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guantum systems. V. Affine canonical transforms
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Affine canonical transforms, complex-order Fourier transforms, and their associ-
ated coherent states appear in two scenarios: finite-discrete and continuum. We
examine the relationship between the two scenarios, making systematic use of
inductive limits, which were developed in the preceding articles in this
series. ©2003 American Institute of PhysicgDOI: 10.1063/1.1557331

[. INTRODUCTION

Inductive limits provide a clear and precise means whereby objects associated with a con-
tinuum system can be realized as limits of objects associated with a sequence of discrete systems.
Three preceding papéfs discuss inductive limits of vectors and operators. Another (voda-
cerns inductive limits of representations. In the present article, we illustrate the approach by
applying it to a continuum scenario and a discrete scenario that lie in the core of quantum physics.

Our main results are as follows. Theorem 6.1 realizes Glauber coherent states as inductive
limits of spin coherent states. A practical version of the result goes back to RatiatifieArecchi
et al® Theorem 5.3 realizes the group of continuum motion canonical transforms as an inductive
limit of the group of discrete motion canonical transforms. A practical version was initiated in Ref.

6 and considerably developed by Atakishiyeval.® Theorem 5.1 and Corollary 5.2 realize
single-parameter groups of continuum affine canonical transforms as inductive limits of single-
parameter groups of discrete affine canonical transforms. Practical versions can be found in Do-
brevet al® Theorem 6.2 realizes continuum complex-order Fourier transforms as inductive limits
of discrete complex-order Fourier transforms. From a practical point of view, that can be seen as
a mild generalization of the fractional Fourier transforms in Ref. 10. In Ref. 4, Corollary 5.2 and
Theorem 5.3 are expressed explicitly as inductive limits of representations but, in the present
article, they are expressed simply as inductive limits of operators.

In using the adjective “practical,” rather than “heuristic,” we have erred towards understate-
ment rather than overstatement. There is a vast body of literature on discrete to continuum corre-
spondences that seem to be potential applications of inductive limits; see Sec. VIl for a sample of
further citations. Sometimes, in those works, the practical versions of the results have involved
expressions of the forrd=1im,O,, or O,,— O that do not conform to any evident definition of
limit. Sometimes, comparatively weak results have been stated and proved, yet with an apparently
suggested meaning that goes beyond the literal interpretation; for instance, parallel discussion of
continuum and discrete scenarios, the latter implicitly understood to be an approximation to the
former. Actually, our use of inductive limits does have a practical intention, as we shall explain in
Sec. VII.

Let us indicate the nature of the general kind of problem that concerns us. The limit equations
in question are of the forn0=1im,0,, where O is an object(say, a vector, an operator or a
representationassociated with Hilbert spadg and each),, is an object associated with a Hilbert
spaceL,. In this article,L=L2(R) and £, is of finite dimensionn. The problem is to select
appropriate definitions so as to make such limit equations potentially provable or refutable; or, at
least, true or false. One approach is to embed the spdgea the spacel, and to replace
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differential equations with corresponding difference equations. In general form, this is, of course,
a numerical approximation technique that has been in widespread use ever since the emergence of
statistical analysis in the 18th century. We must be very selective with our citations, since other-
wise there would be no end to them. The convergence of eigenvectors examined in Ref. 11 may be
applicable to the operators we consider below; this is significant, because convergence of spectral
measures may be an interesting avenue for research into discrete to continuum limits of represen-
tations(see Ref. 3, Sec. MIn Ref. 12, groups acting of,, are embedded in groups acting 6n

and the discrete to continuum correspondence is characterized in terms of module induction.
Another approach, proposed by Parthasardtfiand Lindsay—Parthasarattis to collect all the
space<, together in a Fock space where limits can be examined without mentioning the/pace
Arguably, our approach is the most flexible of the three, since the definitions of inductive limits of
vectors and operators do not require any constraints on the Hilbert sfamed £,, (except for
separability. However, it seems very probable that the particular limit equations in the present
article can also be realized through the other two approaches.

Although some of the material below is in the nature of a review, this is a side-effect of a need
to reformulate known results before presenting our own. We must also point out that although
some of our limit formulas are unitary versions of accepted heuristic limits of Hermitian operators,
the assertions that the formulas now express are new, since the kinds of limit involved had not
previously been supplied with definitions.

