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a b s t r a c t

We model as a duopoly two firms selling their fixed stocks of two substitutable items over a selling
season. Each firm starts with an initial price, and has the option to decrease the price once. The problem
for each firm is to determine when to mark its price down in to maximize its revenue. We show that the
existence and characterization of a pure-strategy equilibrium depend on the magnitude of the increase in
the revenue rate of a firm when its competitor runs out of stock. When the increase is smaller than the
change in the revenue rate of the price leader when both firms are in stock for all of the three possible
scenarios, neither firm has the incentive to force its rival to run out of stock and if a firm marks its price
down after the season starts, its inventory runs out precisely at the end of the season. When the increase
is larger than the change of the price leader's revenue rate in one particular scenario, waiting until its
rival runs out of inventory may be an equilibrium strategy for the larger firm even though this may lead
to leftover inventory for itself. In other cases, there may be no pure-strategy equilibrium in the game. In
certain regions of the parameter space, a firm's revenue may be decreasing in its starting inventory
which shows that a firm may be better off if it can credibly salvage a portion of its inventory prior to the
game. While most of our analysis is for open-loop strategies, in the final part of the paper, we show that
the open-loop equilibrium survives as an equilibrium when we consider closed-loop strategies for an
important subset of the parameter space.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Many companies in various industries face the problem of selling a fixed amount of inventory over a finite horizon. Examples include
retailers selling perishable goods such as apparel, electronics and toys, airlines selling a fixed number of airplane seats, and hotels selling a
fixed number of rooms. A frequent reason for fixed inventories is the lack of replenishment opportunities due to relatively long
replenishment lead times as compared to the length of the selling season. For example, according to a recent survey, average lead time in
the apparel and footwear industries is 11 months [3], while the fashion seasons themselves are as short as 2–3 months [28]. This situation
leads to retailers ordering most or all of their merchandise prior to the season. For these retailers, pricing is the only control to match
supply and demand once they place their orders. According to one estimate by a consulting firm, a typical retailer sells between 40 and 45
percent of its merchandise at a discounted price [35]. A vivid example is J.C. Penney, a major US department store, which generates 73
percent of its revenue from products sold at a discount of 50 percent or more, and only 0.2 percent from goods bought at full price [20].
Long lead times and hard-to-predict demand also cause toy retailers using excessive markdowns to match supply and demand [38].
Markdowns are dominant in the auto industry, where manufacturers introduce a new vintage of a vehicle every year. According to a study
by Copeland et al. [5], the price of a new vehicle declines by 9.2 percent over the model year, and half of these declines are driven by
promotions to clear the inventory that dealers and factories build up of that model year's vehicles. For example, Ford had 103 days of
supply or 27,100 units of 2006 Expeditions at the beginning of July, 2006. The 2007 model was to be launched in September, so the
company initiated a promotion in that summer and offered a discount between $5,000 and $6,000 per vehicle to clear its inventory [1].

Markdowns may have a dramatic effect on a retailer's profitability. Many retailers blame excessive markdowns to their recent financial
troubles [34]. At the same time, managing markdowns can be challenging since marking the price down too early or too deeply will lead to
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lost revenue, while delaying markdowns or keeping them shallow will lead to liquidating inventory at even lower prices at the end of the
season. Due to such challenges, many retailers have begun using markdown optimization software to determine the timing, depth and
frequency of their clearance or markdown events. Software vendors that offer markdown optimization solutions include DemandTec,
Oracle, Predictix, Revionics and SAS [31].

As in many other areas of business, firms are usually very sensitive to the pricing activities of their competitors. For example, in 2010,
Best Buy, the largest electronics retailer in the US, started its holiday sales 10 days earlier than previous years considering competition in
addition to its inventory build-up [36]. In the auto industry, competition (and inventory as discussed above) also shapes year-end
clearance offers [2].

In this paper, we study a markdown competition game between two firms whose two products are substitutes for each other. Each firm
is endowed with a fixed amount of inventory that it needs to sell over a common selling season. We assume that the firms are symmetric
except for their starting inventory levels and assume deterministic demands. One firm's demand rate at a given time depends on its own
price as well as its competitor's price and stock availability. We assume no particular function to define this dependency, except that the
demand is decreasing in own price and increasing in its competitor's and that unilateral price drops are revenue increasing. Each firm
starts the selling season with a common high price and has a single chance to switch to a lower one (which is also common) during the
season. With this simplification, the game we study is a simple finite horizon timing game, in which each firm's strategy is the time of its
markdown. We explore two types of equilibria in this setting. First, we assume that the firms pre-commit themselves to the markdown
times at the beginning of the season and use a static game to explore the strategic interactions between the firms. In this case, we identify
the open-loop equilibrium of the game. While the assumptions regarding exogenous markdown prices and pre-commitment to markdown
times may be too restrictive in many practical settings, they may be justified for a limited number of firms that practice what is known as
pre-announced or automatic markdowns. In this strategy, the seller announces the future prices (which are usually fixed percentages of
the original price) along with the times that these prices will take effect (provided that there is still inventory) in advance. Examples
include Land's End Overstocks for fashion apparel, Tesco's Fresh & Easy for groceries and Theater Development Fund's TKTS for theater
tickets.

In the final part of the paper, for an important subset of the parameter space, we assume that firms can observe each other's actions
throughout the selling season and dynamically decide when to mark the price down. In this case, we use subgame-perfect equilibrium as a
solution concept and identify the closed-loop equilibrium of the game and show that this coincides with the open-loop equilibrium. That is,
for this region of parameter space, the firms do not have any incentive to preempt or wait for each other in marking the prices down
during the season; their decisions at the beginning of the season do not change.

We also assume away the stochastic nature of demand in these settings. However, note that the markdown decisions are made after
the actual season starts, i.e., when, in practice, a considerable portion of the uncertainty is resolved and accuracy of demand forecast is
reasonably high (see, for example, [8]).

We find that the existence of a pure-strategy equilibrium and its characterization critically depend on the maximum demand rate that
a firm faces when its competitor runs out of stock (i.e., monopoly demand rate when the price is low) relative to three thresholds. These
thresholds are functions of the demand rates and prices and measure the effectiveness of price changes when the competitor is in stock
relative to when the competitor is out of stock. If the monopoly demand rate is smaller than all thresholds, there is a pure-strategy
equilibrium in the game, and each firm's equilibrium markdown time can be characterized as a function of starting inventory levels and
length of the selling season. The equilibrium is one of seven possible equilibria, depending on where the starting inventory levels and the
selling season fall in the parameter space. In all equilibria, the larger firm (the firm with the larger starting inventory) always marks its
price down earlier than the smaller firm. We show that each firm either (i) marks down the price at the beginning of the season (ii) never
marks the price down (iii) marks the price down in the middle of the season at such a time that its inventory runs out precisely at the end
of the season. In other words, it is not an equilibrium strategy to change the price after the season starts and still have some leftover
inventory at the end of the season, or run out of stock before the season ends.

When the monopoly demand rate is larger than the last threshold but smaller than the first two, a pure-strategy Nash equilibrium still
exists. The equilibrium in this case is one of six possible equilibria. Different from the previous case, in one of the equilibria, the larger firm
may wait for the smaller firm to exhaust its stock, and switch immediately after, even though this may lead to leftover inventory at the end
of the season. We also derive a set of sufficient conditions for the uniqueness of the equilibria in these cases. Finally, we show by examples
that if the monopoly demand rate is larger than one of the first two thresholds, a pure-strategy Nash equilibrium may fail to exist.

We show that the three thresholds mentioned above are never exceeded and the uniqueness conditions are easily satisfied if the
demand rates originate from two important demand models: linear demand model and attraction demand model.

Under a single-firm setting, the revenue is monotone increasing in the starting inventory level and the length of the selling season.
Markdown time, on the other hand, is monotone decreasing in the starting inventory level and increasing in the length of the selling
season. One would expect these results to carry to the competitive case. Another intuitive conjecture for the competitive case is that a
firm's revenue and markdown time are monotone decreasing in its competitor's starting inventory level. Interestingly, comparative statics
results of the competitive game lead to exceptions to these properties. First, firms' payoffs are not monotone increasing in their own
starting inventories, particularly when the firms have intermediate levels of starting inventory and when their demands are inelastic to an
industry-wide markdown. In this case and under the assumptions of our model, both firms' revenues may be decreasing in their starting
inventory levels and they are better off if they can credibly salvage some of their inventory prior to the game. Alternatively, firms will not
prefer to have more inventory even if it was free. When one firm is substantially small and the larger firm has an incentive to wait until the
smaller firm exhausts its stock, the smaller firm's revenue jumps down as its starting inventory goes up, again breaking the monotonicity
of the smaller firm's payoff in its own inventory. In this equilibrium, the larger firm's markdown time is no longer monotone decreasing in
the smaller firm's inventory, either.

Under a reasonable assumption that the starting inventory levels of both firms are bounded from below (above) by what they can sell
when both firms are charging a high (low) price, we show that the length of the period during which firms charge different prices
increases linearly with inventory imbalance (measured as the difference between starting inventory levels) and decreases reciprocally
with product substitution (measured as the difference between the demand rates of firms when they charge different prices).
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The rest of the paper is organized as follows: In Section 2, we review the related literature on competitive pricing and revenue
management. In Section 3, we explain our model. In Section 4, we characterize the equilibrium for the competitive markdown timing
game and in Section 5, we derive comparative statics results. We provide the analysis for closed-loop equilibrium in Section 6. We
conclude the paper in Section 7 and present some avenues for future research.
2. Literature survey

This paper is part of the revenue management literature which studies how a firm should set and update pricing and product avail-
ability decisions over a finite horizon to maximize the revenue from a perishable asset. Revenue management has grown from its origins
in airlines and other services to become an important practice in various industries including retailing and manufacturing. For a thorough
review of research and applications in this important area, the reader should consult the book by Talluri and van Ryzin [33].

An important branch of revenue management is price-based revenue management, which uses price as the key control. A seminal
work in this area is by Gallego and van Ryzin [11], who study the pricing decisions of a firm selling a fixed stock of items over a finite
horizon under Poisson demand. They show that the optimal profit of the deterministic problem provides an upper bound for the optimal
expected profit and fixed-price heuristics for this problem are asymptotically optimal. Gallego and van Ryzin [12] study the multi-product
case; they suggest two asymptotically optimal heuristics and apply them to network revenue management problems. Feng and Gallego [7]
have the same setup as Gallego and van Ryzin [11]; however in the former model, prices are given, and the problem is deciding the
optimal timing of a single price change from a given initial price to a given lower or higher second price. Our paper can be considered as a
competitive version of their markdown model (price change is from high to low) for deterministic demands.

