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On the Restricted Neyman–Pearson Approach
for Composite Hypothesis-Testing in Presence of

Prior Distribution Uncertainty

Suat Bayram and Sinan Gezici

Abstract—The restricted Neyman–Pearson (NP) approach is studied for
composite hypothesis-testing problems in the presence of uncertainty in
the prior probability distribution under the alternative hypothesis. A re-
stricted NP decision rule aims to maximize the average detection prob-
ability under the constraints on the worst-case detection and false-alarm
probabilities, and adjusts the constraint on the worst-case detection prob-
ability according to the amount of uncertainty in the prior probability dis-
tribution. In this study, optimal decision rules according to the restricted
NP criterion are investigated. Also, an algorithm is provided to calculate
the optimal restricted NP decision rule. In addition, it is shown that the av-
erage detection probability is a strictly decreasing and concave function of
the constraint on the minimum detection probability. Finally, a detection
example is presented to investigate the theoretical results, and extensions
to more generic scenarios are provided.

Index Terms—Composite hypothesis, hypothesis-testing, max-min,
Neyman–Pearson (NP), restricted Bayes.

I. INTRODUCTION

Bayesian and minimax hypothesis-testings are two common ap-
proaches for the formulation of testing [1, pp. 5–22]–[3]. In the
Bayesian approach, all forms of uncertainty are represented by a prior
probability distribution, and the decision is made based on posterior
probabilities. On the other hand, no prior information is assumed in
the minimax approach, and a minimax decision rule minimizes the
maximum of risk functions defined over the parameter space [1, pp.
13–22], [4]. The Bayesian and minimax frameworks can be considered
as two extreme cases of prior information. In the former, perfect
(exact) prior information is available whereas no prior information
exists in the latter. In practice, having perfect prior information
is a very exceptional case [5]. In most cases, prior information is
incomplete and only partial prior information is available [5], [6].
Since the Bayesian approach is ineffective in the absence of exact
prior information, and since the minimax approach, which ignores the
partial prior information, can result in poor performance due to its
conservative perspective, there have been various studies that take par-
tial prior information into account [5]–[11], which can be considered
as a mixture of Bayesian and frequentist approaches [12]. The most
prominent of these approaches are the empirical Bayes, �-minimax,
restricted Bayes and mean-max approaches [5]–[7], [11], [13]. As a
solution to the impossibility of complete subjective specification of
the model and the prior distribution in the Bayesian approach, the
robust Bayesian analysis has been proposed [12], [14, pp. 195–214].
Although the robust Bayesian analysis is considered purely in the
Bayesian framework in general, it also has strong connections with the
empirical Bayes, �-minimax and restricted Bayes approaches [12],
[14, pp. 215–235].
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Among the decision rules that take partial prior information into
account, the restricted Bayes decision rule minimizes the Bayes risk
under a constraint on the individual conditional risks [15, p. 15]. De-
pending on the value of the constraint, which is determined according
to the amount of uncertainty in the prior information, the restricted
Bayes approach covers the Bayes and minimax approaches as special
cases [6]. An important characteristic of the restricted Bayes approach
is that it combines probabilistic and nonprobabilistic descriptions of
uncertainty, which are also called measurable and unmeasurable uncer-
tainty [16], [17, Pt. III, Ch. VII], because the calculation of the Bayes
(average) risk requires uncertainty to be measured and imposing a con-
straint on the conditional risks is a nonprobabilistic description of un-
certainty. In this study, the focus is on the application of the notion of
the restricted Bayes approach to the Neyman–Pearson (NP) framework,
in which probabilistic and nonprobabilistic descriptions of uncertainty
are combined [6].

In the NP approach for deciding between two simple hypotheses, the
aim is to maximize the detection probability under a constraint on the
false-alarm probability [1, pp. 22–29], [18, pp. 33–24]. When the null
hypothesis is composite, it is common to apply the false-alarm con-
straint for all possible distributions under that hypothesis [19], [20].
On the other hand, various approaches can be taken when the alter-
native hypothesis is composite. One approach is to search for a uni-
formly most powerful (UMP) decision rule that maximizes the detec-
tion probability under the false-alarm constraint for all possible proba-
bility distributions under the alternative hypothesis [1, pp. 34–38], [18,
pp. 86–92]. However, such a decision rule exists only under special
circumstances [1]. Therefore, a generalized notion of the NP criterion,
which aims to maximize the misdetection exponent uniformly over all
possible probability distributions under the alternative hypothesis sub-
ject to the constraint on the false-alarm exponent, is employed in some
studies [21]–[24]. Another approach is to maximize the average de-
tection probability under the false-alarm constraint [12], [25]–[27]. In
this case, the problem can be formulated in the same form as an NP
problem for a simple alternative hypothesis (by defining the probability
distribution under the alternative hypothesis as the expectation of the
conditional probability distribution over the prior distribution of the pa-
rameter under the alternative hypothesis). Therefore, the classical NP
lemma can be employed in this scenario. Hence, this max-mean ap-
proach for composite alternative hypotheses can be called as the “clas-
sical” NP approach. One important requirement for this approach is
that a prior distribution of the parameter under the alternative hypoth-
esis should be known in order to calculate the average detection prob-
ability. When such a prior distribution is not available, the max-min
approach addresses the problem. In this approach, the aim is to max-
imize the minimum detection probability (the smallest power) under
the false-alarm constraint [19], [20]. The solution to this problem is
an NP decision rule corresponding to the least favorable distribution
of the unknown parameter under the alternative hypothesis. It should
be noted that considering the least favorable distribution is equiva-
lent to considering the worst-case scenario, which can be unlikely to
occur. Therefore, the max-min approach is quite conservative in gen-
eral. Some modifications to this approach are proposed by employing
the interval probability concept [28], [29].1

In this study, a generic criterion is investigated for composite hy-
pothesis-testing problems in the NP framework, which covers the clas-
sical NP (max-mean) and the max-min criteria as special cases. Since
this criterion can be regarded as an application of the restricted Bayes
approach (Hodges–Lehmann rule) to the NP framework [6], [15], it
is called the restricted NP approach in this study (in order to empha-

1The generalized likelihood ratio test (GLRT) is another approach for com-
posite hypothesis-testing, which can be used to test a null hypothesis against an
alternative hypothesis [1, p. 38], [18, pp. 92–96].

size the considered NP framework). The investigation of the restricted
NP criterion is intended to provide the signal processing community
with an illustration of the Hodges-Lehmann rule in the NP framework.
A restricted NP decision rule maximizes the average detection proba-
bility (average power) under the constraints that the minimum detec-
tion probability (the smallest power) cannot be less than a predefined
value and that the false-alarm probability cannot be larger than a signif-
icance level. In this way, the uncertainty in the knowledge of the prior
distribution under the alternative hypothesis is taken into account, and
the constraint on the minimum (worst-case) detection probability is ad-
justed depending on the amount of uncertainty.