[I. CONTINUUM AFFINE CANONICAL TRANSFORMS

We shall introduce a six-dimensional connected real Lie group HBSA(2R) and an
action of HSA as unitary operators on the continuum state spac®). As we shall see in the
next section, HSA is a central extension of the special affine group SA on the plane; SAis also the
Schoralinger group with one space dimension and one time dimension. The group HSA, and its
representation orL?(R), are discussed by Dobregt al.® and Neideret® for some other
sources—oriented more towards the phase space picture—see Sec. Ill. Our main target, in this
section, is to obtain explicit matrix representations for some generators of the Lie algebra of HSA.
We shall also examine a subgroup HM of HSA. The group HM is a central extension of the
Euclidian motion group.

The real Lie algebra hsahsa(2R) has a basi$iB,iC,iD,iP,iQ,il }. The notation indicates
thatB, C, D, P, Q, | are elements of the complexification. The commutation relations are defined
to be such that is central,[Q,P]=il and, in the universal enveloping algebra,

B= ;P2 C=3Q? D= 3(PQ+QP).
It is not hard to show that the commutation relations invoiBgC, D are
[B.,P]=0=[C,Q], [C,P]=iQ=-[D,Q], [D,P]=iP=—[B,Q],
[B,C]=—-iD, [B,D]=-2iB, [C,D]=2iC.

@

For instance,
[B,C]=#(P?Q*°~PQPQ+PQPQ-PQ’°P+PQ’P—QPQP+QPQP-Q?P?)
= 7(P[P,Q]Q+PQ[P,Q]+[P,Q]QP+Q[P,Q]P)=—iD.

LetB, C, D, P, Q, I be the Hermitian operators darf(R) such thaf is the identity operator
and

. d R
(P¢)(Q)=—id—qd)(Q), (Q¢)(a)=a¢(q), )
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B=3P?, C=3Q% D=3(PQ+QP), (3)

N

where¢ belongs to the Schwartz spaS&R). The operatorﬁ’ andQ are sometimes understood to
correspond to momentum and position, respectiyetyfrequency and time, in signal processing,
or frequency and position, in optics

Let o be the anti-Hermitian representation of hsaldR) such that the elemenB, C, D,
P,Q,lactasB, C, D, P, , 1, respectively. We introduce a real Lie group HSBSA(2,R) and
a faithful unitary representatiogmof HSA such that HSA has associated Lie algebra hsa and such
that p has differential representatian The elements of the groygHSA) are calledcontinuum
affine canonical transforms Of course, there is no essential difference between the abstract Lie
group HSA and the group of unitary operat@@$iSA). Each is isomorphic to the other via the
isomorphismp. Nevertheless, we do sometimes find it useful to distinguish between the two
groups. Given reapB, vy, 6, u, v, k, we write

H(B,y,0,u,v,k)= BB+ yC+ D+ uP+vO+«i, (4)

U(B,y,é,ﬂ,v,fc)=exq—il:l(,8,7,5,,u,v,;<)). (5)

The continuum affine canonical transforms are the composites of operators that have the form

U(g,....x).

Warning: some affine canonical transforms do not have the exponentialdggn. . . ).
We shall not be making use of this negative result, but we mention that it can be proved by
considering the subquotient 8,R) of HSA, and using Eq(19).

As an element of the Lie algebra hsa, we define

N=B+C—1/2.

The corresponding Hermitian operator bA(R) is
N=o(N)=B+C+1/2.

Let hm=hm(2,R) be the subalgebra of hsa with ba§ik,iN,iP,iQ} and let HM=HM(2,R) be the
subgroup of HSA with associated Lie algebra hm. We call HM the grougbei$enberg motions
and we call the elements of the gropgHM) the continuum motion canonical transforms
Again, there is no essential difference between the two isomorphic groups HM(iM). The
commutation relations for HM are given by Eq.) together with

[N,1]=0, [N,P]=iQ, [N,Q]=-iP. (6)

The continuum(and discretemotion canonical transforms will be of particular importance to us,
and it is worth introducing some special notation for them. Gixggu,ve R, we define

E(x,\,u,v)=exp —i(kl + AN+ uP+2v0Q)). 7)

By passing to the quotient group HE(HM) =EM (see Sec. Il it can easily be shown that the
operators having the forr‘E‘t(K,)\,/L,v) are closed under composition. In other words, the con-
tinuum motion canonical transforms are precisely the operators having theEfoem , i, v).

