
Continuum quantum systems as limits of discrete quantum systems. IV. Affine
canonical transforms
Laurence Barker

Citation: Journal of Mathematical Physics 44, 1535 (2003); doi: 10.1063/1.1557331
View online: http://dx.doi.org/10.1063/1.1557331
View Table of Contents: http://aip.scitation.org/toc/jmp/44/4
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/659683075/x01/AIP-PT/JMP_ArticleDL_0117/SearchPT_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Barker%2C+Laurence
/loi/jmp
http://dx.doi.org/10.1063/1.1557331
http://aip.scitation.org/toc/jmp/44/4
http://aip.scitation.org/publisher/


Continuum quantum systems as limits of discrete
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Affine canonical transforms, complex-order Fourier transforms, and their associ-
ated coherent states appear in two scenarios: finite-discrete and continuum. We
examine the relationship between the two scenarios, making systematic use of
inductive limits, which were developed in the preceding articles in this
series. ©2003 American Institute of Physics.@DOI: 10.1063/1.1557331#

I. INTRODUCTION

Inductive limits provide a clear and precise means whereby objects associated with a con-
tinuum system can be realized as limits of objects associated with a sequence of discrete systems.
Three preceding papers1–3 discuss inductive limits of vectors and operators. Another work4 con-
cerns inductive limits of representations. In the present article, we illustrate the approach by
applying it to a continuum scenario and a discrete scenario that lie in the core of quantum physics.

Our main results are as follows. Theorem 6.1 realizes Glauber coherent states as inductive
limits of spin coherent states. A practical version of the result goes back to Radcliffe5 and Arecchi
et al.6 Theorem 5.3 realizes the group of continuum motion canonical transforms as an inductive
limit of the group of discrete motion canonical transforms. A practical version was initiated in Ref.
6 and considerably developed by Atakishiyevet al.7,8 Theorem 5.1 and Corollary 5.2 realize
single-parameter groups of continuum affine canonical transforms as inductive limits of single-
parameter groups of discrete affine canonical transforms. Practical versions can be found in Do-
brevet al.9 Theorem 6.2 realizes continuum complex-order Fourier transforms as inductive limits
of discrete complex-order Fourier transforms. From a practical point of view, that can be seen as
a mild generalization of the fractional Fourier transforms in Ref. 10. In Ref. 4, Corollary 5.2 and
Theorem 5.3 are expressed explicitly as inductive limits of representations but, in the present
article, they are expressed simply as inductive limits of operators.

In using the adjective ‘‘practical,’’ rather than ‘‘heuristic,’’ we have erred towards understate-
ment rather than overstatement. There is a vast body of literature on discrete to continuum corre-
spondences that seem to be potential applications of inductive limits; see Sec. VII for a sample of
further citations. Sometimes, in those works, the practical versions of the results have involved
expressions of the formO5 limnOn or On→O that do not conform to any evident definition of
limit. Sometimes, comparatively weak results have been stated and proved, yet with an apparently
suggested meaning that goes beyond the literal interpretation; for instance, parallel discussion of
continuum and discrete scenarios, the latter implicitly understood to be an approximation to the
former. Actually, our use of inductive limits does have a practical intention, as we shall explain in
Sec. VII.

Let us indicate the nature of the general kind of problem that concerns us. The limit equations
in question are of the formO5 limnOn , whereO is an object~say, a vector, an operator or a
representation! associated with Hilbert spaceL, and eachOn is an object associated with a Hilbert
spaceLn . In this article,L5L2(R) and Ln is of finite dimensionn. The problem is to select
appropriate definitions so as to make such limit equations potentially provable or refutable; or, at
least, true or false. One approach is to embed the spacesLn in the spaceL, and to replace

a!Electronic mail: barker@fen.bilkent.edu.tr

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 4 APRIL 2003

15350022-2488/2003/44(4)/1535/19/$20.00 © 2003 American Institute of Physics



differential equations with corresponding difference equations. In general form, this is, of course,
a numerical approximation technique that has been in widespread use ever since the emergence of
statistical analysis in the 18th century. We must be very selective with our citations, since other-
wise there would be no end to them. The convergence of eigenvectors examined in Ref. 11 may be
applicable to the operators we consider below; this is significant, because convergence of spectral
measures may be an interesting avenue for research into discrete to continuum limits of represen-
tations~see Ref. 3, Sec. V!. In Ref. 12, groups acting onLn are embedded in groups acting onL,
and the discrete to continuum correspondence is characterized in terms of module induction.
Another approach, proposed by Parthasarathy13,14and Lindsay–Parthasarathy,15 is to collect all the
spacesLn together in a Fock space where limits can be examined without mentioning the spaceL.
Arguably, our approach is the most flexible of the three, since the definitions of inductive limits of
vectors and operators do not require any constraints on the Hilbert spacesL andLn ~except for
separability!. However, it seems very probable that the particular limit equations in the present
article can also be realized through the other two approaches.

Although some of the material below is in the nature of a review, this is a side-effect of a need
to reformulate known results before presenting our own. We must also point out that although
some of our limit formulas are unitary versions of accepted heuristic limits of Hermitian operators,
the assertions that the formulas now express are new, since the kinds of limit involved had not
previously been supplied with definitions.

II. CONTINUUM AFFINE CANONICAL TRANSFORMS

We shall introduce a six-dimensional connected real Lie group HSA5HSA(2,R) and an
action of HSA as unitary operators on the continuum state spaceL2(R). As we shall see in the
next section, HSA is a central extension of the special affine group SA on the plane; SA is also the
Schorödinger group with one space dimension and one time dimension. The group HSA, and its
representation onL2(R), are discussed by Dobrevet al.,9 and Neiderer;16 for some other
sources—oriented more towards the phase space picture—see Sec. III. Our main target, in this
section, is to obtain explicit matrix representations for some generators of the Lie algebra of HSA.
We shall also examine a subgroup HM of HSA. The group HM is a central extension of the
Euclidian motion group.

The real Lie algebra hsa5hsa(2,R) has a basis$ iB,iC,iD ,iP,iQ,i I %. The notation indicates
thatB, C, D, P, Q, I are elements of the complexification. The commutation relations are defined
to be such thatI is central,@Q,P#5 i I and, in the universal enveloping algebra,

B5 1
2 P2, C5 1

2 Q2, D5 1
2 ~PQ1QP!.

It is not hard to show that the commutation relations involvingB, C, D are

@B,P#505@C,Q#, @C,P#5 iQ52@D,Q#, @D,P#5 iP52@B,Q#,
~1!

@B,C#52 iD , @B,D#522iB, @C,D#52iC.

For instance,

@B,C#5 1
4 ~P2Q22PQPQ1PQPQ2PQ2P1PQ2P2QPQP1QPQP2Q2P2!

