0| | o | & |
and observation vector k is of the form :
h=[h | b | oo | R hi=[1 0], (3.2)

where 1 < 4,7 < 4. In these macros, the observation vector & does not have to
be stored . Another important feature is that state vector Z is stored as a row
vector . The upper-half of error covariance matrix P is never calculated and in
the computations, P is assumed to be symmetric. This results in considerable
savings when Kalman filter having the above mentioned state-space structure

is implemented using these special macros.

1. Find PREDicted ESTimates of state vector and error covariance matrix

e macro : PRED_EST N, Loc.of_Phi, Loc.of P, Loc-of_x, Loc.of_Q)
o operation : % — 7 and $PPT + Q) — P



CHAPTER 3. A GENERAL SOFTWARE FOR KALMAN FILTER 21

e description : find predicted estimates of the state vector z(k + 1 | k)
and the error covariance matrix P(k+1 | k) where N x N block diag-
onal matrix &, Nx N lower-triangular (symmetric) matrix P, 1 x N
vector £ and NV x N diagonal matrix Q are stored at “Loc_of-Phi”,
“Locof P”, “Loc.of_x” and “Loc.of-Q” in data memory respec-
tively. The macro uses three other macros namely MAT221, MAT222
and PHI_X for operations on 2 x 2 block matrices.The operations

performed by these three macros are :
~ MAT221 : AB(lower-triangular) AT + D(diagonal) — B
— MAT222 : ABCT — C
— PHIX : 3 — 7

2. Find FILTered ESTimates of state vector and error covariance matrix

e macro: FILT_EST N, Loc_of P, temp_1, Loc_of_r, Loc.of k, Loc.of x,
Loc.of_y

o operation : PAT/[APRT + R) — k, P — PRTET — P
and z — k[hz —y] — Z

o description : find filtered estimates of state vector Z(k+ 1| £ + 1)
and error covariance matrix P(k + 1 | k 4 1) where N x N lower-
triangular matrix P, observation variance R, 1 x N vector & and
observation y are stored at “Loc_of_P”, “Loc_ofr”, “Loc-of-x” and
“Loc.of_y” in data memory respectively. It should be noted that
this is a special macro which serves some other specific purposes.
To communicate with the outside world, it resets external flag(XF)
to get data. The new data is written into “Loc_of_y” by the exter-
nal processor whereas previously processed data which is the sum
of every other entries of filtered state vector is written into next
location. At the end of the macro, the external flag is set. As far as
I/0 operations are concerned, the macro converts offset binary(OB)

format into 2’s complement format and vice versa.

3.4 Building up the Kalman Filter Algorithms

The wide choice of macros provides a variety of standard and user-defined
implementations of the Kalman filter. While using the macros in the filter
algorithm, the architecture of the TMS processor has to be exploited to get
the best throughput. For example, the multiplication of two operands (vectors
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or matrices) can be very efficiently performed at minimum cost of program
memory by putting one operand in program memory and the other in data
memory. The TMS320C25 digital signal processor has 544 words of on-chip
data RAM of which 256 words can be configured either as program memory
or data memory by a software command (CNFP/CNFD instruction). Apart
from this, all the system boards that are developed around the TMS320C25
chip have no-wait-state external RAM which can be as large as 123K. As far as
execution speed is concerned, the most eflicient implementation requires that
both the data and the program space should reside in on-chip RAM. How-
ever, because of macro-based straight-line code implementation, the program
occupies considerable space. To make an optimal trade-off between speed and
memory space, the macros are written mostly from the first four classes of in-
struction set for which running the program from no-wait-state external RAM
with data in on-chip RAM is as fast as executing from on-chip RAM. According
to the number of cycles required for execution, all the instructions are grouped
into fifteen classes. When both the program and the data are in on-chip RAM,
the first four classes take one instruction cycle. On the other hand, for ex-
ternal program RAM and on-chip data RAM each instruction takes (p + 1)
cycles where p is the wait state of external program memory. Hence it is rec-
ommended to store the data and the intermediate results in on-chip data RAM’
and run the program from no-wait-state external program RAM for which p=0.
One of the most-likely problems encountered in implementation of the Kalman
filter is the divergence of error covariance matrix P as discussed in chapter two.
This problem is automatically solved as the macros concerning the predicted
and the filtered estimates of P calculate only its lower-half and then fills the
upper-half making sure that the symmetry is preserved. In the correction part
of error covariance matrix P, the filter step terms are rearranged to make it

more suitable for TMS structure. Since the error covariance P(k+1 | k +1)

given by,
Plk+1]k+1)=[I-K(k+1)HP(k+1]k) (3.3)
is symmetric, it can be written as,

Pk+1]k+1) = PT(k+1]k+1)
= [P(k+1]|k)—K(Ek+1D)HP(k+1]E)T
= Plk+1|k)—Plk+1|KATET(k+1) (3.4)

The term P(k+1 | k) HT needs to be calculated for the computation of Kalman
gain in the preceding step. Hence, it can be stored in a temporary storage

location and readily used in error covariance correction. For TMS320C25, this
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form of realization of P(k+1 | k+1) is computationally faster than its standard

form.

The macros can be used to define a new user-defined macro. While doing
so, two important points should be taken into account - the auxiliary register
ARO should not be changed and the data memory locations 65-68h of on-chip
block B0 should not be used.

The implementation of the Kalman filter using the macro library is dis-

cussed in the following subsections with examples.

3.4.1  Scalar Observation

For scalar observation, two different approaches are considered. The first ap-
proach is called “LTA and MPY pair option” because of frequent use of these
two instructions in multiplication. In this case , the data and the intermediate
results are stored in data memory. In the second implementation, they reside
either in program memory or data memory to exploit the fast MAC(Multiply

and ACcumulate) instruction and hence is called “MAC option”.

LTA and MPY Pair Option

For a dynamic system up to ten states i. e. up to N = 10, all permanent
data and intermediate results can be stored in on-chip data RAM. The scalars,
vectors, matrices and intermediate results can be efficiently accommodated in
on-chip RAM as shown in Figure 3.2. Incorporation of macros in Kalman fil-
ter algorithm is illustrated in Example 3.2. Note that the initialization part

and the data acquisition parts are not included in this example as well as the

subsequent examples.

Example 3.2
Consider the case when the dynamic system has N states where 2 < N <

10. Let us suppose that the N x N state transition matrix d is stored at
“Loc_of_phi”, N x N error covariance matrix P at “Locof.P”, N x N mea-
surement noise covariance matrix Q at “Locof Q”, N x 1 state vector z at
“Loc.of_x”, the process noise variance R at “Loc.ofr” and the observation
data y is stored at “Loc.of_y”. For storage of intermediate results, the loca-
tions “temp.1” and “temp.2” as indicated by Figure 3.2 are used. The filter

steps can be realized as :
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200h - 209h 29ah - 2a3h 334h - 33ph temp_1:
210h - 21%h 2aAh - 2B3h 344h - 34Dh for storage of
¢ P intermediate
results
(Ph’k’ and P*)
290h - 29%h 32Ah - 333h 3C4h - 3Cbh
* Loc_of _phi=200h * Loc_of _P=29Ah * temp_1~334h
33Eh 33Fh temp_2: 340h
34Eh 34Fh for storage of 350h
intermediate k
results
3CEh 3C0h (Ox,Ph’  k(hx-y)) 3p0h
* Loc_of _x=33Eh * temp_2=33Fh * Loc_of _k=340h
3EOh -~ 3E9h : h ; * Loc_of_h=3ECh
3FOh - 3F%h : diagonals of Q ; * Loc_of_Q =3FOh
3FAh : r ; * Loc_of _r=3FAh

3FBh : y :

* Loc_of_y=3FBh

Figure 3.2: Storage Scheme for LTA and MPY pair option

o find Z(k+1| k) = &&(k | k)

MtMtMldd N, N, N, 1, Loc.of_phi, Loc.of x, temp.2, 0, 0
; temp_2 +— bz

Mat.Copy N, 1, temp_2, Loc.of x ; T «— temp_2

find P(k+1 k) =&P(k| k)BT +Q

MtMtMldd N, N, N, N, Loc_of_phi, Loc_of P, temp_1, 1, 0
: temp.1 — [ P])T = P§T

MtMtMldd N, N, N, N, Loc.of_phi, temp_1, Loc_of_P, 0, 1
s P «— & P37 (only lower-half)

Mat_AorS N, Locof P, Loc.of .Q, 2 ; P« ®PBT +
Fill. Mat N, Loc-of P ; fill the upper of P

find k(k+1) = P(k+1| k)AT/(RP(k+1]| k)RT + R)
MtMtMIdd 1, N, N, N, Loc.of_h, Loc_of P, temp_2, 1, 0

. temp_2 «— [RP)T = PRT

VecVecMI N, Loc.of_h, temp-2, 0, 0 ; (ACCH) «— RPRT
ScalAorS Locofr ; (ACCH) «— (ACCH)+R

VectMorD N, temp.2, Locof k, 1 ; k «— PRT/(RPRT + R)

find P(k+1|k+1)=Pk+1|k)—P(k+1]k)ATET(k+1)
VecVecMl N, temp-2, Locof k, temp_1, 1

; temp_1 «— PRTET (only lower-half)
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Mat_AorS N, Loc.of P, temp.1, 1 ; P «— PRTET
Fill.Mat N, Loc.of_P ; fill the upper-half of P

o findT(k+1|k+1)=3(k+1|k)-k(k+1)[hz(k+1]k)—1]
VecVecMl N, Loc_of_h, Locofx, 0, 0 ; (ACCH) «— hz —y
ScalAorS Locof.y, 1 ; (ACCH) «— (ACCH)—y
VectMorD N, Loc.of k, temp_2, 0 ; temp_2 «— k(hZ — y)
VectAorS N, Loc_ofx, temp-2,1 ; Z «— Z — k(hZT — y)

MAC Option

25

In this case, the fast multiply and accumulate instruction of TMS320C25 is
expleited. To achieve this operands (i. e. vectors and matrices) are stored ei-
ther in program memory or data memory. For a filter that involves up to 8
state variables all the permanent data and intermediate results can be accom-
modated in on-chip RAM as shown in Figure 3.3. Note that CNFD/CNFP

instruction moves the on-chip block B0 back and forth between 200h of data
mernory and 0FF00h of program memory. The incorporation of macros into

the standard Kalman filter is described in Example 3.3.

Example 3.3

The Example 3.2 is reconsidered again with the difference that in this case,

2 < N < 8. For this case, the filter steps can be summarized as :

o cnfp ; configure block B0 as program memory

o find &(k+1|k) = &3(k| k)

MtMtMlpd N, N, 1, 0FF00h-200h+Lo c-of_phi, Loc_of_x, temp-2, 0, 0

; temp 2 «— bz
Mat_Copy N, 1, temp-2, Loc.of x ; T «— temp.2

o find P(k+1|k)=8P(k| k)3T +Q

MtMtMlpd N, N, N, 0FF00h-200h+Lo c_of_phi, Loc_of_P, temp_1, 1, 0

: temp.1 «— [®P]T = PPT

MtMtMlpd N, N, N,0FF00h-200h+Loc-of phi, temp_-1, Locof_P, 1, 1

s P —— $PBT (only lower-half)
Mat.AorS N, Loc-of P, Locof_Q, 2 ; Pe— dPOT 4 Q
Fill.Mat N, Loc.of P ; fill the upper of P

o find B(k+1) = P(k+1| k)AT/(RP(k + 1| k)AT + R)

MtMtMlpd 1, N, N, 0FF00h — 200h+Loc.of h, Loc_of P, temp_2, 1, 0

s temp_2 «— [RP]T = PRT
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VecVecMl N, 0F F00h — 200h+Loc._of_h, temp_2, 0, 2

; (ACCH) «— RPRT

ScalAorS Loc.ofr ; (ACCH) «— (ACCH)+R

VectMorD N, temp-2, Locof k, 1 ; k «— PRT/(RPRT + R)

o find P(k+1]|k+1)=Pk+1|k)—P(k+1]|k)RTET(k+1)
VecVecMl N, temp._2,Loc_of k, temp_1, 1
; temp.1 «— PRTET (only the lower-half)
Mat_AorS N, Locof P, temp_1, 1 ; P PRTET
Fill.Mat N, Loc_of P ; fill the upper-half of P

o indZ(k+1|k+1)=2(k+1]k)-k(k+1DAz(k+1]k)—1y]
VecVecMl N, 0F F00h — 200h+Loc-of_h, Loc_of x, 0, 2
; (ACCH) «— hZ —y
ScalAorS Loc.ofy, 1 ; (ACCH) «— (ACCH) —y
VectMorD N, Loc.of k, temp.2, 0 ; temp_2 «— k(hZ — y)

VectAorS N, Locof x, temp-2,1 ; T «— T — k(hZ — y)

For 9 < n < 14, the on-chip RAM can not accommodate all permanent and
temporary data. In this case, some of the data have to reside in external RAM.
To keep the execution speed as fast as possible, only those data that are less

involved in computations are stored in external memory.

200h - 207h | 300h - 307h 308h - 30Fh temp_1 :
210h - 217h 310h - 317h 318h - 3trn| for storage of
dD P intermediate
results
270h - 277h 370h - 377h 378n - 37en | (Ph'K,PEY)
* Loc_of _phi=200h * Loc_of_P=300h * temp_1i=308h
380h 381h temp_2: 382h
390h 391h for storage of 392h
X intermediate
results
3F0h IF1h (¢ x,Ph’ ,k(hx-y) ) 3F2h
* Loc_of_x=380h * temp_2=381h * Loc_of _k=382h

2FOh - 2F7h : h ; * Loc_of_h=2FOh
3F4h - 3FBh : diagonals of Q; * Loc_of_Q=3F4h

3FCh : r ; * Loc_of_r=3FCh

3Fbh : y ; * Loc_of_y~3FDh

Figure 3.3: Storage Scheme for MAC option



CHAPTER 3. A GENERAL SOFTWARE FOR KALMAN FILTER 27

3.4.2 Vector Observation

When the observation is a vector quantity, the term (f] PHT + }?t’,) is no longer
a scalar but a symmetric matrix. Hence inversion of an (M x M) matrix is
required if the standard Kalman filter is to be implemented. This problem can
be overcome by sequential processing of observation vector. Another way to
circumvent inversion is to solve Kalman gain K as a system of linear equations
using either LU or Choleski factorization. In both the cases, matrix and vector
multiplications are accomplished by “MAC option” i. e. we assume that the
operands reside either in data memory or in program memory to maximize

execution speed.

Sequential Processing :

For a system having up to 8 states and observation vector having up to 8
components i. e. up to N = 8, M = 8, all the permanent and intermediate
results can be put into on-chip RAM. The storage scheme for this case is

illustrated in Figure 3.4. The sequential processing can be very easily realized

208h - 20Fh |

200h - 207h |
210h - 217h 218h - 21Fh
- - H
270h - 277h_| 278h - 27Fh_|
* Loc_of _phi=200h * Loc_of_H=208h
300h - 307h ] 308h - 30Fh | temp_1 :
310h - 317h 318h - 31Fh for storage of
: — intermediate
P results
f PHIKI )
370h - 371=h_J 378h - 37Fh | ¢ PO
* Loc_of_P=300h * temp_1=-308h
380h 381h temp_2: 382h 383h
for storage 393h
390h 39th | iere | 392h
X mediate f Y
results
(@x,Ph’,
3F0h 3Flh | F(hx-y) ) | 3F2h 3F3h
“Loc_of _x=380h( *temp_2=381h *Loc_of _f=382h | *Loc_of _y=383h

385h - 38Ch :

diagonals of R ; * Loc_of_R=385h

395h - 39Ch

: diagonals of Q ; * Loc_of_Q=395h

Figure 3.4: Storage Scheme for Sequential Processing, NV = 8

using the special macro “Seq-Proc” which finds the filtered estimates of state
vector #(k + 1 | k + 1) and error covariance matrix P(k+ 1 | k+1). The use
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of macros in sequential processing is described in Example 3.4.

Example 3.4
We shall consider the case when the system has NN states and the measurement

vector has M components, where 2 < M, N < 8. The temporary storage and
permanent data locations are the same as in Figure 3.4. The incorporation of

macros into sequential processing is described as follows :

e cnfp ; configure block B0 as program memory

o find Z(k+1|k) = ®z(k | k).
MtMtMlpd N, N, 1, 0FF00h-200h+Loc_of_phi, Loc.of_x, temp.2, 0, 0
; temp.2 «—— dz
Mat.Copy N, 1, temp-2, Loc.of x ; T «— &z

o find P(k+1|k)=dP(k| k)T + 0O
MtMtMlpd N, N, N, 0FF00h-200h+Loc-of phi, Locof_P, temp_1, 1, 0
; temp_1 «— (®P)T = P&T
MtMtMlpd N, N, N, 0FF00h-200h+Loc-of phi, temp_1, Locof P, 1, 1
P & P37 (lower-half only)
Mat_AorS NN, Locof P, Loc.of_Q, 2 ; P &P3T+(
Fill. Mat N, Loc.of P ; fill the upper-half of P

e find filtered estimate of state vector Z(k+1 | k+ 1) and error covariance
matrix P(k+ 1]k +1).
Seq.Proc M, N, Loc_of_H, Loc_of_P, Loc_of R, Loc_of_y, Loc_of x, Loc_of K,
temp_1, temp_2

Batch Processing

When all the elements of observation vector  are treated at the same time, the
Kalman gain matrix K can be solved either by LU or Choleski decomposition.
We shall consider only the case when LU decomposition is applied since there
is not much difference in the way LU or Choleski decomposition is used to solve
a system of linear equations. To avoid matrix inversion, the following steps are

performed to compute Kalman gain K :

e find B = PAT

oﬁndz‘iZﬁpﬁT-i-R
— K = BA™!
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temp_1 :
200h ~ 207h 208h - 20Fh 280h - 287h used for
210h - 217h 218h - 21Fh 290h - 297h PO’ ,PH’
() H and
forward
bstitut
270h - 277h 278h - 27Fh 2FOh - 2F7h subs ution
%Loc_of _phi=200h | *Loc_of_H=208h *temp_1=260h
288h - 28Fh : diagonals of R ; *Loc_of _R-288h
298h - 29Fh : diagonals of @ ; *Loc_ofQ=298h
300h - 307h 308h - 30Fh_ temp_2 : 380h - 387h temp_3 :
310h - 317h 318h - 31Fh | Used for 1 390n - 397h used for
(HPH’+R) PH’K’
and K’ and
compact
370h - 377h 378h - 37Fh 3FOh - 3F7h LU form
*Loc_of_P=30Ch *temp_2=308h *temp_3=-380h
388h 389h |
398h | 39%n |
3F8h 3F%h_|
*Loc_of _x=388h *Loc_of _y=389h

Figure 3.5: Storage Scheme for Batch Processing, N = 8

= KT = A-1BT (since A is symmetric)
= AKT = BT

e perform LU decomposition of A such that A = LU, where L is a lower-
triangular matrix and U is an upper-triangular matrix with 1’s in its
diagonals.
= LUKT = BT
=> LY = BT, where UKT = ¥

e solve Y from LY = BT by forward substitution.

o solve KT from UKT =V by backward substitution.