We shall give some explicit matrix equations for the infinitesmal gener&®ofs, D, P, Q,

I of the continuum affine canonical transforms. For that, we need to specify a complete orthonor-
mal set. Recall that, fase N, the s-th Hermite polynomial Hg and thes-th Hermite function
hg are the function®— C given by
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dS

(—1)°exp(g?/2) d—qsexp( — %) =Hy(q)= Vs!2%\m exp(g?/2)hy(q). ®)

Switching to Dirac notation, we writs)=h,. Note that the zeroth Hermite functid@)=h, is
the Gaussian function

ho(q) =7~ Y*exp(—q%/2). (9)

Recall that{|s):se N} is a complete orthonormal set lif(R). Also recall that the annihilation
operatorA= (Q+iP)/v2 and its Hermitian conjugate, the creation operatb= (Q—iP)/v2, act
by

Als)=s|s—1), Afls)=s+1|s+1). (10
By direct calculation using Eq10), we obtain

2s+1

Bls)= _71\/5(5— Dls=2)+——[s)+ _Tlx/(s+ 1)(s+2) [s+2), (12)

C |s):%\/ (s—1)[s—2)+ 23:1 |s)+ % V(s+1)(s+2)|s+2), (12
15|s)=_7i\/s(s—1)|s—2>+i§\/ s+1)(s+2)[s+2), (13

I5|s>=—i\[§|s—1)+i\/%|s+l>, (14
. +1
QIS>=\[§|S—1>+ \/STIS+1>, (15)

i]s)=|s), (16)

N|s)=s]s). 17

In Sec. IV, we shall find discrete analogues of these seven matrix equations.

Let us end this section with an example. Recall that the continuum Fourier transform is the
unitary operator= on L?(R) such thatF |s)=i%|s). More generally, after Namids, the con-
tinuum fractional Fourier transform of ordée R is the unitary operatofEt on L?(R) such that
F!|s)=exp(2rist) |s). In other words,

Fl=exp27itN)=e "texp 2mi(B+C)). (18)

IIl. THE CONTINUUM PHASE SPACE PICTURE

This section has two purposes. One of them is to fulfill the promise, made above, to explain
how the groups HSA and HM are central extensions of the groups SA and EM, which act on the
real plane. The other purpose is to clarify the relationship between the Hermitian operators and
their corresponding unitary operators. In Refs. 6—9 and 12, and many other works, limits are
described mainly in terms of Hermitian operators. But inductive limits are defined for unitary
operators; they are not defined for unbounded Hermitian operators. So we do need to be able to
move freely from Hermitian operators to unitary operators, and in reverse.
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The phase space picture provides much insight into these matters. There is a vast literature on
phase space, and much attention has been paid to affine canonical transforms, especially special
linear canonical transforms. See, for instance work by Foltdndillery et al.® Littlejohn2°
Ozorio de Almeid&! we also mention two collections of papers edited by Forsieal?? (on
applications to optigsand Mecklenbraker—Hlawatsct (on applications to signal processjng
The relevant material, though, is not easy to extract from the literature. Let us give a brief
self-contained account of it.

Thephase space planedenotedpP, is defined to be a copy ¢f?. We regardP as a Euclidean
plane equipped with a fixed coordinate system; the vectors are written as coordinate ygeefprs (
wherep andq are formal variables.

Recall that the group of special linear transforms of the real plane, denote8ISR,R), has

Lie algebra sksl(2,R) with basis{iB,iC,iD} where

| 6:(? c?) 5:(; —Ol)

Thus, SL is generated by the elements having the form

0 -—i

B:
0O O

b (BB 1Tt D) —exd O F
=exp — +yC+ =
o g =eRi(BBEY n=exd ],
where 8,v,6eR. Diagonalizing, a straightforward calculation shows that
a b\ [cosa+da lsina —Ba lsina 1
c d ya lsina cosa—da sina)’ (19

wherea is the real or imaginary number such thet= 8y— 6% and, for imaginaryw, we under-
stand that coe=coshia and sina=i sinhi«. Note that, for given reah, b, c, d satisfyingad
—bc=1, Eq.(19) has a solution in realg, v, Jif and only if a+d= —2. The natural action of SL
on the real plane is given by

a b (x

c d/\y

The Euclidean special affine group SSA(2,R) (which coincides with the Schdinger
group with one space and one time dimengisngenerated by SL and the plane translates. The

associated Lie algebrasaa?2,R) has basigiB,iC,iD,iP,iQ}, where

(20

ax+ by)

exﬂ—ﬁ(ﬂ§4qfikﬂib(§ ox dy

X+ u

o) 1)

exp —i(uP+ v6>>(§)=

Evidently,[5,5]=0. It is easy to check that the 14 other commutation relations are as i1)EQ.
We allow SA to act orfP via the identification p,q) =(—y,x). Thus

d —-c p)
b a/\a)’

p}{p—v
q g+u

By comparing commutation relations, we see that there is a Lie algebra epimorphisrsdisa

mapping B, C, D, P, Q,I to B, C, D, P, Q, 0, respectively. The group epimorphism
HSA—SA has kernel

exq—u3§476455»<2y=(

exp(—i(uP+vQ))
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Ker(HSA— SA)=Z(HSA) ={exp(—itml):te R} .