II. PROBLEM FORMULATION AND MOTIVATION

Consider a family of probability densities ����� indexed by param-
eter � that takes values in a parameter set �, where � � � represents
the observation (data). A binary composite hypothesis-testing problem
can be stated as

�� � � � ��� �� � � � �� (1)

where �� denotes the �th hypothesis and �� is the set of possible pa-
rameter values under�� for � � 0, 1 [1]. Parameter sets �� and �� are
disjoint, and their union forms the parameter space, � � �� � ��. It
is assumed that the probability distributions of parameter � under ��

and ��, denoted by ����� and �����, respectively, are known with
some uncertainty (see [16] and [17, Pt. III, Ch. VII] for discussions on
the concept of uncertainty). For example, these distributions can be ob-
tained as probability density function (pdf) estimates based on previous
decisions (experience). In that case, uncertainty is related to estimation
errors, and higher amount of uncertainty is observed as the estimation
errors increase.

In the NP framework, the aim is to maximize (a function of) the
detection probability under a constraint on the false-alarm probabili-
ties [1]. For composite hypothesis-testing problems in the NP frame-
work, it is common to consider the conservative approach in which the
false-alarm probability should be below a certain constraint for all pos-
sible values of parameter � in set �� [19], [20]. In this case, whether
the probability distribution of the parameter under��,�����, is known
completely or with uncertainty does not change the problem formula-
tion (see Section V for extensions). On the other hand, the problem
formulation depends heavily on the amount of knowledge about the
probability distribution of the parameter under ��, �����.2 In that re-
spect, two extreme cases can be considered. In the first case, there is no
uncertainty in �����. Then, the average detection probability can be
considered, and the classical NP approach can be employed to obtain
the detector that maximizes the average detection probability under the
given false-alarm constraint [12], [25]–[27]. In the second case, there
is full uncertainty in �����, meaning that the prior distribution under
�� is completely unknown. Then, maximizing the worst-case (min-
imum) detection probability can be considered under the false-alarm
constraint, which is called as the max-min criterion or the “general-
ized” NP criterion [19], [20]. In fact, these two extreme cases, com-
plete knowledge and full uncertainty of the prior distribution, are rarely
encountered in practice. In most practical cases, there exists some un-
certainty in �����, and the classical NP and the max-min approaches
do not address those cases. The main motivation behind this study is
to investigate a criterion that takes various amounts of uncertainty into
account, and covers the approaches designed for the complete knowl-
edge and the full uncertainty scenarios as special cases [6].

In practice, the prior distribution ����� is commonly estimated
based on previous observations, and there exists some uncertainty

2In accordance with these observations, the term uncertainty will be used to
refer to uncertainties in � ��� unless stated otherwise.
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in the knowledge of ����� due to estimation errors. Therefore, the
amount of uncertainty depends on the amount of estimation errors. If
the average detection probability is calculated based on the estimated
prior distribution and the maximization of that average detection
probability is performed based on the classical NP approach, it
means that the estimation errors (hence, the uncertainty related to
the prior distribution) are ignored. In such cases, very poor detec-
tion performance can be observed when the estimated distribution
differs significantly from the correct one. On the other hand, if the
max-min approach is used and the worst-case detection probability is
maximized, it means that the prior information (contained in the prior
distribution estimate) about the parameter is completely ignored, and
the decision rule is designed as if there existed no prior information.
Therefore, this approach does not utilize the available prior informa-
tion at all and employs a very conservative perspective. In this study,
we focus on a criterion that aims to maximize the average detection
probability, calculated based on the estimated prior distribution, under
the constraint that the minimum (worst-case) detection probability
stays above a certain threshold, which can be adjusted depending on
the amount of uncertainty in the prior distribution. In this way, both
the prior information in the distribution estimate is utilized and the
uncertainty in this estimate is considered. This criterion is referred to
as the restricted NP criterion in this study, since it can be considered
as an application of the restricted Bayes criterion (Hodges–Lehmann
rule) to the NP framework [6]. The restricted NP criterion generalizes
the classical NP and max-min approaches and covers them as special
cases.

In order to provide a mathematical formulation of the restricted NP
criterion, we first define the detection and false-alarm probabilities of
a decision rule for given parameter values as follows:

����� ��
�

���� ����� ��� for � � �� (2)

�� ��� ��
�

���� ����� ��� for � � �� (3)

where � represents the observation space, and ���� denotes a generic
decision rule (detector) that maps the data vector into a real number in
��� �	, which represents the probability of selecting �� [1]. Then, the
restricted NP problem can be formulated as the following optimization
problem:


��
� �

����� �� ����� �� (4)


������ �� ����� �� � �� � � � �� (5)

�� ��� �� � 	� � � � �� (6)

where	 is false-alarm constraint, and � is the design parameter to com-
pensate for the uncertainty in �����. In other words, a restricted NP
decision rule maximizes the average detection probability, where the
average is performed based on the prior distribution estimate �����,
under the constraints on the worst-case detection and false-alarm prob-
abilities. Parameter � in (5) is defined as � �� � 
�� for � � 
 �

�, with � denoting the max-min detection probability. Namely, � is
the maximum worst-case detection probability that can be obtained as
follows:

� � 
��
�


��
���

����� ��


������ �� �� ��� �� � 	� � � � ��� (7)

From the definition of �, it is observed that � ranges from zero to � . In
the case of full uncertainty in �����, 
 is set to zero (i.e., � � �), which
reduces the restricted NP problem in (4)–(6) to the max-min problem
in(7). On the other hand, in the case of complete knowledge of �����,


 can be set to 1, and the restricted NP problem reduces to the classical
NP problem, specified by (4) and (6), which can be expressed as


��
�

�
���
� ���


������ �� �� ��� �� � 	� � � � �� (8)

where �
���
� ���

�
����� �� ����� �� is the average detection

probability. Therefore, the max-min and the classical NP approaches
are two special cases of the restricted NP approach.

