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We study the asymptotic (as n → ∞) zero distribution of

In(z, μ, Γλ) = (1 − μ)sn(z, Γλ) − μtn+1(z, Γλ),

where μ ∈ C, sn is nth section, tn is nth tail of the power series of classical Lindelöf function Γλ of order λ.
Our results generalize the results by A. Edrei, E. B. Saff, and R. S. Varga for the case μ = 0.
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1 Introduction

For a transcendental entire function

f(z) =
∞∑

k=0

akz
k, a0 > 0, (1.1)

denote by

sn(z, f) =
n∑

k=0

akz
k and tn(z, f) =

∞∑
k=n

akz
k (1.2)

its nth section and nth tail respectively.
For some widely applicable concrete entire functions (such as the exponential function, the trigonometric

functions and some others) elegant and sharp asymptotics (as n → ∞) for zeros of sn(z, f) and tn(z, f) were
obtained by G. Szegö [8], J. Dieudonné [1], P. C. Rosenbloom [7] and others. In the work of A. Edrei, E. B. Saff,
and R. S. Varga [2] these asymptotics for zeros of sn(z, f) were extended to the Mittag-Leffler functions and to
L-functions.

Recall that F (z) is called an L-function if it satisfies the following two conditions.
(A) The function F (z) is entire of order λ (0 < λ < 1) and all its zeros are real and negative:

F (z) = F (0)
∞∏

k=1

(
1 +

z

xk

)
=

∞∑
j=0

ajz
j , where 0 < xk,

∞∑
k=1

x−1
k < +∞, F (0) > 0; (1.3)

(B) Along the positive axis

lnF (r) = lnM(r, F ) = B1r
λ(1 + o(1)), B1 > 0, r −→ ∞. (1.4)
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G. Szegö in [8] considered a more general problem of the asymptotic distribution of the zeros of the linear
combination

In(z, μ, f) = (1 − μ)sn(z, f) − μtn+1(z, f) (1.5)

when μ ∈ C. Evidently, In(z, 0, f) = sn(z, f) and In(z, 1, f) = −tn+1(z, f). G. Szegö in [8] proved a
remarkable theorem related to the asymptotic behavior of the roots of the equation

In(z, μ, ez) = 0 .

It was discovered by G. Szegö that the set of all zeros of

In(z, μ, ez) , μ �= 0, 1,

is approximately equal to {nz : |ze1−z| = 1}, the set of all zeros of sn(z, ez) is approximately equal to
{nz : |ze1−z| = 1, |z| ≤ 1}, the set of all zeros of tn(z, ez) is approximately equal to {nz : |ze1−z| = 1,
|z| ≥ 1}.

A survey of investigations prior to 1997 on several aspects of the distribution of zeros of sections and tails is
given by I. V. Ostrovskii in [6].

In [9], the zero distribution of linear combinations (1.5) of Mittag-Leffler functions was considered. The
results obtained in [9] extend some results of A. Edrei, E. B. Saff, and R. S. Varga [2] on the zero distribution of
sections sn(z, f) of Mittag-Leffler functions.

The following problem seems to be of interest. Is it possible to extend the results of A. Edrei, E.B. Saff
and R.S. Varga [2] on the zero distribution of sections sn(z, f) of L-functions to the zero distribution of linear
combinations (1.5) of L-functions?

Below we present the main result of [2] on L-functions (see [2], p. 21).

Theorem A. Let F (z) be an L-function of order λ.
I. Define the sequence {Rm}m by the conditions

a(Rm) = m (m = 1, 2, 3, . . .), where a(r) = r
F ′(r)
F (r)

. (1.6)

Let erfc(ζ) denote the complementary error function

erfc(ζ) = 1 − 2√
π

ζ∫
0

e−v2
dv =

2√
π

∞∫
ζ

e−v2
dv .

Then, if ζ is an auxiliary complex variable, we have

sm

(
Rm

(
1 +

(
2

λm

)1/2
ζ
)
, F
)

F (Rm)
(
1 +

(
2

λm

)1/2
ζ
)m −→ 1

2
exp
(
ζ2
)
erfc(ζ), (1.7)

uniformly on every compact set of the ζ-plane.
II. With every given φ (0 < |φ| < π) it is possible to associate a real sequence {σm(φ)} such that

lim
m→∞σm(φ) = σ(φ),

where σ = σ(φ) is the unique solution in (0, 1) of the equation
(i)

σλ cos(φλ) − 1 − λ lnσ = 0;

(ii) write

ξm = ξm(φ) = σm(φ)eiφ, ξ = σ(φ)eiφ, Lm = (2πλm)1/2ξ−m
m {F (Rm)}−1;
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then the polynomials in ζ

Lmsm

(
Rmξm

(
1 +

ζ

m(1 − ξλ)

))
(1.8)

are uniformly bounded on every compact set of the ζ-plane.
III. Every limit function of the polynomials in (1.8) is of the form

exp

(
ζ

1 − ξλ

){
eiχe−ζ − ξ

1 − ξ

}
= Zχ(ζ),

where the real quantity χ may depend on the particular sequence of integers through which m→ +∞.