We allow HSA to act orfP by inflation from SA. Thus

. p| (d —c|p
expi—i(gB+yCroon|f =, |[%]. 22
exq—i(MP-i—VQ-f—Kl))(g): g;;) 23

The state spade?(R) and the phase space plaRare related to each other via the continuous
function

w:L%(R) 3 g o[ ] e LE(P),

1 [~ -
ol 81p.a)=— | dtarD s(a—1 expizipy).

The functionw is essentially a specialization of the famous Weyl—-Wigner correspondence; see the
references at the beginning of this section, especially Refs. 19 and 18. GiweiSA and ¢
e L?(R), then

o[ p(9)#1(9(p,q))= o[ #](p,q).

In other wordsw is covariant with the actions of HSA on the signal spaé€R) and on the phase
spaceP. The result is proved in, for instance, Ref. @quations 6.18, 6.23, 6.27and Ref. 18
(Proposition 2.13, Theorem 2.5 he rationale for our terminology should now be apparent: the
“Heisenberg” groups HSA and HM are central extensidos quantized versionf the groups
SA and EM.

The special linear canonical transforms are usually understood to be unitary actions of SL on
the state space?(R). For an element of SL as in E(L9), the action on state space is taken to be
the unitary operator

Ma,b,c,d)U(B,7,5,0,0,0=\(a,b,c,d)exp —i(BB+yC+ D)),

whereX(a,b,c,d) is a phase. The phasa&g$a,b,c,d) cannot be chosen so as to yield a unitary
representation of SL. True enough, they can be chosen so as to preserve compositiah up to
signs, thus determining a unitary representation of the metaplectic gro@Mpwhich is the

double cover of SL. But that observation has limited practical use, since the description of the
metaplectic group is very complicated; see Ref. 18, Chap. 4. For practical purposes, the special
linear canonical transforms comprise a four-dimensional group, one of the degrees of freedom
being the multiplications by phases. In fact, to establish a clear correspondence with the discrete
scenario, we have no choice but to include the momentum and position translates, as well as the
multiplications by phases. Thus, even if one is primarily concerned with the three-parameter group
SL, the connection with the discrete scenario demands that we consider all six degrees of freedom
in the group HSA.

IV. DISCRETE AFFINE CANONICAL TRANSFORMS

We shall introduce some discrete affine canonical transforms whose infinitesmal generators
satisfy matrix equations analogous to E¢El)—(17). First, we need to look at the Kravchuk
functions, which are discrete analogs of the Hermite functions. We closely follow the
representation-theoretic discussion of the Kravchuk functions in REICRB4p. 6 and, to a lesser
extent, Ref. 25(Chap. 8. For parallel discussions of the Kravchuk and Hermite functions in
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connection with discrete and continuum oscillator algebras, see Refs. 10 and 26. An alternative
approach to the comparison of Kravchuk and Hermite functions, making systematic use of cre-
ation and annihilation operators, can be found in Ref. 27.

All lemmas that we state without proof can be obtained from the earlier lemmas together with
routine calculations as in Ref. 24. There is only one argument that is not straightforward, namely,
the proof of Lemma 4.5. For this, Ref. 24 invokes the theory of hypergeometric functions, and that
requires some delicate analysis, the Kravchuk functions being specializations of hypergeometric
functions at singular points. Our more direct argument is purely algebraic. The results proved
below concerning Kravchuk functions and Kravchuk polynomials are summarized in Appendix B.

Let n be a positive integer. Writa=2¢+ 1. Let[n] denote the set df such that +k and
¢ —k are natural numbers. Thus] consists of integers om halves of odd integers. L&t, be
the n-dimensional Hilbert space of functiofa]— C, the inner product being

€
(W= 2 wloxk),

wherey, xy € L, and the bar denotes complex conjugation. |k<}:f denote the vector if,, such
that, givenye £,, theny(k)=(y|k)%. The set{|k)Z:ke[n]} is an orthonormal basis fof,, .
Via the equation

|k - u€+kv€—k (24)
= (€K (€—K)!

we identify £,, with the space of homogenous polynomials of degréén2variablesu anduv.

Later, we shall be realizing, as a representation space of the Lie grou@)UFor the
following three preliminary results, though, we may as well consider, more generally, the Lie
group GL(2,C). We define a group representatipp of GL(2,C) on £, such that

a b
e

(pn(9) F)(u,v)=F(au+cv,bu+dv), 0=|. 4

Lemma 4.1: Let jke[n]. Put max=max(0j + k) and min=min({+j,£+K). Then, with re-
spect to the orthonormal bas{iak}ﬁ :ke[n]}, the(j,k) entry of the matrix representing,(g) is

_ CEDIE—DE 2 (e+k\ [ €—k 4 -
z z_ rhl+j—rat+k—rgqr—j—k
n(ilea(9@)[K)n (€+K)!(€—K)! rEmax r C+j—r ab ¢ d .