For a system having up to 8 states and measurement vector having 8 elements
all the permanent and intermediate results can be stored in on-chip RAM as
shown in Figure 3.5. Incorporation of macros for batch processing is described
in example 3.5.

Example 3.5

We consider the same system as in Example 3.4.Instead of sequential processing

of observation data, the filter implementation is based on batch processing.
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e cnfp ; configure block B0 as program memory

o find #(k 41| k) = dz(k | k)
MtMtMlpd N, N, 1, 0OFF00h-200h+Loc_of_phi, Loc.of_x, temp_2, 0, 0
; temp-2 «— &z
Mat_Copy N, 1, temp_2, Locof-x ; 7 «—— &z

o find P(k+1|k)=dP(k| k)T
MtMtMlpd N, N, N, OFF00h-200h+Loc_of _phi, Loc_of_P, temp_2, 1, 0
. temp_2 «— [ P]T = PPT
MtMtMlIpd N, N, N, OFF00h-200h+Loc_of_phi, temp_2, Loc of P, 1, 1
; P «— & P37 (lower-half only)
cnfd ; configure block B0 as data memory
Mat_AorS N, Locof P, Loc.of-Q, 2 ; P «— $POT +
FilLMat N, Loc_of_P ; fill upper-half of P

o find K(k+1)
cnfp ; configure block B0 as program memory
MtMtMlpd M, N, N, OFF00h-200h+Loc-of_H, Loc.of P, temp-2, 1, 0
:temp.2 — [HP]T = PAT = B
MtMtMlpd M, N, M, 0FF00h-200h-+Loc_of H, temp_2, temp_3, 1, 1
; temp_3 «—— H PHT (only lower-half)
cnfd ; configure block B0 as data memory
Mat_AorS M, temp_3, Locof R, 2 ; temp-3 «— HPAT+R=A
LU_Fact M, temp.3, temp-1 ; temp_1 «— LU=4
For.Ward M, N, temp-1, temp-2, temp_3
;solve Y from LY = BT and store it in temp-3
Bck-Ward M, N, temp_1, temp_3
. solve KT from UKT = Y and store it in temp.3

o find P(k+1|k+1)=Plk+1]k) + P(k+1]|k)HTKT
MtMtMldd N, M, M, N, temp_2, temp-3, temp-1, 0, 1
: temp_1 «— PHTKT(only the lower-half)
Mat_AorS N, Locof P, temp_1, 1 ; P P-PHTKT
Fill.Mat N, Loc_of P ; fill the upper-half of P

o findZ(k+1|k+1)=a(k+1]k) - K(k+D[H&(k+1|k) —g(k+1)]
cnfp ;configure block B0 as program memory
MtMtMlpd M, N, 1, 0FF00h-200h+Loc.of H, Loc_of x, temp-2, 0, 0
; temp_2 «— Hz
VectAorS M, temp_2, Loc.of.y, 1 ; temp.2 «— HZ —§
MiMtMIldd M, N, M,, 1, temp-3, temp-2, templ_1, 1, 1
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. temp_1 — K[HZ — 7]
VectAorS N, Loc.of x, temp_1,1 ; T «— T — f{[ﬁi — 7]

3.5 Peformance Evaluation of Different Implementa-

tions

Based on the usual criteria of any real-time implementation like program exe-
cution speed, consumption of memory space etc., the performance of different
approaches is considered in this section. It should be noted that this per-
formance evaluation is valid only when the Kalman filter is implemented on
TMS320C25 digital signal processor. As a matter of fact, good performance of
a particular implementation does not necessarily mean that the same scheme
of implementation on a different digital signal processor or a general-purpose
microprocessor will be as good as its TMS320C25 counterpart. As performance
evaluation indicators, we consider total program memory space including ini-
tialization, data memory space needed to accommodate both permanent and
intermediate results, total instruction cycles for a single iteration of filter algo-
rithm and finally maximum sampling frequency that can be achieved assuming
that TMS320C25 runs with 10MHz instruction cycle.

3.5.1 Scalar Observation

As discussed in the previous section, there are two ways to implement the
Kalman filter when the observation is a scalar quantity. For “LTA and MPY
pair option”, the required memory space as a function of state dimension is

shown in a tabular form in Table 3.1 .

In this table, we consider the implementation of filter having as many as
10 states for which on-chip RAM can accommodate all pertinent data. It is
assumed that I/O operation takes no more than 15 instruction cycles. For a
system having N states, “LTA and MPY pair option” requires (3N%+ 5N +2)
words of data memory ,(82N? — 290N + 940) words of program memory and
(73N? — 193N + 520) instruction cycles per iteration.

The performance indices for the “MAC option” is considered for the filter
implementation that involves up to 14 states. As discussed in previous section,
external RAM is needed for N > 9. All the performance parameters for this
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N | program memory | data memory | instruction | mazimum sampling
words words cycles frequency in KHz

2 475 24 390 25.64

3 739 44 638 15.67

4 1101 70 978 10.22

5 1567 102 1428 6.98

6 2167 140 2006 4.99

7 2915 184 2730 3.66

8 3829 234 3618 2.76

9 4927 290 4688 2.13

10 6227 352 5960 1.68

Table 3.1: LTA and MPY pair option

implementation are shown in Table 3.2. The memory space needed is (N? +
N) for data memory, (277N — 211) for program memory and the number of
instruction cycles per iteration is approximately (43/N? + 230) for 2 < N < 8.

N | program memory | data memory | instruction | mazimum sampling
words words cycles frequency in KHz

2 432 18 395 25.32

3 623 32 630 15.87

4 848 50 934 10.71

) 1107 72 1316 7.67

6 1400 98 1785 5.6

7 1727 128 2350 4.25

8 2088 162 3020 3.31

9 2488 191 4539 2.2

10 2927 232 5663 1.77

11 3391 277 6345 1.58

12 3889 326 8401 1.19

13 4421 379 10073 0.993

14 4987 436 11937 0.837

Table 3.2: MAC option

When these two options are considered, it turns out that “MAC option”
is far better than the “LTA and MPY pair option” as far as memory space
is concerned. For a particular value of N, the maximum possible sampling

frequency is essentially the same in both the cases. However, the “MAC option”

requires much less memory space. These two facts are graphically illustrated

in Figure 3.6 and Figure 3.7 respectively.



CHAPTER 3. A GENERAL SOFTWARE FOR KALMAN FILTER 33

Y 1 T T T ]

T v
¥ = LTAaland MEYigntion ., < = MAC ortion

4900 Lererrininn, P, .““”; SRR S e iwfj ........ 2 .............
f ; ; : : A

9 3000 Lo e ST e, e ;
; ; : . o et o T 0

u
R
\

D00 o e et D

1000 .“.HHHHJHg“”“quLTP.dth ............................ PN e e,

) : i 1 1 i i i
¥ 3 4 S 6 7 g K| 10
Dimensian ¢f Stat2 Vector , H

Figure 3.6: Program Memory Words Vs. Dimension of State Vector
in Scalar Observation

(¥
<

T T T Y T T

one T

X = LTA:and MPY:option: o = MAC option

=
~

=5 ——

-~

-
wn
¥
i
i

1O Feveviinn. TR 0 P P .

SISO @

L
i

w

!
-
]

/
i

Dimenston of State Vector , M

Figure 3.7: Max. Sampling Frequency Vs. Dimension of State Vector
in Scalar Observation



CHAPTER 3. A GENERAL SOFTWARE FOR KALMAN FILTER 34

3.5.2 Vector Observation

For vector observation case, there are two ways to implement the Kalman filter
- sequential processing and batch processing. In both cases the performance is
evaluated as a function of the dimension of observation vector M (2 < M < 8)
for a fixed value of state dimension N( which is 8 in this case). It is assumed
that I/O consumes (2M + 15) program memory words and the same number
of instruction cycles. The performance parameters for sequential processing is
given in Table 3.3. The data memory needed in this case is (2N? + 3N + 2M)

words. However, it is difficult to give symbolic expression for program memory

M program memory | data memory | instruction | mazimum sampling
(N =8) words words cycles frequency in KHz

2 2771 156 3847 2.6

3 3455 158 4672 2.14

4 4137 160 5496 1.82

5 4819 162 6320 1.58

6 5501 164 7144 1.4

7 6179 166 7966 1.25

8 6361 168 8792 1.14

Table 3.3: Sequential Processing for N = 8,2< M <8

space and instruction cycle since they are functions of both N and M. As
for batch processing, we consider the case when the Kalman gain matrix K
is solved by LU-decomposition. The performance indicators for this case are

summarized in Table 3.4.

M program memory | data memory | instruction | mazimum sampling
(N =28) words words cycles frequency in KHz

2 3478 276 4537 2.204

3 4377 278 5578 1.79

4 5178 280 6535 1.53

S 6173 282 7701 1.3

6 7270 284 8981 1.11

7 8473 286 10382 0.963

8 9786 288 11907 0.84

Table 3.4: Batch Processing for N = 8,2 < M <8

When these two processing schemes are compared, it is evident the sequen-
tial processing is more efficient both in terms of execution speed and cost of
memory space. This is illustrated in Figure 3.8 and Figure 3.9 respectively.
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In fact the demand on memory space in batch processing increases at a
faster rate than that of the sequential one as M increases. The apparent in-
efficiency of batch processing arises largely from the computation of Kalman
gain matrix. To calculate Kalman gain matrix K, we need to perform LU-
factorization such that HPHT = LU and solve KT from LUKT = PHT in two
steps namely forward substitution and backward substitution. Apart from the
backward substitution part, a huge number of divisions (M N + (M — 1)%)/2)
has to be performed in these intermediate steps. However, the TI assembly
language does not have any fast division instruction. Even the fastest possi-
ble implementation like ours requires 24 instruction cycles. Consequently, the
percentage of total iteration time spent on LU-factorization and forward sub-
stitution increases substantially as M i. e. the dimension of observation vector
increases. As shown in Figure 3.10, it consumes about 47% of total iteration
time when M = 8 and N = 8. Nevertheless, this worse performance is better
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Figure 3.10: Kalman Gain Computation Time Vs. Dimension of Ob-
servation Vector

than the Choleski-decomposition-based Kalman gain computation. Although,
the Choleski decomposition is numerically better conditioned, it takes twice
the instruction cycle of LU-decomposition. This increase can be attributed to
the fact that in Choleski decomposition involves more divisions plus compu-
tation of square-roots which is pretty demanding as far as execution speed is
concerned. In LU-decomposition, backward substitution does not require any
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Figure 3.11: Comparison of LU and Choleski Decomposition

division since the diagonals of the upper-triangular matrix U/ are all 1’s. But
this is not tlie case in Choleski-decomposition as the matrix A = HPHAT is

decomposed into product of AT and (A“)T where diagonals of A° are arbitrary.
A comparison between LU and Choleski decomposition in terms instruction

cycle vs. matrix size is illustrated in Figure 3.11.



Chapter 4

RESTORATION OF THE SOUND OF
FLUTE EMBEDDED IN WHITE NOISE

In this chapter, a real-time application of Kalman filter namely the restoration
of the sound of flute embedded in white noise is considered. Following the
derivation of the state-space models of flute notes, the implementation of the
filter is described. Methods are proposed on how to detect the change in model
parameters. Relalionships between various filter parameters and their effects

en the filter gain and bandwidth are investigated.

4.1 Flute from an Engineering Perspective

From an engineering point of view, the sound of a musical instrument is nothing
but a linear combination of weighted sinusoidal waveforms. The woodwind
family of musical instruments which consists of flute, oboe, clarinet, piccolo,
basson etc. produces musical sounds through open or closed cylindrical tubes
with holes. The holes on the tube modify the fundamental vibrational mode

of the tube resulting in different musical sounds.

The flute is an open-ended cylindrical tube with six finger holes. When all
the holes are covered, the full length of the tube is utilized and the air column
vibrates with its fundamental frequency. If the lowest hole is uncovered, the
effective length of the tube gets shortened and the air column resonates with a
higher frequency. The frequency as well as the pitch increases as the upper holes
are successively uncovered. When all the holes are uncovered, the generated
frequency is one note from the complete in the equal temperament scale. In

the next octave, the holes are covered again and altering the blowing technique

38
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(usually blowing harder), the second harmonic of the tube, an octave above

the fundamental is generated. The process goes on in a similar manner.

4.2 State-space Modeling of Flute

About 36 notes can be generated by the flute spanning a frequency range from
260 Hz to 3.5 KHz. As with any other musical instruments, the notes produced
by the flute is composed of a fundamental plus weighted sum of its harmonics.
The fundamental frequencies of the notes generated by the flute are given in

Appendix B.

To find the discrete-time state space-modeling of the flute , the single sinu-
soid case is considered first. It is shown in the Appendix C that a sinusoid of

frequency w rad/sec can be represented by the following state-space represen-

nk+1) | | « B ] 1 (k) b o
[-LQ(/C -+ l) :I - [ -8 « J [Tz(k) ] = O (k) 4.1)

with observation equation,

tation ,

i zo(k)

where o = coswT and f = sinwT, T being the sampling period. This result
can be extended to represent any particular note of the flute . Irom our
experimental results, it is found that the whole spectrum of the flute notes can
be represented by only three harmonics for practical purposes. Table 4.1 shows

y(k)=[1 0] (4.2)

the number of harmonics for all the notes of flute.

, Notes | Number of of Notes | Number of Harmonics

04 to F5 19 3
Gs to C(; 7 2
Ds to AG 9 1

Be 1 0

Table 4.1: Number of Harmonics of Flute Notes

If a note has a fundamental frequency w, then it can be represented in time

domain as,

s(t) = ay coswt + az cos 2wt + as cos 3wt + a4 cos dwt (4.3)
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where one or more terms of the last three components of the above expression
can be zero. Let the state-transition matrix of the fundamental component be
®, and those of its harmonics be ‘ij 's where 2 < j < 4. The overall note can

be represented as ,

((i)l | 0 | | 0
0 | & | |
Fk+1)=| — ——= == - k)= bz, (4.4)
I I | 0
| 0 I

with the observation equation ,
n(k) = [ Ry | o | A ]i(k) ,where h; = [ 10 J (4.5)

for 1 < ¢ < 4. In reality, the fundamental frequencies of the notes played
by different players vary slightly around those of Appendix B. Hence, some
fictitious process noise is added which takes into account the little difference
in system modeling. With this addition, the state-space model of a particular

note embedded in noise can be described by,
Z(k+1) = &z3(k) + w(k) (4.6)
with noise-corrupted observation,

y(k) = hz(k) + R. (4.7)

4.3 Using Kalman Filter to Recover the Sound of Flute

To recover sound of flute embedded in white noise, a state-space Kalman fil-
ter is implemented on TI SoftWare Development System(SWDS) board. The
SWDS hardware is a PC-resident 6-layer printed circuit board that contains
T1 second generation digital signal processor (in this case, TMS320C25). Since
the SWDS board does not have any analog interface facilities, PCL 718 data
acquisition card is used for A/D and D/A conversion. Intel 8088 processor of
the host computer serves as a communication link between SWDS board and
data acquisition board for I/O operations. The SWDS bhoard has 24K words
of no-wait-state RAM which is accessible to the host processor via memory-
mapped host port. This makes SWDS appear as a segment of 64K bytes of
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memory to the host computer. In our case, the SWDS board is installed in IBM
XT compatible and the RAM is divided as 16K words of program memory and
8K words of data memory. The actual interfacing between the two processor
is given in more detail in Appendix D. From 8088’s side, accessing TMS RAM
requires that TMS320C25 must be in hold state. When TMS320C25 wants
new observation data, it sends a message by resetting the external flag(XF).
Prior to that, 8088 starts checking on XF bit. As soon as it senses this, it holds
TM5320025, writes new observation data, reads previously processed output
data and unholds TMS320C25. TMS320C25 acknowledges new data acquisi-
tion by setting XI® flag. After getting the acknowledgment signal from TMS,
8088 performs D/A and A/D conversion through PCL 718 board and keeps on
waiting until XF flag is reset again. This form of polling is unidirectional since

it 1s 8088 that always waits.

Because of the unique structure of the state-transition matrix <i>, the spe-
cial macros discussed in chapter three are used to implement the Kalman filter.
For an 8§ x 8 state-transition matrix, the maximum sampling frequency of the
filter can be 10.51KHz. However, 8088 puts the TMS320025 in hold state {or
6.8 microseconds resulting in an effective sampling frequency of 9.8 KHz. This

sampling frequency is more than enough to avoid aliasing since the maximum

—
| XF Flag

TMS320C25
8088 (Kalman

24k words of 16 | Filter)
= 7 — shared RAM #b

12 12
Filtered TMS32020
_,_- 1itere o (PRBS
PCL 718 Estimate Whi'te Generator)
Observed Noise
e G
Flute

Figure 4.1: The Overall Setup for Kalman Filter Implementation

frequency of any of the flute notes does not go beyond 3.5 KIz. I'or generat-
ing white noise, pseudo-random-binary-sequence (PRBS) is produced from a
TMS32020 board. In fact the generated PRBS is a band-limited white noise
whose spectral main lobe has zero crossing at 42 KHz. The overall set-up is
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shown in Figure 4.1 . It should be pointed out here that two separate pro-
grams written in two different assembly languages run simultaneously. First
of all, the Kalman filter program is loaded into TMS RAM while in SWDS
environment. Next step is to quit SWDS and run the 8088 program. This
program enables 8088 to perform A/D or D/A operation through PCL 718
board as well as communication with TMS320C25.The schematic diagram of
the inter-relationship between the two programs is given in Figure 4.2 .

load the Kalman filter program

while in SWDS environment

quit SWDS

’ run 8085 program 1

|unhold TMS'CZ§41

S -
_lkl_<::’;;/;§;§:z::> reset XF flag;perform

some operation until

Yes going into HOLD state
[ hold ‘C2s j
set XF flag to
urite new data to acknowledge
TMS RAM and read data transfer

previously processed ""“1“"“"‘
filtered data
) perform the rest

unhold ‘€25 of the instructions
for a single

iteration

i

go for next

iteration

{berform D/A conversion

perform A/D conversion
by software triggering

Iigure 4.2: Flow-chart of 8088 and TMS Programs Running Simulta-
neously
Results From Real-time Operation of the Filter

The filter is run in real-time with B = 1.25 and diag{Q} = 0.0015I. The
model of the first note do (Cy, fundamental frequency 261.63 Hz) is used as
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the entries of state-transition matrix ®. As input to the filter, four consecutive
notes namely do, do#, re and re# are used. The performance of the filter is
shown in Figure 4.3 and Figure 4.4. The topmost waveform shows the observed
signal after the analog low-pass filter followed by filtered estimate of flute note
and the actual flute note respectively. From the figure, it is evident that the
Kalman filter appreciably recovers the neighboring notes of the model when

some process noise is added.

