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Abstract

Rapidly accumulating literature has proven feasibility of the zebrafish xenograft models in cancer research.
Nevertheless, online databases for searching the current zebrafish xenograft literature are in great demand.
Herein, we have developed a manually curated database, called ZenoFishDb v1.1 (https://konulab.shinyapps.io/
zenofishdb), based on R Shiny platform aiming to provide searchable information on ever increasing collection
of zebrafish studies for cancer cell line transplantation and patient-derived xenografts (PDXs). ZenoFishDb v1.1
user interface contains four modules: DataTable, Visualization, PDX Details, and PDX Charts. The DataTable
and Visualization pages represent xenograft study details, including injected cell lines, PDX injections, mo-
lecular modifications of cell lines, zebrafish strains, as well as technical aspects of the xenotransplantation
procedures in table, bar, and/or pie chart formats. The PDX Details module provides comprehensive infor-
mation on the patient details in table format and can be searched and visualized. Overall, ZenoFishDb v1.1
enables researchers to effectively search, list, and visualize different technical and biological attributes of
zebrafish xenotransplantation studies particularly focusing on the new trends that make use of reporters, RNA
interference, overexpression, or mutant gene constructs of transplanted cancer cells, stem cells, and PDXs, as
well as distinguished host modifications.
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Introduction

Tumor xenograft models, particularly of rodents, have
long been used in scientific research.1–4 Today’s state-of-

the-art technologies allow use of transgenic rodent models in
cancer research through cell line-derived xenotransplanta-
tion5 and transplantation of patient-derived xenografts
(PDXs).5,6 Innumerable xenograft studies performed in ro-
dents have resulted in great demand for established biblio-
theca where information from them could be entered and
updated collectively providing easy access. Accordingly,
several databases or tools exhibiting collection of rodent
xenotransplantation studies have been developed, and they
mainly focus on PDX studies in mouse models.7–10 For ex-
ample, MTB (Mouse Tumor Biology)7 provides information
on tumor, strain, genetic architecture, pathology images, and
gene expression datasets, as well as providing a link to The
Jackson Laboratory and EMBL-EBI joint project, PDX

Finder.11 In addition, organ specific xenograft databases of
mouse models are also present,9 while a commercial xeno-
graft cell line database by Taconic Biosciences, Inc.,12 pro-
vides another platform for cell-line specific transplantations.

Zebrafish is a valuable vertebrate model organism that has
more recently emerged in the xenograft field.13 The use of
zebrafish embryos in xenotransplantation has generated no-
vel avenues for researchers to explore different aspects of
basic and applied sciences, including cancer biology as re-
viewed in the literature.14–16 Moreover, xenograft studies in
zebrafish offer enormous benefits and a broad range of ap-
plications since effects of transient or stable modifications in
immortalized or primary cell lines can be tested during em-
bryogenesis/organogenesis. In particular, the modifications
introduced by overexpression vectors,17–19 as well as RNA
interference technologies,20,21 help identify gene- and/or
mutation-specific effects on tumor characteristics in vivo in
zebrafish. However, the increasing number of zebrafish
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xenograft studies in cancer biology has made systematic
analysis and curation necessary.

Herein, first ever zebrafish-specific xenograft database,
ZenoFishDb v1.1, has been generated using Shiny package22

in the R programming environment23 with a particular focus
on zebrafish transplantation studies of molecularly modified
cells, PDXs, and cancer stem cells (CSCs), as well as those
performed on modified hosts.

Materials and Methods

Contents of ZenoFishDb v1.1

We have reviewed and manually curated the literature
regarding zebrafish xenograft studies, particularly focusing
on molecular- and strain-specific modifications; and an up-
datable excel spread sheet containing different attributes
from the selected studies has been generated. Accordingly,
the data used in ZenoFishDb v1.1 include different individual
research elements/fields extracted from full texts, including
the type of cancer, injected cell line or cell type, taxonomic
species of the injected cell line, type of the molecular mod-
ification (e.g., overexpression, short hairpin RNA [shRNA],
small interfering RNA [siRNA]), official name of the modi-
fied gene, number of cells injected, injection site and time,
developmental stage of the fish, name of the injected zebra-
fish line, fluorescence source (or reporter), biological as-
sessment (e.g., invasion, angiogenesis, tumor size), type of
host strain modifications (e.g., transgenes and mutations),
and references, including PubMed IDs. The excel spread
sheet has been imported into the R environment before
parsing and processing for downstream analyses and visual-
ization processes.