5 1
4 ~P@P,Q#Q1PQ@P,Q#1@P,Q#QP1Q@P,Q#P!52 iD .

Let B̂, Ĉ, D̂, P̂, Q̂, Î be the Hermitian operators onL2(R) such thatÎ is the identity operator
and

~ P̂f!~q!52 i
d

dq
f~q!, ~Q̂f!~q!5qf~q!, ~2!
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B̂5 1
2P̂

2, Ĉ5 1
2Q̂

2, D̂5 1
2 ~ P̂Q̂1Q̂P̂!, ~3!

wheref belongs to the Schwartz spaceS~R!. The operatorsP̂ andQ̂ are sometimes understood to
correspond to momentum and position, respectively~or frequency and time, in signal processing,
or frequency and position, in optics!.

Let s be the anti-Hermitian representation of hsa onL2(R) such that the elementsB, C, D,
P, Q, I act asB̂, Ĉ, D̂, P̂, Q̂, Î , respectively. We introduce a real Lie group HSA5HSA~2,R! and
a faithful unitary representationr of HSA such that HSA has associated Lie algebra hsa and such
that r has differential representations. The elements of the groupr~HSA! are calledcontinuum
affine canonical transforms. Of course, there is no essential difference between the abstract Lie
group HSA and the group of unitary operatorsr~HSA!. Each is isomorphic to the other via the
isomorphismr. Nevertheless, we do sometimes find it useful to distinguish between the two
groups. Given realb, g, d, m, n, k, we write

Ĥ~b,g,d,m,n,k!5bB̂1gĈ1dD̂1m P̂1nQ̂1k Î , ~4!

Û~b,g,d,m,n,k!5exp~2 iĤ ~b,g,d,m,n,k!!. ~5!

The continuum affine canonical transforms are the composites of operators that have the form
Û(b, . . . ,k).

Warning: some affine canonical transforms do not have the exponential formÛ(b, . . . ,k).
We shall not be making use of this negative result, but we mention that it can be proved by
considering the subquotient SL~2,R! of HSA, and using Eq.~19!.

As an element of the Lie algebra hsa, we define

N5B1C2I /2 .

The corresponding Hermitian operator onL2(R) is

N̂5s~N!5B̂1Ĉ1 Î /2.

Let hm5hm~2,R! be the subalgebra of hsa with basis$ i I ,iN,iP,iQ% and let HM5HM~2,R! be the
subgroup of HSA with associated Lie algebra hm. We call HM the group ofHeisenberg motions,
and we call the elements of the groupr~HM! the continuum motion canonical transforms.
Again, there is no essential difference between the two isomorphic groups HM andr~HM!. The
commutation relations for HM are given by Eq.~1! together with

@N,I #50, @N,P#5 iQ, @N,Q#52 iP. ~6!

The continuum~and discrete! motion canonical transforms will be of particular importance to us,
and it is worth introducing some special notation for them. Givenk,l,m,nPR, we define

Ê~k,l,m,n!5exp~2 i ~k Î 1lN̂1m P̂1nQ̂!!. ~7!

By passing to the quotient group HM/Z(HM) >EM ~see Sec. III!, it can easily be shown that the
operators having the formÊ(k,l,m,n) are closed under composition. In other words, the con-
tinuum motion canonical transforms are precisely the operators having the formÊ(k,l,m,n).

We shall give some explicit matrix equations for the infinitesmal generatorsB̂, Ĉ, D̂, P̂, Q̂,
Î of the continuum affine canonical transforms. For that, we need to specify a complete orthonor-
mal set. Recall that, forsPN, thes-th Hermite polynomial Hs and thes-th Hermite function
hs are the functionsR→C given by
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~21!s exp~q2/2!
ds

dqs exp~2q2!5Hs~q!5As!2sAp exp~q2/2!hs~q!. ~8!

Switching to Dirac notation, we writeus&5hs . Note that the zeroth Hermite functionu0&5h0 is
the Gaussian function

h0~q!5p21/4exp~2q2/2!. ~9!

Recall that$us&:sPN% is a complete orthonormal set inL2(R). Also recall that the annihilation
operatorÂ5(Q̂1 i P̂)/& and its Hermitian conjugate, the creation operatorÂ†5(Q̂2 i P̂)/&, act
by

Âus&5Asus21&, Â†us&5As11us11&. ~10!

By direct calculation using Eq.~10!, we obtain

B̂ us&5
21

4
As~s21!us22&1

2s11

4
us&1

21

4
A~s11!~s12! us12&, ~11!

Ĉ us&5
1

4
As~s21! us22&1

2s11

4
us&1

1

4
A~s11!~s12! us12&, ~12!

D̂ us&5
2 i

2
As~s21! us22&1

i

2
A~s11!~s12! us12&, ~13!

P̂ us&52 iAs

2
us21&1 iAs11

2
us11&, ~14!

Q̂ us&5As

2
us21&1As11

2
us11&, ~15!

Î us&5us&, ~16!

N̂ us&5s us&. ~17!

In Sec. IV, we shall find discrete analogues of these seven matrix equations.
Let us end this section with an example. Recall that the continuum Fourier transform is the

unitary operatorF̂ on L2(R) such thatF̂ us&5 i s us&. More generally, after Namias,17 the con-
tinuum fractional Fourier transform of ordertPR is the unitary operatorF̂ t on L2(R) such that
F̂ t us&5exp(2pist) us&. In other words,

F̂ t5exp~2p i tN̂ !5e2p i texp~2p i ~B̂1Ĉ!!. ~18!

III. THE CONTINUUM PHASE SPACE PICTURE

This section has two purposes. One of them is to fulfill the promise, made above, to explain
how the groups HSA and HM are central extensions of the groups SA and EM, which act on the
real plane. The other purpose is to clarify the relationship between the Hermitian operators and
their corresponding unitary operators. In Refs. 6–9 and 12, and many other works, limits are
described mainly in terms of Hermitian operators. But inductive limits are defined for unitary
operators; they are not defined for unbounded Hermitian operators. So we do need to be able to
move freely from Hermitian operators to unitary operators, and in reverse.
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The phase space picture provides much insight into these matters. There is a vast literature on
phase space, and much attention has been paid to affine canonical transforms, especially special
linear canonical transforms. See, for instance work by Folland,18 Hillery et al.,19 Littlejohn,20

Ozorio de Almeida;21 we also mention two collections of papers edited by Forbeset al.22 ~on
applications to optics! and Mecklenbra¨uker–Hlawatsch23 ~on applications to signal processing!.
The relevant material, though, is not easy to extract from the literature. Let us give a brief
self-contained account of it.