For any L-function F of order λ, let Mn(μ, F ), μ ∈ C, be the set of all roots of the equation

In(Rnz, μ, F ) = 0,

where

In(Rnz, μ, F ) = (1 − μ)sn(Rnz, F ) − μtn+1(Rnz, F ).

In particular, Mn(0, F ) (Mn−1(1, F )) coincides with the zero set of sn(Rnz, F ) (tn(Rn−1z, F )). Define
M(μ, F ) to be the set of all accumulation points of

⋃∞
n=1 Mn(μ, F ).

It follows from Theorem A, parts II and III, that

{z = σeiφ : σλ cos(φλ) − 1 − λ lnσ = 0, 0 < σ < 1, 0 < |φ| < π} ⊂ M(0, F ) (1.9)

for any L-function F .
The following problem seems to be of interest. Does the embedding (1.9) remain in force if we replace

M(0, F ) by M(μ, F ) when μ ∈ C? In the present paper we study the zero distribution of the linear combination
In(Rnz, μ, F ) of the Lindelöf classical functions

Γλ(z) =
∞∏

n=1

(
1 +

z

n1/λ

)
, 0 < λ < 1, (1.10)

and show that for Lindelöf classical functions (not arbitrary L-function) the embedding (1.9) can be extended to
all μ in C, and moreover, changed to equality. To our knowledge, for arbitrary L-function the answer to the above
question is still open.

2 Main curves and regions

To formulate the main result of the paper we need to introduce some curves and regions. For any λ satisfying
0 < λ < 1, and h, being sufficiently small, denote

S(λ, h) = {z = reiφ : rλ cos(λφ) − λ ln r − 1 = h, |φ| ≤ π}.
Clearly, S(λ, h) is symmetric with respect to the x-axis. We have, if z = reiφ ∈ S(λ, h),

cos(λφ) = g(r, h) =
1 + h+ λ ln r

rλ
.

Since dg(r,h)
dr = −λ(h+λ ln r)

rλ+1 , then g(r, h) increases when r ∈ (0, e−h/λ
)

and decreases when r ∈ (e−h/λ,∞).
We give rough shapes of the curves S(λ, h) in three different cases (when h = 0, h > 0 and h < 0) in Fig. 1,
Fig. 2 and Fig. 3.

Let us fix constants λ and h, 0 < λ < 1, h ≥ 0. Note that the curve S(λ, h) divides the complex plane C into
three different regions. Denote by Ih and IIh two of these three regions. Namely, let Ih be the region containing
z = 0 and let IIh be the region that contains neither z = 0 nor −1. Curve S(λ,−h) divides the complex plane
C into two different regions. Denote by IIIh that region that does not contain z = 0. We give rough sketches of
the regions Ih, IIh and IIIh in Fig.4.

If 0 < ε1 < π, we define

Δ = Δ(ε1) = {z = reiφ : |φ| ≤ π − ε1, r > 0}. (2.1)
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�0 � 1 �0 � 1 �0 � 1

Fig. 1 Curves S(λ, 0) for 0 < λ < 1/2, λ = 1/2 and 1/2 < λ < 1 respectively.

�0 �0 �0

Fig. 2 Curves S(λ, h) with h > 0 for 0 < λ < 1/2, λ = 1/2 and 1/2 < λ < 1 respectively

3 Results

The first theorem we prove shows regions where zeros of Im(Rmw, μ,Γλ) may be.

Theorem 3.1 Let Γλ(z) be a Lindelöf classical function of order λ (0 < λ < 1). Suppose that μ �= 0. Then,
if δ, ε1 and h are sufficiently small positive constants, Im(Rmw, μ,Γλ) does not vanish in (I0∪II0∪IIIh)∩Δ,
for all sufficiently large m.

Theorem 3.1 implies that the zeros of Im(Rmw, μ,Γλ) may lie only in the vicinity of the curve S(λ, 0) and
the ray arg z = π. The proof of Theorem 3.1 is given in Section 5. The case μ = 0 was studied in [2] not only
for the classical Lindelöf function Γλ(z) but for any L-function (see Theorem A above).