Development of ZenoFishDb v1.1 using R Shiny

ZenoFishDb v1.1 is an interactive web application devel-
oped using the Shiny framework in R.22,23 The database
features four main components: DataTable, Visualization,
PDX Details, and PDX Charts.

The DataTable provides sorting, pagination, and filtering
while containing comprehensive information about xenograft
studies in ZenoFishDb v1.1 using the DT package, an R in-
terface of JavaScript library DataTables.24 In addition to the
intrinsic filtering operations done by DataTables library,
other filtering options are presented to the user upon selection
of attributes of interest and respective subselections based on
dplyr package.25

ZenoFishDb v1.1 Visualization page allows for the sta-
tistical analysis of selected data. This component of the da-
tabase operations works upon selection of a column of
interest from the uploaded excel file to display pie and/or bar
chart of the proportional distribution of the selected data
using Plotly, an open source R graphing library.26

PDX Details and PDX Charts utilize the same R packages
for tabular data manipulation and visualization as the previ-
ously aforementioned components of the application, while
expanding on the PDX study details specifically. ZenoFishDb
v1.1 is hosted and maintained online at shinyapps.io servers.
Updates are planned biannually and will be performed upon
collection and manual curation of new publications as they
arise in the zebrafish xenograft research field.

Results

ZenoFishDb v1.1: DataTable, Visualization, PDX
Details, PDX chart modules

ZenoFishDb v1.1 enables a thorough search for existing
zebrafish xenograft studies in the literature focusing on those
with molecular interventions and/or involving use of stem
cells and PDXs. With this intention, the literature has been
mined for ‘‘zebrafish xenograft,’’ ‘‘zebrafish xeno-
transplant,’’ ‘‘zebrafish xenotransplantation,’’ ‘‘zebrafish
patient derived xenograft,’’ ‘‘zebrafish xenograft microen-
vironment,’’ ‘‘zebrafish xenograft morpholino,’’ ‘‘zebrafish
xenograft crispr,’’ ‘‘zebrafish xenograft mutation,’’ ‘‘zebra-
fish xenograft primary cell,’’ and similar keywords through
NCBI PubMed search page. A total number of 211 studies
focusing on the application of molecularly modified cell,
PDX, and/or stem cell transplantations, as well as studies
with distinct host modifications and microenvironments,
have been incorporated into the current version of Zeno-
FishDb v1.1 manually. Accordingly, the reviewed literature
and curated data have been projected onto four compartments
and described in detail as follows.

The DataTable provides information on the technical and
biological details of research articles in a table format. The
origin of transplanted cancer cells and/or tissue, their ab-
breviations, species of the injected cell lines, injected cell
lines and cell lines subjected to molecular modifications,
modified genes, available PDX studies, stem cell properties
of injected cells, treatments applied to xenografts, injection
sites, original and categorized injected cell numbers, devel-
opmental stage, injection time, zebrafish strains, host modi-
fications and their details, cell tracking sources, biological
assessments, tumor assessment end points, references, and
PubMed hyperlinks are included in the DataTable. A fine-
tuned search is also available through the ‘‘Attributes’’ and
the ‘‘Subselections’’ tabs on the DataTable (Fig. 1A).

The Visualization webpage is designed to deliver graphical
and statistical data for the information displayed through the
DataTable. Herein, an attribute could be selected through the
‘‘Columns’’ tab, and the schematic representation could be
accessed through the ‘‘Bar Chart’’ and ‘‘Pie Chart’’ options.
The information provided through the page includes the
number of total variables, unique variables, and percentage of
the selected attribute. Visualization and generation of figures
can be manually adjusted through ‘‘Chart height,’’ ‘‘Legend
font size,’’ ‘‘Inside text font size,’’ and ‘‘Barplot label size’’
options, and images can be downloaded as .png files. In ad-
dition, information represented on histograms can be down-
loaded in the table format. A screenshot displaying all the
features of the Visualization module has been provided with
an example attribute, that is, ‘‘cancer/tissue of origin’’
(Fig. 1B and Supplementary Table S1).