Henceforth, we work directly from Lemma 4.1, and we can forget about the characterization
of £,, as a space of polynomials.

Lemma 4.2: Now suppose that@L(2,C), and that the matrix entries,bc, d are nonzero.
Given jke[n], then

biticttk [+ re+k)r ™EIER0 o) 1(be) T
Z/: zZ __
wlea( @5 = =g — V7= ie—w1 20 A+ =) (C+k=rT)"

Letc,=€¢(¢+1)— x>+ 3 for 2k e Z. Thus

Ci+12= (€ —K)(€+K+1), Cho1o=(€+K)(£—k+1).

Let o, be the differential representation pf .
Lemma 4.3: Given an element:k{é E) of gl(2,C) and an element &[n], then

on(H) [K)2 = e 12C [k—1)2 + ((£ +k)A+ (£ —Kk)D) |K)Z + /c s 12B |k+1)Z.
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The real Lie algebra (@) and its subalgebra &2) have base$—iW,—iX,—iY,—iZ} and

{—=iX,—iY,—iZ}, respectively, where
1/0 —i 1/1 O
' =2li o) 2=3lo -1/

1/1 0 1/0 1
W=3lo0 1) *=32l1 o

Note thatW commutes withX, Y, Z, and the other commutation relations & Y]=iZ and
[Y,Z]=iX and[Z,X]=iY. Let

Wn:Un(W)a 5\(n:‘Tn(X)v ?n:Un(Y)v 2n:(Tn(Zn)-

Givenke[n], then, by Lemma 4.3,

W, [ =€ k)7 (26)
Xo [K)n = 3 (Ve 12lk=1)7 + Veys 12k +1)7), (27)
Y0102 = 3 (Vo gl DZ ~ e amlicr1)2), 28
Z,|K)Z =K[Kk)Z . (29)

Thus, the algebra representatiof of gl(2,C) restricts to anti-Hermitian representations of
u(2) and isy2). In other words, the group representatjgnof GL(2,C) restricts to unitary repre-
sentations of (2) and SU?2). It is well-known(by an easy ladder argumeriat the two restricted
representations are irreducible.

For eachke[n], we define a vector

KX =exp(—imY,/2) |K)E. (30)
To rewrite Eqs(26)—(29) with respect to the orthonormal bagi&)X :ke[n]}, let us first deter-

mine the exponentials o¥V, iX, iY, iZ. By evaluating derivatives &t=0, or by appealing to Eq.
(19) (with complex values of3, y, 6), we have

_ e 2 0 _ cost/2  —isint/2
SXR—IWI=| g grie)r EXRTIDO=] gnin costr2 |
. (31)
cost/2 —sint/2 e 2 0
—ity)= —itz)= ol
SR = Gint costrz |1 FRTIE) 0 €2
By direct calculationg™''YZe'"Y=Z cost+Xsint for all te R. So
exp(—i 7Y, 2) ZuexpimYnl2)=X,, exp—imY,/2)XexpimY,/2)=—2,.
We can now rewrite Eqg26)—(29) as
W, [k =€lk)y (32
Xalk)n =K[k)n (33

“ i
Yn|k>?1(:E(\/Ck—1/2|k_1>?1(_Vck+1/2|k+1>?1()a (34
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~ -1
Zylkyy = T(Vck—1/2|k_1>?1( +\Cr 12| K+ 1)). (39

Lemmas 4.1 and 4.2 now yield the following result.
Lemma 4.4; Given,ke[n], then

: (=1 Je+He—))!
@) ik = o7 (€+k)!(€—k)!2

Y

<€+k) €~k r
r (€+j—r)(_1) :

2 (FDET eI +kK)! (2¢—s)!(—2)°
@) il == (e—j)!(e—k)!z SI({+j—v)(L+k—s)!"

where the indices of the sums run over the values for which the terms are defined, ,namely
max(0j +k)<r=min(¢+j,£+k) and 0<s=min(¢+],£ +K).
Lemma 4.5: Given,ke[n], then

KR =(=1)7F LjlkX=(—1)"F Hk|=]X=(—1)"T ZK|j)K.

Proof: Throughout the argument, when multiplying powers—df, we must bear in mind that
j,k,€ are all integers or all halves of odd integers. By Lemmd2},4

(=D Hjlkyx =(—1) % KKK

The first asserted equality follows.