We define

M∗(μ,Γλ) = M(μ,Γλ)\{z : arg z = π}.
The following remark is a corollary of Theorem 3.1.
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�0 � 1 �0 � 1 �0 � 1

Fig. 3 Curves S(λ, h) with h < 0 for 0 < λ < 1/2, λ = 1/2 and 1/2 < λ < 1 respectively

� �IIIh Ih

IIh

� �IIIh Ih

IIh

� �IIIh Ih

IIh

Fig. 4 Regions Ih, IIh and IIIh for 0 < λ < 1/2, λ = 1/2 and 1/2 < λ < 1 respectively

Remark 3.2

M∗(μ,Γλ) ⊂ S(λ, 0). (3.1)

The next theorem shows that each point on the curve S(λ, 0) is an accumulation point of zeros of
Im(Rmz, μ,Γλ) when μ ∈ C\{0, 1}.

Theorem 3.3 Let ξ = ξ(φ) = |ξ|eiφ, 0 < |φ| < π, be a fixed point on the curve S(λ, 0). We define
τ = |ξ|λ sin(λφ) − λφ, and let the sequences {τm}∞m=1 and {εm(ζ)}∞m=1 be defined by the conditions

τm ≡ τ

λ
m(mod 2π), −π < τm ≤ π,

and

εm(ζ) =
logm

2(1 − ξλ)m
− ζ − iτm

(1 − ξλ)m
.
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Then, as m→ ∞,

Im(Rmξ(1 + εm(ζ)), μ,Γλ)
(

2m1+λ sin(πλ)
λ1−λe

) 1
2λ (2π)

1
2

ξm(1 + εm(ζ))me
m
λ

−→

⎧⎪⎪⎨
⎪⎪⎩

α(ξ)eζ − ξ

1 − ξ
, if |ξ| < 1;

β(ξ)eζ − ξ

1 − ξ
, if |ξ| > 1

uniformly on every compact set of the ζ-plane, where

α(ξ) = (1 − μ)
(

2πλ
ξ

) 1
2

e
ξλ−1
2λ , β(ξ) = −μ

(
2πλ
ξ

) 1
2

e
ξλ−1
2λ .

The proof of Theorem 3.3 is given in Section 6. To prove Theorem 3.3 we repeat the proof of Theorem 2
from [2] with slight modifications.

The next result is a corollary of Theorems 3.1 and 3.3.

Corollary 3.4 One has:
(i) M∗(0,Γλ) = S(λ, 0) ∩ {z : |z| ≤ 1},

(ii) M∗(1,Γλ) = S(λ, 0) ∩ {z : |z| ≥ 1},
(iii) M∗(μ,Γλ) = S(λ, 0) for μ �= 0, 1.

The next result shows how quickly the zeros of Im(Rmw, μ, F ) approach the point w = 1 for arbitrary
L-function F .

Theorem 3.5 Let F (z) be an L-function of order λ (0 < λ < 1). Then, as m→ ∞,

Im

(
Rm

(
1 +

(
2

λm

)1/2
ζ
)
, μ, F

)
F (Rm)

(
1 +

(
2

λm

)1/2
ζ
)m −→ exp(ζ2)

(
erfc(ζ)

2
− μ

)
(3.2)

uniformly on every compact set of the ζ-plane.

Theorem 3.5 can be viewed as an extension of part I of Theorem A and is an easy corollary of part I of
Theorem A. The proof of Theorem 3.5 is given in Section 7.

4 Preliminaries

Let the functions F (z) and Γλ(z) be given by (1.3) and (1.10) respectively. We mention without proof properties
of the functions F (z) and Γλ(z) which the reader can find in [2], [3] and [4].

1) It is known that (see [2], p. 90)

lnF (z) = B1z
λ(1 + η(z)) (4.1)

and

z
F ′(z)
F (z)

= B1λz
λ(1 + η(z)), (4.2)

where η(z) → 0 uniformly in Δ, as z → ∞.
Also (see [3], p. 158)

Γλ(z) =
e

πzλ

sin πλ +ν(z)

z
1
2 (2π)

1
2λ

, (4.3)
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where zν(z) is uniformly bounded in Δ, as z → ∞.
2) Using (4.3) we can easily calculate the indicator function of the classical Lindelöf function Γλ (see [5],

p. 53). It is

hΓλ
(θ) =

π

sinπλ
cosλθ, −π < θ < π.

Since the indicator function of an entire function of finite order and finite type is a continuous function then

hΓλ
(θ) =

π

sinπλ
cosλθ, θ ∈ [−π, π].