III. ANALYSIS OF RESTRICTED NEYMAN–PEARSON APPROACH

In this section, the aim is to investigate the optimal solution of the
restricted NP problem in (4)–(6). For this purpose, the definitions in (2)
and (3) can be used to reformulate the problem in (4)–(6) as follows:


��
� �

���� ����� �� (9)


������ �� 
��
��� �

���� ����� �� � � (10)


��
��� �

���� ����� �� � 	 (11)

where ����� �
���������� �� defines the pdf of the observa-

tion under ��, which is obtained based on the prior distribution esti-
mate �����. In addition, an alternative representation of the problem
in (9)–(11) can be expressed as


��
�



�

���� ����� ��� ��� 
�
��
��� �

���� ����� �� (12)


������ �� 
��
��� �

���� ����� �� � 	 (13)

where � � 
 � � is a design parameter that is selected according to �.

A. Characterization of Optimal Decision Rule

Based on the formulation in (12) and (13), the following theorem
provides a method to characterize the optimal solution of the restricted
NP problem under certain conditions.

Theorem 1: Define a pdf ���� as ���� 
 ����� � ��� 
� ����,
where ���� is any valid pdf. If �� is the NP solution for ���� under the
false-alarm constraint and satisfies

�

�
����

�

����� ���� �� �� � 
��
��� �

�
���� ����� ��� (14)

then it is a solution of the problem in (12) and (13).
Proof: The proof is similar to the proof of Theorem 1 in [6].

Please see [30] for the details.
Theorem 1 states that if one can find a pdf ���� that satisfies the con-

dition in (14), then the NP solution corresponding to 
 ����� � ���

� ���� is a solution of the restricted NP problem in (12) and (13).
Also it should be noted that Theorem 1 is an optimality result; it does
not guarantee existence or uniqueness. However, in most cases, the op-
timal solution proposed by Theorem 1 exists, which can be proven as in
[6] based on some assumptions on the interchangeability of supremum
and infimum operators, and on the existence of a probability distribu-
tion (a decision rule) that minimizes (maximizes) the maximum (min-
imum) average detection probability (see Assumptions 1–3 in [6]). In
fact, those assumptions hold when a set of conditions specified in [31,
pp. 191–205] are satisfied. From a practical perspective, the assump-
tions hold, for example, when the probability distributions are discrete
or absolutely continuous (i.e., have cumulative distributions function
that are absolutely continuous with respect to the Lebesgue measure),
the parameter space is compact, and the problem is nonsequential [6].



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011 5059

More specifically, for the problem formulation in this study, all the as-
sumptions are satisfied when �����, � � � �, is discrete, or cumulative
distributions corresponding to �����, � � � �, are absolutely contin-
uous (with respect to the Lebesgue measure), and the parameter space
� is compact.

Remark 1: In Theorem 1, the meaning of �� being the NP solution
for ���� under the false-alarm constraint is that �� solves the following
optimization problem:

���
�

�

����
�

����� ���� �� ��

��	
��
 
� ���
���

�

���� ����� �� � � (15)

where ���� � � ����� � �� � �� 	���. Based on the NP lemma [1,
pp. 22–29], it can be shown that the solution of (15) is in the form of a
likelihood ratio test (LRT); that is,3

�
���� �

�
 if
�

����� ���� �� � � ��� ���


���
 if
�

����� ���� �� � � ��� ���

�
 if
�

����� ���� �� � � ��� ���

(16)

where � � � and � � 
��� � � are such that ���
���

�� ��
�� �� � �,

and ��� is defined as

��� � ��� ���
���

�� ��
�� ��� (17)

Therefore, the solution of the restricted NP problem in (12) and (13)
can be expressed by the LRT specified in (16) and (17), once a pdf
	��� and the corresponding decision rule �� that satisfy the constraint
in (14) are obtained (see Section III-B). It should also be noted that
having multiple solutions for ��� does not present a problem since it
can be shown that the same average detection probability is achieved
for all the solutions.

The following corollary is presented in order to show the equivalence
between the formulation in (12) and (13) and that in (4)–(6) [30].

Corollary 1: Under the conditions in Theorem 1, �� solves the op-
timization problem in (4)–(6) when ���

��� �
����� ����� �� � �.

Corollary 1 states that when the decision rule �� specified in The-
orem 1 satisfies the constraint in (10) with equality, it also provides
a solution of the restricted NP problem specified in (9)–(11); equiva-
lently, in (4)–(6). In other words, the average detection probability can
be maximized when the minimum of the detection probabilities for all
possible parameter values � � �� is equal to the lower limit�. It should
also be noted that Corollary 1 establishes a formal link between param-
eters � and �. For any �, � can be calculated through the equation in
the corollary.

Another property of the optimal decision rule �� described in The-
orem 1 is that it can be defined as an NP solution corresponding to
the least favorable distribution ���� specified in Theorem 1. In other
words, among a family of pdf’s, ���� is the least favorable one since it
minimizes the average detection probability. This observation is sim-
ilar, for example, to the fact that the minimax decision rule is the Bayes
rule corresponding to the least favorable priors [1, pp. 15–16]. For the
following theorem, an approach similar to that in [6] is taken in order
to show that ���� in Theorem 1 corresponds to a least favorable distri-
bution (please see [30] for the proof).

3The proof follows from the observation that �� ��� � ����� � ���

���� �� � � � ��� � �, � �, for any decision rule � due to the defini-
tion of � in (16). Then, the approach of [1, p. 24] can be used to prove that

� ��� � ��� ���� �� �� � ���� � ��� ���� �� �� for any
decision rule � that satisfies � ��� �� � �, � � � � .