Since the eigenvalues &, are distinct, the eigenvector equatioXs|j)X =|j)X and X, |
—X==j )X determine the unit vectol$)x and|—j)~ up to phase factors. By Eq®7) and
(33), the matrix entry(j|X,|k)X is zero unles$j —k|= 1. Therefore, fixing, there is a phase
such that, for alk, we have

ZK =D =o(— 1) T XKHE .

(In other words, if we multiply theZ-coordinates otj)ﬁf by an alternating+ 1, then we get a
multiple of |— )X .) Puttingk=—¢, and noting that, by Lemma 43,

. 1 2¢ .
=5 V| A B,

we deduce thaiv=1. The second asserted equality follows and, hence, the third. O
Lemma 4.6: Given,ke[n], then

(1) Vewowp a(k=10i)) =2 5KIDA + Ve a(k+1]j)y =0,

(2) Vej-1p Sk = 1)y =2k &Kl ) + Cj+12 HK[j+1)y=0.

Let N,, denote the set of natural numbers less thairor eachse N, we define theKrav-
chuk polynomial K, :N,—C and theKravchuk function hg,:[n]—C such that

(—1)¢H 2¢ \[ 2¢ 2, x
T €+j £+Kk K€+j,n(€+k):h€+j,n(k):n<l|k>n

for j,ke[n]. The formulas in Appendix B are precisely Lemmas 4.4—4.6.
Proposition 4.7: The set of Kravchuk functiofts, ,:se N} is an orthonormal basis foL,, .
Proof: The values of the Kravchuk functions are the overlaps of two orthonormal bdses.
We now rewrite the Kravchuk functions &), =hsg .
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Proposition 4.8: Given & [n], then|s), =(—1)|¢—s)X.
Proof: Apply Lemma 4.5. O
Via Proposition 4.8, we can rewrite Eq82)—(35) as

Wn|s>n =€|S>n ) (36)
Xn|S)n=(£=5)|S)y , (37)
Yols)n= IE(— Vs(2€+1—s)|s—1), +V(s+1)(2¢—5s)|s+1),), (39
Z,|8)n = 2(Vs(2€+1—5) [s— 1), +(s+1)(2¢—s) |s+1),). (39)
We define Hermitian operators
’I\n:S(nlev ISn:_?n/\/zy anzn/\/?a
2én:|sﬁ! Zénzéﬁa anzlsnén"'énlsn-

We can understang,, as discrete momentutor frequencyandQ,, as discrete positiofor time).
For realB, v, 8, u, v, k, we introduce a Hermitian operator

Hn(ﬂ,y, 5,/L,V,K):ﬁén+ 'yén-i- 5Dn+,u|5n+ in-i- KlAn . (40

We define aliscrete affine canonical transformto be a unitary operator having the form

On(IB,’y,a,,LL,V,K):qu_“:in(,B,’y,é,/.L,V,K)). (41)

Recall that, in the continuum scenario, we defined the continuum affine canonical transforms

to be the composites of the unitary operators having the 10(f#, . . . ,x). Our reason for not
defining the discrete affine canonical transforms in the same way is that the infinitesmal generators

Hn(ﬁ, ...,k) do not span a Lie algebra. We can work with single-parameter groups of discrete
affine canonical transforms—including fractional Fourier transforms, chirps and dilations—and

these single-parameter groups, of course, have the index-additivity prap&ity= Us*t. In gen-
eral, though, we do not retain any tractible closure property if we compose elements of distinct
single-parameter groups.

However, in the continuum scenario, we defined the motion canonical transforms to be pre-

cisely the unitary operators having the for[%(K,)\,,u,v), these operators being closed under
composition. That feature can be retained in the discrete scenario. Let

The operatorsfn, Nn, I5n, Qn are closed under commutators. We defineliscrete motion
canonical transform to be a unitary operator having the form

En(r, N, i, v) =exp(—i (k] ANp+ P+ vQp) = p(En(k,\, 1, 7)), (42)

where «,\,u,ve R. Let us put it in the language of representations. The Lie gra@p has a
basis{l,,N,,P,,Q,} where

I,=XI€, Ny=W—-X, P,=-Y/\(, Q,=z/C.

The commutation relations are
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[1n,Na]=0, [15,Pa]l==iQn/€, [15,Qu]=iP,/C,

[Nn,Pnl=iQn, [N, Qul=—iP,, [P, Qn]=il,.

