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We study the asymptotic (as n — 00) zero distribution of
In(ZHLL, F/\) = (1 - H)Sn(z7 1—‘/\) - th+1(z7r>\)7

where p € C, sy, is n section, t,, is n™ tail of the power series of classical Lindelof function I' of order .
Our results generalize the results by A. Edrei, E. B. Saff, and R. S. Varga for the case p = 0.
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1 Introduction

For a transcendental entire function

F(2) =3 arz*, ag>0, (1.1)
k=0
denote by
sn(z, f) = Zakzk and t,(z, f) = Z apz® (1.2)
k=0 k=n
its M section and n'h tail respectively.

For some widely applicable concrete entire functions (such as the exponential function, the trigonometric
functions and some others) elegant and sharp asymptotics (as n — o0) for zeros of s,(z, f) and t,(z, f) were
obtained by G. Szegé [8], J. Dieudonné [1], P. C. Rosenbloom [7] and others. In the work of A. Edrei, E. B. Saff,
and R. S. Varga [2] these asymptotics for zeros of s,,(z, f) were extended to the Mittag-Leffler functions and to
L-functions.

Recall that F'(z) is called an £-function if it satisfies the following two conditions.

(A) The function F'(z) is entire of order A (0 < A < 1) and all its zeros are real and negative:

F(z)=F(0) ][] (1 + i) =Y a;2, where 0<umy, Y ;' <+oo, F(0)>0; (1.3)
k=1 Tk =0 k=1
(B) Along the positive axis
InF(r) =InM(r,F) = Byr*(1 +0(1)), By >0, r— 0. (1.4)
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G. Szego in [8] considered a more general problem of the asymptotic distribution of the zeros of the linear
combination

In(z 1, f) = (L= w)sn(2, ) = g (2, f) (1.5)

when p € C. Evidently, I,(z,0, f) = sn(z,f) and I,,(2,1, f) = —tn+1(z, f). G. Szegd in [8] proved a
remarkable theorem related to the asymptotic behavior of the roots of the equation

I,(z,pu,e*) =0.
It was discovered by G. Szego that the set of all zeros of

In(z,,u,ez), M#Oala

is approximately equal to {nz : |ze!™%| = 1}, the set of all zeros of s,(z,e?) is approximately equal to
{nz : |ze!=%| = 1,]z| < 1}, the set of all zeros of ¢,(z,e*) is approximately equal to {nz : |ze!7%| = 1,
2| > 1}.

A survey of investigations prior to 1997 on several aspects of the distribution of zeros of sections and tails is
given by L. V. Ostrovskii in [6].

In [9], the zero distribution of linear combinations (1.5) of Mittag-Leffler functions was considered. The
results obtained in [9] extend some results of A. Edrei, E. B. Saff, and R. S. Varga [2] on the zero distribution of
sections s, (z, f) of Mittag-Leffler functions.

The following problem seems to be of interest. Is it possible to extend the results of A. Edrei, E.B. Saff
and R.S. Varga [2] on the zero distribution of sections s,,(z, f) of L-functions to the zero distribution of linear
combinations (1.5) of £L-functions?

Below we present the main result of [2] on L-functions (see [2], p. 21).

Theorem A. Let F(z) be an L-function of order A.
I. Define the sequence { Ry, } m by the conditions

FI
a(Ry)=m (m=12,3,...), where a(r)=r F((T)) (1.6)
r
Let erfc(C) denote the complementary error function
¢ o0
fe(C / 2 /67712 dv
er, — .
\/E
0 ¢
Then, if C is an auxiliary complex variable, we have
1/2
(e 00)
— 5exp(§ )erfc(C), (1.7

R (14 () ¢)
uniformly on every compact set of the (-plane.
II. With every given ¢ (0 < |¢| < m) it is possible to associate a real sequence {o,,(¢)} such that

Tim o) = o(6),

where o = o (¢) is the unique solution in (0, 1) of the equation
(i)
o cos(pA) — 1 — Alno = 0;
(ii) write
Em = Em(9) = om(@)e’?, E=0($)e", L = (2mhm)' 2 " {F(Ru)}

(© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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then the polynomials in ¢

¢
Lmsm (Rmfm <1 + m)) (1.8)

are uniformly bounded on every compact set of the (-plane.
I11. Every limit function of the polynomials in (1.8) is of the form

(i) g0

where the real quantity x may depend on the particular sequence of integers through which m — +oo.