Theorem 2: Under the conditions in Theorem 1, ���� � � ������
�� � �� 	��� minimizes the average detection probability among all
prior distributions in the form of

����� � �� ����� � ��� ��� �	��� (18)

for �� � �, where � � �� and �	��� is any probability distribution.
Equivalently,

�

�
����

�

����� ���� �� �� �
�

�
����

�

����� ����� �� ��

for any ����� described above, where �� and �� are the �-level NP
decision rules corresponding to ���� and �����, respectively.

Although Theorem 2 provides a definition of the least favor-
able distribution in a family of prior distributions in the form of
����� � �� ����� � ��� ��� �	��� for �� � �, only the case �� � � is of
interest in practice since � in (12) is commonly set as a design param-
eter depending on the amount of uncertainty in the prior distribution.
Therefore, in calculating the optimal decision rule according to the
restricted NP criterion, the special case of Theorem 2 for �� � � will
be employed in Section IV.

B. Calculation of Optimal Decision Rule

The analysis in Section III-A reveals that a density 	��� and a corre-
sponding NP rule (as specified in Remark 1) that satisfy the constraint
in Theorem 1 need to be obtained for the solution of the restricted NP
problem. To this aim, the condition in Theorem 1 can be expressed
based on (2) as

�

	��� ����
�� �� �� � ���

���
����

�� ��� (19)

This condition requires that 	��� assigns nonzero probabilities only to
the values of � that result in the global minimum of ������ ��. First,
assume that ������ �� has a unique minimizer that achieves the global
minimum (the extensions in the absence of this assumption will be dis-
cussed as well). Then, 	��� can be expressed as

	��� � ��� � ��� (20)

which means that � � �� with probability one under this distribution.
Based on this observation, the following algorithm can be proposed to
obtain the optimal restricted NP decision rule.

Algorithm

1) Obtain������ � �� for all �� � ��, where ��� denotes the�-level
NP decision rule corresponding to ���� � ����������������
��� as described in (16) and (17).

2) Calculate

�
�

� � ��� ���
� ��

����� (21)

where

����� �
�

������� ���� � �� ��� ��� �� �� ���� � ��� � (22)

3) If ������ � ���� � ���
���

����
�

� � ��, output ��� as the solution of

the restricted NP problem; otherwise, the solution does not exist.

It should be noted that ����� in (22) is the average detection proba-
bility corresponding to ���� � � ����� � ��� �� ��� � ���.4 Since

4It should be noted that 	 is related to the design parameter 
 in (5) through
Corollary 1. In addition, the fact that as 	 increases (decreases), 
 decreases
(increases) can be used to adjust the corresponding parameter value.
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Theorem 2 (for �� � �) states that the optimal restricted NP solution
corresponds to the least favorable prior distribution, which results in
the minimum average detection probability, the only possible solution
is the NP decision rule corresponding to ��� in (21), ��� . Therefore,
only that rule is considered in the last step of the algorithm, and the op-
timality condition is checked. If the condition is satisfied, the optimal
restricted NP solution is obtained. Although not common in practice,
the optimal solution may not exist in some cases since Theorem 1 does
not guarantee existence. Also, it should be noted that there may be mul-
tiple solutions of (21), and in that case any solution of (21) satisfying
the third condition in the algorithm is an optimal solution according to
Theorem 1. Therefore, one such solution can be selected for the op-
timal restricted NP solution.

In order to extend the algorithm to the cases in which ������ �� has
multiple values of � that achieve the global minimum, express ���� as

���� �

�

���

�� ��� � ��� (23)

where �� � �, �

���
�� � �, and � is the number of � values that

minimize ������ ��. For simplicity of notation, let			 denote the vector
of unknown parameters of ����; that is, 			 � ��� � � � �� �� � � � �� 	.
Based on (23), the calculations in the algorithm should be updated as
follows:

			
� � 
��
��

���

�			� (24)

where


�			� �
�

������� ������� �� ��������

�

���

�� �� ������� ��� (25)

with ����� denoting the NP solution corresponding to 
��� �
� ����� � �� � �� �

���
�� ��� � ���. Then, the condition

�������� �			�� � 
��
���

�������� �			� is checked to verify the op-

timal solution as ����� . It is noted from (24) that the computational
complexity can increase significantly when the detection probability
is minimized by multiple � values. In such cases, global optimization
algorithms, such as particle-swarm optimization (PSO) [32], [33],
genetic algorithms and differential evolution [34], can be used to
calculate 			�.

Finally, if the global minimum of������ �� is achieved by infinitely
many � values, then all possible ���� need to be considered, which can
have prohibitive complexity in general. In order to obtain an approxi-
mate solution in such cases, Parzen window density estimation [35, pp.
161–168] can be employed as in [36]. Specifically, ���� is expressed
approximately by a linear combination of a number of window func-
tions as

���� �

�

���

�� ���� � ���� (26)

and the unknown parameters of ���� such as �� and �� can be col-
lected into 			 as for the discrete case above. Then, (24) and (25) can
be employed in the algorithm by replacing �� and � with �� and �� ,
respectively, and by defining ����� as the NP solution corresponding to

��� � � ����� � ��� �� �

��� �� ���� � ���.
In Section IV, an example is provided to illustrate how to calculate

the optimal restricted NP solution based on the techniques discussed in
this section. Since the number of minimizers of ������ �� may not be
known in advance, a practical approach can be taken as follows. First,
it is assumed that there is only one value of � that achieves the global
minimum, and the algorithm is applied based on this assumption [see
(21) and (22)]. If the condition in Step 3) is satisfied, then the optimal
solution is obtained. Otherwise, it is assumed that there are two (or,
more) � values that achieve the global minimum, and the algorithm is

run based on (24) and (25). In this way, the complexity of the solution
can be increased gradually until a solution is obtained. Please see [30]
for a discussion on the computational complexity of the three-step al-
gorithm proposed in this section.