(43

The algebra representatien, mapsl,, N,,, P,, Q,to1,, N,, P,,, Q,, respectively. Observe
that, ast —«, the structural constants fog, N,, P,, Q, converge to those given in Sec. 2 for
the basis elements N, P, Q of hm. The algebra i2) and the group (2) are to serve as the
discrete analogs of the algebra hm and the group HM.

Now let us write down the matrices f&;,, C,,, D,,, P,,, Q,, N,,, 1, with respect to the basis
of Kravchuk functions. For 2+1e N, let

t,(r)=\(2r+1)(4¢—2r+1)/16¢.

Givense N, then

ty

By Egs.(36)—(39),

. 1 1 3 S S
Bn|s>n:_§tn S_E tn S—E |S—2>n+ E 1—ﬁ +Z |S>n
1 1 3
_Etn S+§ th S+§ |S+2>n ) (44)
& B 1 1 3 : S 1 S 1 1 1 3 5

n|S>n_§tn S E thl S E |S >n+ 5 ﬂ +Z |S>n+§tn S+§ th S+§ |S+ >nv
(45
If\)n |S>n = _itn(s_ %)tn(s_ %) |S_ 2>n +itn(s+ %)tn(S"’ g) |S+ 2>n , (46)
PolS)y = —ita(s—3) [s— 1), +ity(s+3) [s+ 1), , (47)
QnlS)n =ta(s=3) [s= 1)y +ta(s+3) [s+1), (48)
Tnls)n=(1=s/€)|S), , (49)
Nn|s>n :S|S>n . (50)

Again, we observe a suggestive connection with the continuum scenarib-—4As, the matrix
entries in Egs(44)—(50) converge to the matrix entries in Eq4.1)—(17).
In Sec. Il, we ended with an example. Let us end the present section with the analogous

example. The discrete Fourier transform of Atakishiyev—Wa# the unitary operatoi::n on L,
such thatf, |s)n =i%|s), . More generally, their discrete fractional Fourier transform of otder
e R is the unitary operatoF!, on £, such that-! |s), =exp(2rist) |s),. In other words,

F!=exp(2mitN,). (51)

V. CONVERGENCE OF UNITARY TRANSFORMS

We wish to say that the continuum affine canonical transforms are limits of discrete affine
canonical transforms. The whole problem lies in making the assertion absolutely unambiguous;
then the proof will follow purely by deductive reasoning. Parts of the proof are deferred to Ref. 4.
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Usually, when one writes an equation of the fatmlim,_ ..X,,, the objectx and the objectg, all
belong to the same spacer category. Such is not the case in our situation. We need to specify
an interface between the continuum scenario and the discrete scenario. Let us describe the inter-
face in two different ways, the first one clear and precise, the second one more illuminating from
a practical perspective.

The clear description of the interface makes use of inductive limits, which are introduced in
Refs. 1-3. Asummary is given in Ref. 4, Sec. 2. 5&R) be the Schwartz subspaceldf(R). For
each positive integen, let res be the linear mapS(R)— £,, such that, givenp e S(R), and
writing ¢,=res,(¢#), then

bn(K)=€" V(£ (52

wherek e[n]. The linear maps recomprise an inductive resolution bf(R). We are now in a
position to realize vectorgs in L2(R) as limits ¢/=lim, ¢,,, where eachy, is a vector in the
n-dimensional spacg, . We can do the same for bounded operators and, in particular, for unitary
operators.

The following alternative description is rather more intuitive. l¢getbe a continuous and
well-behaved complex-valued function with one real variable. For @adkt ¢, be a vector in
L, . We regardg,, as a good approximation t¢ provided

BoK)~ € M4 (€ V)

for almost allke[n]. As the number of sample points=2¢+1 increases, the mest*?
decreases and the width of the sample winddi#/Zincreases. I&,, becomes an arbitrarily good
approximation tog in a certain manner that preserves everything involving inner products, then
we say thatp,, converges tap, and we writep=Ilim, ¢, . Limits of unitary operators are required
to preserve limits of vectors.

For example, Ref. 2, Theorem 5.1, says that

|S>:”m|s>nv (53

n

for all natural numbers. In other words, the Hermite functions are the inductive limits of the
Kravchuk functions.

Theorem 5.1: Let B=Ilim,B,, y=Ilim,y,, 6=Ilim,éd,, p=lm,u,, v=Ilim,v,, «
=lim, «, as limits of real sequences. Then

O(B,’y,ﬁ,ﬂ,V,K)Zlim Un(ﬁn +Yn 100 MnsVn Kn)-
n

Proof: This is part of Ref. 4, Theorem 7.2. O

A comparison of Eqs(11)—(16) with Egs. (44)—(49) provides a heuristic justification for
Theorem 5.1, but not a proof. Convergence of matrix entries of infinitesmal generators does not,
in general, imply convergence of the corresponding unitary operators.