For any £-function F of order \, let M, (i, F), i € C, be the set of all roots of the equation
L(Rpz, p, F) = 0,
where
I, (Ruz,u, F) = (1 — p)sn(Rnz, F) — ptyi1(Rnz, F).

In particular, M,, (0, F) (M,,_1(1, F)) coincides with the zero set of s, (R,z, F) (tn(Rn-12,F)). Define
M(p, F) to be the set of all accumulation points of |J;~ ; M, (u, F).
It follows from Theorem A, parts II and III, that

{z=0e"": 0*cos(¢p)) =1 —Alno =0, 0< 0o <1,0< || <m}CM(0,F) (1.9)

for any £-function F'.

The following problem seems to be of interest. Does the embedding (1.9) remain in force if we replace
M(0, F) by M(u, F') when p € C? In the present paper we study the zero distribution of the linear combination
I, (Ryz, 1, F') of the Lindel6f classical functions

oo

) =[] (1+#), 0<A<l, (1.10)
n=1

and show that for Lindelof classical functions (not arbitrary £-function) the embedding (1.9) can be extended to
all  in C, and moreover, changed to equality. To our knowledge, for arbitrary £-function the answer to the above
question is still open.

2 Main curves and regions

To formulate the main result of the paper we need to introduce some curves and regions. For any A satisfying
0 < A < 1, and h, being sufficiently small, denote

S\ h) ={z=re" 1 cos(\p) — Alnr — 1 =h, |¢| < 7}.
Clearly, S(\, h) is symmetric with respect to the z-axis. We have, if z = re’® € S(\, h),

1+h+Alnr
cos(36) = g(r,h) = LHRIART
Since dgg;jh) = - A(h;)ﬂn ") then g(r, h) increases when € (0,e~"/*) and decreases when r € (e="/*, 00).

We give rough shapes of the curves S()\, h) in three different cases (when h = 0, h > 0 and h < 0) in Fig. 1,
Fig. 2 and Fig. 3.

Let us fix constants A and h, 0 < A < 1, h > 0. Note that the curve S(\, h) divides the complex plane C into
three different regions. Denote by I;, and I}, two of these three regions. Namely, let I;, be the region containing
z = 0 and let 1]}, be the region that contains neither = = 0 nor —1. Curve S(\, —h) divides the complex plane
C into two different regions. Denote by I 11}, that region that does not contain z = 0. We give rough sketches of
the regions I, 1y and I11}, in Fig.4.

If 0 < g1 < 7, we define

A=Ae) ={z=7re": || <m—e1, >0} 2.1

www.mn-joumal.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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,

Fig. 1 Curves S(),0) for0 < A <1/2, A =1/2and 1/2 < X < 1 respectively.

Fig. 2 Curves S(A\, h) withh > 0for0 < A <1/2, A =1/2and 1/2 < A < 1 respectively

3 Results

The first theorem we prove shows regions where zeros of I,,,(R,,w, i, I'y) may be.

Theorem 3.1 Let Ty (z) be a Lindeldf classical function of order A (0 < X < 1). Suppose that i # 0. Then,
if §, €1 and h are sufficiently small positive constants, I, (Rymw, i1, T'x) does not vanishin (InUIIoUIIT,)NA,
for all sufficiently large m.

Theorem 3.1 implies that the zeros of I,,(R,,w, u, I'y) may lie only in the vicinity of the curve S(A,0) and
the ray arg z = 7. The proof of Theorem 3.1 is given in Section 5. The case ;¢ = 0 was studied in [2] not only
for the classical Lindeldf function I" (z) but for any £-function (see Theorem A above).