C. Properties of Average Detection Probability in Restricted
NP Solutions

In the restricted NP approach, the average detection probability is
maximized under some constraints on the worst-case detection and
false-alarm probabilities [see (4)–(6)]. On the other hand, the classical
NP approach in (8) does not consider the constraint on the worst-case
detection probability, and maximizes the average detection probability
under the constraint on the worst-case false-alarm probability only.
Therefore, the average detection probability achieved by the classical
NP approach is larger than or equal to that of the restricted NP
approach; however, its worst-case detection probability is smaller than
or equal to that of the restricted NP solution. Considering the max-min
approach in (7), the aim is to maximize the worst-case detection
probability under the constraint on the worst-case false-alarm proba-
bility. Therefore, the worst-case detection probability achieved by the
max-min decision rule is larger than or equal to that of the restricted
NP decision rule, whereas the average detection probability of the
max-min approach is smaller than or equal to that of the restricted NP
solution.

In order to express the relations above in mathematical terms, let
��� , �	, and �
 denote the solutions of the restricted NP, max-min and
classical NP problems in (4)–(6), (7), and (8), respectively. In addi-
tion, let � 
��

���
����
� �� and � 
��

���
����	� �� define the

worst-case detection probabilities of the classical NP and max-min so-
lutions, respectively. It should be noted that, in the restricted NP ap-
proach, the constraint � on the worst-case detection probability [see
(5)] cannot be larger than � , since the max-min solution provides the
maximum value of the worst-case detection probability as discussed
before. On the other hand, when � is selected to be smaller than � in
the restricted NP formulation, the worst-case detection probability con-
straint becomes ineffective; hence, the restricted NP and the classical
NP approaches become identical. Therefore, � in the restricted NP for-
mulation is defined over the interval ��� � 	 in practice. As a special
case, when � � � � �, the restricted NP, the max-min and the clas-
sical NP solutions all become equal.

For the restricted NP solution ��� , the average detection probability
can be calculated as

�
���
� �

�
� �

�

������ � �� ����� ��� (27)

The discussions above imply that � ���
� ��� is constant and equal to

the average detection probability of the classical NP solution for � �
�. In order to characterize the behavior of � ���

� ��� for � � ��� � 	,
the following theorem is presented.

Theorem 3: The average detection probability of the restricted NP
decision rule, � ���

� ��� , is a strictly decreasing and concave function
of � for � � ��� � 	.

Proof: Please see the Appendix.
Theorem 3 implies that the average detection probability can be im-

proved monotonically as � decreases towards �. In other words, by
considering a less strict constraint (i.e., smaller �) on the worst-case
detection probability, it is possible to increase the average detection
probability. However, it should be noted that � should be selected de-
pending on the amount of uncertainty in the prior distribution; namely,
smaller � values are selected as the uncertainty decreases. Therefore,
Theorem 3 implies that the reduction in the uncertainty can always
be used to improve the average detection probability. Another impor-
tant conclusion from Theorem 3 is that there is a diminishing return in
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improving the average detection probability by reducing � due to the
concavity of � ���

� ��� . In other words, a unit decrease of � results
in a smaller increase in the average detection probability for smaller
values of �. Fig. 1 in Section IV provides an illustration of the results
of Theorem 3.

IV. NUMERICAL RESULTS

In this section, a binary hypothesis-testing problem is studied in
order to provide practical examples of the results presented in the pre-
vious sections. The hypotheses are defined as

�� � � � �� �� � � � �� � (28)

where � � , � is an unknown parameter, and � is sym-
metric Gaussian mixture noise with the following pdf �� ��� �

�
��� 	� 
��� � ���, where 	� � � for � � �� 	 	 	 � 
�,
�
��� 	� � �, and 
���� � ���

�

� ��� ��
 �����
 ��� � for

� � �� 	 	 	 � 
�. Due to the symmetry assumption,�� � ��� ����,
	� � 	� ���� and �� � �� ���� for � � �� 	 	 	 � �
��
�, where
��� denotes the largest integer smaller than or equal to �. Note that if

� is an odd number, �	� ��
	� should be zero for symmetry.

Parameter � in (28) is modeled as a random variable with a pdf in
the form of

����� � � ��� � �� � ��� �� ��� � �� (29)

where � is exactly known, but � is known with some uncertainty. With
this model, the detection problem in (28) corresponds to the detection
of a signal that employs binary modulation, namely, binary phase shift
keying (BPSK). It should be noted that prior probabilities of symbols
are not necessarily equal (i.e., � may not be equal to 0.5) in all com-
munications systems [37]; hence, � should be estimated based on (pre-
vious) measurements in practice. In the numerical examples, the pos-
sible errors in the estimation of � are taken into account in the restricted
NP framework.

For the problem formulation above, the parameter sets under�� and
�� can be specified as �� � ��	 and �� � �����	, respectively.
In addition, the conditional pdf of � for a given value of � � � is
expressed as

�
��� �

�

���

	��

� ��

��

���� � ����

�


 ���
� (30)

In order to obtain the optimal restricted NP decision rule for this
problem, the algorithm in Section III-B is employed. First, it is assumed
that ���� can be expressed as in (20); namely, ���� � ��� � ���,
where �� � �����	, and the algorithm is applied based on (21) and
(22). When the condition in the third step of the algorithm is satisfied,
then the optimal solution is obtained. Otherwise, ���� is represented
as ���� � �� ��� � �� � �� � ��� ��� � �� for �� � ��� ��, and
the algorithm is run based on this model [consider (23) with 
 � 
,
�� � �� �� � ��, and �� � ��� � �]. Note that this model includes
all possible pdf’s since �� � �����	. As there is only one unknown
variable, ��, in ����, the algorithm can be employed to find the value of
�� that minimizes the average detection probability [see (24) and (25)
with ��� � ��]. Then, the condition in the third step of the algorithm is
checked in order to obtain the optimal decision rule.

In the numerical results, symmetric Gaussian mixture noise with

� � � is considered, where the mean values of the Gaussian com-
ponents in the mixture noise are specified as ���� ���� � ���� � ����
with corresponding weights of ����� ���� ���� �����. In addition, for
all the cases, the variances of the Gaussian components in the mixture
noise are assumed to be the same; i.e., �� � � for � � �� 	 	 	 � 
�.