Thephase space plane, denotedP, is defined to be a copy ofR2. We regardP as a Euclidean
plane equipped with a fixed coordinate system; the vectors are written as coordinate vectors (p,q)
wherep andq are formal variables.

Recall that the group of special linear transforms of the real plane, denoted SL5SL~2,R!, has
Lie algebra sl5sl~2,R! with basis$ iB̄,iC̄,iD̄ % where

B̄5S 0 2 i

0 0 D , C̄5S 0 0

i 0D , D̄5S i 0

0 2 i D .

Thus, SL is generated by the elements having the form

S a b

c dD 5exp~2 i ~bB̄1gC̄1dD̄ !!5expS d 2b

g 2d D ,

whereb,g,dPR. Diagonalizing, a straightforward calculation shows that

S a b

c dD 5S cosa1da21 sina 2ba21 sina

ga21 sina cosa2da21 sina D , ~19!

wherea is the real or imaginary number such thata25bg2d2 and, for imaginarya, we under-
stand that cosa5coshia and sina5i sinhia. Note that, for given reala, b, c, d satisfyingad
2bc51, Eq.~19! has a solution in realsb, g, d if and only if a1d>22. The natural action of SL
on the real plane is given by

exp~2 i ~bB̄1gC̄1dD̄ !!S x
yD5S a b

c dD S x
yD5S ax1by

cx1dyD . ~20!

The Euclidean special affine group SA5SA~2,R! ~which coincides with the Schro¨dinger
group with one space and one time dimension! is generated by SL and the plane translates. The
associated Lie algebra sa5sa~2,R! has basis$ iB̄,iC̄,iD̄ ,i P̄,iQ̄%, where

exp~2 i ~m P̄1nQ̄!!S x
yD5S x1m

y1n D . ~21!

Evidently,@ P̄,Q̄#50. It is easy to check that the 14 other commutation relations are as in Eq.~1!.
We allow SA to act onP via the identification (p,q)5(2y,x). Thus

exp~2 i ~bB̄1gC̄1dD̄ !!S p
qD5S d 2c

b a D S p
qD ,

exp~2 i ~m P̄1nQ̄!!S p
qD5S p2n

q1m D .

By comparing commutation relations, we see that there is a Lie algebra epimorphism hsa→sa
mapping B, C, D, P, Q, I to B̄, C̄, D̄, P̄, Q̄, 0, respectively. The group epimorphism
HSA→SA has kernel
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Ker~HSA→SA!5Z~HSA!5$exp~2 i tpI !:tPR% .

We allow HSA to act onP by inflation from SA. Thus

exp~2 i ~bB1gC1dD !!S p
qD5S d 2c

b a D S p
qD , ~22!

exp~2 i ~mP1nQ1kI !!S p
qD5S p2n

q1m D . ~23!

The state spaceL2(R) and the phase space planeP are related to each other via the continuous
function

v:L2~R!{c°v@c#PLR
2~P!,

v@f#~p,q!5
1

p E
2`

`

dt f~q1t ! f~q2t ! exp~2ipt !.

The functionv is essentially a specialization of the famous Weyl–Wigner correspondence; see the
references at the beginning of this section, especially Refs. 19 and 18. GivengPHSA and c
PL2(R), then

v@r~g!c#~g~p,q!!5v@c#~p,q!.

In other words,v is covariant with the actions of HSA on the signal spaceL2(R) and on the phase
spaceP. The result is proved in, for instance, Ref. 20~Equations 6.18, 6.23, 6.27!, and Ref. 18
~Proposition 2.13, Theorem 2.15!. The rationale for our terminology should now be apparent: the
‘‘Heisenberg’’ groups HSA and HM are central extensions~or quantized versions! of the groups
SA and EM.

The special linear canonical transforms are usually understood to be unitary actions of SL on
the state spaceL2(R). For an element of SL as in Eq.~19!, the action on state space is taken to be
the unitary operator

l~a,b,c,d!Û~b,g,d,0,0,0!5l~a,b,c,d!exp~2 i ~bB̂1gĈ1dD̂ !!,

wherel(a,b,c,d) is a phase. The phasesl(a,b,c,d) cannot be chosen so as to yield a unitary
representation of SL. True enough, they can be chosen so as to preserve composition up to6
signs, thus determining a unitary representation of the metaplectic group Mp~2,R!, which is the
double cover of SL. But that observation has limited practical use, since the description of the
metaplectic group is very complicated; see Ref. 18, Chap. 4. For practical purposes, the special
linear canonical transforms comprise a four-dimensional group, one of the degrees of freedom
being the multiplications by phases. In fact, to establish a clear correspondence with the discrete
scenario, we have no choice but to include the momentum and position translates, as well as the
multiplications by phases. Thus, even if one is primarily concerned with the three-parameter group
SL, the connection with the discrete scenario demands that we consider all six degrees of freedom
in the group HSA.

IV. DISCRETE AFFINE CANONICAL TRANSFORMS

We shall introduce some discrete affine canonical transforms whose infinitesmal generators
satisfy matrix equations analogous to Eqs.~11!–~17!. First, we need to look at the Kravchuk
functions, which are discrete analogs of the Hermite functions. We closely follow the
representation-theoretic discussion of the Kravchuk functions in Ref. 24~Chap. 6! and, to a lesser
extent, Ref. 25~Chap. 8!. For parallel discussions of the Kravchuk and Hermite functions in
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connection with discrete and continuum oscillator algebras, see Refs. 10 and 26. An alternative
approach to the comparison of Kravchuk and Hermite functions, making systematic use of cre-
ation and annihilation operators, can be found in Ref. 27.

All lemmas that we state without proof can be obtained from the earlier lemmas together with
routine calculations as in Ref. 24. There is only one argument that is not straightforward, namely,
the proof of Lemma 4.5. For this, Ref. 24 invokes the theory of hypergeometric functions, and that
requires some delicate analysis, the Kravchuk functions being specializations of hypergeometric
functions at singular points. Our more direct argument is purely algebraic. The results proved
below concerning Kravchuk functions and Kravchuk polynomials are summarized in Appendix B.

Let n be a positive integer. Writen52,11. Let @n# denote the set ofk such that,1k and
,2k are natural numbers. Thus,@n# consists ofn integers orn halves of odd integers. LetLn be
the n-dimensional Hilbert space of functions@n#→C, the inner product being

^cux&5 (
k52,

,

c~k!x~k!,

wherec,xPLn , and the bar denotes complex conjugation. Letuk&n
Z denote the vector inLn such

that, givencPLn , thenc(k)5^cuk&n
Z . The set$uk&n

Z :kP@n#% is an orthonormal basis forLn .
Via the equation

uk&n
Z 5

u,1kv,2k

A~,1k!! ~,2k!!
~24!

we identify Ln with the space of homogenous polynomials of degree 2, in variablesu andv.
Later, we shall be realizingLn as a representation space of the Lie group U~2!. For the

following three preliminary results, though, we may as well consider, more generally, the Lie
group GL~2,C!. We define a group representationrn of GL~2,C! on Ln such that

~rn~g! F !~u,v !5F~au1cv,bu1dv !, g5S a b

c dD . ~25!