We define

M. (1,T3) = M(, TA\{z : arg z = ).
The following remark is a corollary of Theorem 3.1.

(© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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: i }

Fig.3 Curves S(A\,h) withh < 0for0 < A <1/2,A=1/2and 1/2 < A < 1 respectively

11
111, !
Fig. 4 Regions I, [1, and I11, for0 < A < 1/2, A=1/2and 1/2 < X < 1 respectively
Remark 3.2
M. (1, Ty) € S(),0). 3.D

The next theorem shows that each point on the curve S(A,0) is an accumulation point of zeros of
I’rn(RmZ7 122 Fk) when we (C\{O7 1}

Theorem 3.3 Let £ = £(¢) = |€]e?, 0 < |¢| < m, be a fixed point on the curve S(\,0). We define
7 = €]} sin(\p) — \¢, and let the sequences {7, }°_, and {e,,(C)}5_, be defined by the conditions

T = %m(mod 21), - < Ty <,
and
~ logm C—itm
O= e aem

www.mn-journal.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Then, as m — oo,

14N o A ox 3
I (Rin&(1 + €m(€)), 11, Tx) (2m )\1fi\t(7r )) em(1 +(§7T)(C))meT

£ . .
ﬁa lf |§|<17

ﬁ’ if gl >1

uniformly on every compact set of the (-plane, where

o©) = (1= (FF) a0 = (F) e

The proof of Theorem 3.3 is given in Section 6. To prove Theorem 3.3 we repeat the proof of Theorem 2
from [2] with slight modifications.

The next result is a corollary of Theorems 3.1 and 3.3.

Corollary 3.4 One has:

(i) M (0,T5) = S\, 0) N{z: [z <1},

(i) M. (1,Ty) =S\ 0)N{z:|z| > 1},

(iii) M. (1, Tx) = S(A,0) for p # 0, 1.

The next result shows how quickly the zeros of I,,(R,,w, i, F') approach the point w = 1 for arbitrary
L-function F'.

Theorem 3.5 Let F(z) be an L-function of order A (0 < X < 1). Then, as m — oo,

L (B (14 (%)) . F)
F(Rm) (14 (552 ¢)"

— exp(C?) (%2(4“) — u) 3.2)

uniformly on every compact set of the (-plane.

Theorem 3.5 can be viewed as an extension of part I of Theorem A and is an easy corollary of part I of
Theorem A. The proof of Theorem 3.5 is given in Section 7.

4 Preliminaries

Let the functions F'(z) and T'(z) be given by (1.3) and (1.10) respectively. We mention without proof properties
of the functions F'(z) and I")(z) which the reader can find in [2], [3] and [4].
1) It is known that (see [2], p. 90)

In F(z) = B12 (1 4+ 1(2)) “4.1)
and
zl;((j)) = Bix2A (1 +1(2)), (4.2)

where 7(z) — 0 uniformly in A, as z — 0.
Also (see [3], p. 158)
et ()
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where zv(z) is uniformly bounded in A, as z — 0.

2) Using (4.3) we can easily calculate the indicator function of the classical Lindelof function 'y (see [5],

p.53). Itis

™

hr,(0) = cos N, —m<f<m.

sin A

Since the indicator function of an entire function of finite order and finite type is a continuous function then

™
hFx (9) = s

cosNd, 0 € [—m, 7.
nmA

It follows (see [5], p. 56) that

[T (rei®)] < eUHEE+er

for all > r(«) and when 0 € [—, 7], where « is sufficiently small.

3) Let the sequence { R, }, be defined by conditions (1.6). Then (see [2], p. 93)

m YA
o= { g5} o) m— .

and

F(Rm)
(2w Am)1/2

am Ry, = (I4+0(1)), m— oo.

Using (1.6) and (4.3), for 'y (z) we have,

» (m+ (1/2))sin(w))

m 7T>\

+o(1), m— oo,

It follows from (4.3), (4.7) and (4.8) that

N 1

max \ 2w sin(m)

Ca(Rpw) = ™ ( AT ) (1+0(1)), m — oo.

It follows from (4.6) and (4.9) that for ') (z) we have

e

@ o = 2mitA sin

2n)?
4) Let w satisfy |w — 1| < n < 1/2. Then (see [2], p. 96), as m — oo,

(w—1)°

F(R,w) = F(R,,)exp {(w —1)m+ 5

where the sequence {n(m, w)},, is uniformly bounded in {w : |w — 1| < n}.