In Fig. 1, the average detection probabilities of the classical NP, re-
stricted NP, and max-min decision rules are plotted against �, which

Fig. 1. Average detection probability versus � for the classical NP, restricted
NP, and max-min decision rules for � � ���, � � ��� and � � ���, where
� � �, � � ���, and � � ���.

specifies the lower limit on the minimum (worst-case) detection prob-
ability. Various values of � in (29) are considered, and� � �, � � ��
,
and � � ��
 [see (6)] are used. As discussed in Section III-C, the re-
stricted NP decision rule reduces to the classical NP decision rule when
� is smaller than or equal to the worst-case detection probability of the
classical NP decision rule.5 On the other hand, the restricted NP and
the max-min decision rules become identical when � is equal to the
worst-case detection probability of the max-min decision rule. For the
restricted NP decision rule, � is equal to the minimum detection proba-
bility; hence, the � axis in Fig. 1 can also be considered as the minimum
detection probability except for the constant parts of the lines that cor-
respond to the classical NP. As expected, the highest average detection
probabilities are achieved by the classical NP decision rule; however,
it also results in the lowest minimum detection probabilities, which are
0.453, 0.431, and 0.389 for � � ���, � � ���, and � � ���, respec-
tively. Conversely, the max-min decision rule achieves the highest min-
imum detection probabilities, but its average detection probabilities are
the worst. On the other hand, the restricted NP decision rules provide
tradeoffs between the average and the minimum detection probabili-
ties, and cover the classical NP and the max-min decision rules as the
special cases. It is also observed from the figure that as � decreases,
the difference between the performance of the classical NP and the
max-min decision rules reduces. In fact, for � � ���, the restricted
NP, the max-min, and the classical NP decision rule all become equal,
since it can be shown that����� in (29) becomes the least favorable pdf
for � � ���. Fig. 1 can also be used to investigate the results of The-
orem 3. It is observed that the average detection probability is a strictly
decreasing and concave function of � for the restricted NP decision
rule, as claimed in the theorem. Finally, we would like to mention that
Fig. 1 can provide guidelines for the designer to choose a � value by
observing the corresponding average detection probability for each �.
Therefore, in practice, instead of setting a prescribed � directly, Fig. 1
can be used to choose a � value for the problem.

For the scenario in Fig. 1, the least favorable distributions are in-
vestigated for the restricted NP decision rule, and they are compared
against the least favorable distribution for the max-min decision rule.

5Although the classical NP decision rule can be regarded as a special case of
the restricted NP decision rule for � � �, the “restricted NP decision rule” term
is used only for � � ���	 	 in the following discussions (see Section III-C).
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TABLE I
PARAMETER � FOR LEAST-FAVORABLE DISTRIBUTION ���� �

� ������������ ������ CORRESPONDING TO RESTRICTED NP DECISION

RULES. “NA” MEANS THAT THE GIVEN MINIMUM DETECTION PROBABILITY

CANNOT BE ACHIEVED BY A RESTRICTED NP DECISION RULE

Fig. 2. Average and minimum detection probabilities of the restricted NP deci-
sion rules versus � for � � ���, � � ��� and � � ��	, where � � �, 	 � ��

and 
 � ��
.

For the max-min criterion, the least favorable distribution������ in this
example can be calculated as ������ � ��� ��� � �� � ��� ��� � ��.
Table I shows the least favorable distributions, expressed in the form
of ���� � � ��� � �� � ��� �� ��� � ��, for the restricted NP solu-
tion for various parameters. The corresponding average and minimum
detection probabilities are also listed. As the minimum detection prob-
ability increases, the least favorable distribution gets closer to that of
the max-min decision rule. It is also noted that the least favorable dis-
tributions are the same for all the � values in this example.

Fig. 2 plots the average and minimum detection probabilities of the
restricted NP decision rules versus � in (12) for � � ���, � � ��	
and � � ��
, where 	 � �, 
 � ��� and � � ��� are used. It is
observed that the average and the minimum detection probabilities are
the same when � � � � ����� for � � ��
, when � � � � ����� for
� � ��	, and when � � � � ����
 for � � ���. In these cases, the
restricted NP decision rule is equivalent to the max-min decision rule.
On the other hand, for � � �, the restricted NP decision rule reduces to
the classical NP decision rule. These observations can easily be verified
from (12) and (13). Another observation from Fig. 2 is that the max-min
solution equalizes the detection probabilities for � � �� � ���� ��
values. Therefore, the average and the minimum detection probabilities
are equal for the max-min solutions. On the other hand, the classical
NP solution maximizes the average detection probability at the expense
of reducing the worst-case (minimum) detection probability. For this
reason, the difference between the average and the minimum detection
probabilities increases with �. Finally, Fig. 2 shows that the difference

Fig. 3. Average and minimum detection probabilities of the classical NP, max-
min, and restricted NP (for � � ��� and � � ���) decision rules versus 
 for
� � �, 	 � ��
, and � � ��	.

between the average and the minimum detection probabilities increases
as � increases.

Fig. 3 compares the performances of the restricted NP, the max-min,
the classical NP decision rules for various standard deviation values 
,
where 	 � �, � � ��� and � � ��
 are used. The restricted NP deci-
sion rules are calculated for � � ��� and � � ��	, where the weight �
is as specified in (12). For each decision rule, both the average detection
probability and the minimum (worst-case) detection probability are ob-
tained. As expected, the classical NP decision rule achieves the highest
average detection probability and the lowest minimum detection prob-
ability for all values of 
. On the other hand, the max-min decision rule
achieves the highest minimum detection probability and the lowest av-
erage detection probability. It is noted that the max-min decision rule
equalizes the detection probabilities for various parameter values, and
results in the same average and the minimum detection probabilities.
Another observation from Fig. 3 is that the restricted NP decision rule
gets closer to the classical NP decision rule as � increases, and to the
max-min decision rule as � decreases. The restricted NP decision rule
provides various advantages over the classical NP and the max-min
decision rules when both the average and the minimum detection prob-
abilities are considered. For example, the restricted NP decision rule
for � � ��	 has very close average detection probabilities to those of
the classical NP decision rule; however, it achieves significantly higher
minimum detection probabilities. Therefore, even if the prior distribu-
tion is known perfectly, it can be advantageous to use the restricted NP
decision rule when both the average and the minimum detection proba-
bilities are considered as performance metrics.6 Of course, when there
are uncertainties in the knowledge of the prior distribution, the actual
average probabilities achieved by the classical NP approach can be sig-
nificantly lower than those shown in Fig. 3, which can get as low as the
lowest curve. In such scenarios, the restricted NP approach has a clear
performance advantage. Compared to the max-min decision rule, the
advantage of the restricted NP decision is to utilize the prior informa-
tion, which can include uncertainty, in order to achieve higher average
detection probabilities.