Lemma 4.1: Let j,kP@n#. Put max5max(0,j 1k) and min5min(,1j,,1k). Then, with re-
spect to the orthonormal basis$uk&n

Z :kP@n#%, the ( j ,k) entry of the matrix representingrn(g) is

n
Z^ j urn~g!uk&n

Z 5A~,1 j !! ~,2 j !!

~,1k!! ~,2k!! (
r 5max

min S ,1k
r D S ,2k

,1 j 2r Darb,1 j 2rc,1k2rdr 2 j 2k.

Henceforth, we work directly from Lemma 4.1, and we can forget about the characterization
of Ln as a space of polynomials.

Lemma 4.2: Now suppose that gPSL(2,C), and that the matrix entries b, c, d are nonzero.
Given j,kP@n#, then

n
Z^ j urn~g!uk&n

Z 5
b,1 j c,1k

dj 1k A~,1 j !! ~,1k!!

~,2 j !! ~,2k!! (
r 50

min(,1 j ,,1k)
~2,2r !! ~bc!2r

n! ~,1 j 2r !! ~,1k2r !!
.

Let cr5,(,11)2k21 1
4 for 2kPZ. Thus

ck11/25~,2k!~,1k11!, ck21/25~,1k!~,2k11!.

Let sn be the differential representation ofrn .
Lemma 4.3: Given an element H5(C

A
D
B) of gl~2,C! and an element kP@n#, then

sn~H ! uk&n
Z 5Ack21/2C uk21&n

Z 1~~,1k!A1~,2k!D ! uk&n
Z 1Ack11/2B uk11&n

Z .
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The real Lie algebra u~2! and its subalgebra su~2! have bases$2 iW,2 iX,2 iY,2 iZ% and
$2 iX,2 iY,2 iZ%, respectively, where

W5
1

2 S 1 0

0 1D , X5
1

2 S 0 1

1 0D , Y5
1

2 S 0 2 i

i 0 D , Z5
1

2 S 1 0

0 21D .

Note thatW commutes withX, Y, Z, and the other commutation relations are@X,Y#5 iZ and
@Y,Z#5 iX and @Z,X#5 iY. Let

Ŵn5sn~W!, X̂n5sn~X!, Ŷn5sn~Y!, Ẑn5sn~Zn!.

Given kP@n#, then, by Lemma 4.3,

Ŵn uk&n
Z 5, uk&n

Z , ~26!

X̂n uk&n
Z 5 1

2 ~Ack21/2 uk21&n
Z 1Ack11/2 uk11&n

Z ), ~27!

Ŷn uk&n
Z 5

i

2
~Ack21/2 uk21&n

Z 2Ack11/2 uk11&n
Z ), ~28!

Ẑn uk&n
Z 5kuk&n

Z . ~29!

Thus, the algebra representationsn of gl~2,C! restricts to anti-Hermitian representations of
u~2! and isu~2!. In other words, the group representationrn of GL~2,C! restricts to unitary repre-
sentations of U~2! and SU~2!. It is well-known~by an easy ladder argument! that the two restricted
representations are irreducible.

For eachkP@n#, we define a vector

uk&n
X 5exp~2 ipŶn /2! uk&n

Z . ~30!

To rewrite Eqs.~26!–~29! with respect to the orthonormal basis$uk&n
X :kP@n#%, let us first deter-

mine the exponentials ofiW, iX, iY, iZ. By evaluating derivatives att50, or by appealing to Eq.
~19! ~with complex values ofb, g, d!, we have

exp~2 i tW!5S e2 i t /2 0

0 e2 i t /2D , exp~2 i tX !5S cost/2 2 i sint/2

2 i sint/2 cost/2 D ,

~31!

exp~2 i tY!5S cost/2 2sint/2

sint/2 cost/2 D , exp~2 i tZ !5S e2 i t /2 0

0 eit /2D .

By direct calculation,e2 i tYZeitY5Z cost1Xsint for all tPR. So

exp~2 ipŶn /2!Ẑnexp~ ipŶn /2!5X̂n , exp~2 ipŶn /2!X̂nexp~ ipŶn /2!52Ẑn .

We can now rewrite Eqs.~26!–~29! as

Ŵn uk&n
X 5,uk&n

X , ~32!

X̂n uk&n
X 5kuk&n

X , ~33!

Ŷn uk&n
X 5

i

2
~Ack21/2 uk21&n

X 2Ack11/2 uk11&n
X ), ~34!
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Ẑn uk&n
X 5

21

2
~Ack21/2 uk21&n

X 1Ack11/2 uk11&n
X ). ~35!

Lemmas 4.1 and 4.2 now yield the following result.
Lemma 4.4: Given j,kP@n#, then

(1) n
Z^ j uk&n

X 5
~21!,1 j

2, A~,1 j !! ~,2 j !!

~,1k!! ~,2k!! (r
S ,1k

r D S ,2k
,1 j 2r D ~21!r ,

(2) n
Z^ j uk&n

X 5
~21!,1 j

2, A~,1 j !! ~,1k!!

~,2 j !! ~,2k!! (s

~2,2s!! ~22!s

s! ~,1 j 2n!! ~,1k2s!!
,

where the indices of the sums run over the values for which the terms are defined, namely,
max(0,j 1k)<r<min(,1j,,1k) and 0<s<min(,1j,,1k).

Lemma 4.5: Given j,kP@n#, then

n
Z^ku j &n

X 5~21! j 2k
n
Z^ j uk&n

X 5~21!,1k
n
Z^ku2 j &n

X 5~21!,2 j
n
Z^ku j &n

X .

Proof: Throughout the argument, when multiplying powers of21, we must bear in mind that
j ,k,, are all integers or all halves of odd integers. By Lemma 4.4~2!,

~21!,1 j
n
Z^ j uk&n

X 5~21!,1k
n
Z^ku j &n

X .

The first asserted equality follows.
Since the eigenvalues ofX̂n are distinct, the eigenvector equationsX̂n u j &n

X 5u j &n
X and X̂n u

2 j &n
X 52 j u j &n

X determine the unit vectorsu j &n
X andu2 j &n

X up to phase factors. By Eqs.~27! and
~33!, the matrix entryn

Z^ j uX̂nuk&n
X is zero unlessu j 2ku51. Therefore, fixingj , there is a phasev

such that, for allk, we have

n
Z^ku2 j &n

X 5v~21!,1k
n
Z^ku j &n

X .