The PDX Details module (Fig. 2A) is designated to deliver
cumulative information on the PDX studies incorporated to
ZenoFishDb v1.1. Herein, the data on patients and/or tumors,
including age/sex/ethnicity, disease name, primary site, me-
tastasis or recurrence status, treatment status, clinical infor-
mation, cytogenetic information, karyotype analysis, and other
relevant data, are provided. In addition, details about the en-
graftment have also been incorporated for each case. These
features include type of injection (patient-derived tissue en-
graftment [PDX-tissue] or tissue-derived cell line engraftment
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[PDX-cell line]), injected cell numbers, injection site, fish
strain, and injection period together with relevant PMID ID.

The PDX Charts module (Fig. 2B) has been integrated to
display the bar chart of the most frequently mentioned attri-
butes of the PDX Details module. These attributes include
detailed nature of disease, sex, primary/metastatic/recurrent
status, zebrafish line, injection period, PDX-cell line/PDX-
tissue information, and cell numbers.

Types of cancers studied using zebrafish
xenograft models

The feasibility of transplantation of immortalized cells,
PDXs, primary cells or stem cells into zebrafish embryos,

juvenile,27 and/or adult fish28 offers an exquisite opportunity
for assessing various aspects of tumor biology.29–36 Search-
ing the current version of ZenoFishDb v1.1, we have iden-
tified that breast adenocarcinoma (14.74%) is the most
studied cancer followed by multiple cancer/tissue types
(MULTIPLE) (10.76%), melanoma (8.37%), and glio-
blastoma (6.38%) (Fig. 1B and Supplementary Table S1).
Expectedly, a cell line of breast adenocarcinoma origin,
MDA-MB-231 (8.71%), accounts for the most investigated
cell line, whereas majority of the cancer types or tissue of
origins are represented by a single cell line (Supplementary
Table S2). The injected cell lines belong to human (80.51%),
mouse (14.41%), zebrafish (2.97%), rat (1.27%), goldfish
(0.42%), and dog (0.42%).

FIG. 1. DataTable and Visualization modules of ZenoFishDb v1.1. (A) Screenshot of DataTable displaying the list of the
reviewed and manually curated data in a table format. Selected articles are displayed in descending order according to their release
dates as default. Selection and subselection tabs enable fine-tuned search categories providing detailed information for the
selected items. (B) Screenshot of introductory Visualization page displaying the overview of this module with an example of
descriptive statistics of the cancer types/tissue of origin entitled with full names. Figures are available in greater detail online.
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The nature of zebrafish xenografts: molecularly
modified cells, PDXs, and stem cells

ZenoFishDb v1.1 prioritizes the molecularly modified cell
transplantations that have been useful for establishing gene
functionality in tumorigenesis37,38 and associated events such
as proliferation,39,40 invasion,41,42 angiogenesis,43,44 metas-
tasis,18,45 apoptosis,36 and cytotoxicity.46 Our thoroughly
systematized data curation emphasizes the molecular modi-
fications (e.g., cells accommodating transient and/or stable
overexpression vectors,17,47,48 interfering RNAs41,49 and/or
Crispr-Cas9/TALEN/ZFN/Cre-LoxP44,50,51 technologies)
performed in cells used for transplantation.

A ZenoFishDb v1.1 search shows that these molecular
modifications predominantly include siRNA (9.81%), shRNA

(10.94%), expression vectors (12.45%), CRISPR/Cas9 (0.38%),
and tag expression vectors (37.36%) for tracking purposes
(Fig. 3A and Supplementary Table S3). In addition, the cell lines
subjected to molecular modifications have been also separately
attributed as ‘‘modified cell lines’’ and can be displayed through
the Visualization page and are now provided in the table format
(Supplementary Table S4). Among different molecularly-
modified cell lines, MDA-MB-231 (7.19%), MCF7 (2.40%),
U-87MG (2.74%), and PDXs (2.06%) represent the commonly
modified cells in zebrafish xenograft studies incorporated into
our database.