In the economics literature, clearance sales or markdowns have also received some attention. Lazear [17] develops a model of retailing,
in which a firm sets the price of a product over a finite number of periods to maximize profit. It is assumed that the consumers are
homogeneous (they have the same valuation of the item) and that they shop at once when the price is declared. Pashigian [24] extends
Lazear's model to allow for industry equilibrium and shows that fashion and product variety are the leading reasons for the increased use
of markdowns in fashion retailing.

There is an extensive economics literature on pricing in oligopolistic markets [39]. A relevant model in this literature is the Bertrand–
Edgeworth competition, where firms offer homogeneous products and may have capacity restrictions such that the total demand cannot
be supplied. In this case, the existence of a pure-strategy equilibrium is not guaranteed for the static pricing game. This problem is less
severe, but does not go away when the products are differentiated (Bertrand–Edgeworth–Chamberlin competition). In our model also,
under certain conditions pure-strategy Nash equilibria may not exist. However, these cases are true exceptions in our model.

Competition is prevalent in many industries where revenue management is practiced, but competitive models of revenue management
have only recently appeared in the literature. In price-based revenue management, Perakis and Sood [25] are one of the first to study
pricing of fixed inventories in a competitive environment. In their multi-period, deterministic model with non-homogeneous products,
sellers pre-commit themselves to prices at the beginning of the horizon (i.e., a static game). The authors show that under certain con-
ditions, there exists a unique equilibrium of the game. A numerical study shows that certain monotonicity results, such as that higher
inventory for a firm leads to lower prices for both firms, but higher revenues for that firm and lower revenues for its competitor, hold as
expected for their game. An important contribution of our paper is the analytical derivation of monotonicity results and showing that
under some conditions, some of the expected monotonicity properties may not hold. Perakis and Sood [26] relax the assumption of
deterministic demands, by allowing the demand parameters to take a value in an uncertainty set and use a robust optimization approach
to study the problem. Tsai and Hung [37] develop an integrated real options approach for revenue management and dynamic pricing in
Internet retailing under competition.

Xu and Hopp [41] study oligopolistic competition in which firms compete on initial inventory levels as well as on prices which are
dynamically adjusted during the horizon. They assume that customers arrive following a geometric Brownian motion and choose from the
set of lowest priced and in-stock firms based on a logit choice model. Lin and Sibdari [19] study dynamic pricing competition among firms
that sell substitutable products. In their periodic model, customers arrive according to a Bernoulli process and their choice is governed by
the multinomial logit (MNL) model. The authors provide an example that shows that a firm's price may not be monotone in remaining
time in the selling season. The formulation in Gallego and Hu [10] is a stochastic game in continuous time where demand is modeled as a
non-homogeneous Poisson process with rates dependent on time and prices posted by all firms through a more general function. For the
deterministic version of the game, they derive the conditions for the existence and uniqueness of an open-loop equilibrium and show that
this equilibrium is also a feedback equilibrium of the game. An interesting result in this case is that in equilibrium, all firms may not utilize
the whole sales season. For the stochastic case, they show that equilibrium of the deterministic game can be used to construct heuristics
that are asymptotically equilibrium.

Levin et al. [18] consider the impact of strategic consumer behavior and seller competition in dynamic pricing of fixed inventories. They
show that strategic behavior may have substantial impact on firms' revenues. In a recent paper, Martinez-de Albeniz and Talluri [21] study
a dynamic pricing competition game with fixed inventories and homogeneous products. In this game, at most one customer arrives in
each period, each customer has the same valuation and chooses the lowest-priced retailer. The authors show that a subgame-perfect
equilibrium exists and the seller with the lower equilibrium reservation value sells a unit at a price equal to the competitor's equilibrium
reservation value. The model is extended to the case of uncertain and time-varying customer valuations. The existence of a unique
subgame-perfect equilibrium holds also for the case of differentiated products, but the authors state that obtaining analytic solutions is
intractable.

The paper by Whang [40] is the closest to ours as it is the only one that explicitly focuses on timing decisions under competition. Two
firms start a selling season with fixed inventories of two substitutable items. Demands are deterministic and follow a specific demand
trajectory that peaks at introduction and declines exponentially over time. Each player's strategy in the game is the timing of its single
markdown. Firms are symmetric (with common pre-fixed initial and markdown prices and corresponding demand trajectories), except for
the initial inventory, which is private information. A strong assumption is that a stock-out in one firm does not affect the demand at the
other firm. A particular strategy set is assumed which is represented by two time thresholds. This strategy for the given thresholds can be
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described as follows: “Do not mark the price down until the first threshold; mark down immediately after the competitor between the
first and second thresholds; and mark the price down at the second threshold if the competitor has not marked the price down until that
time”. This model does not lead to a closed-form solution and therefore no managerial insights were available from the analysis. The
author states: “We could not obtain any crisp results from the present simple model, I would rather hope to see a model that is even
simpler and yet insightful”. Our paper follows the lead of Whang [40] and provides a full characterization of the equilibrium of the
markdown competition game under the assumptions of complete information and pre-commitment to markdown times. In contrast to
Whang [40], however, we model customer behavior when one firm runs out of stock. This is a key construct in our model and plays an
important role in the existence and characterization of the equilibrium. In some of our possible equilibria, the larger firm enjoys monopoly
power after its competitor runs out of stock. Ghemawat and McGahan [13] provide evidence of this behavior from the turbine generator
industry.

There is also a growing literature on competitive models in quantity-based revenue management. See Grauberger and Kimms [16] and
references therein. Finally, the game in our study is a timing game. Timing games are used extensively in the economics literature to
understand issues such as adoption of new technology [27] and exit from declining industries [14].
3. The model

Our model is an initial attempt to understand the effects of strategic interactions on pricing decisions of firms in the presence of
inventory considerations. Therefore, we make a few simplifying assumptions about the structure of the problem, some of which can be
partially justified based on the previous results of Gallego and van Ryzin [11]. First, although the magnitude of these markdowns might be
equally important, we focus only on their timing and as in Feng and Gallego [7] and Whang [40], we assume that the initial price and the
markdown price are exogenous and known in advance. We allow each company to make at most one price change. This restriction may be
justified when the costs associated with price changes are considered. Moreover, Gallego and van Ryzin [11] show that a single price
change may be as effective as more flexible pricing, especially when the sales volume is high and price changes are costly (See also [29]).

Because of the complex structure of the stochastic solution for even the single-firm case [7], and given that our main purpose is to
study the effects of competition, we use deterministic demand rates in this work. This may not be very restrictive when we consider firms
making markdown decisions a few weeks after the actual selling season starts when they can better predict demand.

We consider two firms, A and B, selling a perishable product in a competitive market. There is a horizon of length t over which these
products can be sold (while we sometimes use the term selling season for the period ½0; t� in the remainder of the paper, time 0 may
correspond to a time later than the start of the fashion season). Both firms start with the same price p1 and each firm has a single chance to
decrease the price to p2 at some time within the horizon. Firms face deterministic demand rates based on the prices charged and the
availability of stock at each firm. These demand rates (in the order of firm A, and firm B) are given in Table 1. As seen in Table 1, we assume
that the firms are symmetric in terms of market power, and thus have symmetric demand rates. Both firms face a demand rate of λ1 if they
are both charging the high price p1, and a demand rate of λ2 if they are both charging the low price p2. Subscripts L and F are used to
indicate the price leader and the price follower, respectively. The firm which switches to the low price first is called the leader in the price
switch game. The price leader faces a demand rate of λL until its competitor also switches its price or runs out of stock. During this time,
the other firm, the follower, faces a demand rate of λF. If one firm runs out of stock, the other firm receives a demand rate of λM1 at price p1
and λM2 at price p2.

The demand rates provided in Table 1 are general in the sense they can originate from any price–response function. However, we
require the following obvious assumptions.

Assumption 1. The demand rates satisfy

(a) λFrλ1rλM1,
(b) λ2rλLrλM2,
(c) λ1rλ2.

Assumption 1(a) requires that a firm that continues to charge the high price observes a decrease in its demand when its competitor
unilaterally marks the price down and observes an increase in its demand when its competitor runs out of stock. Assumption 1(b) requires
that a firm that unilaterally marks the price down or whose competitor runs out of stock observes an increase in its demand. In general,
Assumption 1(a) and (b) are satisfied if the two products offered by the firms are substitutes for one another. If the products are neither
substitutable nor complementary or if the firms operate in two isolated markets, we have λF ¼ λ1 ¼ λM1 and λ2 ¼ λL ¼ λM2. Notice that
λ1�λF measures the increase in the demand rate of a firm which charges p1 when its competitor decreases the price from p1 to p2.
Similarly, λL�λ2 measures the decrease in the demand rate of a firm which charges p2 when its competitor decreases the price from p1 to
p2. In essence, these quantities measure how sensitive a firm's customers are to its competitor's prices. λM1�λ1 is the increase in the
demand rate of a firm which charges p1 when its competitor runs out of stock while charging p1. Similarly, λM2�λ2 is the increase in the
Table 1
Demand rates for two competing firms.

Firm B

p1 p2 stock-out

p1 λ1 ; λ1 λF ; λL λM1 ;0
Firm A p2 λL; λF λ2; λ2 λM2 ;0

Stock-out 0; λM1 0; λM2 0,0
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demand rate of a firmwhich charges p2 when its competitor runs out of stock while charging p2. These quantities measure how sensitive a
firm's customers are to its competitor's stock situation. As the products are less differentiated or as demand interaction between firms
increases we expect the differences λ1�λF , λM1�λ1, λL�λ2 and λM2�λ2 to get larger. Assumption 1(c) requires that an industry-wide
markdown increases the demand in both firms. This assumption is satisfied for all products with downward-sloping demand curves.

Assumption 2. The prices and demand rates satisfy

(a) p2λLZp1λ1,
(b) p2λ2Zp1λF ,
(c) p2λM2Zp1λM1.