~In other words, if we multiply theZ-coordinates ofu j &n
X by an alternating61, then we get a

multiple of u2 j &n
X .) Puttingk52,, and noting that, by Lemma 4.4~1!,

n
Z^2,u2 j &n

X 5
1

2
AS 2,

,1 j D n
Z^2,u j &n

X ,

we deduce thatv51. The second asserted equality follows and, hence, the third. h

Lemma 4.6: Given j,kP@n#, then

(1) Ack21/2 n
Z^k21u j &n

X 22 j n
Z^ku j &n

X 1Ack11/2 n
Z^k11u j &n

X 50,

(2) Acj 21/2 n
Z^ku j 21&n

X 22k n
Z^ku j &n

X 1Acj 11/2 n
Z^ku j 11&n

X 50.

Let Nn denote the set of natural numbers less thann. For eachsPNn , we define theKrav-
chuk polynomial Ks,n :Nn→C and theKravchuk function hs,n :@n#→C such that

~21!,1 j

2, AS 2,
,1 j D S 2,

,1kDK,1 j ,n~,1k!5h,1 j ,n~k!5n
Z^ j uk&n

X

for j ,kP@n#. The formulas in Appendix B are precisely Lemmas 4.4–4.6.
Proposition 4.7: The set of Kravchuk functions$hs,n :sPNn% is an orthonormal basis forLn .
Proof: The values of the Kravchuk functions are the overlaps of two orthonormal bases.h

We now rewrite the Kravchuk functions asus&n 5hs,n .

1543J. Math. Phys., Vol. 44, No. 4, April 2003 Continuum quantum systems as limits



Proposition 4.8: Given sP@n#, then us&n 5(21)s u,2s&n
X .

Proof: Apply Lemma 4.5. h

Via Proposition 4.8, we can rewrite Eqs.~32!–~35! as

Ŵn us&n 5,us&n , ~36!

X̂n us&n 5~,2s!us&n , ~37!

Ŷn us&n 5
i

2
~2As~2,112s! us21&n 1A~s11!~2,2s! us11&n ), ~38!

Ẑn us&n 5 1
2 ~As~2,112s! us21&n 1A~s11!~2,2s! us11&n ). ~39!

We define Hermitian operators

Î n5X̂n /,, P̂n52Ŷn /A,, Q̂n5Ẑn /A,,

2B̂n5 P̂n
2 , 2Ĉn5Q̂n

2 , 2D̂n5 P̂nQ̂n1Q̂nP̂n .

We can understandP̂n as discrete momentum~or frequency! andQ̂n as discrete position~or time!.
For realb, g, d, m, n, k, we introduce a Hermitian operator

Ĥn~b,g,d,m,n,k!5bB̂n1gĈn1dD̂n1m P̂n1nQ̂n1k Î n . ~40!

We define adiscrete affine canonical transformto be a unitary operator having the form

Ûn~b,g,d,m,n,k!5exp~2 iĤ n~b,g,d,m,n,k!!. ~41!

Recall that, in the continuum scenario, we defined the continuum affine canonical transforms
to be the composites of the unitary operators having the formÛ(b, . . . ,k). Our reason for not
defining the discrete affine canonical transforms in the same way is that the infinitesmal generators
Ĥn(b, . . . ,k) do not span a Lie algebra. We can work with single-parameter groups of discrete
affine canonical transforms—including fractional Fourier transforms, chirps and dilations—and
these single-parameter groups, of course, have the index-additivity propertyÛsÛt5Ûs1t. In gen-
eral, though, we do not retain any tractible closure property if we compose elements of distinct
single-parameter groups.

However, in the continuum scenario, we defined the motion canonical transforms to be pre-
cisely the unitary operators having the formÊ(k,l,m,n), these operators being closed under
composition. That feature can be retained in the discrete scenario. Let

N̂n5Ŵn2X̂n5,~ 1̂2 Î n!.

The operatorsÎ n , N̂n , P̂n , Q̂n are closed under commutators. We define adiscrete motion
canonical transform to be a unitary operator having the form

Ên~k,l,m,n!5exp~2 i ~k Î n1lN̂n1m P̂n1nQ̂n!!5r~En~k,l,m,n!!, ~42!

wherek,l,m,nPR. Let us put it in the language of representations. The Lie group u~2! has a
basis$I n ,Nn ,Pn ,Qn% where

I n5X/, , Nn5W2X, Pn52Y/A, , Qn5Z/A, .

The commutation relations are
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@ I n ,Nn#50, @ I n ,Pn#52 iQn /, , @ I n ,Qn#5 iPn /, ,
~43!

@Nn ,Pn#5 iQn , @Nn ,Qn#52 iPn , @Pn ,Qn#5 i I n .

The algebra representationsn mapsI n , Nn , Pn , Qn to Î n , N̂n , P̂n , Q̂n , respectively. Observe
that, as,→`, the structural constants forI n , Nn , Pn , Qn converge to those given in Sec. 2 for
the basis elementsI , N, P, Q of hm. The algebra iu~2! and the group U~2! are to serve as the
discrete analogs of the algebra hm and the group HM.

Now let us write down the matrices forB̂n , Ĉn , D̂n , P̂n , Q̂n , N̂n , Î n with respect to the basis
of Kravchuk functions. For 2r 11PN, let

tn~r !5A~2r 11!~4,22r 11!/16,.

Given sPNn , then

tnS s1
1

2D5As11

2 S 12
s

2, D , tnS s2
1

2D5As

2 S 12
s21

2, D .

By Eqs.~36!–~39!,

B̂n us&n 52
1

2
tnS s2

1

2D tnS s2
3

2D us22&n 1S s

2 S 12
s

2, D1
1

4D us&n

2
1

2
tnS s1

1

2D tnS s1
3

2D us12&n , ~44!

Ĉn us&n 5
1

2
tnS s2

1

2D tnS s2
3

2D us22&n 1S s

2 S 12
s

2, D1
1

4D us&n 1
1

2
tnS s1

1

2D tnS s1
3

2D us12&n ,

~45!

D̂n us&n 52 i t n~s2 1
2!tn~s2 3

2! us22&n 1 i t n~s1 1
2!tn~s1 3

2! us12&n , ~46!

P̂n us&n 52 i t n~s2 1
2! us21&n 1 i t n~s1 1

2! us11&n , ~47!

Q̂n us&n 5tn~s2 1
2! us21&n 1tn~s1 1

2! us11&n , ~48!

Î n us&n 5~12s/, ! us&n , ~49!

N̂n us&n 5s us&n . ~50!