: < AH@(M))A(HOQ)), m— .

m(x— 1+ o(1) + (w 1>3mn<m,w>} ,

(4.4)

4.5)

(4.6)

4.7)

(4.8)

4.9

(4.10)

4.11)

www.mn-joumal.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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5 Proof of Theorem 3.1

To prove Theorem 3.1 we will find the asymptotic behavior of I,,, (R, w, 11, T'y) in regions Ip,, I, and I11,. We

rewrite I, (Ry,w, 1, T')) as

Im(mea Hy I‘/\) = (1 - M)F/\(me) - ﬁnb-{-l(Ran; FA)

5.1

Since the asymptotic behavior of 'y (R, w) is known (see (4.9)), then the problem of finding the asymptotic
behavior of I, (R, w, i, T'y) is reduced to the problem of finding the asymptotic behavior of ¢,,, 1 (Rmw, T'x).

Suppose that w € AN {w : |w| < C} for some constant C. By Cauchy’s integral formula,

Rm+1wm+1 T
tmt1(Rmw, T'y) = "Li]{ % dg.
[€]=2Rm |w| €

27i (€ — Rpw)
Since
1 B 1 i £
§€—Rnpw  Rpw Ruw(é — Ryw)’
then
menL F,\(f) R"L’LU"L F/\(g)
tm Rnbwa Fk = _L. f d€ + G X f T d§
il ) 2mi Jigl=2Rpw) §™ 210 Jigj=2R,, 0| €€ = Bmw)
Ryw™ (6
A, 4 Bmt 74 Y g
! 210 Jig)=2Rm|w| §™(€ — Rnw)
where, due to (4.10),
wmeX AM—2e =
Ay = —apRIwW™ = — 1 1)), .
! A Pt w0 (2m 5 <2m1+’\sin(7r)\)> (L+o(1), m— o0

Further, we study separately two different cases:
Case ):we Gy ={jw>1-3, |w—1]>d1NA,
Case2):w € Go={|w|<1-2, |w—1]>d}NA.
Note that Gy N G2 = CNAN{w: |Jw—1| > d6}.

Case 1). Suppose that w € G1. By (5.2),
RmMuw™ A€

2mi 7|{§|_me/2 Em (& — Ryw)
= Al + A2 + A?n

tm+1(me7 I‘/\) - Al + d€ + Fk (Rnbw)

where

m m
_ Rpw

Ay = LA (€)

2mi 7I{§|—Rm|w|/2 £m(€ — Ryw)

It follows from (4.9), as m — oo, that

d¢, Az =T\(Rnw).

A e Ae” = 1 1
5T | 2whsin(nA) (1+0(1))

1
m, o (N —XInw—1) Y w? E2N
w’rexex e
= 1 1 .
( =] o)

max 2w sin(

We will find the asymptotic expression for the integral As in in the following three steps:

(5.2)

(5.3)

5.4

5.5

(5.6)

(© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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Step 1): change the contour of integration of As;

Step 2): show that the main contribution to As comes from the neighborhood of the point { = R,,.
Step 3): find an asymptotic expression for As by using Laplace’s Method for contour integrals.
Consider the curve (see Fig. 5)

Fig.5 Curve T'(\)

Case 1, Step 1. Curves S ()\, —%) and T'(\) have two points of intersection, say z; and z. We have, z; = de™
and z; = de™ ", where y ~ @ and d* ~ f as h — 0. Define

\/_7
Lh=T\)N{z:|z| <d},
la = S(\, —%) N{z:|z| < d},
For sufficiently small positive h, we have
m m F
2mi &M (€ — Rpw)
|€|=Rm(1-48/2)
m m I‘
= Rme j{ & de¢
2mi £m(& — Rpw)
Ry liURp 12
_wn j{ DA(Bimt) (5.7)
2mi tm(t — w)
11Ulo
T)'L I‘
/ / Do(Bmt) dt
27m tm(t —
=: Ag1 + A22,
where
T t T t
A21 = — M dt and A22 = — M dt.
2mi ) t™(t — w) 2mi ) t™(t — w)

l1 l2
Case 1, Step 2. It follows from (4.4) and (4.7) that for t = |t|e’® we have,