It follows (see [5], p. 56) that

|Γλ(reiθ)| < e(
π cos λθ
sin πλ +α)rλ

(4.4)

for all r > r(α) and when θ ∈ [−π, π], where α is sufficiently small.
3) Let the sequence {Rm}m be defined by conditions (1.6). Then (see [2], p. 93)

Rm =
{

m

B1λ

}1/λ

(1 + o(1)), m −→ ∞, (4.5)

and

amRm
m =

F (Rm)
(2πλm)1/2

(1 + o(1)), m −→ ∞. (4.6)

Using (1.6) and (4.3), for Γλ(z) we have,

Rλ
m =

(m+ (1/2)) sin(πλ)
πλ

+ o(1), m −→ ∞, (4.7)

R1/2
m =

(
m sin(πλ)

πλ

)1/(2λ)

(1 + o(1)), m −→ ∞. (4.8)

It follows from (4.3), (4.7) and (4.8) that

Γλ(Rmw) =
e

mwλ

λ

m
1
2λ

(
λewλ

2wλ sin(πλ)

) 1
2λ

(1 + o(1)), m −→ ∞. (4.9)

It follows from (4.6) and (4.9) that for Γλ(z) we have

amRm =
e

m
λ

(2π)
1
2

(
λ1−λe

2m1+λ sin(πλ)

) 1
2λ

(1 + o(1)), m −→ ∞ . (4.10)

4) Let w satisfy |w − 1| ≤ η < 1/2. Then (see [2], p. 96), as m→ ∞,

F (Rmw) = F (Rm)exp

{
(w − 1)m+

(w − 1)2

2
m(λ− 1 + o(1)) + (w − 1)3mη(m,w)

}
, (4.11)

where the sequence {η(m,w)}m is uniformly bounded in {w : |w − 1| ≤ η}.
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5 Proof of Theorem 3.1

To prove Theorem 3.1 we will find the asymptotic behavior of Im(Rmw, μ,Γλ) in regions Ih, IIh and IIIh. We
rewrite Im(Rmw, μ,Γλ) as

Im(Rmw, μ,Γλ) = (1 − μ)Γλ(Rmw) − tm+1(Rmw,Γλ). (5.1)

Since the asymptotic behavior of Γλ(Rmw) is known (see (4.9)), then the problem of finding the asymptotic
behavior of Im(Rmw, μ,Γλ) is reduced to the problem of finding the asymptotic behavior of tm+1(Rmw,Γλ).

Suppose that w ∈ Δ ∩ {w : |w| ≤ C} for some constant C. By Cauchy’s integral formula,

tm+1(Rmw,Γλ) =
Rm+1

m wm+1

2πi

∮
|ξ|=2Rm|w|

Γλ(ξ)
ξm+1(ξ −Rmw)

dξ.

Since

1
ξ −Rmw

= − 1
Rmw

+
ξ

Rmw(ξ −Rmw)
,

then

tm+1(Rmw,Γλ) = −R
m
mw

m

2πi

∮
|ξ|=2Rm|w|

Γλ(ξ)
ξm+1

dξ +
Rm

mw
m

2πi

∮
|ξ|=2Rm|w|

Γλ(ξ)
ξm(ξ −Rmw)

dξ

=: A1 +
Rm

mw
m

2πi

∮
|ξ|=2Rm|w|

Γλ(ξ)
ξm(ξ −Rmw)

dξ,

(5.2)

where, due to (4.10),

A1 = −amR
m
mw

m = −w
me

m
λ

(2π)
1
2

(
λ1−λe

2m1+λ sin(πλ)

) 1
2λ

(1 + o(1)), m −→ ∞. (5.3)

Further, we study separately two different cases:
Case 1): w ∈ G1 = {|w| > 1 − δ

2 , |w − 1| > δ} ∩ Δ,
Case 2): w ∈ G2 = {|w| ≤ 1 − δ

4 , |w − 1| > δ} ∩ Δ.
Note that G1 ∩G2 = C ∩ Δ ∩ {w : |w − 1| > δ}.

Case 1). Suppose that w ∈ G1. By (5.2),

tm+1(Rmw,Γλ) = A1 +
Rm

mw
m

2πi

∮
|ξ|=Rm|w|/2

Γλ(ξ)
ξm(ξ −Rmw)

dξ + Γλ(Rmw)

=: A1 +A2 +A3,

(5.4)

where

A2 =
Rm

mw
m

2πi

∮
|ξ|=Rm|w|/2

Γλ(ξ)
ξm(ξ −Rmw)

dξ, A3 = Γλ(Rmw). (5.5)

It follows from (4.9), as m→ ∞, that

A3 =
e

mwλ

λ

m
1
2λ

(
λewλ

2wλ sin(πλ)

) 1
2λ

(1 + o(1))

=
wme

m
λ e

m
λ (wλ−λ ln w−1)

m
1
2λ

(
λewλ

2wλsin(πλ)

) 1
2λ

(1 + o(1)).