Assumption 2 ensures that any unilateral markdown, regardless of the competitor's stock situation or price, is increasing the
instantaneous revenue rate for that firm (for otherwise, firms will never mark their prices down). A similar assumption, that a firm's
revenue rate is decreasing in its own price, is also made in [7]. We only assume that this also holds for the duopoly case provided that the
competitor's price and stock-out situation remains unchanged. In general, Assumption 2 is satisfied if a firm's own-price (arc) elasticity of
demand is greater than or equal to 1. For a firm that changes price from p1 to p2 while its competitor remains in stock with price p1,

own-price (arc) elasticity is defined as the percentage change in demand λL �λ1
1
2ðλL þλ1Þ divided by the percentage change in price p1 �p2

1
2ðp1 þp2Þ

which is

equal to ðp1λL �p2λ1Þþ ðp2λL �p1λ1Þ
ðp1λL �p2λ1Þ� ðp2λL �p1λ1Þ. This quantity is larger than or equal to 1 if and only if p2λL�p1λ1Z0. Similarly, p2λ2�p1λFZ0 is equivalent

to a firm's own-price (arc) elasticity being larger than or equal to 1 when it changes the price from p1 to p2 while its competitor's price
remains at p2. Finally, p2λM2�p1λM1Z0 is equivalent to a firm's own-price (arc) elasticity being larger than or equal to 1 when it changes
the price from p1 to p2 while its competitor remains out of stock. In the retail context, Assumption 2 requires that a firm that decreases its
price observes an increase in its daily revenues if its competitor continues to (a) sell its product at the high price; (b) sell its product at the
low price; (c) be out-of-stock. Notice that we do not require p2λ2Zp1λ1; a markdown may or may not increase the revenue rate once it is
matched by the competing firm.

The demand rates shown in Table 1 may result from an arbitrary demand model, with only mild restrictions provided in Assumptions
1 and 2. We now present two specific, commonly used demand models and show how the demand rates in Table 1 can be specified
using them.

3.1. Linear demand model

Linear demand models have been widely used in the marketing and economics literature to describe the relationship between demand
and price (see [42], for example, for a model of demand in mixed retail and e-tail channels). We follow Shapley and Shubik [30] and
represent the market as an aggregate consumer who maximizes the quadratic utility function

U ¼ aðλAþλBÞ�b
2
ðλAþλBÞ2�ε

4
ðλA�λBÞ2�pAλA�pBλB; ð1Þ

where λA and λB are the demands (rate), pA and pB are the prices for firms A and B, respectively. The parameter ε (0oεr2b) controls the
degree of product differentiation. If it is close to zero, two products are close to perfect substitutes. If it is equal to 2b, they are unrelated.
Solving the first order conditions ( ∂U

∂λA
¼ 0 and ∂U

∂λB
¼ 0), we recover the linear demand model for two products

λAðpA; pBÞ ¼
2a� 1þ2b

ε

� �
pA� 1�2b

ε

� �
pB

4b
; and λBðpA; pBÞ

¼
2a� 1�2b

ε

� �
pA� 1þ2b

ε

� �
pB

4b
: ð2Þ

In order to ensure that the products have non-negative demand at given prices, we need

εZ
2b pA�pB

�� ��
2a�pA�pB

: ð3Þ

Using (2), we get

λ1 ¼
a�p1
2b

; λ2 ¼
a�p2
2b

; λL ¼
2a�ðp1þp2Þþðp1�p2Þ

2b
ε

4b
;

and λF ¼
2a�ðp1þp2Þ�ðp1�p2Þ

2b
ε

4b
:

Maximizing the utility in (1) subject to constraint λB ¼ 0, we can get the demand rate of product A when its price is pA and product B is out
of stock. Using this approach, we obtain the following demand rates:

λM1 ¼
a�p1

bþ1
2
ε
; and λM2 ¼

a�p2

bþ1
2
ε
:

Note that finding λM1 and λM2 using this approach is equivalent to setting the price of the out-of-stock competitor to the maximum price
that would satisfy the condition (3).
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3.2. Attraction demand model

The attraction demand model is a generalization of the logit demand model and is recently receiving more attention in economics and
marketing literature. In this model, if firm A charges pA and firm B charges pB, the purchase probability of firm i's product is given by

λAðpA; pBÞ ¼ aAðpAÞ
aAðpAÞþaBðpBÞþκ

; ð4Þ

where aið:Þ is called the attraction function for firm i and κ is a factor that accounts for the no-purchase option. It is assumed that aið:Þ is a
positive and strictly decreasing function and 0rκr1.

Since we assume identical firms, we have aAð:Þ ¼ aBð:Þ ¼ að:Þ. Denote a1 ¼ aðp1Þ and a2 ¼ aðp2Þ. Clearly, if p1Zp2, then a2Za1. Then, if
customer arrival rate is S, we have:

λ1 ¼
Sa1

2 a1þκ
; λ2 ¼

Sa2
2 a2þκ

; λF ¼
Sa1

a1þa2þκ
; λL ¼

Sa2
a1þa2þκ

; λM1 ¼
Sa1

a1þκ
; λM2 ¼

Sa2
a2þκ

:

While the firms are symmetric in market power, they may differ in forecasts or costs leading to ordering different amounts prior to the
horizon. This leads to an asymmetry in starting inventory. At the beginning of horizon, we assume that firm A is endowed with nA units of
inventory and firm B is endowed with nB units of inventory.

The problem for firms A and B is to find the price switch times sA and sB, respectively, such that their revenues over the entire selling
season are maximized. As in all simple timing games, each player's only choice is when to stop (markdown in our game).

We assume that the initial inventory levels are common knowledge. Initially, we assume that the firms pre-commit themselves to
switch times at the beginning of the horizon. In other words, we consider open-loop strategies, and equilibrium in these strategies which is
called open-loop equilibrium. This can be justified if the information lags are long and firms cannot observe and respond to their com-
petitors' actions. Observability may be a problem in some revenue management industries [32]. Pre-commitment can also be partially
justified on the grounds that firms may take time to prepare (advertising, store reorganization, moving inventory, etc.) for a markdown
event. Some of the related literature also uses static games or open-loop equilibrium to study strategic interactions in revenue man-
agement competition, even in the presence of uncertain demand (e.g., [22,26]). In Section 6, we relax the pre-commitment assumption for
an important subset of the parameter space and consider closed-loop equilibrium.

Before we characterize the equilibrium for the duopoly model, it may be useful to present the results for the case of a monopoly.
Consider a firm that faces the problem of selling a fixed stock of n units (we drop the index for the firms) over a horizon of length t. The
starting price is p1 which generates a demand rate of λ1. The problem is to find the switch time s after which the price is p2 and the
demand rate is λ2. The objective of the firm is to maximize its total revenue which is

ΦðsÞ ¼ p1 minfn; λ1sgþp2 minfðn�λ1sÞþ ; λ2ðt�sÞg: ð5Þ

The optimal switch time and the revenue can then be characterized easily as follows (which is simply a restatement of Proposition 4 for
two prices in [11]).

Proposition 1. The optimal switch time and the optimal revenue for a monopoly firm are given by,

s¼

0; if nZλ2t and p2λ24p1λ1
λ2t�n
λ2�λ1

; if λ1tonoλ2t and p2λ24p1λ1

t; if nrλ1t or p2λ2rp1λ1;

8>>><
>>>:

ð6Þ

Φ¼ p1λ1sþp2λ2ðt�sÞ: ð7Þ

Note first that in order for the firm to have an incentive to change its price, revenue rate should be increasing with the price change, i.e.,
p1λ1op2λ2. In addition, the firm should not be able to finish off its inventory with the initial price alone, i.e., n4λ1t. If one of these
conditions is not satisfied, the firm will not change the price (s¼ t). With the exclusion of these trivial cases, the firmwill change the price
at the latest possible time that it can still sell all of its inventory. If the horizon is not long enough or the demand rate for the low price is
not high enough to finish the inventory ðn4λ2tÞ, the firm changes the price at the beginning of the selling season (s¼0). Using (6) and (7),
one can easily establish the following monotonicity results: (i) s is decreasing in n and increasing in t, and, (ii) Φ is increasing in n and t
(throughout the paper, we use the words increasing and decreasing in a non-strict sense).
4. Equilibrium

When the demand for each firm depends on its competitor's price and stock-out situation as described in Table 1, firms can no longer
optimize their profits by only considering their own actions. We use a game theoretic model to find the equilibrium price switch times. We
use a non-cooperative game with complete information. That is, the rules of the game are common knowledge. Each firm knows its own
and its competitor's starting inventory levels, demand rates and payoff functions, as well as the length of the selling season.
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When open-loop strategies are considered, each firm i's strategy is its price switch time, denoted by siA ½0; t� which it commits to at the
beginning of the horizon. For a given set of price switch times, the payoff for firm A can be written as follows:

ΦAðsA; sBÞ ¼

ΦA
1ðsA; sBÞ; if sAr min fsB;η5g and λ1sAþλF ðsB�sAÞþλ2ðt�sBÞrnB

ΦA
2ðsA; sBÞ; if sAr min fsB;η5g and λ1sAþλF ðsB�sAÞþλ2ðt�sBÞ4nBZλ1sAþλF ðsB�sAÞ

ΦA
3ðsA; sBÞ; if sAr min fsB;η5g and λ1sAþλF ðsB�sAÞ4nB

ΦA
4ðsA; sBÞ; if sA4sB and λ1sBþλLðsA�sBÞþλ2ðt�sAÞrnB

ΦA
5ðsA; sBÞ; if sA4sB and λ1sBþλLðsA�sBÞþλ2ðt�sAÞ4nBZλ1sBþλLðsA�sBÞ

ΦA
6ðsA; sBÞ; if sA4sB and λ1sBþλLðsA�sBÞ4nBZλ1sB

ΦA
7ðsA; sBÞ; otherwise;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð8Þ

where

ΦA
1ðsA; sBÞ ¼ p1 min fnA; λ1sAgþp2 min nA�λ1sA

� �þ
; λLðsB�sAÞþλ2ðt�sBÞ

� �
;

ΦA
2ðsA; sBÞ ¼ p1 min fnA; λ1sAgþp2 min nA�λ1sA

� �þ
; λLðsB�sAÞþλ2ðη1�sBÞþλM2ðt�η1Þ

� �
;

ΦA
3ðsA; sBÞ ¼ p1 min fnA; λ1sAgþp2 min nA�λ1sA

� �þ
; λLðη2�sAÞþλM2ðt�η2Þ

� �
;

ΦA
4ðsA; sBÞ ¼ p1 min fnA; λ1sBþλF ðsA�sBÞgþp2 min nA�λ1sB�λF ðsA�sBÞ

� �þ
; λ2ðt�sAÞ

� �
;

ΦA
5ðsA; sBÞ ¼ p1 min fnA; λ1sBþλF ðsA�sBÞgþp2 min nA�λ1sB�λF ðsA�sBÞ

� �þ
; λ2ðη3�sAÞþλM2ðt�η3Þ

� �
;

ΦA
6ðsA; sBÞ ¼ p1 min fnA; λ1sBþλF ðη4�sBÞþλM1ðsA�η4Þgþp2 min nA�λ1sB�λF ðη4�sBÞ�λM1ðsA�η4Þ

� �þ
; λM2ðt�sAÞ

� �
;

ΦA
7ðsA; sBÞ ¼ p1 min fnA; λ1η5þλM1ðsA�η5Þgþp2 min nA�λ1η5�λM1ðsA�η5Þ

� �þ
; λM2ðt�sAÞ

� �
;

and η1;η2;η3;η4 and η5 are solutions to

λ1sAþλF ðsB�sAÞþλ2ðη1�sBÞ ¼ nB; λ1sAþλF ðη2�sAÞ ¼ nB; λ1sBþλLðsA�sBÞþλ2ðη3�sAÞ ¼ nB; λ1sBþλLðη4�sBÞ ¼ nB; λ1η5 ¼ nB:

The seven conditions in (8) correspond to the following cases. In case 1, firm A switches before firm B and firm B does not run out of stock
during the horizon. In case 2, firm A switches before firm B and firm B runs out of stock after firm A switches and before the end of the
horizon at time η1. In case 3, firm A switches and firm B runs out of stock at time η4 before it switches. In case 4, firm B switches after firm
A and does not run out of stock during the horizon. In case 5, firm B switches before firm A, but runs out of stock after firm A switches and
before the end of the horizon at time η3. In case 6, firm B switches before firm A, but runs out of stock before firm A switches at time η4. In
case 7, firm B runs out of stock at time η5 before it switches. The payoff function ΦBðsA; sBÞ for firm B can be similarly defined.