Another highlight of ZenoFishDb v1.1 is the inclusion of
PDXs along with their clinical and genetic details when
available. Patient-derived xenografting is achieved through
direct transplantation of patient derived tissues52 or primary

FIG. 2. PDX Details and PDX Charts modules of ZenoFishDb v1.1. (A) Screenshot of the PDX Details page displaying patient
details and detailed nature of disease. (B) Screenshot of the PDX Charts displaying the graphical representation for detailed disease
nature of the transplanted tissue or primary cell line. PDX, patient-derived xenograft. Figures are available in greater detail online.
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cell cultures with minimal passage numbers53 and is ideal for
mirroring the true nature of carcinogenesis. In fact, implan-
tation of PDXs from cancerous tissues in comparison to im-
mortalized cell lines better represents patient’s genomic
status and the tumor heterogeneity.54,55 Altogether, the ad-
vantageous features of PDXs allow drug screening and de-
velopment of personalized therapy both in rodents and

zebrafish.55–57 Hence, zebrafish PDX models have also been
incorporated into ZenoFishDb v1.1 through PubMed search
using a keyword query of ‘‘zebrafish patient derived xeno-
graft’’ or ‘‘zebrafish xenograft primary cells’’ keywords. This
has revealed the various types of cancers used in such studies,
including breast cancer bone metastasis,58 colorectal can-
cer,59 multiple myeloma,34 T cell acute lymphoblastic

FIG. 3. The nature of xenograft studies represented on the ZenoFishDb v1.1: Molecular modifications, modified cell lines,
PDXs, and stem cells. (A) Molecular modifications; (B) PDXs; (C) stem and cancer stem cell studies. Figures are available
in greater detail online.
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leukemia,60 gastric cancer,35 neuroendocrine tumors,61 ade-
noid cystic carcinoma,33 glioblastoma,62 as well as primary
cells/tissues.63 Curated PDX studies represent 13.74% of the
studies incorporated into ZenoFishDb v1.1 (Fig. 3B).

Current version of the database also houses in-detail in-
formation on the PDXs accessible through the PDX Details
and PDX Charts pages as explained above (Fig. 2A, B). Most
frequently provided elements/attributes of the PDX details
hence can be analyzed through PDX Charts. For instance, the
number of glioblastoma patients recorded accounts for the
highest number/percentage followed by the liver and colo-
rectal cancer patients among many others, including prostate
cancer, pancreatic ductal adenocarcinoma, melanoma, and

acute leukemia (Fig. 2B). ZenoFishDb v1.1, therefore, is the
first database accommodating detailed and searchable infor-
mation from PDX studies in the zebrafish model.

ZenoFishDb v1.1 also houses the xenograft studies using
stem cells (SCs) obtained from normal tissue or cancer tissue
of origin. Xenografting of CSCs of blood cancers64 and
solid tumors of different origins65 to rodents has paved the
way for understanding behavior of CSCs in cancer develop-
ment and therapy assessments. Zebrafish model organism
serving as host for CSC transplantation also enables, for
example, the assessment of metastatic behavior and drug
screening in prostate cancer,66 migratory behavior in breast
cancer,67 and proliferative behavior in leukemia stem cells.68

FIG. 4. Types of biological assessments performed on zebrafish xenograft models. (A) Biological analyses performed on
zebrafish xenograft models through molecularly modified cell, PDX, and SC injections revealing major attributes studied in
the field. (B) Representative bar chart of GO Panther pathway enrichment analysis on the modified genes revealing the more
profoundly studied pathways. Figures are available in greater detail online.
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Transplantation of induced pluripotent stem cell (iPSC)-
driven differentiated cells,69 hematopoietic stem cells,70,71

and mesenchymal stem cells (from adipose tissue)72 are
among those studied in zebrafish xenograft models. SC
studies account for the 16.36% of all curated xenograft
studies in ZenoFishDb v1.1 with incorporated details of the
origin of SC and CSCs transplanted into zebrafish embryos
(Fig. 3C and Supplementary Table S5).