Again, we observe a suggestive connection with the continuum scenario. As,→`, the matrix
entries in Eqs.~44!–~50! converge to the matrix entries in Eqs.~11!–~17!.

In Sec. II, we ended with an example. Let us end the present section with the analogous
example. The discrete Fourier transform of Atakishiyev–Wolf10 is the unitary operatorF̂n on Ln

such thatF̂n us&n 5 i s us&n . More generally, their discrete fractional Fourier transform of ordert

PR is the unitary operatorF̂n
t on Ln such thatF̂n

t us&n 5exp(2pist) us&n . In other words,

F̂n
t 5exp~2p i tN̂n!. ~51!

V. CONVERGENCE OF UNITARY TRANSFORMS

We wish to say that the continuum affine canonical transforms are limits of discrete affine
canonical transforms. The whole problem lies in making the assertion absolutely unambiguous;
then the proof will follow purely by deductive reasoning. Parts of the proof are deferred to Ref. 4.
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Usually, when one writes an equation of the formx5 limn→`xn , the objectx and the objectsxn all
belong to the same space~or category!. Such is not the case in our situation. We need to specify
an interface between the continuum scenario and the discrete scenario. Let us describe the inter-
face in two different ways, the first one clear and precise, the second one more illuminating from
a practical perspective.

The clear description of the interface makes use of inductive limits, which are introduced in
Refs. 1–3. A summary is given in Ref. 4, Sec. 2. LetS~R! be the Schwartz subspace ofL2(R). For
each positive integern, let resn be the linear mapS(R)→Ln such that, givenfPS(R), and
writing fn5resn(f), then

fn~k!5,21/4f~,21/2k!, ~52!

wherekP@n#. The linear maps resn comprise an inductive resolution ofL2(R). We are now in a
position to realize vectorsc in L2(R) as limits c5 limn cn , where eachcn is a vector in the
n-dimensional spaceLn . We can do the same for bounded operators and, in particular, for unitary
operators.

The following alternative description is rather more intuitive. Letf be a continuous and
well-behaved complex-valued function with one real variable. For eachn, let fn be a vector in
Ln . We regardfn as a good approximation tof provided

fn~k!',21/4f~,21/2k!

for almost all kP@n#. As the number of sample pointsn52,11 increases, the mesh,21/2

decreases and the width of the sample window 2,1/2 increases. Iffn becomes an arbitrarily good
approximation tof in a certain manner that preserves everything involving inner products, then
we say thatfn converges tof, and we writef5 limn fn . Limits of unitary operators are required
to preserve limits of vectors.

For example, Ref. 2, Theorem 5.1, says that

us&5 lim
n

us&n , ~53!

for all natural numberss. In other words, the Hermite functions are the inductive limits of the
Kravchuk functions.

Theorem 5.1: Let b5 limn bn , g5 limn gn , d5 limn dn , m5 limn mn , n5 limn nn , k
5 limn kn as limits of real sequences. Then

Û~b,g,d,m,n,k!5 lim
n

Ûn~bn ,gn ,dn ,mn ,nn ,kn!.

Proof: This is part of Ref. 4, Theorem 7.2. h

A comparison of Eqs.~11!–~16! with Eqs. ~44!–~49! provides a heuristic justification for
Theorem 5.1, but not a proof. Convergence of matrix entries of infinitesmal generators does not,
in general, imply convergence of the corresponding unitary operators.

Although arbitrary pairs of discrete affine canonical transforms do not compose in a tractible
way, let us draw attention to the index-additivity property of single-parameter groups of discrete
affine canonical transforms. Fix realsb, g, d, m, n, k. Theorem 5.1 tells us that

Û~ tb,tg,td,tm,tn,tk!5 lim
n

Ûn~ tbn ,tgn ,tdn ,tmn ,tnn ,tkn! ~54!

for all tPR. SinceB̂n ,Ĉn ,D̂n ,P̂n ,Q̂n , Î n are linearly independent forn>3, we have the follow-
ing.

Corollary 5.2: For fixed n>3, Eq. (54) describes a bijective correspondence between the
single-parameter groups of continuum affine canonical transforms and the single-parameter
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groups of discrete affine canonical transforms onLn . Now let n vary. The elements of a single-
parameter group of continuum affine canonical transforms are inductive limits of sequences of
elements of the corresponding single-parameter groups of discrete affine canonical transforms.

We now turn to motion canonical transforms.
Theorem 5.3: Let k5 limn kn , l5 limn ln , m5 limn mn , n5 limn nn as limits of real se-

quences. Then

Ê~k,l,b,g!5 lim
n

Ên~kn ,ln ,bn ,dn!.

Proof: The limit of representations in Ref. 4, Theorem 10.2, is a stronger result. h

Warning: Theorem 5.3 is not a special case of Theorem 5.1. Not all of the discrete motion
canonical transforms are discrete affine canonical transforms.

Comparing Eqs.~18! and~51!, we see that Theorem 5.3 recovers the convergence of fractional
Fourier transforms

F̂ t5 lim
n

F̂n
t . ~55!

A more direct proof of Eq.~55! is given in Ref. 3, Example 4.F. The equation~not expressed in the
form of an inductive limit! is due to Atakishiyev–Wolf.10

VI. COMPLEX-ORDER FOURIER TRANSFORMS AND COHERENT STATES

We introduce two more objects to the continuum scenario: the system of Glauber coherent
states~Gabor functions! and the continuum Hermite semigroup~the semigroup of complex-order
Fourier transforms!. Then we introduce the analogous objects to the discrete scenario: the system
of spin coherent states and the discrete Hermite semigroup~discrete complex-order Fourier trans-
forms!. As in the previous section, the analogy between the discrete and continuum objects is plain
enough; our purpose is to express the analogy precisely using inductive limits.

For an introduction to the Glauber and spin coherent states, see Ref. 28, Chap. 1 or Ref. 29.
To fix notation, we shall recall the relevant definitions, but we shall not discuss the measures on
the label spaces. TheGlauber coherent stateuz&C with label zPC can be defined as

uz&C 5exp~2uzu2/2!exp~zÂ†!u0&5exp~2uzu2/2!(
s50

`
zs

As!
us& . ~56!

Writing gz to denoteuz&C regarded as a~rapidly decreasing! function R→C, we have

p1/4gz~q!5expS 2
q2

2
1&zq2

z2

2
2

uzu2

2 D5expS 2
q2

2
2~u1 iv !q2

u2

2
2

iuv
2 D , ~57!

where&z5u1 iv with u,vPR. We note one other useful characterization:

uz&C 5exp~2 iuP̂1 ivQ̂!)u0& . ~58!