4.4 Event Detection

A musical piece played on flute or any other musical instruments is composed
of different notes which have different state-space models. As a result, the
model parameters of the system changes in accordance with the notes being
played. Addition of fictitious process noise or introduction of a forgetting factor
takes this change into account and the Kalman filter works suboptimally for
a. few neighboring notes of the actual model. However, a single model is not
obviously adequate to cover the wide span of thirty-six notes. This brings in
the necessity of using atleast six to ten models if not thirty-six. Before making
a decision on which model to use, the first thing to be done is to detect that a

model change have taken place.

Two methods can be used to track a change in model - a situation that will

be called event detection.

4.4.1 Windowed-normalized-residue(WNR)-based de-

tection

The fact that the innovation or residual sequence v(k) = y(k) — hZ(k) is zero
mean and white with covariance AP(k | k — 1)AT + R can be used for event

detection. The normalized-residue(NR) is defined as,

. _ 7 = . . _ 2
NR() = L) —ha[i—1)] (4.8)
RP(z |t —1)AT+ R '
An abrupt change in NR sequence indicates abnormality. To make sure that

this sudden spike in NR has not come from a single erratic data, previous
(N —1) elements of NR are aggregated over a window of length N resulting in
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a) actual input : do(fundamental freguency=261.63 Hz)
Model used : do(fundamental frequency=261.63 Hz)

ams

'/wu vw v*\ \P\J v‘\, v' |

b) actual input : do#(fundamental frequency=277.18 Hz)
Model used : do(fundamental frequency=281.83 Hz)

[igure 4.3: Filter Performance in Real-time Operation : the topmost
waveform is observation followed by filtered output and actual note
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d) actual input : reff(fundamental freguency=311.13 Hz)
Model used : do(fundamental frequency=261.63 Hz)

IFigure 4.4: Filter Performance in Real-time Operation : the topmost
waveform is observation followed by filtered output and actual note
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the windowed-normalized-residue(WNR) sequence as,

WNR(k) = ~-§, NR(i)w(i) (4.9)

where w(¢)’s are the window-coefficients. If WNR exceeds certain pre-defined
threshold level consistently, then we can assume that a model-change has oc-

curred.

4.4.2 Windowed-fundamental-state(WFS)-based detec-

tion

The fundamental frequencies of the notes are distinctly different from one an-
other and their presence are reflected by the lst(or 2nd) element in the state
vector Z. Hence when an input stream of different notes are fed into the Kalman
filter, z; will be attenuated in all cases except when the particular frequency
that it represents is present in the observation. Same is true for other ele-
ments of the state vector. However, attenuation is more clearly observed in z;

or z; than other entries of z because fundamental frequencies play the most

dorninant roles.

The windowed-fundamental-state(WFS) sequence is defined as,

k
WES(E) = 3 | (=i [4) f w(i) (4.10)

1=k~-N+1
The reason for using a window is the same as WNR method. However, in this

case, if WFS goes below a threshold, an event change is assumed to have taken

place.

Performance Evaluation of WINR and WFS

Extensive simulations are performed to check and compare how these methods
work for different notes at various noise levels. In the simulations, a particular
model is chosen with 5% error and an input stream of 704 samples is generated
such a way that the first 64 samples and the last 128 samples come from
different notes and the middle 512 samples belong to the actual model. As
for the choice of window, a triangular window is used which turns out to give
the best performance among all windows. Some of the simulation results are
shown in Figure 4.5 and Figure 4.6. As observed from the Figure 4.6, WNR-
based detection does not work at all when signal-to-noise(SNR) ratio is low.
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Figure 4.5: Performance of WNR and WFS methods (High SNR case:

Q = 0.002, R = 0.16, ¢ = 1.02)
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At high SNR, it works well only if the fundamental frequencies of the notes
played consecutively are far apart. When the fundamental frequencies are
closer than a certain limit, the test fails irrespective of C,:), Rand e In general
WSE approach works better than the WNR method. When the fundamentals
of the notes are significantly different, this method works well even at low
SNR. However, when the notes have very close fundamental frequencies with
comparable amplitude (e. g. two consecutive notes in equal temperament scale),
this test fails as expected. This should not be considered as a drawback of WI'S
method because in any event, incorporating all the thirty-six models in real-
time is just too luxurious to afford. A more realistic approach would be to
split the notes into six to ten groups and assign a single model to each group
such a way that the fundamental frequencies are sufficiently far enough. As
shown in the figure, irrespective of SNR a threshold level of 0.5 can be used
for WE'S-based detection for this particular case.

4.5 Physical Insights about the Operation of the Kalman
filter

Although the Kalman algoritbm has a mathematically compact formulaiion,
the physical insights provided by the equations are rather limited. In this
section, we will try to establish an intuitive feel towards the operation of the

filter.

To this end, the Kalman filter can be considered as an LTI system with
time varying frequency response [13]. Although the above statement sounds
contradictory (i. e. assuming time invariance and then saying that the frequency
response is time dependent) what is meant is that the rate of variation of the
frequency response is much slower than the signals present in the system. Once
we have this conceptual model in mind, we can investigate the effects of the
parameters like (), B and ¢ on the frequency response of the filter. At this
point, we will assume that the filter is of a band-pass or low-pass type [or

which we can talk about a bandwidth.

Various authors state without proof that the filter bandwidth is propor-
tional to the Kalman gain. This statement seems to be true for a variety of
practical problems although a general statement to this effect has not appeared
in the literature. As a specific case, we will consider the situation where the
Kalman filter is used to restore a single sinusoid from noise corrupted obser-
vation. It is shown in Appendix E that the transfer function of the filter from
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the observation input y(k) to the filter output z;(k) is given by,

K1+ (fre — aky)z™?
— (20 — oKy = Pra)z7l + (1 — k)22

H(z) = 7 (4.11)
where £y, k3 are the components of the steady-state Kalman gain vector k
and «, 3 are the elements of state-transition matrix ® as given by equation 4.1
with observation vector {1 0]. To get a feel of what equation 4.11 means a mesh

diagram of bandwidth versus x; and &, is shown in Figure 4.7. Assuming a

A Dbandwidth

Figure 4.7 Mesh Diagram of bandwidth vs. x; and k;, (for -0.4 <
k1,2 < 0.4 and & = 0.809, § = 0.588)

sampling frequency of 10KHz, the state-space model of a | {Hz sinusoid is used
for which o = 0.809 and 3 = 0.588. As seen from the figure, the bandwidth
of the filter increases as the magnitude of x; gets larger. However, it remains
virtually independent of k5. This is something expected since the observer is
measuring only (k) for which the corresponding component of the gain vector

is effective.

Having shown that the Kalman gain is indeed proportional to the filter
bandwidth, we will investigate how other parameters namely (), & and e affects
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k. Using the matrix inversion lemma, the Kalman gain can be alternatively

expressed as [2] ,
K(k+1)=Pk+1]|k+1)HrR(k+1) (4.12)

As seen from equation 4.12, the Kalman gain is inversely proportional to the
covariance matrix of observation noise. This makes sense since if the observa-
tion noise is increased the filter should decrease its bandwidth to minimize the

effects of unreliable observation data.

On the other hand, the covariance matrix Q of the process noise is directly
proportional to K. To see this, note that at steady-state the predicted and
filtered estimates of P attain almost identical values. Hence as observed from
equation 4.12, increase in Q effectively increases the Kalman gain. Further-
more from the real-time implementation of the Kalman filter to restore the
sound of flute embedded in noise, it is observed that the notes lying in a small
neighborhood of the actual model can be significantly recovered when some
fictitious process noise is introduced. The span of the neighborhood expands
as the process noise covariance Q gets larger. Hence intuitively it is seen that
increase in process noise covariance results in an equivalent increase in gain
which in turn makes the filter bandwidth larger. As a result, transition time

decreases, but more ripple is observed in time domain.

When using a fading memory filter, we can again heuristically conclude
that increasing € increases the bandwidth. This can be justified by the fact
that the filter disregards most of the previous data with increasing € thereby
responds to the current observation more quickly 1. €. transients are shortened
indicating an increase in the bandwidth. In time domain, this corresponds to
more ripple in transition period but less lock-in time. The lock-in time is the
time required by the filter to produce steady-state output.

To check the validity of our intuitive arguments, extensive simulations are
carried out for different values of (), R and e at various noise levels. The same

2-note input pattern discussed in the event detection section is used for this

purpose.

Simulation Results

Effects of (), R and € on P and k are shown in Figure 4.8. Only the first
diagonal of P and the first component of & are shown since all other entries
of P and k show similar trends. It is observed that in the scalar case, P and
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k remain insensitive to SNR as long as Q/R is kept constant. For fixed R,
increase in either Q or € result in larger magnitude of steady-state P and k.

The time-domain behavior of the filter is illustrated in Figure 4.9, Fig-
ure 4.10 and Figure 4.11. In this case we investigate how R, ) and ¢ affect
the transient response of the filter output when a model-change is detected
and the correct model is put into the filter. As observed from Figure 4.9, in-
crease in R results in a decrease in ripple in transition period. This is expected
since increase in R is accompanied by an equivalent decrease in Kalman gain &
which makes the filter bandwidth narrower. Increase in either ¢) or € makes the
transition smaller but introduces more ripple. Another important observation
from Figure 4.11 is that increase in epsilon reduces the lock-in time. All these
results comply with our earlier arguments on the effects of Q, R and € on filter

gain and bandwidth.
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Chapter 5

CONCLUSION

Despite the fact that the Kalman filter has been widely used in various control-
oriented problems, it has found very limited applications in real-time digital
signal processing. The apparent reasons can be blamed on the large computa-
tional burden associated with the real-time implementation of the filter as well
as some sort of unfamiliarity of digital signal processing people with the filter
itself. Even the introduction ot fast digital signal processors does not seem to
‘have changed the situation much. In this thesis, a very general user-friendly
software written in TI assembly language is introduced for the implementation
of Kalman filter on TT TMS320C25 digital signal processor. It has been shown
that virtually all the Kalman filter algorithms can be easily and efliciently re-
alized using our macro-based software library. As compared to the only digital
signal processor-based implementation reported so far [13] our implementation

is much more faster and user-friendly.

Until now all the studies carried out on the relationship between the state
size and other parameters such as memory requirements, execution speed etc.
are based on the assumption that the multiplication operation takes as much
as thrice the time taken by addition. However, these expressions do not hold
when the filter is implemented on a digital signal processor. Unlike the general-
purpose microcomputers , these processors have single cvcle multiplication in-
struction which takes exactly the same time as addition. Our studies give sym-
bolic relationship between various parameters and state size for TMS320025
implementation which in general holds for other digital signal processing chips

as well.

As a specific application, restoration of the sound of flute embedded in
white noise is considered. The state-space models for flute notes are derived

and the real-time Kalman filter is implemented using state-space approach. To

85
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make the filter somewhat adaptive to change in model parameters , a forgetting
factor is introduced which emphasizes more recent data. Apart from running
the filter real-time, extensive simulations are carried out to find the effects
of Q and R on filter gain K and the filter bandwidth. Illustrative examples
are supported with proofs which show that addition of fictitious process noise
or introduction of a forgetting factor simply increases the band-width of the
filter - a fact that is not obvious at all from time-domain expressions. While
running the filter real-time, it is observed that the addition of some process
noise enables the filter not only recover the note for which the model is used
but some other neighboring notes as well. Hence it can be assumed that all
the thirty-six notes generated by the flute can be recovered from noise using
only six to ten models. As for the detection of a change in model, a method is

proposed which works remarkably well for this specific case.

Various interesting works can be performed as a continuation of this thesis.
In our case, white noise is considered as the corrupting agent. Any other
disturbance such as background music can be considered as an extension of
our case. However, the model of the noise irrespective of its origin needs to
be known. Based on this rudimentary work, further serious works like the
extraction of flute from background music (such as other instruments in a
orchestra) can be carried out. Another extension of our studies would be model
identification. We have proposed a very effective method for the detection of
model change. Further researches can be done on how to make a decision on

which model to use when an event change is detected.



Appendix A

Derivation of Fading Memory Filter

In the fading memory filter, it is assumed that the states of the system can
not be accurately represented by the usual state-space model over an infinite
interval of time. It is more appropriate to express the states at time IV with

the following state-space representation,

En(k+1) = dan(k) + w(k) }(A.l)
j(k) = Han(k) + 9(k)

To put more emphasis on the recent data and state estimates, the initial states

and the noise covariances are assumed to be,

E{on(i)aF(7)} = Qu(5)6; = Qi)eZrein 6
E{on(i)55(3)} = Bw(i)8; = R(i)eZimi5; (4.2)
E{52n(0)625(0)} = Pu(0 | ~1) = Raa(0)eZimo 485,
Let us define Py (k+1 | k) and PN(k—I-l | k41) by the following transformations,
Pk + 1K) = Pk 41| k)eXikn 7
Pu(k+1]k+1)= P(k +1] k)ezfikﬁa‘ } (4:3)
Since o;’s are known,the transformation is invertible . The standard Kalman
filter algorithin for the state-space representation of (A.1) can be expressed as,
Zn(k+1|k) = dzn(k| k)
By(k+11k) = Py(k | k)SPy(k | k)T + On(k)
En(k+1)=By(k+ 1| K)AT[HEPy(k+ 1| B)HT + Ry(k +1)]
Enb+1k+1) =an(k+1]k) = Kn(k+D[Hzn(k+ 1] k) —g(k+1)]
Py(k+1]k+1)=[I—Kn(k+1)HPy(k+1]k)

S7
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Substituting (A.2) and (A.3) into these equations and canceling the common

terms we get,

n(k+1|k) = dzn(k ]| k)
P(k+1]k)=P(k|k)®P(k|k)Teor +Q(k +1)
Knk+1)=Pk+1|E)HT[HPy(k+ 1] B)HT + Ry(k +1)]
an(k+1|k+1)=an(k+1]k) — En(k+ D[Hax(k+1] k) —§(k+1)]
Pk+1(k+1)=[I-EKn(k+1)HP(k+1]|k)

Note that all steps except the prediction part of error covariance matrix are

the same as the usual Kalman filter. The term e?* can be represented by any

number € > 1.



Appendix B

Fundamental Frequencies of Flute Notes

In the following table, the fundamental frequencies of all the thirty-six notes

generated by flute is given in equal temperament scale [22].

[ Magor Scale | Note | Frequency in Hz |

4 do 261.63

do# 277.18

Dy re 293.66
re#t 311.13

E, mi 329.63
Fy fa 349.23
fa# 369.99

Gy sol 392.00
sol# 415.3

Ay la 440.0
la# 466.16

By t 493.88
Cs do 523.25
dod- 554.37

Dy re 587.33
re# 622.25

Es me 659.26
Fy fa 698.46
fa# 739.99

Gs sol 783.99
sol# 830.61

As la §80.00
la# 923.33

Bs t 987.77
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| Magor Scale | Note | Frequency in Hﬂ

do# 1108.7
Dg re 1174.7
reff 1244.5
Ee me 1318.5
e fa 1396.9
fa# 1480.0
Ge sol 1568.0
sol# 1661.2
Ae la 1760.0
la#t 1864.7
Bg tz 1975.5




Appendix C

State-space model of a sinusoid

A process having harmonic oscillation with frequency wy rad/sec satisfies the

differential equation,
j(t) + wiy(t) =0 (C.1)
whose solution is given by,
y(t) = y(0) cos wot + (y(0)/wo) sinwyt (C.2)

In order to get the state-space representation , we define two state variables
z1(t) and z2(t) such that z1(t) = y(¢) and 25 = y(¢). With these variables, the

state-space form in time domain is represented as,
z1(t) _ 0 1 z1(t)
$2(t) —Ll.)g 0 L'Cg(t)
= Az(t) (C.3)

with observation equation given by,

y(t)=[1 0] [ w1(d) J (C.4)

fl)z(t)
The solution of the state-space representation can be written as,

z(t) = b(¢, 7)z(r) (C.5)

where the state transition matrix (¢, 7) is given by the expression &(¢,7) =
eAlt-7) 0 <1 <t Since,

At = L7H[ST — A]™) (C.6)
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-1
= At = (-1 s 1
wi s

cos wot (1/wo) sin wot J

—wyg sin wot CoSs wot

(C.7)

_ [an(t) ] _ { coswo(t —7) (1/wo) sin wo(t — 7) ] [3;1(7') } (C.8)

zo(t) —wo sinwp(t — 7) cos wo(t — T) zo(7)

for 0 < 7 < t. For normalization purpose, we define two new variable Z;(t) and
Zo(t) such that &;(t) = x1(¢) and 2(t) = (1/wo)z2(t). In doing so, we obtain,

[ #(t) ] _ [ coswo(t —7)  sinwo(t — ) } [ E1(7) } (C.9)

—sinwe(t — 1) coswp(t — 7) Za(T)

To convert from continuous domain to discrete domain, a sampling frequency
fs =1/T is assumed . By setting ¢t = (k+1)T and 7 = kT, we get the following

state-space representation in discrete domain ,

[cf:l(k—l- 1) } _ [ co:sﬁ sin @ } {’E’:l(k) J (C.10)
Za(k+ 1) —sinfd cosf Eq(k)

where § = wyT = 2w fo/fs. Since we are interested in the variable x;(k) only
and Z1(k) = x1(k) ,the state-space representation for a single sinusoid can be

written as,

,:azl(k+1) J _ [ cosf sinb J [mlgk; ] — d5(R) (c.11)

Ea(k + 1) —sinf cosf Zo(k

with observation equation,

vk =[1 0] [‘”fl(’“)} (C.12)

i) k)



Appendix D

Interfacing Between 8088 and SWDS board

The SWDS board is installed in IBM XT comaptiable and E segment is chosen
as the segment (64K bytes) of PC memory that SWDS occupies. The 24K
no-wait state RAM of SWDS board is divided as 16K of program memory and
8K of data memory. In the 8088 two 16-bit words are used to represent the
20-bit-long address. The first word is called segment address which has an
implied zero tacked to its end. The second word called offset address gives the
relative part of the effective 20-bit address. The correspondence between the
16-bit address of TMS and the 20-bit effective address of 8088 is illustrated in
Table D.1. It should be noted here that in this table, the offset address is added

| Memory | 16-bit TMS address—l 20-bit 8088 address |
16K program memory 0 E2000h
2FFFh EBFFFh
8K data memory 0 EA000h
1FFFh EDFFFh

Table D.1: Addresses of Shared Memory as Seen by TMS and 8088

to the segment address to denote the effective address of 8088. Ior example,
as far as 8088 is concerned, a 16-bit data written in 400h (as seen from SWDS
side) of SWDS data RAM appears in the locations EA800h (E000h:A800h)
and EA801h (E000h:A801h) as low and high bytes respectively. If the RAM
is divided in some other way, the starting locations of offset addresses as seen

from 8088 would be different.