(5.6)

We will find the asymptotic expression for the integral A2 in in the following three steps:
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Step 1): change the contour of integration of A2;
Step 2): show that the main contribution to A2 comes from the neighborhood of the point ζ = Rm.
Step 3): find an asymptotic expression for A2 by using Laplace’s Method for contour integrals.
Consider the curve (see Fig. 5)

T (λ) =
{
z = reiφ : rλ =

λφ

sin(λφ)
, |φ| ≤ π

}

0� �1

Fig. 5 Curve T (λ)

Case 1, Step 1. Curves S
(
λ,−h

2

)
and T (λ) have two points of intersection, say z1 and z2. We have, z1 = deiγ

and z2 = de−iγ , where γ ∼
√

h
λ and dλ ∼

√
h

sin
√

h
, as h→ 0. Define

l1 = T (λ) ∩ {z : |z| ≤ d},
l2 = S(λ,−h

2 ) ∩ {z : |z| ≤ d},
For sufficiently small positive h, we have

A2 =
Rm

mw
m

2πi

∮
|ξ|=Rm(1−δ/2)

Γλ(ξ)
ξm(ξ −Rmw)

dξ

=
Rm

mw
m

2πi

∮
Rml1∪Rml2

Γλ(ξ)
ξm(ξ −Rmw)

dξ

=
wm

2πi

∮
l1∪l2

Γλ(Rmt)
tm(t− w)

dt

=
wm

2πi

⎛
⎝∫

l1

+
∫
l2

⎞
⎠ Γλ(Rmt)
tm(t− w)

dt

=: A21 +A22,

(5.7)

where

A21 =
wm

2πi

∫
l1

Γλ(Rmt)
tm(t− w)

dt and A22 =
wm

2πi

∫
l2

Γλ(Rmt)
tm(t− w)

dt.

Case 1, Step 2. It follows from (4.4) and (4.7) that for t = |t|eiφ we have,

|Γλ(Rmt)| = |Γλ(Rm|t|eiφ)| ≤ e(
π cos λφ
sin πλ +α)Rλ

m|t|λ

= e(
π cos λφ
sin πλ +α)( m sin πλ

πλ + sin πλ
2πλ +o(1))|t|λ = e

m
λ (cos λφ+β)|t|λ ,

(5.8)
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where β is sufficiently small, m ≥ m(β). Therefore, since �(tλ − λ ln t− 1) = −h
2 for t ∈ l2, we have

|A22| =

∣∣∣∣∣∣
wm

2πi

∫
l2

Γλ(Rmt)
tm(t− w)

dt

∣∣∣∣∣∣
≤ Const|w|m

∫
l2

e
m
λ (|t|λ cos λφ−λ ln |t|+β|t|λ)d|t|

= |w|mo
(
e

m
λ (1−h

4 )
)
.

(5.9)

Case 1, Step 3. The estimation of A21 is more complicated than that of A22. By (4.9),

Γλ(Rmt)
tm

=
e

m
λ e

m
λ (tλ−λ ln t−1)

m
1
2λ

(
λetλ

2tλ sin(πλ)

) 1
2λ

(1 + o(1)), m −→ ∞,

where t ∈ Δ. Thus, since �(tλ − λ ln t− 1) = 0 for t ∈ l1 we have

A21 =
wme

m
λ λ1/(2λ)

2πi(2 sin(πλ)m)1/(2λ)

∫
l1

(
etλ

tλ

)1/(2λ)
e

m
λ (|t|λ cos(λ arg t)−λ ln |t|−1)(1 + o(1))

t− w
dt. (5.10)

Further we use the following lemma.

Lemma 5.1 Suppose that |w − 1| ≥ δ and let p(t) be analytic in some neighborhood of t = 1. Then for
sufficiently small positive h,

∫
l1

e
m
λ (tλ−λ ln t−1)p(t)

t− w
dt =

i
√

2πp(1)(1 + o(1))
λ

1
2 (1 − w)m1/2

, m −→ ∞.

P r o o f. Note that the function v = −tλ + λ ln t+ 1 maps the region

{t : |t− 1| < 1/2} ∩ {t : |t|λ sin(λ arg(t)) − λ arg(t) > 0}

conformally onto some neighborhood of 0 in the v-plane cut along the positive ray. Denote this neighborhood by
U . In particular, the image of the curve l1 is the segment

[
0, h

2

]
traced twice, since

�(tλ − λ ln t− 1) = 0

for t ∈ l1 and the end points zi, i = 1, 2, of l1 satisfy the condition �(zλ
i − λ ln zi − 1) = −h

2 , i = 1, 2. Rewrite

∫
l1

e
m
λ (tλ−λ ln t−1)p(t)

t− w
dt =

∫
D
e−

m
λ vf(v) dv,

where v = −tλ + λ ln t+ 1, f(v) dv = p(t)
t−w dt, or equivalently, f(v) = tp(t)

λ(t−w)(1−tλ) , and D = D1 ∪D2, where
D1 is the upper side of the segment [0;h/2] following the direction of the decrease of v and D2 is the lower side
of the segment [0;h/2] following the direction of the increase of v.