Biological assessments on zebrafish xenograft models

Searches performed with ZenoFishDb v1.1 reveal a broad
range of tumor-biology associated attributes in zebrafish
xenograft studies, including tumor growth (11.32%), prolif-
eration (10.61%), invasion (9.67%), extravasation (1.89%),
migration (7.55%), metastasis (15.80%), angiogenesis
(8.73%), cytotoxicity (0.94%), apoptosis (1.42%), and drug
sensitivity (1.18%) (Fig. 4A and Supplementary Table S6). In
addition, the list of modified genes (Supplementary Table S7)
gathered from these articles has been subjected to an in-depth
pathway analysis using GOPANTHER.73 The outcome of the
pathway analysis (Fig. 4B) has revealed a total of 94 genes
leading to 202 pathways out of which 18 major pathways are
represented with at least 5 or more genes as visualized by the
bar chart. Most frequently studied pathways include CCKR
signaling, inflammation mediated by chemokine and cyto-
kine signaling, integrin signaling, gonadotropin-releasing
hormone receptor, angiogenesis, and Ras pathways (Fig. 4B).

In addition to these enriched pathways, we have also
gathered information on the end point of biological assess-
ments of each publication in our repertoire as hours postin-
jection (hpi) for embryos and as hpi or weeks postinjection
(wpi) for adults. Forty-eight and 72 hpi are among the most
analyzed time points after injection, while other time points
uniformly included are 24, 96, 120, and 144 hpi in xeno-
grafted embryos (Supplementary Fig. S1).

Although not a drastic percentage difference has been
detected in the majority of the end points, other parameters
such as tissue of origin, cancer cell type, injected number of
cells, or location could also affect the experimental course
and selection of end time point. For instance, Mercatali et al.,
studied metastases of breast cancer cell lines of different
invasive capacity of MCF7 (hormone receptor positive,
noninvasive) and MDA-MB-231 (triple negative breast
cancer, invasive) together with a patient-derived breast can-
cer bone metastasis primary cell line. Herein, at 120 hpi, only
MDA-MB-231 cells and primary cells survived, dissemi-
nated, and colonized in other parts of the fish implying the
importance of choice of cell line and type of assessments to
be performed at a specific time point.58

Moshal et al. studied angiogenic capacity of human and
mice lung tumor cell lines, H1299 (nonsmall cell lung car-
cinoma) and CL13 (lung adenocarcinoma), respectively.
Both of these cell lines and a nontumorigenic 3T3-L1 cell line
were injected to Tg(flk1:eGFP) fish at 24 hours post-
fertilization (hpf), and angiogenic capacity was assessed at
48 hpi testing alkaline phosphatase activity. In addition,
significant increases in the number and length of ectopic
vessels were detected in tumorigenic cell lines confirming
presence of angiogenesis at 48 hpi.74 Hence, when
metastasis-related events such as extravasation, migration,
invasion, and angiogenesis were considered together, a rel-

atively homogenous distribution emerges for scoring xeno-
grafts at 48 or 72 hpi.

Based on data housed in ZenoFishDb v1.1, tumor growth
and proliferation although generally not assessed solely are
also collected frequently at 48 and 72 hpi. However,
assessment-specific prolonged end points are also observed
in xenotransplantation studies in embryos, for example, with
respect to survival62 and immunohistochemical75 measure-
ments. Xenotransplantation in adult fish on the other hand is
scarce yet assessments are recorded by means of hpi,76,77 as
well as wpi,28,78 onto our database (Supplementary Fig. S1
and Supplementary Table S8).

These findings altogether highlight the importance of
variability in spatial and temporal characteristics of xeno-
transplantation studies that should be taken into consideration
while addressing different biological assessments, as well as
the choice of cell lines, PDXs, and injection sites. Zeno-
FishDb v1.1 allows for evaluation of such parameters readily
helping users to plan and execute their experiments.