The memory locations EE000h and EE00lh are the control registers to
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accomplish communication between 8088 and TMS320C25. When a read op-

eration is performed, EEQOOh acts as a status register whose contents are :

7 6 3 4 3 2 1 0
HOLDA | ERS | BP | XF | RBIO | INT2 | INTI | INTO

The same register acts as a control register with the following bits when a write

operation is carried out.

7 6 S 4 3 2 1 0
CHOLD | SWRST | CTEST | BPACT | CLRBP | CLKSEL | MC1 | MC2

More information about these register and its contents can be found in the
chapter 5 of [23].

In order to know whether XF flag is set or reset, 8088 reads the EEQ0Ch
location and checks the XF bit. To write data into the RAM or to be able
to read data from RAM, TMS320C25 must be put into hold state. . This is
accomplished by writing the byte 6Ah to EE000h. To unhold the TMS320C25,
8088 writes the byte EAh again to EEOCOh. It should be noted that choice of
MC1:=1 and MC2=1 conforms to the choice of RAM division (16K program
and 8K data RAM). In this implementation, no interrupts whatsoever is used.
Use of interrupts which is done by writing necessary byte to EE000h is not
recommended since SWDS software takes interrupts as breakpoint event and

causes a lot of problems.



Appendix E

Role of Filter Gain on Bandwidth

The prediction and correction steps of the system states are given by,
F(k+1|k)=dz(k|k) (E.1)
and
Zk+1|k+D)=2(k+1]k)+k[y(k+1)—hz(k+1] k) (E.2)
where k is the steady-state Kalman gain.
= z(k+1|k+1) = dz(k+1|k)+ky(k+1)—h&(k+1]k)
= [I-FER)®z(k | k) + ky(k +1)
= (k| k) = [[-FkR)®Z(k—1|k—1)+ ky(k) (E.3)
Taking Z-transform on both sides of the equation E.3 yields,
X(z) = [I - kR)®z7 X (2) + kY (2) (I2.4)
where X(z) and Y(z) are the Z-transform of (k) and y(k) respectively.

= X(2) = [[-(—FkR)®z"kY(2)
= kY (2) (I2.5)

where &* = [I — (I — kR)®21]"1. Since we are interested only in @(k) and

wu(k)= [1 0)3(k)

= Xi(z) = [10]X(z)
= [10)8*kY(z) (E.6)
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Hence the transfer function from observation input y(k) to filter output z;(k)

1s given by,
H(z) = X1(2)/Y(2) = [1 0]$*F (E.7)

Impulse response is found by setting y(k) = 6(k) i. e. Y(z) = 1. In doing so,
the Z-transform of the impulse response can be expressed as,

H(z) ={10]9"k (E.8)

Let us consider the situation when a single sinusoid of frequency f is concerned.
If a sampling frequency of f; is assumed then, the state-transition matrix i)

and observation vector A are given by,
b=| * P (E.9)
B «
and
h=[10]. (E.10)

where o = cos(27 f/ f,), and B = sin(27 f/ f,).

A

= & = [I-(I-kR)&z""?

S HRHEHDIENE

[1—o(l=m)z? —B(l— 1)z }_ (E.i1)
(ke +B)z7t 1 —(a—Prg)z?

-1

Substituting $* in equation E.8 gives,
-1
1=l —k)z7d —B(1 — k)2t K
H(z) = [10] ol = m) Al —m) o (E12)
(ake+ B)z7r 1= (a—Pry)z7?
After some tedious steps, the equation E.12 simplifies to a

K1+ (Brg — arg)z™!
E.13
1—(2a— arky — Pra)z7t + (1 — Ky)2z~? ( )

H(z) =



Appendix F

The Macro Library

F.1 General Macros

0K 3K e Sk oA K 3k oK K 3k K s 3¢ 3K S K K K 3 K K Sk 3K K K 3K 3K 3K 3K 3K K oK S 3K 5Kk 3 s K K ¢ oK oK ok Sk ke S oK 3K K 3K 5K 3K 3K 3K K K 5K 5K ok K oK ok ok ke sk
*% MACRO : MakelInit 3
KKK K K S OK K K K 3K K K K KK K K Ok K K 3 K Ol oK K K K K KK K I K K K K e K K K K Ok K K K K K K K K K K K K KK K K SOk K K KK K
¥rookkkxxkk  MAKE NECESSARY INITIALIZATIONS FOR THE MACROS  sokskorokdkokskokkkk
KK K K Ok 3K 5K 3K K K S R O Ok Sk K S oK K ok 3K 2 K kK K K K K K Sk K 3k dk 3K Sk K K K Sk S Sk Sk ke Sk Sk 3K 5K K K 3K K K oK 3K K 3K 3k K 5 ok K ok Sk ok oK ok K K
¥ This macro named " MakelInit " makes proper initializstion reguired *
* for using the macros in Q15-based numerical computations.This must X
* be the first macro in the main program. The macro initializes the *

* following parameters : *
* Data Pointer(DP) = O , Sign-Extension Mode(SXM) = 1 X
* Overflow Mode(OVM) = 1 , Product Mode(PHM) = 1 X
* Auxiliary Register 0(ARO) = 10h X
¥ The above parameters must be restored if the ‘user changes any of x
¥ these in between two macros. X
2K 3K 3Kk K K K K oK K K S K 3K Sk K K K 3K K 3K 3K 3K K K K K K 3K K 3K 3K 5K K 3 5K K 3K K 5K K K 3K 5K K K K K 3K K 3K 3K 5K K K 5K K 3K 3K oK K K K K K K K K KK

*
MakeInit $MACRO

LDPK O ;point to page 0O to use it as scratch pad for other nacros.
SSXM ;set sign-extension mode.

SOVM ;set overflow mode.

SPM 1 ;5et P = 1 for Q15 operation.

LARK ARO, 10h ;make content of ARO = 10h for indexing of matrices.
$ENDH ;end of the macro.

OO K K K ROK KK K ROK K K kK 3K S K 3K KK 5K KK SR K K KK K K K 3K K K K K K K K OK K K OK S K KK K K K K K K K K K KK K Ok K K K ok
xok MACRO : ScalAorS . ¥k
KK K K 3K K K S 3K S K K K K 3K K K K K K K K K K K K K K K KK KK K K K K K 5K K K K K KK K KK K K K KK KOK 3K OK K KK KKK K OK K K K
xx ADD TO OR SUBTARCT FROM ACCH ANOTHER # FROM A SPECIFIED LOCATION k%
************************************************************************
¥ Depending on the macro parameter OPTION, this macro named " ScallorS x*
¥ Location,OPTION " adds to (or subtract from) the upper-half of ACC %

* another number located at "Location" of data memory. X
* X
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X OPTION OPERATION *
X emm——— e X
X 0 (ACCH) = (ACCH) + scalar X
x 1 (ACCH) = (ACCH) - scalar X
X %

* The macro is called as ScallAorS Location,OPTION e.g. ScalAorS 311ih,0 *
2K K K KOK KK KK Kb K S OK S K KK K K K K oK 3K K K K ok K K K K 5K K 5K 3K K K 3K K K K K 3K 3K K 3K K K K K K K K K 3K K K K K K K KK K K K ok K
xK

ScalAorS $MACRO Location,OPTION

LARP 1

LRLK AR1, :Location: ;point ARl to Location.
$IF :OPTION.V: = O ;is option = 0 ?

ADDH x ;if so,add the # to ACCH.
$ELSE ;else, subtract the

SUBH x ;number from ACCH.
$ENDIF

$ENDH ;end of macro

KK KK K oK K K K K K 3K K oK oK 3K K oK K 5K 5K 3K K oK K 3 oK 3K 5K 3K K oK 3K oK 3K ok oK K ok K oK 3K 3K oK K oK K K 3K K K oK K 5K K 3K 3K oK K ok K ok ok ok ok ok oK oK K oK
X%k MACRO : VectAorS *K
KK K K 3 O 3K KK XK K K 3K KK K K K K K K K K K 3K K K KK oK K XK K K 3K K K 3K oK K K K 3K KK K K K K K K K K 3K K K K S K K K K K K K oK K K oK K %k

*xx*x PERFORM ADDITION OR SUBTRACTION BETWEEN TWO COLUMN VECTORS XXXk
KK HOK K OKSHOK K ok 3K K 3K K K K K 5K OK 3KK oK SKOK 3K K K oK ¢ KOK SKOK oK SO oK K 3K KKK KKK KKK KK KK 3K KK K K ok ok Kk

The macro is called as VectAorS M,Loc_of_a,Loc_of_b,OPTION

e.g. VectAorS 3,0311h,0411h,0.
KRR KK kKK K KKK KK KK 3 K K KK 3 KK oK K K 3K 3K K oK 3k KK 5K 3K K oK K OK SKOK KK K oK KKK KKK K K K K KK KK K KKK K

X
VectAorS $MACRO M,Loc_of_a,Loc_of_b,0OPTION

* Depending on the macro parameter OPTION,this macro named " VectlAorS x
* M,Loc_of_a,Loc_of_b,OPTION " adds (or subtracts) a column vector b X
¥ ( M by 1, stored at Loc_of_b in data memory ) to (or from) another x
¥ column vector a ( M by 1,stored Loc_of_a in data memory) and stores X
* the resulting column vector ¢ in a’'s place. X
X X
* OPTION OPERATION *
X mmmm—— e X
* 0 c =a+b X
X 1 ¢ =a - b X
X X
X X
* X

X

LRLK AR1, :Loc_of_a: ;point ARl to location of a.

LRLK ARZ, :Loc_of_b: ;point ARZ to location of b.

LARP 1

$LOOP :M.V: ;loop for # of entries.

LAC x,0,2 ; load ACCUMULATOR with an element of a.
$IF :OPTION.V:=0 ,are we doing addition ?

ADD %0+,0,1 ;if so,add to it the corresponding element of b.
$ELSE ;else

SUB *0+,0,1 ;subtract the corresponding element of b.
$ENDIF

SACL X0+ ;store it in a’'s place.

$ENDLOOP

$ENDM ;end of macro.



Kok MACRO : VectMorD HK
2R OK KR K K K K A H R R K OK KK OK K KOK 3OK K K SR K KK K K Sk K 3 3 K K K K KK K 3K K K K K K K K K K K K K K K K K K K K K
rorckorkokkk MULTIPLY OR DIVIDE A COLUMN VECTOR BY A SCALAR SOKXKMOKKKRKKXK
*. Depending on the macro parameter OPTION, this macrc named X
VectMorD M,Loc_of_a,Loc_of_c,0PTION " multiplies (or divides) *

a column vector a( M by 1,stored at Loc_of_a in data memory ) by

a scalar(in Q15 format, stored in upper half of ACCUMULATOR) and

stores the resulting column vector ¢ at Loc_of_c¢ in data memory.

OPTION OPERATION

%
%
X
x
*
*
X (scalar) X
v (scalar) *
X
X
X
*
X
X

P o

The macro is called as VectMorD M,Loc_of_a,Loc_of_c,OPTION
e.g. VectMorS 4,311h 411h,0. NOTE THAT the macro uses another
macro Q15_Div for division and memory 065h as temporary

storage location.
K o 3K K 3K oK K KK ok K KK S K 3K K K A 2K 3K 3 K 3K K K 5K 3 5K oK 5K Sk oK Sk 3 3K K 3K K K KK 3K KK 3K 3 0K Sk 3K oK 3K K K oK oK KK K K K K K K kK

X
VectMorD $MACRO M,Loc_of_a,Loc_of_c,0PTION

= O
Q0
Ho

SACH 085h ;s8tore the scalar at 065h.

LRLK ARZ, :Loc_of_a: ;point AR2 to location of original vector.
LRLK ARS3, :Loc_of_c: ;point AR3 to location of scaled vector.

LARP 2

$IF :OPTION.V:=0 ;is option = 0 ?if so perform division.

LT 065h ; load TREG with the scalar.

$LOOP :M.V: ;loop for # of entries.

MPY *0+,3 ;multiply a single element by scalar.

SPH %0+, 2 ;store scaled vector element.

$ENDLOOP

$ELSE ;else perform division.

$LOOP :M.V: ;loop for # of entries.

ZALH *0+,3 ;load ACCH with a single element of original vector.
Q15_Div ;call the macro Q15_Div which performs (ACCH)/(085h).
SACL x0+,0,2 ;store scaled vector element.

$ENDLOOP

$ENDIF

$ENDH
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KKK K KKK K K KK K 3K K KR 5K K 3K OK K K K 3K K K 5K K K K 5K K 3K K 3K K K 2K 5K K K KK K K K K K 3K 3K 3K K 5K 5K K 5K K K K KK K K 3K K K KOk K KK ok

%k

* MACRO : VecVecML

XX

3K K Sk 3K K 3K Kk oK S KKK 5K K 3K K 3K 5K Sk S oK K 3K KOk 3K 3K 5K KK K 3K 3K 5K oK 3K K 3K K K 3K K oK K K Sk oK 3K 3K K S 3k K K K K K 3K 3K K KKK K KKK

*xxokkx CALCULATE INNER-PRODUCT OR OUTER-PRODUCT OF TWO VECTORS xokokoiskx
Ph KOk ke 3 oK 3K K K K K K 3K KO K oK ok 3 K K K ok Ok SR 30K e K oK o oK o ok ok K 5K ok o ok ok ok ok ke sk K stk ok ook sk K K K ok ok

KoK K H KKK KKK K KK KK XX

X
X

*
v

Depending on the macro parameter OPTION, this macro named "VecVecMl
H,Loc_of_A,Loc_of_B,OPTION,Loc_of_C " finds inner-product or outer-
product of two vectors a(stored at Loc_of_A in data/program memory)
and b (stored at Loc_of_B in data memory).If inner-product option
is used then ACCH contains the inner-product. If outer-product
option is wused, then lower-half of outer-product is calculated and
stored at Loc_of_C of data memory.
OPTION STATUS OF VECTCRS OPERATION
0 a 1ls row vector in data memory (ACCH) = a%¥b
b is column vector in data memory
1 a is column vector in data memory C = a%¥b’ ' (only
b is column vector in data memory lower-half)
2 a 1s row vector in program memory (ACCH) = a%*b
b is column vector in data memory

The macro is called as VecVYecMl M,Loc_of_A,Loc_of_B,OPTION,Loc_of_B
e.g. VecVecM]l 5,311h,411h,0

K R OKR K KKK K KK K 3K SR KK K K K KK KK KK KKK KK KKK KK KK K 3 3K K KK 3KOK K K KKK SKOK KKK KK KKK KKK KKK OK

ecVYecMl $MACRO M,Loc_of_A,Loc_of _B,Loc_of _C,0PTION

$IF :OPTION.V:=2 ;if OPTION = 2, then a is in program memory and
;inner product is to be calculated.

LRLK AR1, :Loc_of_B: ;point ARl to location of b.
LARP 1 '

MPYK O ;make PREG = 0.

ZAC ;zero ACC.

RPTK :M.V:-1

MAC :Loc_of_A:,*0+ ;perform axb.

APAC ;ACCH contains inner-product.
$ELSE

$IF :OPTION.V:=0 ;if OPTION = 0, then a is in data memory.
LRLK AR1, :Loc_of_A: ;point ARl to location of A.
LRLK AR2,:Loc_of_B: ;point ARZ2 to leccation of B.

LARP 1

MPYK O ;make PREG = 0.
LTP *+,2 ;load TREG with 1st entry of =a.
MPY *0+,1 ;multiply it with 1st entry of b.
$LOOP :M.V:-1

LT %+,2 ;perform akb.

MPYA *0+,1

$ENDLOOP

APAC ;ACCH contains inner-product.

X

*
X
%
%
X
X
X
X
X
X
X
X
X
*
X
X
X
K
*
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$ELSE ;OPTION = 1, so outer-product is to be calculated.
$VAR N ;define a var named N.

$ASG M.V TO N.V ;assign value of M to N,

LRLK AR1,:Loc_of_ A:+(:M.V:-1)*186 ;point AR1 to entry of a.

LRLK AR2, :Loc_of_B: ;point ARZ to first entry of b.
LRLK AR3, :Loc_of _C:+(:M.V:-1)%18 ;point AR3 to last row of ab’.
$LOOP :HM.V: ; loop for rows of ab’.

LARP 1

LT %0-,2

$LOOP :N.V: ; loop for entries in a row.

MPY *0+,3

SPH x+,2 ;store the element of ab’.

$ENDLOOP

SBRK :N.V:x18 ;point to 1lst entry of b.

LARP 3

SBRK :N.V:+16 ;point to next upper row of ab’.

$ASG N.V-1 TO N.V ;modify inner loop counter.

$ENDLOOP ;done with outer-product

3ENDIF

$ENDIF

$ENDNM ;end of macro.

3K oK K K Sk 2K K 3K K K K o 5K K Sk 3 K K K K K K S K K 5K 3K K ok K 3k ok 3K S oK 8k K 3K KK OK KK K 3K K 3 oK 5K ok 3K oK 3K K K 3KOK KK K KK KK K K K XK
ok MACRO : Mat_AorS X%
5K K K oK 3K oK K KK 5K 3K 5K oK K K K K K K 5K K K k¢ 5K 3 oK K e K K K K 5K K oK K K K oK 3K 3K 3K Sk oK 3K 5K oK K 2K K 3K K ok 3K oK 5K K K K KK oK K KK K K KK
* PERFORM ADDITION OR SUBTRACTION BETWEEN TWO LOWER-TRAINGULAR MATRICES
2K 5K KK K K K KK K KK K K KK 3KOK KK K K 3K K K K K KK K K K K oK K K K K K K K 3 K 3k B oK K K K RO K Sk K AR OK KOk KOK %K K Kk
Depending on the macro parameter OPTION,this macro named "Mat_AorS x
M,Loc_of_A,Loc_of_B,OPTION " adds (or subtracts) a lower-triangular x
matrix B (M by M, stored at Loc_of_B in data memory) to (or from) X
another lower-triangular matrix A(M by M,stored at Loc_of_A in data *
memory) and stores the resulting matrix in A°s place.