IPA(Rit)| = [DA(Rim[t]e™®)] < e(Fmmt+e) Bl

. ! . (5.8)
— (TR He) (B R o) _ (R (cos e 4Bt

www.mn-joumal.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



582 Ostrovskii and Zheltukhina: Zero distribution of sections and tails of Lindel6f functions

where 3 is sufficiently small, m > m(/3). Therefore, since R(t* — AInt — 1) = —% for ¢ € I, we have

| Ags| = %/Mdt
i ) t™(t —w)

l2

< Constlw|™ /e%wwwmn\t|+a|t\*>d|t| (5.9)
l2

= |w|™o (e%(l_%)) .

Case 1, Step 3. The estimation of Ao is more complicated than that of As5. By (4.9),

(14+0(1)), m — oo,

1
Ta(Rmt) eXeXE-Ant-1) At -
B 2t* sin(mw )

1
tm max

where t € A. Thus, since S(t* — AInt — 1) = 0 for t € [; we have

A21

dt. (5.10)

W e \1/(23) /(et)‘>1/(2k) 2 (1t cos(harg)=XInltl=1) (1 L o(1))

T 2rmi(2sin(mm) /@Y |\
1

t—w

Further we use the following lemma.

Lemma 5.1 Suppose that |w — 1| > § and let p(t) be analytic in some neighborhood of t = 1. Then for
sufficiently small positive h,

t—w B Az (1 —w)ymt/2 meee

/ XUy I +o(1))

U

Proof. Note that the function v = —t* + AInt + 1 maps the region
{t:|t—1] <1/2} N {t: |t]*sin(\arg(t)) — Narg(t) > 0}

conformally onto some neighborhood of 0 in the v-plane cut along the positive ray. Denote this neighborhood by
U. In particular, the image of the curve [; is the segment [O, %] traced twice, since

It —Alnt—1)=0

h

for ¢ € I, and the end points z;, i = 1,2, of 1 satisfy the condition ®(2* — Alnz; — 1) = —5,

m (A _Nlnt—1) .
/ex pt) dt:/ e” 2V f(v) dv,
D

t—w
I

1 =1, 2. Rewrite

where v = —t* + AInt + 1, f(v) dv = % dt, or equivalently, f(v) = #((?—t*)’ and D = Dy U D,, where
D; is the upper side of the segment [0; h/2] following the direction of the decrease of v and Ds is the lower side
of the segment [0; h/2] following the direction of the increase of v.

The transformation x = /v maps U onto {x : Imyx > 0} NV for some neighborhood V' of the origin. We

have

)\2
2= "+ AInt+1= ~S(t- 1)24(t),

(© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com
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where ¢(t) is an analytic function in some neighborhood of ¢ = 1 and ¢)(1) = 1. Then

A
X = El(t - 1)1/)1@),

where 1 (¢) is an analytic function in some neighborhood of ¢t = 1 and ;(1) = 1. Since x is analytic in a
neighborhood of ¢ = 1 and x/(1) = % # 0, the inverse function ¢(x) is analytic in a neighborhood of x = 0,
and hence the following function

it =D @tp(t) _  ia (D)tp(t)
V2(t —w)(1 — ) V2A(t — w)

9(x) = xf(x%) = (1+o(1)), [t]—1,

is analytic in some neighborhood of x = 0, say |x| < C, where C'is a constant not depending on w. If |x| < C/2,
then

a0 =5 [ 2

Icl=C
1 9 4o 4 X 9(Q)
=— [ T2+ [ Poidg
2m|<|[C QWZC[C ¢(¢—x)
=g(0) + xa(x)
_ip(d) “
= Ui X ()

where a() is a function analytic in |x| < C'/2, and

where Cj is a constant. This implies that f(v) = g(0)v~"/2 + a(v'/?) in some neighborhood of v = 0 cut along
the positive ray. Let h be so small that h/2 < f—g Then

/67%”f(1)) dv = g(())/e*%”v*l/2 dv + /ef%”a(vlp)dv =:g(0)J1 + Jo.