We now characterize the open-loop equilibrium for the markdown timing game, where firms' payoffs, as a function of their own and
competitor's switch times, are described in (8). For the remainder of the analysis, we assume, without loss of generality, that nAZnB, i.e.,
firm A is the larger firm and firm B is the smaller firm.

The existence and characterization of the pure-strategy equilibrium critically depend on the value of λM2, the demand rate of a firm
when it charges the low price p2 and its competitor is out of stock. Our analysis will show that some of the equilibria involve delaying the
markdown time so as to force the other firm run out of inventory and enjoy monopoly demand rates λM1 or λM2. Observe also that λM2 is
the largest demand rate that a single firm can get as a monopoly and the value of λM1 is bounded from above by p2λM2=p1 due to
Assumption 2(c). Therefore, the magnitude of λM2 in comparison to demand rates when the competitor is in stock (λ1; λ2; λF ; λL) plays an
instrumental role in determining which of the equilibria will be played in the markdown competition game.

The following three thresholds on λM2 are necessary to identify the equilibrium:

χ1 ¼
λ2ðp2λL�p1λF Þ
p2ðλL�λ2Þ

¼ λ2 1þp2λ2�p1λF
p2ðλL�λ2Þ

� �
; ð9Þ

χ2 ¼
λ2ðp2λL�p1λ1þp2ðλ1�λF ÞÞ

p2ðλ1�λF Þ
¼ λ2 1þp2λL�p1λ1

p2ðλ1�λF Þ

� �
; ð10Þ

χ3 ¼
λ1ðp2λL�p1λF Þ
p2ðλ1�λF Þ

¼ λ1
p1
p2

þp2λL�p1λ1
p2ðλ1�λF Þ

� �
: ð11Þ

Note that 2λ2 is an absolute upper bound on λM2. Since we also have p2λ2Zp1λF and p2λLZp1λ1, using (9) and (10) we obtain
λM2r max fχ1; χ2g, i.e., λM2 cannot be larger than both χ1 and χ2.

We can show that the conditions λM2rχ i, i¼ 1;2;3 are equivalent to the following conditions:

p2λM2�p2λ2
λ2

rp2λ2�p1λF
λL�λ2

; ð12Þ

p2λM2�p2λ2
λ2

rp2λL�p1λ1
λ1�λF

; ð13Þ
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p2λM2�p1λ1
λ1

rp2λL�p1λ1
λ1�λF

: ð14Þ

We have already seen in Section 3 that the quantities p2λ2�p1λF and p2λL�p1λ1 represent increases in revenue rates due to a (own)
markdown and are related to own-price elasticity of demand. Similarly, the quantity p2λM2�p2λ2 is the increase in the revenue rate of a
firm whose competitor runs out of stock and can be considered as a measure of how elastic a firm's demand is to its competitor's stock-
out. Finally, the quantity p2λM2�p1λ1 ¼ ðp2λM2�p1λM1Þþðp1λM1�p1λ1Þ captures the simultaneous effect of reducing (own) price and the
competitor running out-of-stock on the revenue rate of a firm.

Given these definitions, the left-hand sides of (12) and (13) measures the elasticity of a firm's demand to its competitor's stock-out per
unit of decrease in competitor's demand rate. The right-hand sides of (12) and (13) can be considered as the elasticities of a firm's demand
to its own price drop, while the competitor continues to charge p2 and p1, respectively, adjusted by its competitor's demand rate decrease.
Given these definitions, conditions (12) and (13) make executing the markdowns when the competitor is still in stock more attractive. This
ensures that forcing the rival firm to run out of stock and subsequently monopolizing the total demand is not an equilibrium strategy for a
firm (unless this ensures exhausting inventory for that firm). We will see in Section 4.3 that when these two conditions are not satisfied,
there is no equilibrium in the markdown timing game in pure strategies. These conditions in spirit are similar to a required upper bound
on the substitution elasticity for the existence of pure-strategy equilibria in Bertrand–Edgeworth–Chamberlin competition shown by
Benassy [4]. In this case, we require bounds on elasticity of one firm's demand to its competitor's stock-out since stock-outs are the sources
of instability in our game.

The left-hand side of (14) measures the elasticity of a firm's demand to simultaneous events of competitor running out of stock and
(own) price reduction scaled by the change in demand rate of the competing firm. Therefore, the condition (14) ensures that a firm does
not have the incentive to delay its markdown until its competitor runs out of stock unless it can exhaust its inventory.
4.1. Equilibrium characterization for λM2r min fχ1; χ2; χ3g

Equilibrium switch times are obviously functions of the parameters of the game. Whenwe assume that λM2r min fχ1; χ2; χ3g, we show
that the equilibrium switch times depend on λ1; λ2; λF ; λL; λM1; λM2;nA;nB and t (given p1 and p2). Equilibrium behavior depends on where
the actual parameters of the game falls in the parameter space. (Note however that the demand rates are functions of the initial price p1
and markdown price p2 as exemplified in Section 3. Therefore, these prices also affect which of these equilibria will be played). Before we
formally characterize the equilibrium in Theorem 1, we describe the equilibrium behavior under different regions of the parameter space.
We identify seven regions, where the equilibrium behavior is qualitatively different in each. These regions and the corresponding equi-
librium behavior are given in Table 2.

Note that in regions II, IV, V and VI, one or both firms switch after the season starts. In all these cases, the firm(s) which switches inside
the season switch at such a time that it depletes its inventory precisely when the season ends. In regions II, IV and V, the firm which
switches the price down does so when its competitor is still in stock. Only in region VI, one firm marks the price downwhen its competitor
is out of stock. In this case, firm A monopolizes demand after firm B runs out of inventory. This case is similar to what is described as
buffering in Ghemawat and McGahan [13]. In regions I, III and VII, switching inside the season is not an equilibrium behavior for neither
firm; both firms either switch at the start of the season, or never switch.

In order to describe regions I–VII, we need to define the following thresholds, which we will compare against the season length (t).

X1 ¼
nB

λ2
; ð15Þ

X2 ¼
nB

λF
; ð16Þ

X3 ¼
nB

λ2
þðλ2�λF ÞðnA�nBÞ

λ2ðλL�λF Þ
¼ ðλ2�λF ÞnA

λ2ðλL�λF Þ
þðλL�λ2ÞnB

λ2ðλL�λF Þ
; ð17Þ

X4 ¼
nB

λ1
þðλ1�λF ÞðnA�nBÞ

λ1ðλL�λF Þ
¼ ðλ1�λF ÞnA

λ1ðλL�λF Þ
þðλL�λ1ÞnB

λ1ðλL�λF Þ
; ð18Þ

X5 ¼
nB

λF
þðλFnA�λLnBÞ

λFλM2
¼ nA

λM2
þðλM2�λLÞnB

λFλM2
; ð19Þ

X6 ¼
nB

λ1
þðnA�nBÞ

λM2
¼ nA

λM2
þðλM2�λ1ÞnB

λ1λM2
; ð20Þ

X7 ¼
nB

λ1
þðnA�nBÞ

λM1
¼ nA

λM1
þðλM1�λ1ÞnB

λ1λM1
: ð21Þ

We are now ready to formally state our result for the equilibrium of the game (all proofs are relegated to Appendix).



(

Table 2
Equilibrium behavior when λM2r min fχ1 ; χ2 ; χ3g.

Region Equilibrium behavior

I Both firms switch at time 0
II Firm A switches at time 0, firm B switches in ð0; tÞ
III Firm A switches at time 0, firm B does not switch
IV Both firms switch in ð0; tÞ, firm A switches before firm B
V Firm B does not switch, firm A switches before firm B runs out of stock
VI Firm B does not switch, firm A switches after firm B runs out of stock
VII Neither firm switches
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Theorem 1. The following is the pure-strategy Nash equilibrium of the markdown timing game if λM2r min fχ1; χ2; χ3g,

ðsA; sBÞ ¼

ð0;0Þ; if trX1; ðIÞ

ð0; λ2t�nB

λ2�λF
Þ; if X1otr min fX2;X3g; ðIIÞ

ð0; tÞ; if X2otrX5; ðIIIÞ
λ2ðλL�λF Þt�ðλ2�λF ÞnA�ðλL�λ2ÞnB

ðλ2�λ1ÞðλL�λF Þ
;
λ2ðλL�λF Þt�ðλ1�λF ÞnA�ðλL�λ1ÞnB

ðλ2�λ1ÞðλL�λF Þ

� �
; if X3otrX4; ðIVÞ

�λFλM2tþλFnAþðλM2�λLÞnB

λM2ðλ1�λF Þ�λ1ðλL�λF Þ
; t

� �
; if max fX4;X5gotrX6; ðVÞ

λM2λ1t�λ1nA�ðλM1�λ1ÞnB

λ1ðλM2�λM1Þ
; t

� �
; if X6otrX7; ðVIÞ

ðt; tÞ; if X7ot: ðVIIÞ

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð22Þ

Each case in Theorem 1 refers to the corresponding equilibrium behavior and region given in Table 2. Note that these regions are stated as
conditions on t and Xi, where Xi, i¼ 1;…;7 are functions of nA and nB, as given in (15)–(21). Equilibrium payoffs for each region are given
below:

ðΦA
;ΦBÞ ¼

ðp2λ2t;p2λ2tÞ; ðIÞ
p2λ2ðλL�λF Þt�p2ðλL�λ2ÞnB

λ2�λF
;
ðp1�p2Þλ2λF tþðp2λ2�p1λF ÞnB

λ2�λF

� �
; ðIIÞ

p2λM2λF t�p2ðλM2�λLÞnB

λF
; p1n

B

� �
; ðIIIÞ

ðp1�p2Þλ1λ2ðλL�λF Þtþ½ðp2λL�p1λ1Þðλ2�λ1Þþðp2λ2�p1λ1Þðλ1�λF Þ�nA�ðp1�p2Þλ1ðλL�λ2ÞnB

ðλ2�λ1ÞðλL�λF Þ
;

�
ðIVÞ

ðp1�p2Þλ1λ2ðλL�λF Þt�ðp1�p2Þλ2ðλ1�λF ÞnAþ½ðp2λ2�p1λF Þðλ2�λ1Þþðp2λ2�p1λ1Þ2ðλL�λ2Þ�nB

ðλ2�λ1ÞðλL�λF Þ

�
;

ðp1�p2Þλ1λFλM2tþ½λ1ðp2λL�p1λF Þ�p2λM2ðλ1�λF Þ�nA�ðp1�p2Þλ1ðλM2�λLÞnB

λ1ðλL�λF Þ�λM2ðλ1�λF Þ
; p1n

B
� �

; ðVÞ

ðp1�p2Þλ1λM1λM2tþðp2λM2�p1λM1Þλ1nA�ðp1�p2ÞλM2ðλM1�λ1ÞnB

λ1ðλM2�λM1Þ
; p1n

B

� �
; ðVIÞ

ðp1nA;p1n
BÞ: ðVIIÞ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð23Þ

If we fix demand rates and season length, we can represent each region in Table 2 in a two-dimensional plot of nA and nB. One such graph
is given in Fig. 1 for λ1 ¼ 2=7; λ2 ¼ 4:5=7; λF ¼ 1=7; λL ¼ 5=7; λM1 ¼ 8=21; λM2 ¼ 16=21 and t¼100. A reflection of these regions with respect
to the 45% line (nA ¼ nB) would give the complete characterization of the equilibrium behavior when we allow nB to be larger than nA (In
this case, equilibrium in each mirror region will be defined similar to the original region except that firm A is replaced with firm B and vice
versa).

The characterization provided in Theorem 1 leads to the following important qualitative results regarding the switch times in all
possible equilibria.

Corollary 1. If λM2r minfχ1; χ2; χ3g, firm A marks its price down earlier than firm B in equilibrium.

Without competition, it is obvious that the larger firm will have an earlier markdown time since it will need a longer time over which it
has a higher demand rate to liquidate its inventory. Corollary 1 shows that this result continues to hold in the presence of competition, i.e.,
the smaller firm does not have any incentive to preempt the larger firm in markdown timing competition.

Corollary 2. If λM2r min fχ1; χ2; χ3g, in equilibrium, each firm follows one of three strategies:

(i) Mark the price down at the beginning of the season and sell as much inventory as possible at the low price.
(ii) Never mark the price down, and sell all inventory at the high price.
iii) Mark the price down at such a time that all inventory is exhausted precisely at the end of the season.



Fig. 1. Equilibrium regions when λM2r min fχ1 ; χ2 ; χ3g for λ1 ¼ 2=7; λ2 ¼ 4:5=7; λF ¼ 1=7; λL ¼ 5=7; λM1 ¼ 8=21; λM2 ¼ 16=21 and t¼100.

Table 3
Equilibrium behavior when χ3oλM2r min fχ1 ; χ2g.

Region Equilibrium behavior

I Both firms switch at time 0
II Firm A switches at time 0, firm B switches in ð0; tÞ
IV Both firms switch in ð0; tÞ, firm A switches before firm B
VI Firm B does not switch, firm A switches after firm B runs out of stock
VII Neither firm switches
VIII Firm B does not switch, firm A switches right when firm B runs out of

stock

A. Şen / Omega 64 (2016) 24–41 33
Corollary 2 states that firms will never select a markdown time inside the season that leads to leftover inventory at the end of the
season or a stock-out before the season ends. In other words, when the benefits of having the rival firm run out of stock is not high (this
may happen when firms operate in far-away markets or sell products that are differentiated), each firm will ensure that the markdown
time it select will not lead to any leftover inventory except when it is clearly overstocked and mark its price down at the beginning of the
season. Similarly, a firm should never select a markdown time that will lead to a stock-out for itself. Stock-outs will only happen when a
firm is clearly understocked; a case in which the firm never marks the price down. The results show that in industries with no or relatively
low uncertainty, strategic interactions between competing firms should not lead to leftover inventory or unsatisfied demand as long as the
firms are not clearly overstocked or understocked (for example, when λ1trnBrnArλ2t; both firms can finish their inventory if they both
use a low price and neither firm can finish inventory if both firms use the high price). This is true evenwhen the firms have a single chance
to change the price to a pre-set level.

4.2. Equilibrium characterization for χ3oλM2r min fχ1; χ2g

When we allow λM2 to be larger than χ3 ¼ λ1ðp2λL �p1λF Þ
p2ðλ1 �λF Þ , equilibrium behavior changes in certain regions of the parameter space defined

in Section 4.1. For the larger firm, forcing the competitor to run out of stock and marking the price down right at that instant becomes an
equilibrium for a subset of the parameter space (now called region VIII). This can be considered an extreme form of buffering as the larger
firm does this in the expense of having some inventory left at the end of the season. Also, the equilibria defined for regions III and V that
are observed for the case λM2r min fχ1; χ2; χ3g are no longer possible outcomes of the game. We define the regions and equilibrium
behavior for this case in Table 3. While regions I, VII and VIII can be described by thresholds defined in (15)–(21), we need the following
two new thresholds to revise the definitions of regions II and IV and to define region VIII:

Xb
2 ¼

p2λ1ðλL�λ2Þþp1λ1ðλ2�λF Þ�p2λM2ðλ2�λF Þ
p2λ1λ2ðλL�λF Þ�p2λ1λM2ðλ2�λF Þ

nB; ð24Þ

Xb
4 ¼

nB

λ1
þ p2λ2ðλL�λF Þ�λ1ðp2λL�p1λF Þ�ðp1�p2Þλ1λ2

p2λM2ðλ2�λ1Þ�ðp1�p2Þλ1λ2

	 
ðnA�nBÞ
ðλL�λF Þ

: ð25Þ

The following theorem formally characterizes the equilibrium for the case χ3oλM2r min fχ1; χ2g:



(

Fig. 2. Equilibrium regions when χ3oλM2o min fχ1 ; χ2g for λ1 ¼ 2=7; λ2 ¼ 4=7; λF ¼ 1=7; λL ¼ 5=7; λM1 ¼ 8=21; λM2 ¼ 1; p1 ¼ 10; p2 ¼ 6 and t¼100.

A. Şen / Omega 64 (2016) 24–4134
Theorem 2. The following is the pure-strategy Nash equilibrium of the markdown timing game if χ3oλM2r min fχ1; χ2g,

ðsA; sBÞ ¼

ð0;0Þ; if trX1; ðIÞ

0;
λ2t�nB

λ2�λF

� �
; if X1otr min fXb

2;X3g; ðIIÞ

λ2ðλL�λF Þt�ðλ2�λF ÞnA�ðλL�λ2ÞnB

ðλ2�λ1ÞðλL�λF Þ
;
λ2ðλL�λF Þt�ðλ1�λF ÞnA�ðλL�λ1ÞnB

ðλ2�λ1ÞðλL�λF Þ

� �
; if X3otrXb

4; ðIVÞ

nB

λ1
; t

� �
; if min fXb

2;X
b
4gotrX6; ðVIIIÞ

λM2λ1t�λ1nA�ðλM1�λ1ÞnB

λ1ðλM2�λM1Þ
; t

� �
; if X6otrX7; ðVIÞ

ðt; tÞ; if X7ot: ðVIIÞ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð26Þ

The equilibrium payoffs in regions I, II, IV and V are same as those given in Eq. (23). The payoffs in region VIII are given as follows:

ðΦA
;ΦBÞ ¼ p2λ1λM2t�ðp2λM2�p1λ1ÞnB

λ1
; p1n

B
� �

: ðVIIIÞ

There are three differences between the characterizations in Theorem 2 and 1. First, region II is now defined as X1otr min fXb
2;X3g.

Second, region IV is changed to X3otrXb
4. For a given season length t, regions II and IV are smaller in the space of nA and nB. Third,

regions III and V described in Theorem 1 disappear in favor of region VIII. Finally, one can show that in the parameter subspace defined by
nBZλ1t (which is a reasonable assumption, stating that neither firm can deplete its inventory if both firms keep the price high at p1), the
equilibria in Theorems 1 and 2 coincide.

Again, if we fix demand rates and season length, we can represent each region in Table 3 in a two-dimensional plot of nA and nB. One
example is provided in Fig. 2 for λ1 ¼ 2=7; λ2 ¼ 4=7; λF ¼ 1=7; λL ¼ 5=7; λM1 ¼ 8=21; λM2 ¼ 1; p1 ¼ 10; p2 ¼ 6 and t¼100.

The characterization provided in Theorem 2 leads to the following corollaries.

Corollary 3. If χ3oλM2r min fχ1; χ2g, firm A marks down its price earlier than firm B in equilibrium.

Corollary 4. If χ3oλM2r min fχ1; χ2g, in equilibrium, each firm follows one of four strategies:

(i) Mark the price down at the beginning of the season and sell as much inventory as possible at the low price.
(ii) Never mark the price down, and sell all inventory at the high price.
iii) Mark the price down at a time such that all inventory is exhausted precisely at the end of the season.
(iv) Mark the price down right after the competitor runs out of stock.

Corollary 4 states that the property that is discussed in Corollary 2 for the case λM2r min fχ1; χ2; χ3g now breaks. In equilibrium, a firm
may switch its price after the season starts, but still end up with leftover inventory at the end of the season. In this case the firm that is
interested in such a move is an overstocked firm and the smaller firm is clearly understocked. If the benefits of the rival firm running out of



Fig. 3. Best response functions for Example 1.
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stock is substantial, the overstocked firm may choose to postpone its markdown decision and wait until the rival firm runs out of stock,
despite the fact that this does not eliminate the possibility of leftover inventory at the end.

Theorem 1 and 2 characterize equilibrium for each region under two cases, but do not guarantee the uniqueness of this equilibrium.
We next provide a set of sufficient conditions for uniqueness which is valid for both cases.