OPTION OPERATION

*
%
X
X
0 = A+ B X
1 A=A -B b
2 = A + B(diagonal matrix) *
X
X
*
x

¥ The macro is called as Mat_AorS M,Loc_of_A,Loc_of_B,OPTION e.g.

* Mat_AorS5 5,311h,411h,1

3K 3 K oK K 3K KK K K K oK oK K K 3K oK K K K K K K 3K K K K K K K oK ok K K 3K K K K R OK SR KK KK K K K 5K KK K K KK K K K K K OK K koK
*
Mat_AorS $MACRO M,Loc_of_A,Loc_of _B,OPTION
$VAR N

$ASG M.V TO N.V
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$IF :OPTION.V:=2 ;1f OPTION = 2 ,then B is diagonal.

LRLK AR1,:Loc_of_A: ;point ARl to 1st diagonal of A.

LRLK ARZ, :Loc_of_B: ;point ARZ2 to 1st digonal of B.

LARP 1

LARK ARO, 11H ;load ARO with 11h for diagonal indexing.
$LOOP :M.V: ;# of loop.

LAC *,0,2 ;load ACCL with a diagonal entry of A.
ADD *+,0,1 ;add the corresponding diagonal of B.
SACL *0+ ;store it in proper place.

$ENDLOOP

LARK ARO, 10H ;restore content of ARO.

$ELSE ;both A and B are lower-triangular matrices.

LRLK AR1,:Loc_of _A:+(:M.V:-1)%186 ;point AR1 to last row of A.
LRLK AR2,:Loc_of _B:+(:M.V:-1)%186 ;point AR2 to last row of B.

$LOOP :M.V: ;loop for # of rows.

LARP 1

$LOOP :N.V: ;loop for # of entries in a row.

LAC %,0,2 ; load ACC with an element of A.

$IF :OPTION.V: = 0 ;are doing addition ?

ADD *+,0,1 ;1f so,add the corresponding entry of B
$ELSE ;else

SUB *+,0,1 ;subtract corresponding entry of B from it.
$ENDIF

SACL *+,0,1 ;store it in A's place.

$ENDLOOP ;done with a row.

SBRK :N.V:+186 ;point to next upper row of B.

LARP 2

SBRK :N.V:+18 ;point to next upper row of A.

$ASG N.V-1 TO N.V ;modify counter for # of entries in a row.
$ENDLOOP

$ENDIF
$ENDM ;end of macro.

3 K 3K 3K SR R SR 3K KK K K SK K 5K K K 5K K 3K 3 3K K 5K K 3K K K K 3K 3K K K 3K 5K 3K K 5K K 5K K 3K K 5K K 3K K oK K K KK K 3K K K K KK 3K 3K K K K K 3K K SR K K
*x MACRO : MtMtMlpd kK
k3 K ok K 3K 5K 5K K K 3k ok 3K 5K 3K 3K oK K 5K 3k oK oK Sk 5K 3K 3K 3 oK oK K5k K S KK 3K K 3K 3K 5K 3K K 3K K 5K 3K 3K oK 3K K 3K K K 5K K 3K 3K K oK 5K oK 3K 3K oK K oK oK ok K K K
¥kxkx MULTIPLY A MATRIX (STORED IN PROGRAM MEMORY) BY ANOTHER MATRIX **x
*¥xx (STORED IN DATA MEMORY) AND STORE THE RESULT (IN DATA HMEMORY) XX
K S oK 3K K K KK K K K 5K oK KK K K K 3K oK 34 3 K oK 3K 5K 3K 3K 3K 3K 5K 3K 5K K K 3K 3K K 5K 3K 5K 5K K K 5K oK K 3K 5K K KK K oK 3K K K K K K K K K KK S Kok K
* This wmacro named " MtHMtMlpd M,N,P,Loc_of_A,Loc_of_B,Loc_of_C " x
¥ multiplies a matrix A (M by N,stored at Loc_of_A in program memory) X
* by another matrix B(N by P,stored at Loc_of_B in data memory) and X
¥ depending on the macro parameters OPTION_1 and OPTION_2Z stores the .
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¥ resulting matrix C at Loc_of C in data memory. X
% b 3
* OPTION_1 OPTION_2 OPERATION X
X et e e X
X 0 0 C = AXB, all entries of C are stored X
* 1 0 C = (A¥B) ", all entries of C are stored X
* 1 C = A¥B = (A%B) ,lower-half of C is stored x
% X
¥ The macro is called as MtMtMlpd M,N,P,Loc_of_A,Loc_of_B,Loc_of_C, x
* e.g. MtMtMlpd 4,5,3,311h,411h,511h,1,0. X
33K K 7k ok O ok o 5K 2K 3k 5K 2K 3 K o 3K K K K 5K K K 3Kk ok e ok o 3 K ek Sk 3K K K K 3K K 3K 3K 3K 3K ke S K 3K oK oK B S ok e Kk 3K 3K ok e ke Sk 3k ok Sk e Sk sk ok

N

MtMtM1pd $MACRO M,N,P,Loc_of_A,Loc_of_B,Loc_of_C,OPTION_1,0PTION_2

kg

$VAR NUM ;define a var named NUNM.
$ASG 0 TO NUM.V ;assign 0 to NUM.
$IF :OPTION_Z.V::O ;is OPTION_2 = 0 ? if so, calculate all entries.

;of AB or (AB) .
LRLK AR3, :Loc_of_C: ;point AR3 to location of C.

$LOOP :M.V: ;loop for # of column of (AB) or (AB) .
LARP 1

LRLK AR1, :Loc_of_B: ;point AR1 to location of B.

$LOOP :P.V: ;loop for # of rows of (AB) or (AB)’.
MPYK O

ZAC

RPTK :N.V:-1
MAC :Loc_of_A:+:NUM.V:%x16,%0+ ;multiply a row of A by a column of B.

APAC
LARP 3
$IF :OPTION_1.V:=0 ;is OPTION_1 = 0 ? if so AB is calculated.
SACH *+,0,1 ;store the corresponding entry of AB.
$ELSE ;else, (AB)" is being calculated.
SACH *0+,0,1 ;store the corresponding element of(AB) .
$ENDIF
SBRK :N.V:%16-1 ;point to next column of B.
$ENDLOOP
LARP 3
$IF :OPTION_1.V:=0 ;if OPTION_1 = 0, point to next row of
ADRK 10H-:P.V: ;AB. .
SELOE ;else,
SBRRK :P.V:%x16-1 ;point to next column of (AB) .
$ENDIF
$ASG NUM.V+1 TO NUM.V ;increment variable NUH.
$ENDLOOP
$ELSE ;OPTION_2 = 1, hence half of AB = (AB)  is
;to be calculated.
LRLK ARS3, :Loc_of _C:+(:M.V:-1)x16 ;point AR2 to last row of AB.

$LOOP :M.V: ;loop for # of rows of AB.
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LRLK AR1l, :Loc_of_B: ;point AR1 to 1st column of B.
LARP 1

$LOOP :P.V:-:NUM.V: ;loop for # of entries in a row of AB.

MPYK O

ZAC

RPTK :N.V:-1

MAC :Loc_of _A:+(:H.V:-:NUM.V:-1)x18,%0+ ;multiply a row of A by

APAC ;a column of B.

LARP 3

SACH *+,0,1 ;8tore the resulting entry of AB.
SBRK :N.V:x16-1 ;point to next cotumn of B.
$ENDLOOP ;done with a rww of AB.

LARP 3

SBRK (:P.V:-NUM.V)+16 ;point to next upper row of AB.
$ASG NUM.V+1 TO NUM.V ;increment var NUM.
$ENDLOQP

$ENDIF
$ENDM ;end of macro.

AR SK KK KK K K SKOK 3K KK KK 3K K K K KKK KK KK KK KK OK K OK K K KKK K ok K oKk o ok 3 K K ok K HOK SOk KK Kok k
*ox MACRO : MtMtMldd *X
Yo 3Kk ok oK KK K KK KK K K K KOK SK K K 3K 3K K K K ok oK S oK 36K oK K K o K 3K oK 3K KK S K K oK K K oK oK 3 KKK K SR K K S ok ok K K ok
rkkk MULTIPLY A MATRIX (STORED IN DATA MEMORY) BY ANOTHER MATRIX ki
***xx (STORED IN DATA MEMORY) AND STORE THE RESULT (IN DATA MEMORY) *xx
HOK KKK K KKK OKHOK 3K K 3K KKK KKK oK KO KK oK KK K oK KK S 3K KK KK KK K K KOK K K K o Sk S oK KK KoK KK KK KK KK %K

* This macro named " MtMtMldd M,N,P,Loc_of_A,Loc_of_B,Loc_of_C " X
* multiplies a matrix A( M by N, stored Loc_of_A in data memory ) X
¥ or its transpose by another matrix B(P by Q,stored at Loc_of_B in *
* data memory) and depending on the macro parameters OPTION_1 and *
* QOPTION_2 stores the resulting matrix C at Loc_of_C in data memory. *
X *
* OPTION_1 OPTION_2 OPERATION X
X mmmemmmm e i X
X 0 8] C = Ax*B, all entries of C are stored X
X 1 0 C = (AXB) ", all entries of C are stored *
* 0 1 C = AXxB = (AXB)’ ,lower-half of C is stored X
* 1 1 C = A’%XB ,all entries of C are stored X
* *
* The macro is called as MtMtM1ldd M, N, P, Q,Loc_of_A,Loc_of_B, *
¥ Loec_of_C, e.g. MtMtMldd 4,5,5,3,311h,411h,511h,1,0. X

X

%
MtMtMldd $MACRO M,N,P,Q,Loc_of_A,Loc_of_B,Loc_of_C,OPTION_1,0PTION_2
X

$IF :OPTION_2.V:= 0O ;if OPTION_2 = 0, then calculate all entries
;of AB or (AB)’.
LRLK AR1, :Loc_of_A: ;point AR1 to location of A.



LRLK AR3, :Loc_of_C:

$LOOP :M.V:
LRLK ARZ, :Loc_of_B:
LARP 1

$LOOP :Q.V:
MPYK O

LTP *+,2
HPY x0+,1

$LOOP :N.V:-1
LTA *+,2
MPY %0+,1
$ENDLOOP

APAC

SBRK :N.V:

LARP 2

SBRK :N.V:%x10H-1
LARP 3

$IF :OPTION_1.V:=0
SACH x+,0,1
$ELSE

SACH *0+,0,1
$ENDIF

$ENDLGOP

MAR *0+,3

$IF :0OPTION_1.V:=0
ADRK 10H-:Q.V:
$ELSE

SBRK :Q.V:*10H-1
$ENDIF

$ENDLOOP

$ELSE
$IF :OPTION_1.V:=0

$VAR NUM
$ASG O TO NUM.V

LRLK AR1, :Loc_of A:+(M.V-1)x10H
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;point AR3to location of C

;loop counter for # of rows/columns of AB/(AB)°
;point ARZ2 to location of B.

; loop counter for # of columns/rows of AB/(AB)’

; load TREG with the 1st entry of a row of A.
;maltiply it with 1st entry of a column of B.

;ymaltiply a row of A by a column
;of B.

;done with an entry of AB/(AB)’.

;point to 1lst entry of the same row of A.
;point to next column of B.

;if OPTION_1 = 0, then store it
;in proper place of AB.

;else, store it in proper
;place of (AB) .

;done with a row/column of AB/(AB)’.

;if OPTION_1 = O,
;next row of AB.
;else point to next column of
; (AB) 7.

then point to

;done with all entries of AB or (AB)’.

calculate either lower
A'B.
calculate lower

;1if OPTION_2 = 1, then
;half of AB = (AB)  or
;if OPTICN_1 = 0, then
;half of (AB) .
;define a variable name NUN.

;assign 0 to NUNM.

;point AR1 to last row of A.

LRLK AR3, :Loc_of_C:+(M.V-1)%10H ;point AR2 to last row of AB.

$LOOP :M.V:
LRLK AR2, :Loc_of_B:
LARP 1

$LOOP :Q.V:-:NUM.V:
MPYK O

LTP *x+,2

MPY *0+,1

; loop counter for # of rows of AB.
;point ARZ to location of B.

;loop counter for # of entries in a row of AB.

;load TREG with 1st entry of a row of A.

;multiply it with 1st entry of a column of B.



$LOOP :N.V:-1
LTA *+,2
MPY %0+,1
$ENDLOOP

APAC

SBRK :N.V:

LARP 2

SBRK :N.V:Xx10H-1
LARP 3

SACH x+,0,1
$ENDLOOP

MAR x0-,3
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;done with an entry of a row of AB.

;point to 1st entry of a row of A.
;point to next column of B.

;store ACCH in proper place of AB.
;done with a row of AB.

;point to next upper row of A.

SBRK (:Q@.V:-:NUM.V:)+10H ;point to next upper row of AB.

$ASG NUM.V+1 TO NUM.V
$ENDLOOP

$ELSE

LRLK AR1,:Loc_of_A:
LRLK ARZ2,:Loc_of_B:
LRLK AR3, :Loc_of_C:
$LOOP :N.V:

$LOOP :Q.V:
LARP 1

MPYR O

LTP *0+,2

MPY *0+,1
$LOOP :M.V:-1
LTA *0+,2

MPY x0+,1
$ENDLOOP

APAC
LARP 3
SACH x+
SBRK :P.
LARP 1
SBRK 10H*:P.V:
$ENDLOOP

ADRK 1

LRLK ARZ,:Loc_of_B:
LARP 3

ADRK 10h-:Q.V:
3ENDLOOP

$ENDIF
$ENDIF
$ENDM

;increment variable NUM.
;done with lower half of AB.

;else, OPTION_1=1 , so A’'B
;will be calculated.
;point ARl to location of A.
;point ARZ2 to location of B.
;point AR3 to location of C.
;loop counter for # of rows of A'B.

;loop counter for # of entries in a row of A’'B.

;zero PREG.

;multiply a column of A by
;a column of A.

;one entry of a row of A'B
;is calculated.

;store it in proper place.
;point to next column of B.

;point to the 1st entry of the same column of A
;done with all the entries of a row of A'B.

;point to next column of A.
;point to the 1lst column of B.
;point to the next row of A'B.

;end of IF statement for OPTION_1.
;end of IF statement fro OPTION_Z2.
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*xK MACRQ : Fill_Mat Xk
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*¥xxx FILL UP THE UPPER HALF OF A SYMMETRIC MATRIX FROM LOWER HALF ioxxxk
2K K 3K A K KOK KOK SKK KK K KK 3K OK K K K K S K A K K K KK K K K K K K oK e oK K K K 2K DK K K K K 3K K K K K K K K 3K K K K K K ok Kk K
¥ This macro named " Fill_Mat M,Loc_of_A " fills up the upper half of x
¥ a lower-triangular matrix A (M BY M stored at ALOC in data memory) %
¥ from the knowledge of its lower half. The macro 1is called as *
* Fill_Mat M, M,Loc_of_A e.g. Fill_Mat 5,0311h, %
HKOK K K KK K K 3 oK K oK K 3K K K K K K KK S K 3K K K K K KK 3K oK K K K S K K I K K kK K sk K K oK 3K oK ok K Sk ok K K KR K K K K KK K K KK K
*

Fill_Mat $MACRO M,Loc_of_A

$VAR N ;define a variable named N.
$ASG M.V TO N.V ;assign value of M to N.

LRLK AR1,:Loc_of_A:+1 ;point AR1 to 2nd column of A.
LARP 1

$LOOP :M.V:-1
RPTK :M.V:-:N.V: .
BLKD :Loc_of A:+16+(:M.V:-:N.V:)*x18 ,*0+ ;move half-row to half-column.

SBRK (:M.V:-:N.V:+1)%16 -1 ;modify AR1 for next transfer.
$ASG N.V-1 TO N.V ;decrement var NUNM.

$ENDLOGP

$ENDM

3K 5K 5K K K 5K K K K K K K KK K K K K SOK K 3K 5K 3K 3K 3K 3K 5K K K S K S 3K K 0K KK K K K KK 3K K SR K K K K K 3K S K OK K K K K K K K K K oK Kk K K kK
*x MACRO : Mat_Copy X%
************************************************************************
¥ookckkkkkkx MAKE A COPY OF A MATRIX TO A SPECIFIED LOCATION dorokokokdokokskokdok
K 3K K 3K 3K oK K S K KK K KK K K K KK K K K 3K 3K 3K 3K 3K 3K 5K K Sk K K K 3K 5K K K S 3K 9K K ok st K Ok Sk KK K K K ROK K K K K K K K K K K oK K R K KK
¥ This macro named " Mat_Copy M,N,SOURCE,DEST " makes a copy of matrix *
¥ A ( M by N, stored at SOURCE in data memory ) to location DEST in *
* data memory . The macro is called as Mat_Copy M,N,SOURCE,DEST e.g. *
* Mat_Copy 5,5,311h,411h. X
3K 3K 3k Sk ok o ke S ek sk ok K K St Sk 3K K oK K 3k Sk Sk K Sk ok K K K Kk K oK K Sk K K K K 3K KK K 3K K oK K K 3K K K K K K K 3K K KK K KRR R OK KK KK K
X

Mat_Copy $MACRO M,N,SOURCE,DEST

LRLK AR1, :DEST: ;point AR1 to DEST.
LRLK ARZ, :SOURCE: ;point AR2 to SOURCE
$LOOP :N.V:
LARP 2
$LOOP :M.V: ;loop for # of entries.
LAC x0+,0,1 ;load ACC with entry of SOURCE.
SACL *0+,0,2 ;store it in DEST.
$ENDLOOP
SBRK :M.V:x10H-1 ;modify ARZ2 for next column.
LARP 1
ADRK :M.V:*x10H-1 ;modify AR1 for next column.
$ENDLOOP

$ENDM ;end of macro.
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**********************************************************************m

Kk MACRO : Move_P_D X
2K K K K K K KKK K KK 3K K K 3K K K 3K K K K oK K 5K K K e K K oK K K oK K K K K 3k K 3K K 5Kk K Sk B K Ok Sk 3K K K K K K K K K K kK 3 oK N ¥

*doktorkkkk MOVE A MATRIX FROM PROGRAM MEMORY TO DATA MEMORY skokskskokskokkokokow:
KK K K 2k K K 5K 5K K 3 K K K K K Dk K K K 3K 3K 3K K o K K K KK K kK k3 K K oK S 3 3Kk ok K ok KOk oK K K 5K 3K 3 o 3K K K oK 3K S K K K K K K K K %
* This macro named " Move_P_D M,N,SOURCE_P,DEST_D " makes a copy of ¥
¥ matrix A (M by N), which is stored at SOURCE_P in program memory, ¥
* to DEST_D in data memory. The macro is called as Move P_D M,N, x
* SOURCE_P,DEST_D e.g. Move_ P_.D 2,5,411h,411h *
AHOKK KKK 3K K K K SR KK K KKK K K K Ok K K oK oK K Kk Sk oK K Sk 5K K 3K 3K 5K 5K K K 3K K K K 5K sk Sk K K S sk K K K oK K K K 5K ke kK ok Sk S S K ok
X

Move_P_D $MACRO M,N,SOURCE_P,DEST_D

LARP 1

LRLK AR1,:DEST_D: ;point ARl to DEST_D in data memory.