Zebrafish xenograft model as a tool for drug screening

Zebrafish has been long used for drug screening as thor-
oughly revived by different authors in the field.15,79 Yet,
availability of zebrafish xenograft models further enhanced
the applications of drug screening on human-derived tumor
bearing fish. In fact, models such as ZeOncoTest have been
used to refine and automate use of zebrafish xeno-
transplantation for cancer drug discovery.80 Using Zeno-
FishDb v1.1 one can identify individual studies harboring
different routes of drug administration such as those given
before transplantation,81–83 as well as those in which drugs
are directly added to the fish water.84 More than 200 different
drugs have been identified and incorporated into the current
version of the database. Dasatinib,48,85 SU5416,17,86 and
Doxorubicin87 are among the most commonly used drugs,
while use of nanoparticles88 and exosomes89 has been also
recorded in the list of zebrafish xenograft drug studies
(Supplementary Fig. S2 and Supplementary Table S9).
Hence, ZenoFishDb v1.1 provides a platform for the feasible
search, cataloging, and comparison of drug applications
performed on zebrafish xenograft models.

Zebrafish host modifications for xenotransplantation

The availability of in vivo imaging of vascular develop-
ment by Tg(fli1:EGFP) zebrafish embryos90 provides great
ease for visualization across embryonic development. In fact,
a majority of the xenograft studies harboring angiogenesis,
invasion, and metastasis assays49,91 benefits from
Tg(fli1:EGFP) line where the fli1 promoter, the earliest-
known endothelial marker,92 is used for driving the green
fluorescent protein (GFP) expression. Similarly,
Tg(flk1:EGFP)s843 zebrafish line93 generating green vascu-
lature under flk1 is widely used to investigate invasive and
metastatic capacity of tumor cells.19,94 The use of transparent
casper, as well as albino fish, has further improved visuali-
zation of transplanted cell behavior in zebrafish.95 Using
ZenoFishDb v1.1, one can obtain a listing of all studies that
contain zebrafish modified/mutant strains used with trans-
plantation of cells with molecular modifications and PDX or
SC xenografts.
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Other mutant and knockout/knockdown zebrafish strains
are becoming central for understanding the effects of mi-
croenvironment in tumorigenesis. For instance, acetylcho-
linesterase mutant ache, harboring excess acetylcholine, is a
model to test the role of ache deficiency of the host on size of
the liver tumors.96 Similarly, cloche mutant fish is lacking
nearly all blood cells and, therefore, functional circulation,
and vasculature (cloche-/-) allows for testing whether me-
tastasis and tumor growth require host vasculature.63,97 In
addition, morpholinos (MO) that are widely applicable for
discovery of gene function can be used in xenotransplantation
to modify host microenvironment. For example, transplan-
tation of retinoblastoma cells into zebrafish embryos micro-
injected with MO against vegf-aa lowered levels of
metastasis compared to control MO-treated embryos.98 In
another example, the injection of HCT116 cells into
Tg(fli1:EGFP) protein kinase D1 morphant abolished tumor
angiogenesis.99

A search using ZenoFishDb v1.1 Visualization page, upon
selecting the ‘‘host strain’’ column, shows the presence of
transgenic (55.74%), mutant (20.08%), and/or morphant
(2.46%) strains used as modified host microenvironments

(Fig. 5A and Supplementary Table S10). Accordingly, a
representative image of the subselected mutant ‘‘host de-
tails’’ and corresponding ‘‘host detail modifications’’ has
been provided using the DataTable pages (Fig. 5B).

These studies demonstrate the undeniable power of using
morphant, mutant, and transgenic zebrafish embryos and larvae
to understand the role of microenvironment in human tumor
growth, angiogenesis, and metastasis. ZenoFishDb v1.1 data-
base thus can be useful in keeping up with the ever-increasing
studies in the xenotransplantation field in which zebrafish host
is often genetically and/or epigenetically modified.

Zebrafish xenograft models from a technical
point of view

ZenoFishDb v1.1 can also be used to search the zebrafish
literature for differences in the technical aspects of xeno-
transplantation, such as the site and timing of injection,
number of cells injected, and types of tracking dyes used.
Precise location of the injection site is crucial for the type of
biological analysis to be performed in xenograft studies. In
fact, yolk sac injections are ideally used for testing initiation