Theorem 3. The equilibrium given in Theorems 1 and 2 are unique if

λ2 1þ min
2λL�λ1�λ2
λ1þλ2�2λF

;
λ1þλ2�2λF
2λL�λ1�λ2

� �� �
4λM2; ð27Þ

λ1ðλL�λF Þ�λM1ðλL�λ1Þ
λLðλM2�λM1Þ

����
����o1: ð28Þ

We note that the bounds on λM2 can be tighter or more relaxed than the bounds in χ1,χ2 and χ3 required for the equilibria in Theorem
1 and 2.

4.3. The case min fχ1; χ2goλM2

When λM2 is allowed to be higher than either χ1 or χ2, we observe that a pure-strategy Nash equilibrium in general does not exist. We
provide two examples, one for when χ24λM24χ1 and one for when χ14λM24χ2 (note again that λM2 cannot be larger than both χ1 and
χ2).

Example 1. Consider a game with p1 ¼ 10; p2 ¼ 5:2; λ1 ¼ 2=7; λ2 ¼ 4=7; λF ¼ 1:7=7; λL ¼ 5=7; λM1 ¼ 0:5; λM2 ¼ 1:135; t ¼ 100;nA ¼ 470=7 and
nB ¼ 400=7. In this case, we have χ1 ¼ 0:989; χ2 ¼ 2:769 and χ3 ¼ 1:648. We denote the best response function for firm A as sAðsBÞ and for
firm B as sBðsAÞ. These are plotted on opposite axes in Fig. 3. Since the functions do not intersect, there is no pure-strategy Nash
equilibrium.

Example 2. Consider a game with p1 ¼ 10; p2 ¼ 5:2; λ1 ¼ 2=7; λ2 ¼ 3=7; λF ¼ 0:5=7;λL ¼ 4:2=7; λM1 ¼ 0:3; λM2 ¼ 0:61; t ¼ 100;nA ¼ 450=7 and
nB ¼ 250=7. In this case, we have χ1 ¼ 1:157; χ2 ¼ 0:530 and χ3 ¼ 0:617. The best response functions for this example are plotted in Fig. 4.
Again, since they do not intersect, there is no pure-strategy Nash equilibrium.

Remember that λM24χ1 or λM24χ2 makes monopolizing the total demand by forcing the rival firm to run out of inventory (even if
this means finishing the season with leftover inventory) a more attractive option in comparison to executing the markdownwhen the rival
firm is still in stock. This option is available to both firms regardless of how much inventory they have. These rather extreme benefits of
rival firm's stock-out give rise to discontinuities in firms' response functions leading to non-existence of pure-strategy equilibrium. The
destabilizing effect of a firm's increased demand due to a rival firm's stock-out can be considered to be similar to the effect of sub-
stitutability in Bertrand–Edgeworth–Chamberlin competition [4]. In both games, bounding the effect leads to the existence of the pure-
strategy equilibrium.

We note that by showing that the payoff functions defined by (8) are continuous in the switch times and by revoking a theorem by
Glicksberg [15], one can prove the existence of a mixed-strategy Nash equilibrium for the markdown timing game. However the use of
mixed-strategies in economic modeling and in particular, pricing decisions is controversial ([39], Section 2.4). Mixed-strategy equilibria



Fig. 4. Best response functions for Example 2.

A. Şen / Omega 64 (2016) 24–4136
are not stable (a player can, without any penalty, shift to any pure strategy which is assigned a positive probability in the equilibrium) and
have the regret property (each player would like to wait and see what others played and respond in an optimal way; a player who plays
earlier would regret its decision). Therefore, we focus our attention to pure-strategy equilibria in this paper.

We conclude this section by verifying that conditions (12)–(14) are satisfied if the demand rates originate from two demand functions
introduced earlier in Section 3. First, we have the result for the linear demand model.

Proposition 2. There exists a unique pure-strategy Nash equilibrium for the markdown timing game for the linear demand model and the
equilibrium is characterized by Theorem 1.

The following proposition characterizes the equilibrium for the attraction demand model.

Proposition 3. There exists a pure-strategy Nash equilibrium for the markdown timing game for the attraction demand model and it is
characterized by Theorem 1. The equilibrium is unique if a2o3a1þκ.

One can show that the condition in Proposition 3 is equivalent to λL�λFrS=2, i.e., the difference between the demand rates of price
leader and follower should be smaller than half of the total arrival rate (including the non-purchasers) for uniqueness.
5. Comparative statics

5.1. Effect of inventory levels and selling season

In this section, we study the effects of starting inventory levels and selling season on equilibrium behavior and payoffs. As shown in
Theorem 1 and 2, there are many possible equilibria; we need to identify when the equilibrium switches from one region to another as the
starting inventory levels and the length of the selling season change. First we study the case, λM2r min fχ1; χ2;χ3g. Analyzing all possible
switches and changes inside each region of equilibria, we obtain the following comparative statics results.

Proposition 4. If λM2r min fχ1; χ2; χ3g, the following comparative statics results hold for the equilibrium switch times sA and sB and equi-
librium payoffs ΦA and ΦB:

(a) sA, sB, ΦA and ΦB are increasing in t.
(b) sA, sB and ΦB are decreasing in nA.
(c) sA, sB and ΦA are decreasing in nB.
(d) ΦA is decreasing in nA if λ1ðλL �λF Þt�ðλL �λ1ÞnB

λ1 �λF
rnAoλ2ðλL �λF Þt�ðλL �λ2ÞnB

λ2 �λF
and

ðp2λL�p1λ1Þðλ2�λ1Þþðp2λ2�p1λ1Þðλ1�λF Þo0:

Otherwise, ΦA is increasing in nA.
(e) ΦB is decreasing in nB if λ1ðλL �λF Þt�ðλ1 �λF ÞnA

λL �λ1
rnBoλ2ðλL �λF Þt�ðλ2 �λF ÞnA

λL �λ2
and

ðp2λ2�p1λF Þðλ2�λ1Þþðp2λ2�p1λ1ÞðλL�λ2Þo0:

Otherwise, ΦB is increasing in nB.
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While the results in parts (a)–(c) of Proposition 4 are intuitive, the exceptions in parts (d) and (e) are rather unexpected. Parts (d) and
(e) show that, in region IV, both firms may expect to get smaller payoffs as their own starting inventory gets larger. Before we explain this
surprising comparative statics result, we note first that region IV is a plausible region for the firms. In fact, with a reasonable assumption
that λ2tZnAZnBZλ1t, the parameter space consists of only region IV. In this region, both firms are endowed with intermediate levels of
starting inventory (in comparison to season length) which they will exhaust precisely at the end of the season in equilibrium. Now first
consider firm A, the larger firm. When the starting inventory of firm A increases, it advances its markdown time. Since firm B wants to
exhaust its inventory as well, it responds by advancing its markdown time. As a result, both firms sell less of their inventory at full price.
This leads to a reduction in payoff for firm A if

p2λL�p1λ1
λ1�λF

op1λ1�p2λ2
λ2�λ1

: ð29Þ

The left-hand side of (29) is equal to the right-hand side of (10) and measures the increase in the revenue rate of the leader firm after its
markdown per unit of decrease in the follower's demand rate. The right-hand side of (29) measures the difference between the revenue
rates before and after two markdowns again per unit of increase in the demand rates.

Similarly, when the starting inventory of firm B increases, it advances its markdown time followed by an advance in firm A's markdown
time. As a result, again, both firms sell less of their inventory at full price. This results in a reduction in payoff for firm B if

p2λ2�p1λF
λL�λ2

op1λ1�p2λ2
λ2�λ1

: ð30Þ

The left-hand side of (30) is equal to the right-hand side of (9) and measures the increase in the revenue rate of the follower firm after its
markdown per unit of decrease in the leader's demand rate. Note that the two conditions (29) and (30) may hold simultaneously, i.e., both
firms' payoffs may be non-monotone in their starting inventory levels in a given markdown timing game. When p2λ24p1λ1, i.e., if the
revenue rate is increasing even when the price change is matched by the competitor, the right-hand sides of (29) and (30) become
negative and this interesting behavior disappears.

These negative results on the monotonicity of firms' payoffs show that even when firms' demands are elastic to unilateral markdowns
(p2λL�p1λ1Z0 and p2λ2�p1λFZ0), if they are inelastic to an industry-wide markdown (p2λ2op1λ1), engaging in markdown compe-
tition may lead to obtaining less revenue for more inventory (See [6] for a few examples of such industries). In these cases, firms may even
consider salvaging some of their inventory prior to markdown competition. This would obviously decrease their sales in quantity, but their
total revenues would go up. This comparative statics result also means that, given that firms cannot internalize their markdown prices and
face deterministic demands, they may not prefer to have more inventory even if it is free. A similar comparative statics result is obtained in
Osborne and Pitchik [23] for the Bertrand–Edgeworth competition where the profit for the smaller firm may decrease as its capacity
increases. Our results are more striking since monotonicity may break for both firms simultaneously in our case and we consider the total
revenues. In practice, these results show that strategic interactions between competing firms may have a detrimental effect on profitability
of both firms especially when markdowns provide only a temporary revenue jump until the rival firm matches the price. In this case,
having more inventory in either firm may actually reduce the total revenue of both firms. The hit on revenue per unit or profit per unit will
be even more substantial.

For the case χ3oλM2r min fχ1; χ2g, we obtain the following comparative statics results.

Proposition 5. If χ3oλM2r min fχ1; χ2g, the following comparative statics results hold for the equilibrium switch times sA and sB and
equilibrium payoffs ΦA and ΦB.

(a) sA, sB, ΦA and ΦB are increasing in t.
(b) sA, sB and ΦB are decreasing in nA.
(c) sB and ΦA are decreasing in nB.
(d) ΦA is decreasing in nA if λ1ðλL �λF Þt�½ðλL �λF Þ�ϑλ1 �nB

ϑλ1
onArλ2ðλL �λF Þt�ðλL �λ2ÞnB

λ2 �λF
, and

ðp2λL�p1λ1Þðλ2�λ1Þþðp2λ2�p1λ1Þðλ1�λF Þo0:

Otherwise, ΦA is increasing in nA.
(e) ΦB is increasing in nB, with the following exceptions:
(i) It is decreasing in nB when λ1ðλL �λF Þt�ϑλ1nA

ðλL �λF Þ�ϑλ1
onBrλ2ðλL �λF Þt�ðλ2 �λF ÞnA

λL �λ2
, and

ðp2λ2�p1λF Þðλ2�λ1Þþðp2λ2�p1λ1ÞðλL�λ2Þo0:

(ii) It jumps down at nB ¼φt and nB ¼ λ1ðλL �λF Þt�ϑλ1nA

ðλL �λF Þ�ϑλ1
.

(f) sA is increasing in nB if min φt; λ1ðλL �λF Þt�ϑλ1nA

ðλL �λF Þ�ϑλ1

n o
onBrλ1λM2t�λ1nA

λM2 �λ1
. Otherwise, sA is decreasing in nB.