LALK :SOURCE_P: ; ACC contains address of SOURCE_P.

$LOOP :M.V: ;COpPY TOW by row.

RPTK :N:-1

TBLR *+ ;copy one row from SOURCE_P to DEST_D.

ADDK 16 ;point to next row at SOURCE_P.

ADRK 16-:N: ;modify AR1 s.t. it points to next row at DEST_D.
$ENDLOOP

$ENDM

4K A K KK K KK K KK S K oK oK K S SR SR K K o K K K OK K K Sk oK ok ok i sk Sk oK sk 3K K K K Sk K S K K K K K K 3K 3K K K ok 3K K K K K K K
Kok MACRO : Q15_Div KK
2K 5K K 3K K K K K K K K 3K S K K XK K K K Dk 3 K K Sl oK e K oK K 3K KK K K K K K K K K DK K KK K K 3K 3K Ok 3K 3K oK 3K K K K K K K K K K K K K
¥okxkkkk DIVIDE A Q15 NUMBER BY ANOTHER Q15 NUMBER kokkokok oKk Kk KK ¥k Xk
KK kK K K KK K A K K K K K K K K K K K K K K K K K K K KK K K K K K 0K S S K 3 Sk K K K K 5K K K K 3K K 8 K K K KoK K K oK K oK K K K
This macro named @Q15_Div divides a Q15 number stored in the %
upper-half of ACCUMULATOR by another @15 number stored in %
location 065h of data memory.The resulting Q15 quotient is *
stored back in the lower-half of ACCUMULATOR The macro is called X
with no parameter e.g. Q15_Div .But make sure that before the X
macro 1is called, ACCH contains numerator and data memory 085h X
contains denominator.The macro uses 065h and 086h of data memory.X
3K K K K KK K KK K K 3K K K 5 K K sk K K K XK KK K K K K K K 3K K K K K K K K oK K 5K K 3K K K K K oK K K 5K K K K 3K K KK KK KK K K ok K
X

Q15_Div $MACRO

* XK K H X X X

DENCOM: .equ 065h ;contains denominator beforehand.
NUMER: .equ 088h ; location of numerator.

SACH NUMER ;8tore numerator from ACCH to NUMER.
LT NUMER ; load TREG with numerator.

MPY DENOM ;multiply numerator by denominator.
PAC

BGEZ DIV1~? ;check for sign of quotient.if +ve go to DIV1?
LAC DENOM ;else continue.

ABS ;eet absolute value of denominator.
SACL DENOMNM ;store it in DENOMNM.

ZALH NUMER ; load ACCH with numerator.

ABS ;get absolute value of numerator.

RPTK 14

SUBC DENOM ;perform division.
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NEG ;negate quotient.

B DIV2? ;80 to DIV2?
DIVi? LAC DENOM ;jquotient is +ve.

ABS ; take absolute value of denominator.
SACL DENOM ;store it in DENOM.

ZALH NUMER ; load ACCH with numerator.

ABS ; take absolute value of numerator.
RPTK 14

SUBC DENONM ;perform division.
DIvV2? NOP ;Wwe 're done.

$ENDM

KKK K K K 3K K 3K K K 3K oK 3K K oK K Sk oK ok S e oK 3K 2K S K 5K 5K K 3K 5K 5K 3K 3K 3K K 5K K K K 3K K 3K K K 3K 3K S K K 3K K S 5K 3Kk K K KK K oK S OK K K K K K
Xk MACRO : LU_Fact * X
K 3K Sk o oK K S K KK K K K 3K K K K KK 3K K K 3K S 3K K K KKK KK S K 3K oK 3K KK 5K K S SR OKOK S K S K K K K K K K K K K Sk K KK KK KK K Kk
Forkokkkkk PERFORM LU FACTORIZATION OF A SYMMETRIC MATRIX OlksOKKOKAKIOKKKN KK
38 3K Sk ok ok Sk sk ok ok ok ok K KOk Dk b e ok K Sk 3k sk sk Sk R K ok K Sk Sk K K 3K K ok 3K K 3K K K K 3K K K K 5K K K Sk KO K Sk 3K K 3K K Sk kK 3K K K 5K XK KK SOK KK
From the knowledge of lower-half of a symmetric matrix A (M by M, x
stored at Loc_of_A in data memory),this macro named " LU_Fact M,
Loc_of_A ,Loc_of_C " performs 1its LU decomposition i.e. it
factorizes matrix A as A =LU ,where L is a lower-triangular matrix
and U 1is a vupper-triangular matrix with diagonal entries as 1°s.
The diagonals of U matrix are not stored since they are known tc¢
be 1°s.The macro stores all the entries of L and U at Loc_of_C
in data memocry in a compact matrix form. The algorothim for LU

deccmposition is

1) L(i,1) = A(i, 1),
for 1 < 1 £ N
2) UC1,3) = A(1,3)/A(1,1) ,
for 2 £ jJ = M
j-1
3) L(i,3) = A(i,J) - 2 L{(i,k)UCk,J),
k=1
for 21 <M, 2253 =i
i-1
Udi,3) = [ A(3,1) - 2 L(i,k)U(k,J) I/L(i,1),

m=1
for 2 2123, £3J =M

The macro uses two other macros named Qi5_Div and Mat_Copy. The
¥ macro Q15_Div uses 085h and 088h of data memory. The macro is
* called as LU_Fact M,Loc_of_A,Loc_of_C e.g. LU_Fact 5,311h,411h.

KR K A K K K K K 33K S K K K Sk 3K K S S K K 3K 3K K Sk K KK K K K K K K K o K K K K HOK K SR KK K K KK K KK K K KK K KOK K OKHOK K
X

LU_Fact $MACRO M,Loc_of_A,Loc_of_C

$VAR NUM

$ASG O TO NUM.V

X
X
*
*
X
X
X
X
*
3+
*
¥
X
X
¥
X
*
x
*
X
¥
k4
X
b 4
b 4
¥
*
b 4
¥



80

# find the 1st row of U s.t. UC1,3) = ACL,3)/7A(1,1).
LRLK AR1, :Loc_of_A: ;point AR1 to location of A.
LRLK ARS3, :Loc_of_C:+1
LARP 1
LAC *0+ ;store A(1,1) at 085h for division.
SACL B5H
$LOOP :M.V:-1
ZALH *0+,3
Q15_Div ; (ACCL) = A(1,3)/AC1,1).
SACL x+,0,1 ;store it in proper place.
$ENDLOOP

3

¥ move first column of A so that L(i,1) = A(i,1).
Mat_Copy :M.V:,1,:Loc_of_A:,:Loc_of_C:

X

¥ starting from 2nd row, find L-entries first followed by U-entries.
$VAR U_SUM,L_SUNM ;U_SUM and L_SUM are d counters.

$ASG 1 TO U_SUM ;initialize U_SUM=1 for 2nd row.

$LOOP :M.V:-1

LRLK AR1, :Loc_of_ A:+17+:NUM.V:x18B ;point AR1 to A(i,2), 2 £ i =
LRLK ARZ,:Loc_of_C:+16+:NUM.V:%186 ;point AR2 to L(i,1), 2 =1 =M
LRLK AR3, :Loc_of_C:+1 ;point AR3 to U(1,2).
$ASG 1 TO L_SUNM ;L.SUM = 1 for 2nd column.

LARP 3
X

$LOOP :NUM.V:+1 ;loop for entries of L-row.

LRLK ARZ, :Loc_of_C:+16+:NUM.V:x18

ZAC

MPYK O

$LOOP :L_SUM.V: ;counter for k.

LTS %0+,2

MPY *+,3 ;(PREG) = L(i,k)xU(k,3).

$ENDLOCP ; Jj-1

SPAC ;(ACCH) = - 2 L(i,k)U(k,J).

LARP 1 ; k=1

ADDH *+,2 ; (ACCH) = (ACCH) + A(i,3).

SACH x,0,3 ;L(1i,3) = (ACCH).

SBRK :L_SUM.V:x16-1 ;modify AR3 for next L-entry.

$ASG L_SUM.V+1 TO L_SUM.V ;increase L_SUM for next entry.
$ENDLOOP

* done with L-entries in a row.
*

¥ calculate U-entries in a row.

$IF NUM.V < (:M.V:-2) ;if all rows of LU-compact-form not
LARP 2 ;calculated, then continue for U-entries.
LAC %,0,1 ;store L(i,i) at 063h

SACL B5H ;for division.

MAR *0+

MAR x-,2

$LOOP M. V:~-2-:NUM.V: ;loop for entries of U-row.

LRLK ARZ, :Loc_of C:+16+:NUH.V:X16
ZAC
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MPYK O

$LOOP :U_SUM.V: ;counter for m.

LTS *+,3

MPY x0+,2 ; (PREG) = L{i,m*U(m,J).
$ENDLOOP ; i-1

SPAC ; (ACCH)Y = - 2 L{i,m)U(m,3).
LARP 1 ; m=1

ADDH *0+,3 ; CACCH) = (ACCH) + A(3,1i).
Q15_Div ; (ACCL) = (ACCH) + L(¢(i,i).
SACL x ;UCi,3) = (ACCL).

SBRK (:NUM.V:+1)%x16-1 ;modify AR3 for next U-entry.
LARP 2

$ENDLOQP
*done with entries of a row of U.
X

$ELSE ;1f all the rows of U

NOP ;not calculated yet

$ENDIF ;then go for next row.

$ASG NUM.V+1 TO NUM.V

$ASG U_SUM.V+1 TO U_SUM.V ;increase U_SUM counter of U.
$ENDLOOP :

SENDNM ;end of macro.

SRR AR KR A KK K K KK oK K K K R OK KK K KK K 3 K K K 5 KK K 3K K K SR 3K KKK KK KK K K KK 5K 3K K K K oK K 3K 3K oK K OK K Sk KOk Kk

ok MACRO : For_Ward

Xt

HOK KKK AR KKK OK KK KK K K oK 3K KK K KKK 3K KK K K KKK 3K KK K K KK KK 3 oK SR K oK K K K K oK oK HOK KKKk i
okxxx SOLVE LY=B'(L IS LOWER-TRIANGULAR) BY FORWARD SUBSTITUTION Xkt
SKOKOK HOK SKOKOK K 5K 3K K OK SK A  3OK KK K K K KK 3K 3K KK K ROK KR K K K 3K KK SKK K oK SOK 3K KK o A oK K K KKK K K oKk

* This macro named " For _Ward M,N,Loc_of_L,Loc_of_B,Loc_of_Y " solves
¥ Y from LY=B" using forward substitution , where L is a lower
* triangular matrix.The matrices L (M by M) and B (N by M) are stored
* at Loc_of_L and Loc_of_B in data memory respectively. Note that it
* is matrix B , not B° that is stored at Loc_of_B. The entries of Y
¥ matrix are stored starting at YLOC in data memory.

*
¥ The cowmpact algorithm for this method is,
*
X j-1
X Y(i,3) = [ B(3,i) - 2 L(i,k0YC(k,J) J/L(i, 1)
% k=1
X for 1 £ i £ MM and 1 £ j =2 M
¥
* The macro is called as For_Ward M,N,Loc_of_L,Loc_of_B,Loc_of Y e.g.
X For_Ward 3,4,311h,411h,511h. NOTE THAT this macro uses another

* macro named @Q15_Div which uses 065h and 086h of data memory.

K K R KK 3K K KOK KK K K 3K K K K 3K KK K oK 5K oK KK K oK K KKK K K K K oK K e KOK S 3OK Sk K KK KKK K K K K oK S OK KOK KK KR KOR Xk Kok

X

For_Ward $MACRO M,N,Loc_of_L,Loc_of_B,Loc_of_Y
$VAR NUM

$ASG O to NUM.V

LARP 1

LRLK AR1, :Loc_of_L: ;point AR1 to L(1,1).

4

* X ¥ ¥ ¥

A
*
X
*
¥
*
*
¥
*
*
*
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LAC x
SACL BE5H ;(0BSH) = L(1,1).
$LOOP :M.V: ;loop for i (i.e. rows of Y).

LRLK ARZ, :Loc_of_B:+:NUM.V:
LRLK AR3, :Loc_of_Y: -
$LOOP :N.V: ;loop for j (i.e. columns of Y).
LRLK AR1,:Loc_of_L:+:NUM.V:x18
ZAC ’
MPYK O
$LOOP :NUM.V: ; loop for k.
LTS *+,3
MPY %0+, 1
$ENDLOOP ;
SPAC ; CACCH)
LARP 2 R
ADDH x0+,3 ; CACCH) B(j,i) + (ACCH).
Q15_Div ; (ACCL) (ACCH) + L(1,1).
SACL x ;Y(i,3)=(ACCL).
$IF NUM.V = O
ADRK 1
$ELSE
SBRK :NUM.V:¥18-1
$ENDIF
LARP 1
$ENDLGGP ;end of loop of j.
$IF NUM.V < (:M.V:-1)
MAR %0+
MAR #*+
LAC %
SACL 65H ;store L(i+1l,i+1) for next row.
$ELSE
NOP
$END1F
$ASG NUM.V+1 TO NUM.V
$ENDLOOP ;end of loop for 1i.
$ENDHM

1-1
- 2 L{i,k)*Y(k,3).
k=1

AR ORI OK K AR KK K KK K AR KK 3K K K KK KKK KK K KK 3K 5K K 5K K K K K K K Ok K K K K K K 5K 3K 3K K 3K K K K K KK K K K ROk A Ok

X

x MACRO : Bck_Ward

KA

A ok R KK KK KR K KKK OR K K K K KK KR 1OKK K K K K K K K K K K KK 30K 3K K oK K 3K KK K K K K K K KKK K A AOR K KOK KK K0k

akkkk SOLVE UX=Y (U IS UPPER-TRIANGULAR) USING BACK-SUBSTITUTION #xokxx
S A oK ACK K KK K KK oK K KKK K K oK 3 oK KK KKK oK S K oK KoK oK S ok K K Sk oK K K K ok SR KK KK KOKK KKK K K K K

Using back-substitution,this macro named " Bek_Ward M,N,Loc_of_U,
Loc_of Y " solves X from UX = Y, where U is an upper-triangular
matrix with diagonals as 1°s. The matrices U (M by M) and Y(M by N)
are stored at Loc_of_U and Loc_of_Y of data memory respectively.The
entries of matrix X are stored in Y’'s place. Since the last row of
X is same as Y, this macro calculates entries of X starting from
2nd-last-row up to the 1st row. The algorithm for this is shown

R E "
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*¥ below *
k4 *
X 1) X(M,1i) = Y(M,i), for 1 £ i < H ¥
X *
X M ¥
* 2) X(i,3) = Y(i,3) - 2 U(Li,k)X(k,3), X
X , k=i+1 *
x for 2 < i< Mand 1 £ j < M *
E 3 X
* The macro is called as Beck_Ward M,N,Loc_of_U,Loc_of_Y e.g. X
¥ Bek_Ward 3,4,311,411h. *

¥

3 KK AR KOK K 3 K K K S KK KK K K K K oK K K K K K K K K ok 3K K 5K 3K 5K 3K K oK 5K K K 3K 3K K KK S K K K Sk Sk K K K K 3k 3K K 3 K K Ok Sk %k K K
%

Bek_Ward $MACRO M,N,Loc_of_U,Loc_of_Y

$VAR NUM

$ASG 0 to NUM.V

BKINCO: .equ :M.V:-1

BKINC1: .equ BKINCOx18

BKINCZ2: .equ BKINCO*17-16

X

¥calculate rows of X starting from 2nd-last-row.
%

LARP 1

$LOOP M. V:-1 ;loop for rows of X.

LRLK  AR1, :Loc_of_Y.V:4+BKINC1 ;ARl points to location of Y.
LRLK AR2Z, :Loc_of_U.V:+BKINC2-:NUM.V:%16 ;AR2 points to location of U.
*®
$LOCP :N.V: ;io0op for entries in a row of X.
ZAC
MPYE O
$LOOP :NUM.V:+1 ;ecounter for k.
LTS x0-,2
MPY *-,1 ; (PREG) - Ui, k)*X(k,3).
$ENDLOOP M
SPAC ;s CACCH) - 2 U(i,k)*X(k,3).
ADDH x k=i+1
SACH % s X(i,3) = Y(i,3) + (ACCH).
LRLK ARZ, :Loc_of_U.V:+BKINCZ2-:NUM.V:%16 ;modify ARZ for next entry.
ADRK (:NUM.V:+1)*16+1 ;modify AR1 for next entry.
$ENDLOOP
kdone with one row of X.
¥
$ASG NUM.V+1 TO NUM.V ;80 for next upper row.
$ENDLOOP
$ENDH

i1

Sk 3 e 3K K A K K R K KK K K K K K KR S 3K K K K K K K KK S K K K K K SR K OK SKCE OK K K K K KK KOK K K K SKOK KKK KK K KK KK
koK MACRO : Sqr_Root KX
3K KKK 3K K oK 3K K KK K 5K SRR K SR K K K K K KK K KK K K KK KK K K K K KO KK KK KKK K K K K K K KKK K KK KKK K
dorkokkckokkk FIND SQUARE-ROOT OF A Q15 NUMBER STORED IN ACCH ¥okkkxkokx
KK K K K KK K KK K K K K KK K KK K KK 3K K K K K K KK K K KK K K K KK K K K KK KK K K K KK SKOK ok K K KK K K KK KK
* This macro named "“Sar_Root"” finds square-root of a Q15 number X
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* stored in upper half of ACCUMULATOR using Newton_Raphson method.x
¥ The result is stored back in 1lower half of ACCUHMULATOR.The *
¥ macro uses data memory locations 65h to 68h. It is called as x
¥ 5gr_Root with no parameter. However, make sure that the Q15 x
* number ,whose square-root is'to be calculated, resides in upper x
% X
* X
*

* half of ACCUMULATOR before the macro is called.
*f************************k***************************k**********

>qr_Root $MACRO
53Q1 .equ B65H
5Q2 .equ BBH
8Q3 .equ B7H
5Q4 .equ B8H

SFR

SACH sQ1 ; (8Q1) = 8/2.