The transformation χ =
√
v maps U onto {χ : Imχ > 0} ∩ V for some neighborhood V of the origin. We

have

χ2 = −tλ + λ ln t+ 1 = −λ
2

2
(t− 1)2ψ(t),
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where ψ(t) is an analytic function in some neighborhood of t = 1 and ψ(1) = 1. Then

χ =
λ√
2
i(t− 1)ψ1(t),

where ψ1(t) is an analytic function in some neighborhood of t = 1 and ψ1(1) = 1. Since χ is analytic in a
neighborhood of t = 1 and χ′(1) = λi√

2
�= 0, the inverse function t(χ) is analytic in a neighborhood of χ = 0,

and hence the following function

g(χ) := χf(χ2) =
i(t− 1)ψ1(t)tp(t)√
2(t− w)(1 − tλ)

= − iψ1(t)tp(t)√
2λ(t− w)

(1 + o(1)), |t| −→ 1,

is analytic in some neighborhood of χ = 0, say |χ| ≤ C, whereC is a constant not depending onw. If |χ| < C/2,
then

g(χ) =
1

2πi

∫
|ζ|=C

g(ζ)
ζ − χ

dζ

=
1

2πi

∫
|ζ|=C

g(ζ)
ζ
dζ +

χ

2πi

∫
|ζ|=C

g(ζ)
ζ(ζ − χ)

dζ

= g(0) + χα(χ)

= − ip(1)√
2λ(1 − w)

+ χα(χ),

where α(χ) is a function analytic in |χ| < C/2, and

|α(χ)| ≤
2πC max

|ζ|=C
|g(ζ)|

2πC2/2
≤ C3,

where C3 is a constant. This implies that f(v) = g(0)v−1/2 +α(v1/2) in some neighborhood of v = 0 cut along
the positive ray. Let h be so small that h/2 < C4

16 . Then

∫
D
e−

m
λ vf(v) dv = g(0)

∫
D
e−

m
λ vv−1/2 dv +

∫
D
e−

m
λ vα(v1/2) dv =: g(0)J1 + J2.

Note that

J2 =
∫
D
e−

m
λ vα(v1/2) dv = O

(
1
m

)
, m −→ ∞,

and

J1 =
∫
D
e−

m
λ vv−1/2 dv =

1

(m/λ)1/2

∫
m
λ D

e−uu−1/2 du = −2Γ
(

1
2

)
(1 + o(1))

(m/λ)1/2
, m −→ ∞.

Thus,

∫
D
e−

m
λ vf(v) dv =

i
√

2πp(1)(1 + o(1))

λ(1 − w)
(

m
λ

)1/2
, m −→ ∞.
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It follows from (5.10) and Lemma 5.1 that as w ∈ G1,

A21 =
wme

m
λ

(2π)1/2(1 − w)

(
λ1−λe

2mλ+1 sin(πλ)

)1/(2λ)

(1 + o(1)), m −→ ∞. (5.11)

Therefore, by (5.7), (5.9) and (5.11), as w ∈ G1,

A2 =
wme

m
λ

(2π)1/2(1 − w)

(
λ1−λe

2mλ+1 sin(πλ)

)1/(2λ)

(1 + o(1)), m −→ ∞,

and hence, due to (5.4), (5.3), (5.6), as w ∈ G1

tm+1(Rmw,Γλ) = A1 +A2 +A3

=
wm+1e

m
λ

(2π)1/2(1 − w)

(
λ1−λe

2mλ+1 sin(πλ)

)1/(2λ)

(1 + o(1))

+
wme

m
λ e

m
λ (wλ−λ ln w−1)

m
1
2λ

(
λewλ

2wλsin(πλ)

) 1
2λ

(1 + o(1)), m −→ ∞.

(5.12)

It follows from (5.1), (4.9) and (5.12) that

Im(Rmw, μ,Γλ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− wm+1e
m
λ

(2π)1/2(1 − w)

(
λ1−λe

2mλ+1 sin(πλ)

)1/(2λ)

(1 + o(1)), w ∈ IIIh ∩G1;

−μw
me

m
λ e

m
λ (wλ−λ lnw−1)

m
1
2λ

(
λewλ

2wλsin(πλ)

) 1
2λ

(1 + o(1)), w ∈ II0.