Parts (a)–(c) of Proposition 5 are again intuitive and expected. The exception in part (d) and exception (i) in part (e) state the behavior in
region IV and are also observed and discussed for the case λM2rfχ1; χ2; χ3g. Exception (ii) in part (e) is due to the switches from regions II
or IV to region VIII, and states a third case where larger inventories may in fact lead to lower payoffs. Note that in region VIII, the starting
inventory of the smaller firm is excessively low. The non-monotonicity result here shows that the smaller firm prefers buffering of the
larger firm to engaging in a markdown competition and would therefore be better off if its inventory is smaller. Part (f) is due to the
equilibrium strategy of firm A in region VIII. Since A waits until firm B runs out of stock in region VIII, higher starting inventory for firm B
leads to a later switch time for firm A. This shows that more industry-level inventory may not always lead to earlier markdowns in the
industry. This also leads to larger equilibrium prices which is in contrast to the behavior in classical price oligopolies.
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5.2. Effect of product substitutability and inventory imbalance

We now turn our attention to the impact of product substitutability and inventory imbalance on equilibrium switch times. We focus on
equilibrium in region IV as characterized in Theorem 1 and 2 because the switch times for both firms are inside the season only in this
region of parameter space. We should also note that under a rather reasonable assumption that λ1trnBrnArλ2t, we only have region IV,
and the switch times

ðsA; sBÞ ¼ λ2ðλL�λF Þt�ðλ2�λF ÞnA�ðλL�λ2ÞnB

ðλ2�λ1ÞðλL�λF Þ
;
λ2ðλL�λF Þt�ðλ1�λF ÞnA�ðλL�λ1ÞnB

ðλ2�λ1ÞðλL�λF Þ

� �
ð31Þ

is the only equilibrium of the game.
From (31), the length of the period during which the firms charge different prices equals

sB�sA ¼ nA�nB

λL�λF
: ð32Þ

Note that the formula describes two forces in action. While the difference in starting inventory levels (nA�nB) forces the firms to set their
markdown times far apart from each other, product substitutability (λL�λF ) forces the firms to reduce the difference between markdown
times. As products become less differentiated (λL�λF increases), firms tend to follow each other's decisions, and switch at closer times to
each other. These two forces are simplifications of two general phenomena. While the difference in firm sizes leads firms to follow
different strategies, product substitutability and competing in the same market limits them in doing so.

For the linear demand model, Eq. (32) is equal to

sB�sA ¼ ϵ ðnA�nBÞ
p1�p2

;

which shows that the length of the period during which firms charge different prices is increasing in the degree of product differentiation
(ϵ) and decreasing in the difference of initial and markdown prices.

For the attraction demand model, Eq. (32) is equal to

sB�sA ¼ ða1þa2þκÞ ðnA�nBÞ
ða2�a1Þ S

;

which shows that the length of the period during which firms charge different prices is increasing in the no purchase probability (κ) and
decreasing in the difference of initial and markdown prices.
6. Closed-loop equilibrium

In this section, we relax the assumption that firms pre-commit themselves to markdown times at the beginning of the sales horizon
and consider closed-loop strategies. For this analysis, we study a smaller subset of the parameter space and assume that λ2tZnAZnBZλ1t
(only region IV). Under this reasonable assumption, each firm can finish their inventory if both firms charge the low price throughout the
season. In contrast, when both firms charge the high firm, neither firm can finish its inventory. We formulate the game as a simple timing
game where each firm's only choice is when to mark the price down ([9], Section 4.5). When a firm marks the price down, it has no effect
on the future of the game. If a firm did not change the price at any time before ς, its action set at time ς is
AiðςÞ ¼ f“mark down”; “do not mark down”g. If firm i has marked the price down at some time before ς, then its action set is the null
action.

The natural solution concept for simple timing games is subgame-perfect equilibrium. In this case, once one of the firms (leader) has
marked the price down, the other firm (follower) faces a maximization problem (i.e., continuation problem) which can be solved relatively
easily. Therefore we can express both firms' payoffs as functions of the time

s¼min ς j a iðςÞ ¼ “mark down”; for at least one i
n o

;

which is the time at which the first firm marks the price down (These best response functions can be characterized by solving the
continuation problem). Then, we can represent firm A's payoff function as a function of the first switch time as LAðsÞ ¼ΦAðs; rBðsÞÞ if it is the
leader and F AðsÞ ¼ΦAðrAðsÞ; sÞ if it is the follower. Similarly, firm B's payoff function is LBðsÞ ¼ΦBðrAðsÞ; sÞ if it is the leader and F BðsÞ ¼ΦB

ðs; rBðsÞÞ if it is the follower.
The next theorem characterizes these payoff functions (½xy�⋄ denotes x

y if xZ0 and y40 and 0, otherwise).

Theorem 4. The payoffs for firms A and B are given as follows:

F BðsÞ ¼

ζ1ðt;nB;nAÞ�ðp2λ2�p1λ1Þs; if sZsA1 ;

ζa2ðt;nB;nAÞþλ2ðp1�p2Þðλ1�λF Þ
λ2�λF

s; if sA14sZsA2 ;

ζ3ðt;nB;nAÞþðp1�p2Þ½ðλL�λF Þλ1λ2�λM2½λ1ðλL�λ2ÞþλF ðλ2�λ1Þ��
λ2ðλL�λF Þ�λM2ðλL�λ2Þ

s; if sA24sZsA3 ;

ζ4ðt;nB;nAÞþðp1�p2ÞλM2½λ1ðλL�λF Þ�λM1ðλL�λ1Þ�
λLðλM2�λM1Þ

s if sA34sZsA4 ;

ζ5ðt;nB;nAÞ; if sosA4 ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð33Þ
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LAðsÞ ¼

p2λ2t�ðp2λ2�p1λ1Þ s; if sZsA1 ;

p2λ2ðλL�λF Þt�p2ðλL�λ2ÞnB

λ2�λF
�ðp2λ2�p1λ1Þðλ1�λF Þþðp2λL�p1λ1Þðλ2�λ1Þ

λ2�λF
s; if sA14sZsA2 ;

p2n
Aþðp1�p2Þλ1 s if sosA2 ;

8>>>><
>>>>:

ð34Þ

F AðsÞ ¼

ζ1ðt;nA;nBÞ�ðp2λ2�p1λ1Þs; if sZsB1;

ζb2ðt;nA;nBÞþλ1λ2ðp1�p2Þ�p2λM2ðλ2�λ1Þ
λ2

s; if sB14sZsB2;

ζ3ðt;nA;nBÞþðp1�p2Þ½ðλL�λF Þλ1λ2�λM2½λ1ðλL�λ2ÞþλF ðλ2�λ1Þ��
λ2ðλL�λF Þ�λM2ðλL�λ2Þ

s; if sB24sZsB3;

ζ4ðt;nA;nBÞþðp1�p2ÞλM2½λ1ðλL�λF Þ�λM1ðλL�λ1Þ�
λLðλM2�λM1Þ

s; if sB34sZsB4;

ζ5ðt;nA;nBÞ; if srsB4;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð35Þ

LBðsÞ ¼
p2λ2t�ðp2λ2�p1λ1Þs if sZsA1 ;

p2n
Bþðp1�p2Þλ1 s if sosA1 ;

(
ð36Þ

where

ζ1ðτ;νF ;νLÞ ¼ p2λ2τ;

ζa2ðτ;νF ;νLÞ ¼
ðp1�p2Þλ2λFτþðp2λ2�p1λF ÞνF

λ2�λF
;

ζb2ðτ;νF ;νLÞ ¼ p2λM2τ�p2
ðλM2�λ2Þ

λ2
νL;

ζ3ðτ;νF ;νLÞ ¼
ðp1�p2Þλ2λFλM2τ�½p1λFλ2þp2ðλLðλM2�λ2Þ�λ2λM2Þ�νF

λ2ðλL�λF Þ�λM2ðλL�λ2Þ
� ðp1�p2ÞλF ðλM2�λ2ÞνL
λ2ðλL�λF Þ�λM2ðλL�λ2Þ

;

ζ4ðτ;νF ;νLÞ ¼
ðp1�p2ÞλM1λM2λLτþðp2λM2�p1λM1ÞλLνF�ðp1�p2ÞλM2ðλM1�λF ÞνL

λLðλM2�λM1Þ
;

ζ5ðτ;νF ;νLÞ ¼ p1νF ;

and

sA1 ¼
λ2t�nB

λ2�λ1
;

sA2 ¼
λ2ðλL�λF Þt�ðλL�λ2ÞnB�ðλ2�λF ÞnA

ðλL�λF Þðλ2�λ1Þ
;

sA3 ¼
λLλM2t�λLnB�ðλM2�λF ÞnA

ðλM2�λ1ÞλL�ðλM2�λF Þλ1

	 
⋄
;

sA4 ¼
λLλM1t�λLnB�ðλM1�λF ÞnA

ðλM1�λ1ÞλL�ðλM1�λF Þλ1

	 
⋄
;

sB1 ¼
λ2t�nB

λ2�λ1
;

sB2 ¼
λ2λM2t�λ2nA�ðλM2�λ2ÞnB

λM2ðλ2�λ1Þ
;

sB3 ¼
λLλM2t�λLnA�ðλM2�λF ÞnB

ðλM2�λ1ÞλL�ðλM2�λF Þλ1

	 
⋄
;

sB4 ¼
λLλM1t�λLnA�ðλM1�λF ÞnB

ðλM1�λ1ÞλL�ðλM1�λF Þλ1

	 
⋄
:

An example for the payoff functions is given in Fig. 5.
We now show that the open-loop equilibrium found in Section 4 is also the closed-loop equilibrium. In order words, there is no

motivation for the firms to preempt each other in the timing game. First, notice that all payoff functions given by Eqs. (33)–(36) are
continuous functions of the first switch time. In addition, the leader payoff function for firm A, given in Eq. (34) is single peaked at sA2. The
leader payoff function for firm B, given in Eq. (36) is also single peaked, but at sB1. Notice that sB1 ¼ sA1 and sA2rsA1. Therefore, firm A would
want to lead and change the price to p2 at time sA2. However, one needs to ensure that firm B would not preempt firm A. This can be shown
by showing that the function F B is strictly increasing and is larger than the function LB at sA2. One can see that F B is increasing between sA3
and sA1 from Eq. (33). One can also show that when ςA ½sA2 ; sA1Þ

F BðςÞ�LBðsÞ ¼ ðp1�p2ÞλF ðλ2t�nBÞ
λ2�λF

�ðp1�p2Þðλ2�λ1ÞλF
λ2�λF

s;



Fig. 5. Leader and Follower payoff functions: λF ¼ 1=7; λ1 ¼ 2=7; λ2 ¼ 4=7; λL ¼ 5=7; λM1 ¼ 8=21; λM2 ¼ 16=21; p1 ¼ 10, p2 ¼ 6, nA ¼ 320=7, nB ¼ 240=7.
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and

F BðsA2Þ�LBðsA2Þ ¼
λF ðp1�p2ÞðnA�nBÞ

λL�λF

which is strictly positive if nA4nB. Therefore firm B has no motivation to preempt. Therefore firm A switches at sA2 ¼ sA. The solution of
firm B's switch time is found by solving the continuation problem. The result is given in the following theorem.