FIG. 5. ZenoFishDb v1.1 reveals distinct host modifications and microenvironment studies used in xenograft studies.
(A) Graphical representation of host modifications obtained from the Visualization page. (B) Screenshot of DataTable page with
‘‘host modifications’’ attribute, and subselection choice of ‘‘mutant’’ attribute. Figures are available in greater detail online.
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FIG. 6. ZenoFishDb v1.1 reveals statistical data on technical prospects of xenografting in zebrafish. (A) Injection sites;
(B) cell tracking systems; (C) time of injection; (D) injected cell numbers-categorized. Figures are available in greater detail
online.
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of tumor formation, tumor growth, or proliferation,39,40

whereas duct of Cuvier opens to the sinus venosus of the heart
and allows analysis of circulating injected cells and hence
cellular migration70 and metastasis to tail fin.100 Injection
into the perivitelline space of the zebrafish embryo has been
initially used for an angiogenesis assay by Nicoli and Pre-
sta101 and similarly by other groups where the ectopic SIV-
sprouting has been tested.99 Although these exemplify
common examples of injection sites for specific biological
assessments, there are other possibilities. Statistical repre-
sentation of injection sites using ZenoFishDb v1.1 reveals the
yolk sac (37.10%) as the most preferred injection site fol-
lowed by perivitelline space (20.97%) and duct of Cuvier
(13.31%) (Fig. 6A and Supplementary Table S11).

Transparent zebrafish embryos are enabling precise
tracking of the location and migration of the fluorescently
labeled transplanted cells. In fact, solid tumors inside the
yolk96,102,103 or brain104–107 and migrating cells in the
veins103,108 can be detected readily by fluorescence micros-
copy. Cell lines transplanted in zebrafish are often stained by
fluorescent protein vectors such as GFP,29 mCherry,100

DsRed,106 and live dyes, among which visualization by CM-
DiI,103 DiI,96,102 DiD,109 CFSE,110 and CMTMR37 is the
most frequently used based on a ZenoFishDb v1.1 search
(Fig. 6B and Supplementary Table S12).

Another technical aspect highlights the timing of the in-
jection to be performed at different injection points in zeb-
rafish embryos (92.66%) and/or adult fish (6.42%), which
holds great importance for the strategic decision-making for
assessments to be performed.111 Great majority of the em-
bryos (76.85%) have undergone the injection during the first
48 hpf (Fig. 6C and Supplementary Table S13).

In addition, we have also reviewed the differences in the
number of cells injected. In the literature, studies testing
different number of cells in different biological concepts
exist; among these Fior et al.,59 for example, injected 500 and
1000 colorectal cancer primary cells into the perivitelline
space for testing early and late metastatic events, respec-
tively. However, another study assessing tumor size used 50–
100 cells for cell lines and 500 cells for patient samples when
injecting into the yolk sac.60 Using ZenoFishDb v1.1, we
show the percentage of studies with different number of cells
injected, for example, 50 < n £ 200 cells (39.57%) or
200 < n £ 500 cells (28.51%), where n represents the number
of cells. Injections harboring cells n £ 50, 500 < n < 1000, and
n ‡ 1000 also exist, yet they are sparser (Fig. 6D and Sup-
plementary Table S14). ZenoFishDb v1.1, hence, covers
technical aspects of zebrafish xenografting models pin-
pointing the specifics of experimental design.

Conclusions and Future Perspectives

ZenoFishDb v1.1 offers an easy access to zebrafish xe-
nograft studies with a specific focus on PDXs and the mo-
lecular modifications in the transplanted cells, as well as on
host microenvironment. In addition, our findings address
recent and novel perspectives in the literature, such as use of
SCs and CSCs, along with therapeutic approaches that can be
useful in translational medicine. Future inclusions of zebra-
fish xenotransplantation studies that use unmodified cells or
hosts and drug screens with different time intervals and
dosing are also planned in the upcoming versions of Zeno-

FishDb v1.1. Moreover, keywords used for searching litera-
ture will be diversified and generalized to be more
comprehensive in case ‘‘xenograft’’ or ‘‘xenotransplant’’ is
not included in the study abstract. In conclusion, ZenoFishDb
v1.1 incorporates a thorough and systematic review of 211
transplantation studies highlighting the extent of xenograft-
ing molecularly modified cells in wild-type/transgenic/
knockout/morphant/mutant zebrafish (reviewed until No-
vember 29, 2019) and shows that the emerging applications
of in vivo cancer and personalized medicine in the zebrafish
xenograft field complement the studies performed in mice
and other organisms.
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