LAC 8Q1

ADLK 4000H

SACL SQ4
SQR? LAC SQ4 ; (SQ4) = xold.

SACL s8Q2 ; (8Q2) = xo0ld.

SFR

SACL 5Q3 ; (SQA3) = xo0ld/2.

ZALH SQ1

RPTK 14

SUBC $Q2 ; (ACCL) = a/{2%xo0ld).

ADD 38Q3

SACL SQ4 ; (SQ4)=xnew = xo0ld/2 + a/(2%xo0ld).
LAT 842

SUBS S04

SBRLK 2 ; 1s (xold-xnew) > 0002h 7
BGz 8QR? ; 1if so,continue iteration.
LAC SQ4 : (ACCL)=4a.

$ENDM

2K KK K SR OK KK K SR KK K K K 3K 3K Sk 5K 3K S K e SK K K Sk K K KK KK 3K 5K K K K K K 5K 3K 3K 3K 3K kKK K ok 3K K K K 3K KK K KKK KoK S KOk K Kk K

kok MACRO : Choleski XK
K4 KOK K KK 3 3K 3K oK KK K KK KK K K S K K SR K K ok K ok Sk S ok ok o KOk K oK 3K 3K KK ok K ok K o oK o KK 3K oK o kK ok oK SOk K KOk K k

Fkxokkokxok PERFORM CHOLESKY DECOMPOSITION OF A SYMMETRIC MATRIX loktsoktorxk
KK K AR OK K KK KKK K K KKK 3 K 3K K K 3K oK XK 3K K oK S oK A K 5K K K 3K K 3OK S oK 3K K oK KKK KK K oK 3K oK S KK K KK KKK K K K

Using Choleski’s method, this macro named " Choleski M,Loc_of_A "

* . 3
* decomposes a symmetric matrix A ( N by N,just lower-half }s stored %
* at Loc_of_ A in data memory ) into a lcwer triangular matrlx.M and *
¥ an upper triangular matrix M° such that A=M¥M". The entries =&res %
X calculated as *
* X
* k-1 *
X M(k, k) = 7{ACk,k) - 3 [M(k,3)]%) X
% j=1 *
K *
% k-1 *
X X

[ ACi,k) - 3 M(i,3)M(k,3) 1 / M(k,k)

It

M(i,k)
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J=1
for 1 = k £ N and (k+1) £ 1 = N

* ¥ ¥

X two other macros named Q15_Div and Sqr_Root which use data memory
¥ locations 65h to 88h.The macro is called as Choleski M,Loc_of_A e.g.
*

< Choleski 5,311h.
KKK 3KOK KK 3K OK oK 3 K K K oK 5K K oK 3K 50K 3ok 30K SOk 30K 3K K 3 oK 3K K ok 3 oK 3K oK 3Ok 3ok KK K K ok oK SOk ok KK SKOR KK K Ok % K

*
Choleski $MACRO M,Loc_of_A
$VAR NUNM
$ASG 0 TO NUM.V
¥ find 1st column of M.

*
X
E 9
* The lower triangular matrix M is stored in A's place. The macro uses X
*
*
*
bi 4

LRLK ARZ, :Loc_of_A: ;point ARZ to MLOC.
LARP 2
ZALH %
Sgr_Root
SACL *0+ ML, 1)=¥A(1,1).
SACL B85h ; (65h)=M(1,1).
$LOOP :M.V:-1 ;loop for off-diagonals of 1st column of M.
ZALH x
Q15_Div
SACL *0+ M1, 1)=ACi,1)/M(1,1).
$ENDLOOQOP
*
* find all other columns of M except last column.
$LOOP :M.V:-2 ;loop for (N-2) columns.

 first find the diagonal entry of the particular column.
LRLK AR2,:Loc_of_A:+10H+:NUM.V:%16

LRLK AR3, :Loc_of_A:+20H+:NUM.V:%x18
ZAC

MPYK O

$LOOP :NUM.V:+1 ; loop for j.

SQRS *+

$ENDLOOP ; k-1

SPAC s (ACCH) = - 2 [M(k,d)2]
ADDH ; j=1

Sgr_Root

SACL x MGk, k) = £{A(k,k) + (ACCH)}
SACL B5H ;(B5h) = M(k,k).
done with diagonal entry of a column.

find cff-diagonal entries of the colunmn.
$LOOP :M.V:-2-:NUM.V:
LRLK ARZ,:Loc_of_A:+10H+:NUM.V:%x16
ZAC
MPYK O

$LOOP :NUM.V:@+1

LT *+,3

MPYS x+,2

$ENDLOOP ; k-1
SPAC ; (ACCH)Y = - 2 M(i,p)*M(k,3)
LARP 3 ; j=1

*

#
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ADDH * ; (ACCH) = A(i,k) + (ACCH).
Q15_Div
SACL ;M(i,k) = (ACCH)/M(k,k).
ADRK 15-:NUM.V: ;modify AR3 for next entry of the colunn.
LARP 2
$ENDLOOP
$ASG NUM.V+1 TO NUM.V  ;go for next column.
$ENDLOOP
X done with first (N-1) columns.

*
¥ find the single entry of last column of M.
LRLK ARZ, :Loc_of_A:+10H+:NUM.V:%18
ZAC
MPYK O
$LOOP :NUM.V:+1
SQRS x+
$ENDLOGP ; N-1
SPAC ; CACCH) = 2 [M(N,j)]*®
ADDH x ; j=1
Sar_Root
SACL x* ;M(NL,N) = S{A(N,N)Y-(ACCH)?}.
$ENDM

e oS K K K Ok oK K oK SO KKK KK K K K K R SKOK K K K 3K K K 3K K K 3K 5K 3K 3K 3K 5K 53K 3K K 3K 3K 5K 3K K 3K 3K 5K K ok 3k 5K K K 3K K KK 3K K K 3K K K K K oK K
*0K MACRO : Seq_Proc Ao
¥xxk FOR VECTOR OBSERVATION ,FIND FILTERED ESTIMATE OF STATE VECTOR XXk
K)ekokdersickxkkk & ERROR COVARIANCE MATRIX BY SEQUENTIAL PROCESSING skdokkdckrokxk
KK 35K K R K 3K K OK K K K K SR K K S KK oK K K oK 3K K KK oK 5k 3K oK K oK 3K 2K K ok 3k K3 bk 3k ok K K oK K 3K K K KSR KO K KK 5K K K KK K K
This macro named " Seq_Proec M, N, Loc_of_H, Loc_of_P, Loc_of_R,
Loc_of_y, Loc_of_x, Loc_of_k, temp_1l, temp_2 " calculates filtered
estimate of state vector x(nin) and error covariance matrix P(ni/n)
in STANDARD KALMAN FILTER ALGORITHM using sequential processing
of data vector y(n) when measurement noise v(n) is uncorrelated i.e.
E{v(n)v(k)} = R8(n,k). The MxN observation matrix H({(n), th e NxN
predicted error covariance matrix P(n+1l)n), the Nxl1 predicted
state estimate x(n+l1l)n),the Mx1l measurement vector y(n) and the MxMH
diagonal matrix R(n) are stored at HLoc in program memory,PLoc
in data memory, XLoc in data memory, YLoc in data memory and RlLoc
in data memory respecpectively. The intermediate steps use two NxHN
data memory pads namely whose starting addresses are given by temp_1
and temp_2.The steps for the sequential lgorithm are given below

P(0)=P(n+1in) ; x(0)=x{(n+1lin)
For i=1 to M do

LR I I T E R E R VNN

1) k(i) = P(i-1)kh (i) / [h(i)*P(i-1)*h (i)+r(i,i)]
where h(i) is ith row of H(n).
2) P(i) = P(i-1)-k({(i)*h({(i)*P(i~1)
3) x(i) = x(i-1)-{y(i+1)-h{(iY*x(i-1)I*k(i)
P(n+l!n+l1l) = P(M)
x(n+lin+l) = x(M)
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* The macro is called as Seq_Proc M,N,HLoc,PLoc,RLoc,YLoc,XLoc,KLoc, ¥
* temp_l,temp_2 e.g. Seq_Proc 4,5,0FF00h,300h,388h,384hh,380h,383h, *
*
*

* 382h,308h.
KKK 3KOK K KK 3K K K KK K K 3K KKK K K oK 3K K K 3 K 5k 3K K oK ok ¢ oK K ok 3K 5K K K K3 K o oK oK K K o ok ok sk sk ok ok ok ok sk Kok Sk ok 0K

*
Seq_Proec $MACRO M,N,HLoc¢,PLoec,RLoc, YLoc,XLoc,KLoc,temp_1,temp_2

$VAR R_C ;define a variable named R_C.
$ASG 0 TO R_C.V ;assign 0 to R_C.

$LOOP :M.V: ;execute the loop M times

¥ find k(i)

MtMtMlpd 1,:N:,:N:, :HLoc:+:R_C.V:%10h, :PLoc:,:temp_1:,1,0 ;find PXh".
VecVecHl :N:, :HLoc:+:R_C.V:*10H, :temp_1:,0,2 ; (ACCH)=h(i)%¥P¥h'(i).

ScalBAorS :RLoc:+:R_C.V:,0 ; (ACCH)=(ACCH)+R(i,i).
VectMorD :N:,:temp_1:, :KLoc:,1 s k(i)=Pxh’"(1)/(ACCH).
* find P(i)

VecVecHMl :N:,:temp_1:, :KLoc:, :temp_2:,1 ;(temp_2)=Pxh " (i)*k " (i).
Mat_AorS :N:, :PLoc:,:temp_2:,1 :P=P-(temp_2).

Fill_Mat :N:,:PLoc: ;P=P-Pxh" (i)*k " (i).

* % find x(i)
VecVecMl :N:,:HLoc:+:R_C.V:*10h, :XLoc:,0,2 ; (ACCH)=h(i)*x.

ScalAorS :YLoc:+:R_C.V:%10H,1 ; (ACCH)=(ACCH)-y(i+1).
VectMeorD :N:,:KLoc:, :temp_1:,0 ;(temp_1)=k(i)*(ACCH).
VectAorS :N:,:XLoc:, :temp_1:,1 ;x=x-(temp_1).

$ASG R_C.V+1 TO R_C.V

$ENDLGOP
$ENDNM
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F.2 Special Macros

40 A A A AL T A KA R A A o b S o K o K O K K K 9K 5K K MK K K K R K Ok K K o K S A A 2 KK 3K S OK K S K Kok Sk ok
*X MACRO : PRED_EST Xk
23K 3K K K K 2K A K KK K KA K K K K KK K K 3K K 3K K K K K K K K SR K R K K K KK K K K K K K K K K K K K S K K K K K K K K K KK KO K
xkx FIND THE ESTIMATES OF PREDICTED COVARIANCE AND STATE VECTOR k%
¥oxkxkk WHEN STATE-TRANSITION MATRIX & HAS A SPECIAL STRUCTURE iokkskxkx
*********************************************************************
This macro named " PRED_EST N,Loc_of_Phi, Loc_of_P,Loc_of_x, X
Loc_of_Q " calculates the lower-half of predicted estimates of *
error covariance matrix P(k+1] k) and state vector x(k+1)k) using ¥
the equations

P(k+1)k)
and x(k+11 k)

PP(kik)®" + Q
Pdx(ki k)

o

and stores them in P(kik) s and x(k)k) s places. The matrix & has
a special structure as shown below

K

X

*

*

X

X

*

— x

rél ; 0 ' o | 0 *
—— - _——— _——— *

0 | o2 ! o 0 ai bi *

P = _——— ——-- - - , Bi = *
0 0 ;83 | 0 -bi ai *
—_—— = _—— —-—— L *
o 0 ' 0 | 64 X
X

NS

*

B

X

Xx

Xk

X

*

X

*

*

*

*

*

The ® matrix may or may not have all the three 2 x 2 matrices 962,

B3 and 64 i.e. ® is a 2x2 or 4x4 or BxB or 8x8 matrix. The N x N
matrices P(kik), ® and @Q are stored at Loc_of_P, Loc_of_Phi and
Loc_of_Q in data memory respectively.The Nx1 column vector x(kjk)
is stored at Loc_of_x in data memory.To find P(k+1l}/k), the macro
uses two other macros namely MATZ221 and MAT222 which operate on
2x2 matrices as,
MAT221 : A ¥ B(symmetric,lower-half is known)*A’ -> B
MAT222 : A % B x C° + D(diagonal) -> B
To calculate x(k+1), it uses the macro PHI_X. The macro is called
as PRED_EST N,Loc_of_Phi,Loc_of_P,Loc_of_x,Loc_of_Q e.g. PRED_EST
8,311h,411h,511h,611h. NOTE that the macro uses locations 60h-63h

of data memory.
k*******************************************************************

*

PRED_EST $MACRO N,Loc_of_Phi,Loc_of_P,Loc_of_x,Loc_of_@Q

IR IS IR I I A i R R EE EEEEE R I

LARP 1 ;set ARP=1.

LRLK AR1, :Loc_of_Phi: ;point AR1 to location of &(1,1).
LRLK ARZ, :Loc_of_P: ;point ARZ2 to location of P(1,1).
LRLK ARS3, :Loc_of_Q: ;point AR3 to location of QC1,1).
$IF N.V = 2 ;is N = 2 2

MAT221 1 ;if so, perform P = ®XxPxd " +Q.

PHI_X 1, :Loc_of_Phi:, :Loc_of_x: ;and find x = @*x,

$ENDIF



$IF N.V =
MATZ221 1
MAT221 2

4
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;if not, is N =4 ?
; if so, find
; P = $%Px®+Q.

MAT222 :Loc_of Phi:+22H, :Loc_of_P:+20H, :Loc_of_Phi:

PHI_X 2, :Loc_of_Phi:, :Loc_of_x: ;and find x = ®xx.
$ENDIF

$IF N.V = 8 ;if not, is N = 68 ?

MATZ221 1 ;1f so,

MAT221 2 ; find

MATZ221 3 ; P o= ©%Px3°+Q.

MAT222 :Loc_of_Phi:+22H,:Loc_of_P:+20H, :Loc_of_Phi:
MAT222 :Loc_of_Phi:+44H,:Loc_of_P:+40H, :Loc_of_Phi:
MAT222 :Loc_of_Phi:+44H, :Loc_of_P:+42H, :Loc_of_Phi:+22H
PHI_X 3, :Loc_of_Phi:, :Loc_of_x: ;and find x = ®%x,
$ENDIF

$IF N.V = 8 ;if not, N is 8.

MAT221 1 ; find

MAT221 2 ; P = 3xP%x®+Q.

MAT221 3

MAT221 4

MAT222 :Loc_of_Phi:+22H, :Loc_of_P:+20H, :Loc_of_Phi:
MAT222 :Loc_of_Phi:+44H, :Loc_of_P:+40H, :Loc_of_Phi:
MAT222 :Loc_of_Phi:+66H, :Loc_of_P:+60H, :Loc_of_Phi:
MAT222 :Loc_of_Phi:+44H, :Loc_of_P:+42H, :Loc_of_Phi:+22H
MAT222 :Loc_of_ Phi:+86H, :Loc_of_P:+82H, :Loc_of_Phi:+22H
MAT222 :Loc_of _Phi:+66H, :Loc_of_P:+84H, :Loc_of_Phi:+44H
PHI_X 4, :Loc_of_Phi:, :Loc_of_x: ;and find x = ®*xx.
$ENDIF

$ENDM

Fookkokkkokkkkk  This macro is used by PRED_EST  RKKKNOKAKKAOKKAKICK K NOK AKX
MATZ221 $MACRO ALOC,BLOC
T 221_1: .set B60H
T_221_2: .set B1lH
T_221_3: .set B2H
T _221_4: .set B63H

*
kkxkxkxkxk find D = AXB.
%

¥ find D(1,1) = A(1,1)*B(1,1)+ A(1,2)%B(2,1).

LT *+,2 ; (TREG) = A(1,1).

MPY #*0+,1 s (PREG) = A(1,1)kB(1,1).

LTP %-,2

MPY x+ ; (PREG) = A(1,2)XB(2,1).

MPYA *-,1 ; (PREG) = A(1,2)Y%B(2,2).

SACH T_221_1 ;(T_222_1) = D(1,1) = AC1,1)¥%B(1,1)+A(1,2)*%B(2,1).
*
* find D(1,2) = A(1,1)*B(2,1)+A(1,2)xB(2,2).

LTP *0+,2

MPY *0-,1 ; (PREG) = A(1,1)*B(2,1).

LTA %+,2 ; (TREG) = A(Z2,1).

SACH T_221_2 ;(T_222.2) = D(1,2) = A(1,1)*%B(2,1)+A(1,2)*%B(2,2).
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*
* find D(2,1) = A(2,1)%B(1,1)+A(2,2)xB(2,1).

MPY 0+, 1 ; (PREG) = A(2,1)%B(1,1).

LTP %x-,2

MPY X+ ; (PREG) = A(2,2)*%B(2,1).

MPYA *-,1 ; (PREG) = A(2,2)%B(2,2).

SACH T_221_3 ; (T_222_3) = D(2,1) = A(2,1)%B(1,1)+A(2,2)Y*%B(2,1).
*
* find D(2,2) = A(Z2,1)%B(2,1)+A(2,2)*B(2,2).

LTP x0-,2

MPY x0-,1 ; (PREG) = A(2,1)%B(2,1).

LTA T_221_1 ; (TREG) = D(1,1).

SACH T_221_4 ; (T_222_4) = D(2,2) =A(2,1)%B(2,1)+A(2,2)*B(2,2).
*

¥okokkk find E=DXA”" .
* find E(1,1) = D(1,1)*%A(1,1)+D(1,2)*%A(1,2).

MPY *+ ; (PREG)=D(1,1)%A(1,2).

LTP T_221_2 ; (TREG) = D(1,2) ; (ACCH) = D(1,1)%A(1,2)>.

MPY *%,3 ; (PREG) =D(1,2)%A(1,2).

ADDH x+,1 ; CACCH) =D(1,2)%A(1,2)+ D(1,1)kA(1,2) + G(1,1).
LT T_221_4 ; (TREG) = D(2,2).

MPYA x-,2 ; (PREG) = D(2,2)%A(1,2).

SACH x0+,0,1 ;E(L,1) = D(1,1)%AC1,1)+D(1,2)%A(1,2)+G(1,1).
x

¥ find E(2,1) = D(2,1)%A(1,1)+D(2,2)%A(1,2).

LTP T_221_3 ; (TREG) = D(2,1) ; (ACCH)= D(2,2)%A(1,2).

MPY *0+ ; (PREG)Y = D(2,1)%A(1,1).

MPYA %+,2 ; (PREG)Y = D(2,1)%A(2,1).