6In this problem, for � � ���, the minimum detection probability corresponds
to � � ��, which occurs with probability � � �. Therefore, the minimum
detection probability may be considered as an important performance metric
along with the average detection probability.
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Fig. 4. Average and minimum detection probabilities of the classical NP, max-
min, and restricted NP (for � � ��� and � � ���) decision rules versus � for
� � �, � � ���, and � � ���.

Finally, in Fig. 4, the average and the minimum detection probabil-
ities of the restricted NP (for � � ��� and � � ���), the max-min,
and the classical NP decision rules are plotted versus � for � � �,
� � ���, and � � ���. As expected, larger detection probabilities are
achieved as � increases. In addition, similar tradeoffs to those in the
previous scenario are observed from the figure.

V. ALTERNATIVE FORMULATION

Although the formulation in (4)–(6) takes into account uncertainties
in ����	 only, it is possible to extend the results in order to impose a
similar constraint also on ����	. In other words, knowledge on ����	

can also be incorporated into the problem formulation. Therefore, in
this section we provide an alternative formulation that incorporates
both the uncertainties in ����	 and ����	, and provides an explicit
model for the prior uncertainties.

Consider an 	-contaminated model [38] and express the true prior
distribution as ���

� ��	 � �� � 	�	����	 
 	�
���	 for � � �, 1,
where ����	 denotes the estimated prior distribution and 
���	 is any
unknown probability distribution. In other words, the prior distribu-
tions are known as ����	 and ����	 with some uncertainty, and the
amount of uncertainty is controlled by 	� and 	�. For example, ����	

and ����	 can be pdf estimates based on previous decisions (experi-
ence), and 	� and 	� can be determined depending on certain metrics
of the estimators, such as the variances of the parameter estimators. Let
�� denote the set of all possible prior distributions ���

� ��	 according
to the 	-contaminated model above. Then, the following problem for-
mulation can be considered:

��

�

���
� �����

���
� �	 ���
� ��	 ��

������� �� ��

� �����

�� �
� �	 �
��
� ��	 �� � �� (31)

Based on the 	-contaminated model, the problem in (31) can also be
expressed from (2) and (3) as

��

�

��� 	�	 
��	����	����	 �� ��


 	� ���
� ���


��	����	
���	 �� ��

������� �� ��

� ���

��� 	�	 
��	����	����	 �� ��


 	� 
��	����	
���	 �� �� � �� (32)

Let ����	 � ����	����	 �� for � � �, 1. In addition, since

���
� ���


��	����	
���	 �� �� � ���
���


��	����	 ��

and

��

� ���


��	����	
���	 �� �� ���

���


��	����	 ���

(32) becomes
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�

��� 	�	 
��	����	 ��
 	� ���
���


��	����	 �� (33)

������� �� ��

���


��	 ���� 	�	����	 
 	�����	� �� � �� (34)

It is noted from (12)–(13) and (33)–(34) that the objective functions
are in the same form but the constraints are somewhat different in the
optimization problems considered in Section III and in this section.
Since the proof of Theorem 1 in [30] focuses on the maximization of
the objective function considering only the NP decision rules that sat-
isfy the false-alarm constraint, the same proof applies to the problem in
(33)–(34) as well if we consider the NP decision rules under the con-
straint in (34) and define ���	 � ��� 	�	����	
 	����	. Therefore,
Theorem 1 is valid in this scenario when the NP solution for ���	 under
the false-alarm constraint is updated as follows (see Remark 1):



���	 �

�� if
�
����	 ���	�� � � ���� 	�	����	 
 	���� ��	�

���	� if
�
����	 ���	�� � � ���� 	�	����	 
 	���� ��	�

�� if
�
����	 ���	�� � � ���� 	�	����	 
 	���� ��	�

(35)

where � � � and � � ���	 � � are such that
��

���


���	 ���� 	�	����	 
 	�����	� �� � �, and ��� is

defined as

��� � ��� ��

���



���	���� 	�	����	 
 	�����	���� (36)

Hence, the solution of the problem in (33) and (34) can be expressed
by the LRT specified in (35) and (36), once a pdf ���	 and the corre-
sponding decision rule 
� that satisfy the condition in Theorem 1 are
obtained.

The problem formulation in (31) can also be regarded as an applica-
tion of the �-minimax approach [12] to the Neyman–Pearson frame-
work, or as Neyman–Pearson testing under interval probability [28],
[29]. Although the mathematical approach in obtaining the optimal so-
lution is similar to that of the restricted NP approach investigated in
the previous sections, there exist significant differences between these
approaches. For the approach in this section, uncertainty needs to be
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modeled by a class of possible prior distributions, then the prior dis-
tribution that minimizes the detection probability is considered for the
alternative hypothesis.7 On the other hand, the restricted NP approach
in (4)–(6) focuses on a scenario in which one has a single prior dis-
tribution (e.g., a prior distribution estimate from previous experience)
but can only consider decision rules whose detection probability is con-
strained by a lower limit. In other words, the main idea is that “one can
utilize the prior information, but in a way that will be guaranteed to be
acceptable to the frequentist who wants to limit frequentist risk” (de-
tection probability in this scenario) [12]. Therefore, there is no model
assumption in the restricted NP approach; hence, no efforts are required
to find the best model. The two performance metrics, the average and
the minimum detection probabilities, can be investigated in order to
decide the best value of �. As stated in [39], it can be challenging to
represent some uncertainty types via certain mathematical models such
as the �-contaminated class. Therefore, the restricted NP approach can
also be useful in such scenarios.