(5.13)

Case 2). Suppose that w ∈ G2. By (5.2),

tm+1(Rmw,Γλ) = A1 +
Rm

mw
m

2πi

∮
|ξ|=2Rm|w|

Γλ(ξ)
ξm(ξ −Rmw)

dξ

= A1 +
wm

2πi

∮
|t|=2|w|

Γλ(Rmt)
tm(t− w)

dt

:= A1 +A4.

(5.14)

To find an asymptotic expression for A4, we will follow the same three steps that we did to find the asymptotic
expression for integral A2.

Case 2, Step 1. Note that the curve S
(
λ,−h

2

)
intersects the circle

{
z : |z| = 1 − δ

8 =: d2

}
at two points, say

z5 = d2e
iγ1 and z6 = d2e

−iγ1 . We write

l3 = S
(
λ,−h

2

) ∩ {z : d2 ≤ |z| ≤ d}, l4 = {z = d2e
iφ, γ1 ≤ φ ≤ 2π − γ1},

where d is the same constant that we introduced while considering the curves l1 and l2.
We have,

A4 =
wm

2πi

∮
l1∪l3∪l4

Γλ(Rmt) dt
tm(t− w)

=
wm

2πi

⎛
⎝∫

l1

+
∫
l3

+
∫
l4

⎞
⎠ Γλ(Rmt) dt

tm(t− w)

=: A21 +A43 +A44,

(5.15)
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where

A43 =
wm

2πi

∫
l3

Γλ(Rmt) dt
tm(t− w)

and A44 =
wm

2πi

∫
l4

Γλ(Rmt) dt
tm(t− w)

.

Case 2, Steps 2 and 3. Recall that the asymptotic expression forA21 was found in (5.11). The same arguments
that we used to estimate integral A22 show that

A43 = wmo
(
e

m
λ (1−h

4 )
)
, m −→ ∞. (5.16)

Using the inequality (5.8), we have

|A44| ≤ Const|w|m e
m
λ (cos λγ1+β)|1− δ

8 |λ

|1 − δ
8 |m

= |w|mo
(
e

m
λ (1−h

4 )
)
, m −→ ∞, (5.17)

for sufficiently small δ and h.
It follows from (5.15), (5.11), (5.16) and (5.17) that as w ∈ G2,

A4 =
wme

m
λ

(2π)1/2(1 − w)

(
λ1−λe

2mλ+1 sin(πλ)

)1/(2λ)

(1 + o(1)), m −→ ∞, (5.18)

and hence, by (5.14), (5.3), (5.18), as w ∈ G2

tm+1(Rmw,Γλ) = A1 +A4

=
wm+1e

m
λ

(2π)1/2(1 − w)

(
λ1−λe

2mλ+1 sin(πλ)

)1/(2λ)

(1 + o(1)), m −→ ∞.
(5.19)

It follows from (5.1), (4.9) and (5.19) that, as m→ ∞,

Im(Rmw, μ, Γλ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− wm+1e
m
λ

(2π)1/2(1 − w)

(
λ1−λe

2mλ+1 sin(πλ)

)1/(2λ)

(1 + o(1)), w ∈ IIIh ∩ G2;

(1 − μ)
wme

m
λ e

m
λ

(wλ−λ ln w−1)

m
1
2λ

(
λewλ

2wλsin(πλ)

) 1
2λ

(1 + o(1)), w ∈ I0.

(5.20)

Theorem 3.1 is an immediate corollary of (5.13) and (5.20).
It follows from (5.12) and (5.19) that tm+1(Rmw,Γλ) does not have zeros in {w : |w| ≥ 1, |w − 1| ≥ δ}, as

m→ ∞. �

6 Proof of Theorem 3.3

We suppose that ξ ∈ S(0, λ) and that |ξ| < 1. By (5.1), (4.9) and (5.19) we have,

Im(Rmξ(1 + εm(ζ)), μ,Γλ)

= (1 − μ)
e

mξλ(1+εm(ζ))λ

λ

m
1
2λ

(
λeξλ(1+εm(ζ))λ

2ξλ(1 + εm(ζ))λ sin(πλ)

) 1
2λ

(1 + o(1))

− ξ(1 + εm(ζ))ξm(1 + εm(ξ))me
m
λ

(1 − ξ − ξεm(ζ))(2π)
1
2

(
λ1−λe

2mλ+1 sin(πλ)

) 1
2λ

(1 + o(1))

=
ξm(1 + εm(ζ))me

m
λ

(2π)
1
2

(
λ1−λe

2m1+λ sin(πλ)

) 1
2λ

(1 + o(1))

×
⎛
⎝(1 − μ)

e
m
λ (ξλ(1+εm(ζ))λ−λ ln(ξ(1+εm(ζ))−1)m

1
2 e

ξλ(1+εm(ζ))λ

2λ (2πλ)
1
2

ξ
1
2 (1 + εm(ζ))