Theorem 5. When nAZnB, the equilibrium given by the switch times

sA ¼ λ2ðλL�λF Þt�ðλL�λ2ÞnB�ðλ2�λF ÞnA

ðλ2�λ1ÞðλL�λF Þ
ð37Þ

sB ¼ λ2ðλL�λF Þt�ðλL�λ1ÞnB�ðλ1�λF ÞnA

ðλ2�λ1ÞðλL�λF Þ
ð38Þ

is also a closed–loop equilibrium.

The result may be expected since the demands are deterministic. In addition switching price first does not lead to any permanent first-
mover advantage. If a firm preempts the other firm and switch the price early, the other firm can simply match the price. We conjecture
that similar results are valid for other regions of the parameter space.
7. Conclusion

In this paper, we study the effects of competition on markdown timing decisions of two firms with fixed inventories. The model we use
is admittedly simple and was chosen to understand strategic interactions between competing firms and obtain important insights, rather
predicting the outcome of a specific game played in a particular setting. We show that a pure-strategy Nash equilibrium exists under
certain conditions and its specific characterization depends on the inventory levels, the length of the selling season and the demand rates.
In general, in equilibrium, if a firm marks its price down after the season starts, it ensures that it runs out of inventory precisely when the
season ends. An exception is when the smaller firm is substantially small and the larger firm's demand increases significantly when the
smaller firm's inventory runs out. In this case, the larger firm has an incentive to hold its markdown until its competitor runs out of stock
despite the fact that this would lead to having unsold inventory at the end of season.

We show that usual monotonicity results may fail to hold in a competitive environment. In particular, both firms' revenue may be non-
monotone in their own starting inventory, i.e., more inventory may lead to less revenue. We also show that the duration of price dis-
persion can be explained by two factors: inventory imbalance and product substitutability. The time period over which firms charge
different prices increases linearly with inventory imbalance and decreases reciprocally with product substitutability. We finally show that
the conditions for the existence and uniqueness of an equilibrium are easily satisfied for the case of two commonly used price–response
functions.

One can consider extending the model in this paper in many different directions. Asymmetry in firms' prices and demand rates
complicate the analysis, but do not appear to introduce any insight that is qualitatively different fromwhat we obtain here (asymmetry in
demand rates can be easily handled for the linear demand function in the current model). Another direction would be to study closed-loop
strategies in all regions of the parameter space. Our results with a reasonable subset of the parameter space show that open-loop
equilibrium survive as an equilibrium in this dynamic game. This is due to the fact that the demands are deterministic and the fact that
being a price leader does not introduce any permanent first-mover advantage. Therefore, we conjecture this will be true for other regions
as well. Studying the markup problem (which is more in line with capacity allocation in many revenue management industries) under a
similar setting would be another future direction. We believe that analysis and the insights from that research would be similar to what
we provide here.

It may be worthwhile to introduce the depth of the markdown as a second strategic variable. It would be also interesting to see the
impact of incomplete information, particularly on starting inventory levels. These two extensions would bring the model closer to reality
and may provide additional insights. One final important extension would be to model uncertainty in demand. However, given that the
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optimal policy can be computed only algorithmically [7] even for the monopolistic case, it may be difficult to obtain insights regarding the
strategic behavior of firms in these settings using a stochastic model.
Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.omega.2015.10.016.
References

[1] Automotive News. Ford cuts prices on restyled 2007 Expedition. July 31; vol. 80, 2006. p. 8.
[2] Automotive News. The coming year-end share war; as stock rebuilds from Japan's disaster, dealers expect scads of ads and big incentives. August 1; vol. 85, 2011. p. 1.
[3] Barrett M. Tracing apparel technology trends. Appar Mag 2007;48:2–16.
[4] Benassy J-P. Market size and substitutability in imperfect competition: a Bertrand–Edgeworth–Chamberlin model. Rev Econ Stud 1989;56:217–234.
[5] Copeland A, Dunn W, Hall G. Prices, production and inventories over the automotive model year. Working Paper 11257, The National Bureau of Economic Research;

2005.
[6] Dolan Robert. Models of competition: a review of theory and empirical evidence. Rev Mark 1981;6:224–234.
[7] Feng Y, Gallego G. Optimal starting times for end-of-season sales and optimal stopping times for promotional fares. Manag Sci 1995;41:1371–1391.
[8] Fisher M, Raman A. Reducing the cost of demand uncertainty through accurate response to early sales. Oper Res 1996;44:87–99.
[9] Fudenberg D, Tirole J. Game theory. Cambridge, Massachusetts. The MIT Press; 1991.
[10] Gallego G, Hu M. Dynamic pricing of perishable assets under competition. Technical Report, Columbia University; 2013.
[11] Gallego G, van Ryzin G. Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Manag Sci 1994;40:999–1020.
[12] Gallego G, van Ryzin G. A multiproduct dynamic pricing problem and its applications to network yield management. Oper Res 1997;45:24–41.
[13] Ghemawat P, McGahan AM. Order backlogs and strategic pricing: the case of the U.S. large turbine generator industry. Strateg Manag J 1998;19:255–268.
[14] Ghemawat P, Nalebuff B. Exit. The RAND. J Econ 1985;16:184–194.
[15] Glicksberg IL. A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc Am Math Soc 1952;3:170–174.
[16] Grauberger W, Kimms A. Revenue management under horizontal and vertical competition within airline alliances. Omega; 2015, in press. http://dx.doi.org/10.1016/j.

omega.2015.06.010.
[17] Lazear EP. Retail pricing and clearance sales. Am Econ Rev 1986;76:14–32.
[18] Levin Y, McGill J, Nediak M. Dynamic pricing in the presence of strategic consumers and oligopolistic competition. Manag Sci 2009;55:32–46.
[19] Lin KY, Sibdari SY. Dynamic price competition with discrete customer choices. Eur J Oper Res 2009;197:969–980.
[20] Los Angeles Times. J.C. Penney to adapt simple pricing strategy. January 26; 2012. p. B5.
[21] Martinez-de Albeniz V, Talluri K. Dynamic price competition with fixed capacities. Manag Sci 2011;57:1078–1093.
[22] Netessine S, Shumsky RA. Revenue management games: horizontal and vertical competition. Manag Sci 2005;51:813–831.
[23] Osborne MJ, Pitchik C. Price competition in a capacity-constrained duopoly. J Econ Theory 1986;38:238–260.
[24] Pashigian BP. Demand uncertainty and sales: a study of fashion and markdown pricing. Am Econ Rev 1988;78:936–953.
[25] Perakis G, Sood A. Competitive multi-period pricing with fixed inventories. Technical Report, Sloan School of Management, Massachusetts Institute of Technology; 2004.
[26] Perakis G, Sood A. Competitive multi-period pricing for perishable products: a robust optimization approach. Math Progr 2006;107:295–335.
[27] Reinganum JF. On the diffusion of new technology: a game theoretic approach. Rev Econ Stud 1981;48:395–405.
[28] Sen A. The US fashion industry: a supply chain review. Int J Prod Econ 2008;114:571–593.
[29] Sen A. A comparison of fixed and dynamic pricing policies in revenue management. Omega 2013;41:586–597.
[30] Shapley L, Shubik M. Price strategy oligopoly with product variation. Kyklos 1969;22:30–44.
[31] Stores. Pricing transparency: clarity requires science, art and psychology. February; 2012.
[32] Talluri K. On equilibria in duopoloes with finite strategy spaces. Technical Report, Universitat Pompeu Fabra; 2003.
[33] Talluri K, van Ryzin G. The theory and practice of revenue management. International series in operations research & management science, vol. 68. Springer; 2005.
[34] The Wall Street Journal. Retailers feel squeezed on the margin. June 8; 2011. Online edition.
[35] The Wall Street Journal. J.C. Penney gets rid of hundreds of sales. January 25; 2012. Online edition.
[36] The Washington Post. In electronics, retailers start dealing early. November 15; 2010. p. A7.
[37] Tsai W, Hung S. Dynamic pricing and revenue management process in internet retailing under uncertainty: an integrated real options approach. Omega 2009;37:471–

481.
[38] USA Today. Stores plan to keep hot toys in stock; inventory caution seems lighter than last holiday. October 6; 2010. Money, 1B.
[39] Vives X. Oligopoly pricing: old ideas and new tools. Cambridge, Massachusetts: MIT Press; 1999.
[40] Whang S. Markdown competition. In: Agrawal N, Smith SA, editors. Retail supply chain management, international series in operations research & management science,

vol. 122. Springer; 2009. p. 293–307.
[41] Xu X, Hopp WJ. A monopolistic and oligopolistic stochastic flow revenue management model. Oper Res 2006;54:1098–1109.
[42] Yao D, Liu JJ. Competitive pricing of mixed retail and e-tail distribution channels. Omega 2005;33:235–247.

http://dx.doi.org/10.1016/j.omega.2015.10.016
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref3
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref4
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref6
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref7
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref8
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref9
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref11
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref12
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref13
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref14
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref15
dx.doi.org/10.1016/j.omega.2015.06.010
dx.doi.org/10.1016/j.omega.2015.06.010
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref17
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref18
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref19
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref21
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref22
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref23
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref24
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref26
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref27
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref28
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref29
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref30
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref33
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref33
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref37
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref37
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref39
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref40
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref40
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref40
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref41
http://refhub.elsevier.com/S0305-0483(15)00220-0/sbref42

	Competitive markdown timing for perishable and substitutable products
	Introduction
	Literature survey
	The model
	Linear demand model
	Attraction demand model

	Equilibrium
	Equilibrium characterization for λM2leminχ1,χ2,χ3
	Equilibrium characterization for χ3ltλM2leminχ1,χ2
	The case minχ1,χ2ltλM2

	Comparative statics
	Effect of inventory levels and selling season
	Effect of product substitutability and inventory imbalance

	Closed-loop equilibrium
	Conclusion
	Supplementary data
	References