VI. CONCLUDING REMARKS AND EXTENSIONS

In this study, a restricted NP framework has been investigated
for composite hypothesis-testing problems in the presence of prior
information uncertainty. The optimal decision rule according to the
restricted NP criterion has been analyzed and an algorithm has been
proposed to calculate it. In addition, it has been observed that the
restricted NP decision rule can be specified as a classical NP decision
rule corresponding to the least favorable distribution. Furthermore, the
average detection probability achieved by the restricted NP approach
has been shown to be a strictly decreasing and concave function of the
constraint on the worst-case detection probability. Finally, numerical
examples have been presented in order to investigate and illustrate the
theoretical results.

Similar to the extensions of the restricted Bayesian approach in [6],
the notion of a restricted NP decision rule can be extended to cover
more generic scenarios, in which there exist sets of distribution fam-
ilies ������ � � � ��� such that �� � �� � � � � �� . (Suppose we
are certain that the prior distribution under the alternative hypothesis
lies in �� ; that is, ����� � �� . However, we get less sure that it
lies in �� as � decreases.) Please see [30, p. 146], for the extension of
the restricted NP formulation in (9)–(11) and for the generalization of
Theorem 1 to this scenario.

APPENDIX

PROOF OF THEOREM 3

Based on the definition of the restricted NP problem in (4)–(6),
�
���
� ��� in (27) is a nonincreasing function of � since larger �

values result in a smaller feasible set of decision rules for the optimiza-
tion problem. In order to use this observation in proving the concavity
of � ���

� ��� , define a new decision rule as a randomization [1], [6]
of two restricted NP decision rules as follows:

� 	�
�
� � ��� 	���� (37)

where � � �� 
 �� � � and � 
 	 
 �. From the definition of �, the
following equations can be obtained for the detection and false-alarm
probabilities of � for specific parameter values:

����� �� 	 	 �� �
�
� � � � ��� 	� �� �

�
� � � � � � 
� (38)

�� ��� �� 	 	 �� �
�
� � � � ��� 	� �� �

�
� � � � � � 
�� (39)

7Similarly, the prior distribution that maximizes the false alarm probability is
considered for the null hypothesis.

The relation in (39) can be used to show that � is an 
-level decision
rule. That is,

��

���

�� ��� �� � 	 ��

���

�� �
�
� � �

� ��� 	���

���

�� �
�
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 (40)

where (6) is used to obtain the second inequality.
Based on (37) and (38), the average detection probability of � can

be calculated as

�
���
� ��� 	

�

����� �� ����� ��

	 	 �
���
� ���� � � ��� 	� � ���

� ���� �� (41)

Also, from (38), the worst-case detection probability of � can be upper
bounded as follows:

���
���

����� �� � 	 ���
���

�� �
�
� � � � ��� 	� ���

���
�� �

�
� � �

� 	 �� � ��� 	� ��� (42)

Defining � ���
���

����� �� and �� 	 ������	� ��, the relations

in (41) and (42) can be used to obtain the following inequalities:

�
���
� �

�
� ��

���
� �

�
� � �

���
� ��� 	 	 �

���
� �

�
�

� ��� 	� � ���
� �

�
� (43)

where the first inequality follows from the nonincreasing property of
�
���
� ���� � explained at the beginning of the proof [since � � �� as

shown in (42)], and the second inequality is obtained from the fact
that the restricted NP decision rule ��� maximizes the average detec-
tion probability under a given constraint � on the worst case detection
probability (among all 
-level decision rules). Thus, the concavity of
�
���
� ���� � is proven.
In order to prove the strictly decreasing property, it is first shown that

for any � 
 � 
 �

���
���

�� �
�
� � � 	 �� (44)

Assume that ���
���

����
�
� � �� � �. Then, there exists an 
-level clas-

sical NP decision rule �� and � 
 	 
 � such that an 
-level deci-
sion rule � can be defined as � 	 �� � �� � 	� ��� , which satisfies
���
���

����� �� 	 �. It should be noted that �� achieves a smaller min-

imum detection probability and a higher average detection probability
than ��� for any � 
 � 
 � by definition. Therefore, the average de-
tection probability of � satisfies � ���

� ��� � �
���
� ���� �, which contra-

dicts with the definition of the restricted NP. Hence, ���
���

����
�
� � �� �

� cannot be true, which proves the result in (44). Next, let � 
 �� 


�� 
 � and suppose that � ���
� ���� � 	 �

���
� ���� �. Obviously, this

implies that ��� is also a solution corresponding to ��, which contra-
dicts with the result in (44). Therefore, � ���

� ���� � � �
���
� ���� � must

hold. Hence, � ���
� ���� � is a strictly decreasing function of �.
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A Noniterative Frequency Estimator With Rational
Combination of Three Spectrum Lines

Cui Yang and Gang Wei

Abstract—A noniterative frequency estimator is proposed in this paper.
The maximum bin of fast Fourier transform (FFT) is searched as a coarse
estimation, then the rational combination of three spectrum lines (RCTSL)
is used as the fine estimation. Based on least square approximation in fre-
quency domain, the combinational weights of RCTSL are found to be con-
stants depending only on data length, therefore the RCTSL is very com-
putational efficient. Theoretical bound is also obtained, which shows the
performance of RCTSL approaches the Cramér–Rao Bound (CRB). Sim-
ulation results demonstrate that RCTSL has a lower signal-to-noise ratio
(SNR) threshold compared with other known estimators.

Index Terms—Fourier transforms, frequency estimation, least square
approximation.

I. INTRODUCTION

Frequency estimation for exponential signals in additive white
Gaussian noise is of great importance in a wide range of applications
such as signal interception, detection, wireless communications, etc.
The complex exponential sample data is presented as

�����������������
������������� � � �� � � � � � ��� (1)

where �, 	 � ��
� 
	 and � � ��
� 
	 are signal amplitude, fre-
quency and phase, respectively, which are all unknown constants. It is
the frequency 	 which we are interested to estimate. ���� is complex
white Gaussian noise with zero mean and unknown variance ��. Given
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