1
2 e

1
2λ

− ξ(1 + εm(ζ))
1 − ξ − ξεm(ζ)

(1 + o(1))

⎞
⎠

=

(
(1 − μ)

(
2πλ
ξ

) 1
2

e
ξλ−1
2λ e

m
λ (ξλ(1+εm(ζ))λ−λ ln(ξ(1+εm(ζ))−1+ λ ln m

2m )(1 + o(1)) − ξ

1 − ξ
(1 + o(1))

)
C,
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where

C =
ξm(1 + εm(ζ))me

m
λ

(2π)
1
2

(
λ1−λe

2m1+λ sin(πλ)

) 1
2λ

.

Since ξ = |ξ|eiφ ∈ S(λ, 0) and τm = m
λ τ + 2πk for some k in Z, we have

ξλ(1 + εm(ζ))λ − λ ln ξ − λ ln(1 + εm(ζ)) − 1 +
λ lnm
2m

= ξλ − λ ln ξ − 1 + ξλ((1 + εm(ζ))λ − 1) − λ ln(1 + εm(ζ)) +
λ lnm
2m

= i(|ξ|λ sinλφ− λφ) + ξλ

(
λ lnm

2(1 − ξλ)m
− λζ − λiτm

(1 − ξλ)m
+ o

(
1
m

))

− λ lnm
2(1 − ξλ)m

+
λζ − iλτm
(1 − ξλ)m

+
λ lnm
2m

=
λζ

m
− i

2λπk
m

+ o

(
1
m

)

for some integer k. Therefore, for ξ ∈ S(λ, 0) and |ξ| < 1, as m→ ∞

Im(Rmξ(1 + εm(ζ)), μ,Γλ)
C

−→ (1 − μ)
(

2πλ
ξ

) 1
2

e
ξλ−1
2λ eζ − ξ

1 − ξ
.

We suppose that ξ ∈ S(λ, 0) and that |ξ| > 1. Then, by (5.1), (4.9) and (5.12),

Im(Rmξ(1 + εm(ζ)), μ,Γλ)

= −μe
mξλ(1+εm(ζ))λ

λ

m
1
2λ

(
λeξλ(1+εm(ζ))λ

2ξλ(1 + εm(ζ))λ sin(πλ)

) 1
2λ

(1 + o(1))

− ξ(1 + εm(ζ))ξm(1 + εm(ξ))me
m
λ

(1 − ξ − ξεm(ζ))(2π)
1
2

(
λ1−λe

2mλ+1 sin(πλ)

) 1
2λ

(1 + o(1)) .

The expression for

Im(Rmξ(1 + εm(ζ)), μ,Γλ)

with |ξ| > 1 differs from the expression for

Im(Rmξ(1 + εm(ζ)), μ,Γλ)

with |ξ| < 1 only by one coefficient, namely, instead of (1−μ) we have μ. The same calculations that were done
for Im(Rmξ(1 + εm(ζ)), μ,Γλ) with |ξ| < 1 show that, as m→ ∞,

Im(Rmξ(1 + εm(ζ)), μ,Γλ)
C

−→ −μ
(

2πλ
ξ

) 1
2

e
ξλ−1
2λ eζ − ξ

1 − ξ
.

This completes the proof of Theorem 3.3. �

7 Proof of Theorem 3.5

By (4.11), as m→ ∞,

lnF

(
Rm

(
1 +

(
2
λm

)1/2

ζ

))
− lnF (Rm) =

(
2
λm

)1/2

ζm+
ζ2(λ− 1 + o(1))

λ
+ o(1).
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Hence,

ln
F
(
Rm

(
1 +

(
2

λm

)1/2
ζ
))

(
1 +

(
2

λm

)1/2
ζ
)m

F (Rm)
= ζ2 + o(1), m −→ ∞,

and then, by (1.7), as m→ ∞,

tm+1

(
Rm

(
1 +

(
2

λm

)1/2
ζ
)
, F
)

(
1 +

(
2

λm

)1/2
ζ
)m

F (Rm)

=
F
(
Rm

(
1 +

(
2

λm

)1/2
ζ
))

(
1 +

(
2

λm

)1/2
ζ
)m

F (Rm)
−
sm

(
Rm

(
1 +

(
2

λm

)1/2
ζ
)
, F
)

(
1 +

(
2

λm

)1/2
ζ
)m

F (Rm)

−→ exp{ζ2} − 1
2

exp{ζ2}erfc(ζ),

(7.1)

uniformly on every compact set of the ζ-plane. Theorem 3.5 follows immediately from (1.5), (1.7) and (7.1). �
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