SACH x+4,0,1 ;E(2,1) = D(2,1)%A(1,1)+D(2,2)*A(1,2).
b3
% find E(2,2) = D(2,1)*%A(2,1)+D(2,2)*%A(2,2).

LTP T_221_4 ;(TREG) = D(2,2) ; (ACCH)= D(2,1)¥A(2,1).

MPY %0+ ;(PREG) = D(2,2)%A(2,2).

MAR *+,3 ;point to next diagonal block of &.

ADDH *+,2 ; CACCH)Y = D(2,1)%A(2,1) + G(2,2).

APAC ; (ACCH)Y = D(2,1)Y%A(2,1) + G(2,2) + D(2,2)%A(2,2).
SACH *0+ ;E(2,2) = D(2,1)%A(2,1)+D(2,2)%A(2,2)+G(2,2).
MAR *+,1 ;modify AR2 to point to next diagonal block of P.
$ENDHM

HOROKKKOKIOK KKKk kX This macro is used by PRED_EST KKK KAOKKAKKK AKX
MAT222 $MACRO ALOC,BLOC,CLOC

T_222.1: .set B0H

T 222_2: .set B1H

T 222 _3: .set B82H

T_222_4: .set B3H

LRLK AR1, :ALOC: ;point AR1 to location of A.
LRLK ARZ, :BLOC: ;point ARZ to location of B.
LRLK AR3, :CLOC: ;point AR3 to loaction of C.
X

kxkckkkk £ind D=A%XB.
X
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tH

* find D(1,1) ACL,1)%B(1,1)+ A(1,2)x*B(2,1).

LT *+,2 ; (TREG) = A(1,1)

HPY *0+,1 ; (PREG) = A(1,1)%B(1,1).
LTP *x-,2

HPY *+ ; (PREG) = A(1,2)%B(2,1).
MPYA %0-,1 ; (PREG) = A(1,2)*%B(2,2)

SACH T_222_1 ;(T_222_1) = D(1,1)=A(1,i)*B(1,1)+A(1,2)*B(2,1).
*

* find D(1,2) AC1,1)%B(3,2)+A(1,2)%B(2,2).

LTP *0+,2
MPY *x-,1 ; (PREG) = AC1,1)*B(1,2) ;i=1,2.
LTA *+,2 ; (TREG) = A(2,1).

SACH T_222_2 ;(T_222_2) = D(1,2)=A(1,1)*B(1,2)+A(1,2)*B(2,2).
*

¥ find D(2Z,1) ACZ,1)*¥B(1,1)+A(2,2)*%B(2,1).

1

HPY *0+,1 ; (PREG) = A(Z,1)¥%B(1,1).
LTP *x-,2

MPY *+ ; (PREG) = A(2,2)%B(2,1).
MPYA *0-,1 ; (PREG) = A(2Z,2)*B(2,2)

SACH T_222_3 ;(T_222_3) = D(2,1) = A(é,1)*B(1,1)+A(2,2)*B(2,1).
" :
* find D(2Z,2)

1"

AC2,1)xB(1,2)+A(2,2)%B(2,2).

LTP x0+,2
HPY *-,3 ; (PREG) = A(2,15%B(1,2).
LTA T_222_1 ; (TREG) = D(1,1).

SACH T_222 4  ;(T_222_4) = D(2,2) = A(2,1)¥B(1,2)+A(2,2)%B(2,2).
X
¥kkkx find E = DxC-°
*

* find E(1,1) DCL1,1)%C(1,1)+D(1,2)*C(1,2).

MPY x+ ; (PREG) = D(1,1)*%C(1,1)

LTP T_222_2

MPY *0+,3 ; (PREG) = D(1,2)*C(1,2)

MPYA *x- ,2 ; CPREG) = D(1,2)%C(2,2)

SACH *+,0,3 ;ECL,1)= D(1,1)%C(1,1)+D(1,2)*C(1,2).
X

¥ find E(1,2) = D(1,1)%C(2,1)+D(1,2)%C(2,2).

LTP T_222_1

MPY *+,2 ; (PREG) = D(1,1)»%C(2,1)

LTA T_222_4 ; (TREG) = D(2,2).

SACH *0+,0,3 ;ECL,2) = D(1,1)+C(2,1)+D(1,2)xC(2,2).
*
¥ find E(2,2) = D(2,1)*%C(2,1)+D(2,2)*C(2,2).

MPY - ; (PREG) = D(2,2)%C(2,2)

LTP T_222_3

MPY *x0- ; (PREG) = D(2,1)*%C(2Z,1)

MPYA *+,2 ; (PREG) = D(2,1)%C(1,1)

SACH %x-,0,3 ;E(2,1) = D(2,1)%C(2,1)+D(2,2)*C(2,2).
X
¥ find E(2,1) = D(2,1)xC(1,1)+D(2,2)*C(1,2).

LTP T_222_4

MPY *-,2 ; (PREG) = D(2,2)*%C(1,2)
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APAC

SACH *0+,0,1 ;EC2,1) = D(2,1)%C(2,1)+4D(2,2)%C(2,2).
X

$ENDHM

BoORCkIckIckkRokKk - This macro 1is used by PRED_EST SRR AKAKKKNKKOKNOK KK
PHI_X $MACRO M,Loc_of_Phi,Loc_of_x
p.x_1 .set B0H

$VAR P ;P variable is used as offset to address of
$ASG 0 TO P.V ;vector x while multiplying blocks of &.

LARK ARO,21H ;ARO is used to point to succesive blocks of @.
LRLK AR1, :Loc_of_Phi: ;ARl points to location of #(1,1).

$LOCP :M.V: ;loop counter contains # of 2 x 2 blocks of &.
LT *+ ;(TREG) = &(2%i-1,2%i-1) ; i=1..M.

MPY :Loc_of_x:+:P.V: ; (PREG) = ®d(2%i-1,2%i~-1)%x(2%i-1).

SPH p_x_1 s (p_x_1) = ®(2%i-1,2%i-1)%x(2%i-1).

MPY :Loc_of_x:+:P.V:+1 ;(PREG) = ®(2%i-1,2%i-1)%x(2%i),

LTP 0O+ ; (TREG)=8(2%1-1,2%1i); (ACCH)Y=0(2%i-1,2%i-1)¥%x(2%1i).
MPY :Loc_of_x:+:P.V: ;(PREG) = ®(2%1i-1,2%i)*%x(2%i-1).

MPYS :Loc_of_x:+:P.V:+1 ;(PREG)=8(2%i~1,2%i)*x(2%i); (ACCH)=(ACCH)-(PRl

SACH :Loec_of_x:+:P.V:+1 ;x(2%i)=(ACCH).

PAC s (ACCH) = @(2%i-1,2%i)*xx(2%1i).

ADDH p_x_1 ; (ACCH)Y=®(2%i-1,2%1)kx(2%1)+®(2%i-1,2%i-1)¥x(2%i-1]
SACH :Loc_of_x:+:P.V: ;x(2%i-1)=(ACCH).

$ASG P.V+2 TO P.V ;increase variable by 2.

$ENDLOCP

$ENDM
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28 oK K Ak A7 AR A o K K A K KK K K A KOK SK SK K K K S A SF K KoK K KA K KK S K 3K K K 3K K 3K SK 5K K S KK SK KKK KK KOk
HK MACRO : FILT_EST %%
SR KRR K HOK K K KK KR KK K K K 5K 3K ok S K S Sk K KK K K 3K 5K K K K K St Sk K K K K Sk ke Sk Sk ke ki sk K K kK oK ok K ok K K KOk K K
*xxk FIND THE ESTIMATES OF FILTERED COVARIANCE AND STATE VECTOR xxx
*kxkkkxk WHEN STATE-TRANSITION MATRIX & HAS A SPECIAL STRUCTURE kXkkkkx
KoK R K KKK K K K oK 3K K KK K K K K 3K K K K K 3K Sk oK oK 3K oK 3K kK K 3K 3K Sk 8 K 5K SOk ok 3K K K K 3K K K K 3K KK K oK KK 3K K ok K K KoK K K Sk
X This macro named " FILT_EST N, Loc_of_P, temp_1, Loc_of_R, x
Loc_of_k,Loc_of_x,Loc_of_y " calculates the lower-half of filter-
ed estimates of error covariance matrix P(k+1!k+1) and state
vector x(k+1}k++1 ) using the equations

k(k+1) = P(k+1 k)h"/[hP(k+1l/k)h ' +r ,
P(k+1ik+1) = P(k+1lik) - P(k+1]k)H k" (k+1)
and x(k+11k+1) = x(k+1ik) - k(k+1)[hx(k+1ik)-y]

and stores them in P(k+1)k)'s and x(k+1!k) s places. The matrix 3
and vector h have the following special structure

-—

6c!6z ! 0 | 0 ai bi
o = T Y- E
c, 0 63 | O -bi ai

*

X

X

b 4

X

*

b 4

*

X

%

%

X rél 0 YV o0 Vo
X

*

¥

x

X

*

¥

X and h = [hl | h2 { h3 |} hd4]; hi = [1 0]

P

* The ® matrix may or may not have all the three 2 x 2 matrices 02,
% 83 and 64 i.e. ® is a 2x2 or 4x4 or Bx6 or 8x8 matrix. Same 1is
X true for vector h which is not stored because of known 1°s and
¥ 0’s.The N x N matrices P(k+1)k),Nx1 column vector x(k+1 k),scalar
¥ r are stored at Loc_of_P,Loc_of_x and Loc_of_R in data memory.The
X observation input is stored at Loc_of_y in external data memory
* and the filtered output [ x1(k+1!k+1) + x3(k+ k+1) + x5(k+1}k+1)
X + x7(k+11k+1)] is stored at Loc_of_y+1.The HxN scratch pad temp_l1l
* of data memory is used for temporary storage.The kalman gain k is
* stored at Loc_of_k . To calculate P(k+1}k+1), it uses the macro
* Div_Vect. This is a special macro which uses XF flag to communi-
¥ cate with I/0 devices. The macro is called Filt_Est N,Loc_of P,
¥ temp_1,Loc_of_R,Loc_of_k,Loc_of_x,Loc_of_y.

2K K K O A K R K OK KK K K K KK K K SRR K K K K KK KK K KK K K 5K K K K R K K K K KK KK K OK KK 5K K K K KK KO KOK KK 0ok

*
K
X
X
%
*
X
X
*
¥
X
X
K
¥
X
w
ot 0 + 0 | 84 *
K
*
X
*
*
X
X
X
*
X
X
X
X
X
b ¢
K
X
Filt_Est $MACRO N,Loc_of _P,temp_1,Loc_of_R,Loc_of_k,Loc_of_x,Loc _of_y
$VAR M,P,Q ;M,P and Q are dummy variables.
$IF N.V = 2
$ASG 1 TO M.V ;if P is 2 X 2, then M
$ENDIF
$IF N.V =
$ASG 2 TO
$ENDIF
$IF N.V = 6

1.

3]
N

4
M.V ;if P is 4 X 4, then H



$ASG 3 TO M.V

$ENDIF

$IF N.V = 8
$ASG 4 TO M.V
$ENDIF

LRLK ARZ, :Loc_of_P
X

¥find z=Ph".
LARP 2
*get new data
RXF
(1)
LARK ARO, 20H
LAC *0+
RPTK :M.V:-3
ADD %0+
ADD *x0+
SACL :temp_1:
*
*(2)
SBRK :M.V:x20H-10H
LAC *
ADRK 11H
RFTE :M.V:-3
ADD %0+
ADD x0+

SACL :temp_1:+1
X
*(3)

$IF M.V >= 2

SBRK (:M.V:-2)%20H+21H

LAC %

ADRK 2

RPTK :M.V:-3
ADD 0+

ADD %0+

SACL :temp_1:+2
X

#(4)

SBRK (:M.V:-2)%20H+12H

LAC %+

MAR *+

ADD *

ADRK 11H
RPTK :M.V:-4
ADD X0+

ADD *0O+

SACL :temp_1:+3
$ENDIF
X

*(3)

$IF M.V >= 3
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1
[N ]

;if P is € X 6, then M

;if P is B8 X 8, then M 4,

1

;point ARZ to location of matrix P.

;reset XF flag to inform that 'C25 is ready
;for data.

H N/2 .

;2(l1)y = (ACCL) = 2 P(2i-1,1)

; i=1

; N/2
;2{2)=(ACCL) = [ P(2,1) + £ P(2i-1,2) 1.
; i=2

;is P "s order >= 4 ?

; N/2
;2(3)=(ACCL)Y = [ P(3,1) + Z P(2i-1,3) 1.
; i=2

; N/2
;2(4)=(ACCL )= [P(4,1)+P(4,3)+.2 P(2i-1,4)].

i=3

]

;is P's order >= 8 7



LARK ARO, 2H

SBRK (:M.V:-3)*%20H+23H

LAC 0+

ADD *x0+

ADD x

$IF M.V = 4
ADRK 20H

ADD x*

SENDIF

SACL :temp_1l:+4
X
*(6)

$2(5)=(ACCL)=[

bl

LRLK ARZ, :Loc_of_P:+50H

LAC %0+
ADD %0+
ADD x
$IF M.V = 4
ADRK 11H

ADD x

$ENDIF

SACL :temp_1:+5
$ENDIF
X

x(7)

$IF M.V >= 4
SBRK 5H

LAC X0+

ADD X0+

ADD %0+

ADD *
SACL
K
*(8)
ADRK O0OAH

LAC %0+

ADD *0+

ADD *0+

ADD x

SACL :temp_1:+7
$ENDIF
*done with Ph".
X

*find hPh’

$ASG 2 TO P.V
LAC :temp_1:
$LOOP :M.V:-1
ADD
$ASG P.V+2 TO P.V
$ENDLOOP

ADD :Loc_of_R

x

*find k =

temp_1:486

rtemp_l:+:P.V:

Ph'/(hPh +r).

; N/2-1
;2(B)=(ACCL) = [ 2 P(6,2i-1)+{P(7,8),1if N=8}].
; i=1

;is P's order = 8 7

; N/2-1
;2(7)=(ACCL)Y = Z P(7,2i-1).
; i=1

; N/2-1
;2(8)=(ACCL) = Z P(8,2i-1).
; i=1

; (ACCL) = hXPxh".

; (CACCL) = hXPXh’'+r.

N/2
2
i=1

. |
XL

P(5,2i-1)+{P(7,3),

95

if N=8}].
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SQCL 060h ;store (hPh'+r) in 060h for Div_Vect macro call.
Div_Vect :N.V:,:temp_1:,:Loc_of_k: ;find k and store it at Loc_of_ k.

%
¥find lower half of P = P - Ph'k".

$ASG N.V TO P.V ;assign N to variable P.
LRLK AR2,:Loc_of_P:+(:N.V:-1)*%10H ;point ARl to last row of P.
$LOOP :N.V: ;loop for # of rowsof P.

$ASG 0 TO Q.V
LT :temp_1:+:P.V:-1

$LO0OP :P.V:

ZALR x ; (CACCH)Y=P(i,J),i=1..8,j<=1.

MPY :Loc_of_k:+:Q.V: ; (PREG)=D(i,j) ;D=P*h’xk’.

SPAC ;do P(i,3)-D(i,3) ;i=1..N,j<=1i.
SACH *+ ;store in the corresponding place.
$ASG Q.V+1 TO Q.V

$ENDLOOP

SBRK :P.V:+10H ;point AR3 to next upper row of P.
$ASG P.V-1 TO P.V

$ENDLOOP
*

x*

¥find x(nin) = x(n!n-1)-k(n)*[h(n)*x(nin-1)-y(n)
X

% Read input
¥ new data is written at Loc_of_y.

SXF ;set XF flag to acknowledge data acquisition.
LRLK AR2Z, :Loc_of_y:

LAC %+

XORK 8000H

SACL 60h ;store 2°s comp. version of y at B0h.

$ASG 2 TO Q.V

LAC :Loc_of_x:

$LOOP :M.V:-1

ADD :Loec_of_x:+:@.V:
$ASG Q.V+2 TO Q.V

$ENDLOOP ; (ACCL)Y = hXx.

SUB BQH ; (ACCL) = h¥x - vy.

SACL BOH ; (0B80h) = h*x-y.
*

LT 060h ;load TREG with (h*x-y).

$ASG O TO Q.V

$LOOP :N.V: ;loop for # of entries.

ZALR :Loc_of_x:+:Q.V: ; (CACCH)Y = x(i), i=1..N.

MPY :Loc_of_k:+:Q.V: ; (PREG) = f(i);f=kX(h¥x-y),i=1..N.

SPAC ;(ACCH)Y = x(i)-f(i);f=kXx(h¥xx-y),i=1..N.

SACH :Loc_of_x:+:Q.V: ;store the entry in vector x's place.

$ASG Q.V+1 TO Q.V

$ENDLOOP
b 4

$ASG 2 TO Q.V

LAC :Loc_of_x: ; CACCL) = x(1).

$LOCP :M.V:-1

ADD :Loc_of_x:+:Q.V:
$ASG Q.V+2 TO Q.V
$ENDLOOP
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XORK 8000H

write output at Loc_of_y+1.

SACL x ;(Loc_of_y)=(ACCL)= I x(i+l).

LARK ARO, 10H ;restore ARO for normal addressing.
¥ $ENDM

KkAkKkKkKKkk(KkK This macro is used by FILT_EST dokokokskokokskokok ko k sk ok kKK koK ok
Div_Vect $MACRO N,A_LOC,B_LOC

$VAR M

$ASG 0O TO M.V
DENOM : .set 0B0h ;contains denominator beforehand.

LT DENOCM ; (TREG) = DENOHNM.

LAC DENOM ; (ACCL) = DENOM.

ABS ;8et absolute value of denominator.

SACL DENOM ;8tore it in DENOHNM.

$LOOP :N.V: ; loop~counter contains # of entries of vector.
DIV3:M.V: MPY :A_LOC:+:M.V: ; (PREG) = Vect(i)*DENOM ,i=1..N.
PAC ; (ACC)Y = (PREG).

;check for sign of quotient.if +ve go to DIV1?
; load ACCH with Vect(i) i.e. numerator.
;2et absolute value of numerator.

BGZ DIV1:M.V:
ZALH :A_LOC:+:M.V:

ABS

RPTK 14

SUBC DENOM ;perform division.

NEG ;negate quctient.

B DIVZ2:H.V: ;€0 to DIV2?
DIV1:M.V: ZALH :A_LOC:+:M.V: ;load ACCH with Vect(i) i.e. numerato:

ABS ;take absolute value of numerator.

RPTK 14
SUBC DENOM ;perform division.

DIV2:M.V: SACL :B_LOC:+:M.V: ;store the quotient in its place..
$ASG M.V+1 TO M.V

$ENDLOOP
$ENDM
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