In electrical enginnering and signal processing, Glauber coherent states are usually calledGabor
functions, and are usually expressed in the form of Eq.~57!. The other two equations are more
normally used in quantum physics. As a gesture of mediation between the two disciplines, let us
give a quick proof that the three equations are mutually equivalent. From Eq.~58!, rewritten as

gz5exp~2 iuP̂1 ivQ̂!h0 ,

it is easy to obtain Eq.~57! using the identities
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exp~2 i ~uP̂1vQ̂!!5exp~ iuv/2!exp~ ivQ̂!exp~2 iuP̂!,

exp~2 iuP̂!f~q!5f~q2u!, exp~2 ivQ̂!f~q!5exp~ ivq!f~q!,

wherefPS(R). Using the generating function

exp~2qt2t2!5(
s50

`
ts

s!
Hs~q!

together with Eq.~57!, straightforward manipulation yields

(
s50

`
ts

s! E2`

`

dqHs~q!exp~2q2/2!gz~q!5p1/4exp~2uzu2/2!exp~&zt!.

Comparing coefficients of powers oft, we obtain^suz&C 5exp(2uzu2/2)/As!. The equivalence of
Eqs.~56!–~58! is now established.

For zPC with uzu<1, thecontinuum complex-order Fourier transform F̂(z) is defined to be
the bounded operator onL2(R) such that

F̂~z! us&5zs us& . ~59!

The integral kernel forF̂(z) may be found in Ref. 30. An optical realization ofF̂(z) is discussed
in Ref. 31. We have an obvious composition law

F̂~z!F̂~z8!5F̂~zz8!. ~60!

The commutative semigroup$F̂(z):uzu<1%, called thecontinuum Hermite semigroup, is evi-
dently isomorphic to the semigroup$zPC:uzu<1%. Writing

z5exp~2p i t !, ~61!

we say thatF̂(z) hasorder t. Given F̂(z), the real part oft is well-defined up to congruence
modulo 1. The conditionuzu<1 is precisely the condition thatt lies in the closed upper half of the
complex plane. By Eq.~17!,

F̂~z!5exp~2p i tN̂ !.

The continuum fractional Fourier transforms are precisely the unitary continuum complex-order
Fourier transforms. By Eqs.~56! and ~59!, the continuum Hermite semigroup permutes the
Glauber coherent states~up to scalar factors! according to the equation

F̂~z! uz&C 5exp~ uzzu2/22uzu2/2! uzz&C . ~62!

Now let us look at the discrete scenario. Thediscrete annihilation operator Ân and its
Hermitian conjugate, thediscrete creation operator Ân

† , are defined to be

Ân5~Q̂n1 i P̂n!/& , Ân
†5~Q̂n2 i P̂n!/& .

From Eqs.~47! and ~48! we have

Ân us&n 5AsS 12
s21

2, D us21&n , Ân
†us&n 5A~s11!S 12

s

2, D us11&n .
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The spin coherent stateuz&n
C with label zPC is defined by

S 11
uzu2

2, D ,

uz&n
C 5exp~zÂn

†!u0&n 5(
s50

2, AS 2,
s D S z

A2,
D s

us&n . ~63!

We also allow a spin coherent state

u`&n
C 5 lim

z→`

uz&n
C 5u2,&n

C .

For arbitraryzPC, thediscrete complex-order Fourier transform F̂n(z) is defined to be the
operator onL2(R) such that

F̂n~z! us&n 5zs us&n . ~64!

Using Eqs.~30! and ~31!, followed by Lemma 4.1 and Proposition 4.8, it can be shown that

F̂n~z!5rn~K~z!!, K~z!5
1

2 S 11z 12z

12z 11z
D . ~65!

Evidently, we have a composition law

F̂n~z!F̂n~z8!5F̂n~zz8!. ~66!

The semigroup$F̂(z):zPC% is called thediscrete Hermite semigroup. Letting t be as in Eq.
~61!, we say thatF̂n(z) hasorder t. The real part oft is still well-defined only up to congruence
modulo 1, but there are now no constraints on the range oft. By Eq. ~50!,

F̂n~z!5exp~2p i tN̂n!.

The discrete fractional Fourier transforms are precisely the unitary discrete complex-order Fourier
transforms. By Eqs.~63! and ~59!, the discrete Hermite semigroup permutes the spin coherent
states~up to scalar factors! according to the equation

F̂n~z! uz&n
C 5S 2,1uzzu2

2,1uzu2 D ,

uzz&n
C . ~67!

Theorem 6.1:Given zPC, then uz&C 5 limn uz&n
C .

Proof: Consider a vectorcPL2(R) and vectorscnPLn such that the set$icni :nPN% is
bounded. By Eq.~53! and Ref. 1, Theorem 3.4,c5 limn cn if and only if

^suc&5 lim
n

n^sucn&

for all sPN. These two equivalent conditions hold whenc5uz&C andcn5uz&n
C because

exp~2uzu2/2!

As!
5 lim

,→`
S 11

uzu1

2, D 2,AS 2,
s D S 1

A2,
D s

.

h

Theorem 6.2:GivenzPC with uzu<1, then F̂(z)5 limn F̂n(z).
Proof: Let cPL2(R) andcnPLn such thatc5 limn cn . Using the criterion for limits noted

in the previous argument,
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^suF̂~z!c&5zs^suc&5 lim
n

zs
n^sucn&5 lim

n
n^suF̂n~z!cn&,

and F̂(z)c5 limn F̂n(z)cn . h

VII. CONCLUSIONS

We have used inductive limits to express the way in which the discrete scenario and the
continuum scenario are related to each other. From a procedural point of view~oriented, say,
towards implementation of numerical calculations!, the relationships between the two scenarios
has two significant aspects:approximationandanalogy. Not only do the discrete objects serve as
approximations to their corresponding continuum objects, but they are also analogs in the sense
that the algebraic structures in the discrete scenario mirror the algebraic structures in the con-
tinuum scenario. For the purpose of numerical calculation, that feature is important, because it
ensures that errors due to inaccuracy of the approximating formulas are not compounded under
repeated composition. Our approach provides some rationale for both of those aspects: inductive
limits serve as approximations; they also preserve algebraic structures, specifically, they preserve
inner products, operator-vector compositions, and operator-operator compositions.

We propose inductive limits as a way of providing theoretical justification for discrete ap-
proximations in cases where precise error analysis would be too difficult. As concrete examples
become more complicated, intuition may become unreliable, and a precise criterion for the limits
may become increasingly useful. Inductive limits of representations, as in Sec. V and Ref. 4,
appears to be applicable to various other limits of representations. See, for instance, Refs. 8 and
32–35. It is to be expected that, through moderately complicated but routine exercises in epsilon-
ics, the limits of operators in those works can be shown to be inductive limits.