D D D
Note that
_my 12 1
Jo= [ e X a(v/?)dv=0 — ), m— o0,
D
and
m 1 , 2T (1) (1 + o(1
J1:/6_7U1) Y2 qu 72 e Uu" Y2 du = — (2)( 1/(2)( )), " 50
D (m/A) mp (m/)‘)
A
Thus,
/ef%vf(v) dv = ivamp(L)(L + 01(12)), — 00
D A1 -w) (3)Y

O

www.mn-joumal.com © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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It follows from (5.10) and Lemma 5.1 that as w € G,

wmex Al-Ae 1/(2X)
e 1 1 . 11
21 (27r)1/2(1 —w) (QmAH Sin(7r)\)) (140(1)), m— 0 (5.11)

Therefore, by (5.7), (5.9) and (5.11), as w € Gy,

A w™e N AL=A 1/(2X) X )
P02 -w) (Qm”lsin(w)\)) (L+o(1)), m— oo,

and hence, due to (5.4), (5.3), (5.6),as w € G4

ﬁ7n+1(R7nw7 I‘/\) - Al + AQ + A3

wntle A /(2X)
- (2m)1/2(1 — w) <2mk+1 sin(ﬂ')\)) (1+o(1) (5.12)

m

1
w e%e%(wkf/\lnwfl) )\ewk 2
1 1 .
* max 2w sin(m\) (1+0(1)), m— o0

It follows from (5.1), (4.9) and (5.12) that

,wnb-l-le% )\1_’\6 1/(2X)
- 1 1 IIT, N Gy;
(2m)1/2(1 — w) (gmxﬂsin(w\)) (14 0(1)), we I, L

I, (mev Hy F/\) =

N 5.1
wme%e%(wkf)\lnwfl) )\euf‘ 2X . ) I ( 3)
H max 2w sin(m\) (1+o(1), w e Io.
Case 2). Suppose that w € G3. By (5.2),
Ry I'A(§)
tmt1(Rpw,Ty) = A ———d
‘5‘:2Rm|w|
w™ T\ (Rt (5.14)
= A1+ o— Dalfnt)
27 [t|=2|w| ﬁ"b(t - ’LU)
= Ay + Ay

To find an asymptotic expression for A4, we will follow the same three steps that we did to find the asymptotic
expression for integral As.

Case 2, Step 1. Note that the curve S()\, —%) intersects the circle {z dzl=1- % =: dg} at two points, say
25 = doe™ and zg = doe ™. We write

I3 :S()\,—%) N{z:dy <|z| <d}, lya= {z:dgew,m < ¢ <2m— 1},

where d is the same constant that we introduced while considering the curves /1 and /5.
‘We have,

wm 7{ T(Rynt) dt
A= 2Uiml) 4
2mi tm(t — w)
11 Ul3Uly

/ / / Ty (Rmt) dt dt (5.15)
27m tmt—

=: Ag1 + A43 + A447
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where

w™ F)\(Rmt)dt /F,\ R t dt
Ay =— | —F———— d A —
BZom ) mt—w) ¢ AT tm(t —
I3
Case 2, Steps 2 and 3. Recall that the asymptotic expression for Ao; was found in (5.11). The same arguments
that we used to estimate integral Ass show that

Az =wmo (e%(l_%)> , M — 00. (5.16)

Using the inequality (5.8), we have

e % (cos A +B)|1- 4
|Aga| < Constlw|™

T = |w|™o (e%(lf%)) , M — 00, (5.17)
8

for sufficiently small § and h.
It follows from (5.15), (5.11), (5.16) and (5.17) that as w € Ga,

12X 1/(2X)

A woer A (1+ o(1)) (5.18)

= —_— .
4 (2m)1/2(1 — w) \ 2mA 1 sin(7wA) o)), m oo

and hence, by (5.14), (5.3), (5.18),as w € G>
tm+1(me,F,\) =A; + Ay

Wt e % A=2e /(2X) (5.19)
T 2021 —w) <2mk+1 sin(ﬂ)\)) (1+0(1)), m— oo.
It follows from (5.1), (4.9) and (5.19) that, as m — oo,
m+1,3 1—X 1/(2X)
Lo (R, 11, T) = - (27:;)1/2( w) (zmA:\Ll sirf(ﬂ')\)) ) (1+ Oil))v w € 11, N Ga; 520
1-p)Z meX Xt oD ( Ac” )M (1+0(1)), w e Io.
max 2w sin(m\)

Theorem 3.1 is an immediate corollary of (5.13) and (5.20).
It follows from (5.12) and (5.19) that ¢,,+1 (R w, 'y ) does not have zeros in {w : |w| > 1, |w — 1| > d}, as
m — 0Q. ]

6 Proof of Theorem 3.3
We suppose that £ € S(0, A) and that || < 1. By (5.1), (4.9) and (5.19) we have,
Im(R7rL€(1 + ET}'L(C))) Hy I‘/\)
em,é(u;m(o)* Nt (Lem ()
=(1-p) N X X o
max 2671 + e (€))* sin(mA)
_ L0+ em(Q)Em (1 +em(O))™eR < o ) Tt
(1 _ 6 _ fEm(C))(QT")% 2mz\+1 Sin(ﬂ')\) ( + 0( ))

_ (Lt en(Q)med < A e )2*(1+0(1))

1

) (1+0(1))

1

(2m)2 2mitAsin(m )
s A_\In 1 A Atem)? 1
x| (1 —,U) % (€ (e (O =AIn(e(+em () -Dp e 2 (27A)2 £ +em(Q) (1+0(1))
E3(1+em(Q))zex C1-E—E&eml0)

= ((1 — 1) (%) eglee’f(f*(lﬁm(é))k*)\1n(§(1+6m(C)) +“’”")(1 +o(1)) — 1§T£(1 + 0(1))> C,
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where

C =

Tt amlOeT (N )

(2m)2 2mitAsin(m )
Since £ = [€|e’® € S(A,0) and 7, = i1 4 27k for some k in Z, we have

Anm
2m

= Ané—1+ M1 +en(O)) = 1) = Aln(1 +e,(¢) + 5
= i(|¢]* sin Agp — Ap) + & (Q(IAlngT)m — ?f—g)\;;nw; +o (%))
Alnm A — AT, Alnm
C2(1—Mm * (1—&Mm " om
A 2Mk <1)
= — —9 +ol| —

m m m

A1+ em(O) = A€ = Aln(l +e,(¢) — 1+

Anm

for some integer k. Therefore, for £ € S(A,0) and |¢] < 1,as m — oo

2X e 7i
C ¢ 1—¢°

We suppose that £ € S(A,0) and that |¢| > 1. Then, by (5.1), (4.9) and (5.12),
Im(ng(l + Em(g))a 12 F)\)
meNAtem (NP A A 32X
meX(kem (@) At (em (©)
— e (14 o(1))
265(1 + 2, (Q)) sin ()

(L + m(Q)E™ (L + (€)X ( v )
(1— €~ &em(Q))(2m) 2m+1 sin(mA)

In(Bn€(1F (@) T) |y (@) ¢

1

= _,U/ T
mzx

g~

(14 0(1)).

The expression for
I (Bm&(1 4+ €m(€)), 1, T)
with |£| > 1 differs from the expression for
I (Bm&(1 4+ €m(€)), 1, T)

with |£| < 1 only by one coefficient, namely, instead of (1 — x) we have p. The same calculations that were done
for Iy, (Rné&(1 + £1,(C)), 1, T'x) with |€] < 1 show that, as m — oo,

In(Rm€ (14 em(€). 1Ty (@) oo &
c e

This completes the proof of Theorem 3.3. O

7 Proof of Theorem 3.5

By (4.11),as m — o0,

InF (Rm <1 + <%)1/2 C)) —InF(R,) = <%>1/2 ¢m + w +o(1).
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Hence,

F (R (1 + (&
(@) T
and then, by (1.7), as m — oo,

i1 (R (1 +(2)"? C) ,F)

(14 (2)2¢)" Pl
F(R (1+( )1/2<))7sm(R (1+( )1/24),F) 7.1)

(1+ ()72 PRy (14 (2)2¢)" F(fm)

— exp{¢?} — %GXP{<2}erfc(<)’

)

In —C2—i—0(1)7 m — 0o,

uniformly on every compact set of the (-plane. Theorem 3.5 follows immediately from (1.5), (1.7) and (7.1). O
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