However, to plough through such calculations would be to overlook a more interesting line of
study. Limits of representations are more subtle than limits of individual operators. The result
~Ref. 4, Theorem 9.4! on convergence of structural constants requires, in addition to convergence
of individual operators, an analytic convergence hypothesis. The hypothesis is potentially verifi-
able, in practice, for concrete examples, but some simplifications may be possible; perhaps it
suffices to check the uniformity condition in Ref. 4, Sec. 8 only for a spanning set of infinitesmal
generators. Thus, at the time of writing, the criterion for inductive limits of representations should
be regarded as subject to simplification or modification.

Besides, in order to be of significant practical use, the theory of inductive limits of represen-
tations is in need of general theorems. For a limit of representationsr5 limn rn ~Ref. 4. Proposi-
tion 9! asserts that, ifr is faithful, thenrn is faithful for largen. That result is unlikely to be useful
in application to concrete examples, since faithfulness is usually obvious to start with. However,
the result may point the way forwards: ifr is irreducible, mustrn be irreducible for largen? To
prove theorems, of course, it is sometimes necessary to tinker with definitions. So, again, we
conclude that the present criterion for inductive limits of representations should be regarded as
subject to change.

It appears that inductive limits can also be used to describe a correspondence between a
finite-discrete periodic scenario based on the integers modulopm and a continuous periodic sce-
nario based on thep-adic integers. Here,p is a rational prime. For the discrete context, see Refs.
36 and 37; for the continuous context, see Refs. 38, and 39. In thisp-adic scenario, purely intuitive
arguments are to be distrusted, so the use of some or another precise notion of limit is essential.

Discrete versus continuum correspondences of operators and representations arise frequently.
Without attempting to classify the various directions of study, let us list some papers on the topic
where the termlimit is used explicitly and is probably interpretable asinductive limit:Refs. 40, 6,
7, 8, 32, 10, 41, 42, 5, 43, 44, 35, and 45–47. We have given a broad spread of citations so as to
provide evidence that an intuitive equivalent of the notion of an inductive limit is in widespread
use. The list could be extended considerably. The author has come across only one paper~citation
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omitted! in which the limits of operators are nonsensical~arbitrary SL~2,R! canonical transforms
written as ‘‘limits’’ of SL(2,p) canonical transforms, wherep runs over the rational primes!.

There are also a great many works where the termlimit is not used for our purpose, but
inductive limits seem to be involved implicitly. This point pertains, in particular, to many single-
parameter discrete systems used as approximations to continuum systems in signal processing. For
some examples, see Refs. 48 and 49 and references therein.

APPENDIX A: A COUNTER-EXAMPLE

By the definition of inductive limits of operators, Theorem 6.2 can be expressed as follows.
Theorem A.1: Given a vectorcPL2(R) and vectorscnPLn such thatc5 limn cn , then, for

all zPC with uzu<1, we have Fˆ (z)c5 limn F̂n(z)cn .
For arbitraryzPC3, we can still defineF̂(z) to be the operator onL2(R) satisfying Eq.~59!.

If uzu.1, thenF̂(z) is unbounded. The domain ofF̂(z), in this case, has been studied by Byun.50

Plainly, for arbitraryz, the conclusion of Theorem A.1 still holds whenc is a Glauber cat state
~linear combination of coherent states! in L2(R) andc is the corresponding spin cat state inLn .
However, for arbitraryz and arbitraryc in the domain ofF̂(z), the conclusion of Theorem A.1
can fail. A counter-example isc50 andcn5222, u2,& with z53.

It is difficult to imagine how the mainstream techniques~formal manipulation! could be used
to ‘‘derive’’ Theorem A.1 without also ‘‘deriving’’ the fallacy refuted in the previous paragraph.

APPENDIX B: IDENTITIES FOR THE KRAVCHUK FUNCTIONS

Let n be a positive integer. As in Sec. IV, we writen52,11 and @n#5$2,,12,, . . . ,,
21,,% and we defineck11/25(,2k)(,1k11), equivalently,ck21/25(,1k)(,2k11), where
2kPZ. The Kravchuk polynomials K0,n ,K1,n , . . . ,K2,,n are the functions$0,1,. . . ,2,%→C
given by

K,1 j ,n~,1k! 5 S 2,
l 1 j D 21

(
m5max(0,j 1k)

min(,1 j ,,1k) S ,1k
m D S ,2k

,1 j 2m D ~21!m

5 (
n50

min(,1 j ,,1k) S 2,
n D 21S ,1 j

n D S ,1k
n D ~22!n,

where j ,kP@n#. Note that, in each of the two formulas, the indexm or n runs over all values for
which the terms are defined. In Sec. IV, it is shown that the two formulas are equivalent to each
other. It is also shown that the Kravchuk polynomials satisfy

K,1k,n~,1 j !5K,1 j ,n~,1k!, ~B1!

K,1 j ,n~,2k!5~21!,1 jK,1 j ,n~,1k!, ~B2!

K,2 j ,n~,1k!5~21!,1kK,1 j ,n~,1k!, ~B3!

~,2k!K,1 j ,n~,1k11!12 jK ,1 j ,n~,1k!1~,1k!K,1 j ,n~,1k21!50, ~B4!

~,2 j !K,1 j 11,n~,1k!12kK,1 j ,n~,1k!1~,1 j !K,1 j 21,n~,1k!50. ~B5!

The Kravchuk functions h0,n ,h1,n , . . . ,h2,,n are the functions@n#→C given by

hs,n~k!5
~21!s

2, AS 2,
s D S 2,

,1kDKs,n~,1k!. ~B6!

In other words,
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h,1 j ,n~k!5
~21!,1 j

2, A~,1 j !! ~,2 j !!

~,1k!! ~,2k!! (m S ,1k
m D S ,2k

,1 j 2m D ~21!m

5
~21!,1 j

2, A~,1 j !! ~,1k!!

~,2 j !! ~,1k!! (n

~2,2n!! ~22!n

n! ~,1 j 2n!! ~,1k2n!!
. ~B7!

Equations~B1–B5! can be rewritten as

h,1k,n~ j !5~21!k2 jh,1 j ,n~k!, ~B8!

h,1 j ,n~2k!5~21!,1 jh,1 j ,n~k!, ~B9!

h,2 j ,n~k!5~21!,2kh,1 j ,n~k!, ~B10!

Ack11/2h,1 j ,n~k11!12 jh,1 j ,n~k!1Ack21/2h,1 j ,n~k21!50, ~B11!

Acj 11/2h,1 j 11,n~k!22kh,1 j ,n~k!1Acj 21/2h,1 j 21,n~k!50. ~B12!

Proposition 4.7 says that Kravchuk functions comprise an orthonormal basis for the space of
functions@n#→C.
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