Although arbitrary pairs of discrete affine canonical transforms do not compose in a tractible
way, let us draw attention to the index-additivity property of single-parameter groups of discrete
affine canonical transforms. Fix reals vy, 6, u, v, k. Theorem 5.1 tells us that

OB, ty,t8 tu,tv,t) =lim Un(t By tyn t 8o titn tvn tiy) (54)
n

for all te R. SinceB,,,C,,,D,,,P,,,Q, .1, are linearly independent for=3, we have the follow-
ing.

Corollary 5.2: For fixed =3, Eq. (54) describes a bijective correspondence between the
single-parameter groups of continuum affine canonical transforms and the single-parameter
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groups of discrete affine canonical transforms 6. Now let n vary. The elements of a single-
parameter group of continuum affine canonical transforms are inductive limits of sequences of
elements of the corresponding single-parameter groups of discrete affine canonical transforms
We now turn to motion canonical transforms.
Theorem 5.3: Let k=Ilim, k,, A=limy\,,, p=lim,u,, v=Iim, v, as limits of real se-
quences. Then

E(x,\,B,7)=lim Eq(kn,Nn, B, ).

Proof: The limit of representations in Ref. 4, Theorem 10.2, is a stronger result. [

Warning: Theorem 5.3 is not a special case of Theorem 5.1. Not all of the discrete motion
canonical transforms are discrete affine canonical transforms.

Comparing Eqs(18) and(51), we see that Theorem 5.3 recovers the convergence of fractional
Fourier transforms

Fl=limF! . (55)

n

A more direct proof of Eq(55) is given in Ref. 3, Example 4.F. The equatigmot expressed in the
form of an inductive limij is due to Atakishiyev—Wolf°

VI. COMPLEX-ORDER FOURIER TRANSFORMS AND COHERENT STATES

We introduce two more objects to the continuum scenario: the system of Glauber coherent
states(Gabor functionsand the continuum Hermite semigro(the semigroup of complex-order
Fourier transforms Then we introduce the analogous objects to the discrete scenario: the system
of spin coherent states and the discrete Hermite semigidisprete complex-order Fourier trans-
forms). As in the previous section, the analogy between the discrete and continuum objects is plain
enough; our purpose is to express the analogy precisely using inductive limits.

For an introduction to the Glauber and spin coherent states, see Ref. 28, Chap. 1 or Ref. 29.
To fix notation, we shall recall the relevant definitions, but we shall not discuss the measures on
the label spaces. ThBlauber coherent state|z)© with label ze C can be defined as

12)C =exp(— |z|2/2)exp(zN)|0)=exp(—|z|2/2)§0 Jisi!|5> . (56)
Writing g, to denote|z)© regarded as &apidly decreasingfunction R—C, we have
wl’4gz(q)=exp{ - q;ﬂézq— Z;— ?) =exp( - q;—(uﬂv)q— u;_ IUTU . (57
wherev2z=u+iv with u,v € R. We note one other useful characterization:
|2)C =exp(—iuP+ivQ))|0). (58)

In electrical enginnering and signal processing, Glauber coherent states are usuallGeaibed
functions, and are usually expressed in the form of E&j7). The other two equations are more
normally used in quantum physics. As a gesture of mediation between the two disciplines, let us
give a quick proof that the three equations are mutually equivalent. FronbB).rewritten as

g,=exp(—iuP+ivQ)hy,

it is easy to obtain Eq(57) using the identities
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exp(—i(uP+vQ))=expiuv/2)expivQ)exp —iuP),

exp(—iuP)p(q)=¢(q—u), exp—ivQ)¢(a)=expiva)(a),
where ¢ € S(R). Using the generating function

- s
exp2qt—t%)= 3, —H(q)

s=0

together with Eq(57), straightforward manipulation yields

© ts -
> o f doHg(q)exp —g?/2)g,(q) = 7 exp( —|z|/2)exp(v2zt).
s=0 o J -

Comparing coefficients of powers tf we obtain(s|z)© =exp(—|z|2/2)/@. The equivalence of
Egs.(56)—(58) is now established.

For {eC with |{]<1, thecontinuum complex-order Fourier transform F(¢) is defined to be
the bounded operator dr?(IR) such that

F(O) Is)=C5%]s). (59

The integral kernel foF () may be found in Ref. 30. An optical realization f¢) is discussed
in Ref. 31. We have an obvious composition law

FOF(L)=F(L). (60)

The commutative semigrou=(¢):|¢|<1}, called thecontinuum Hermite semigroup, is evi-
dently isomorphic to the semigroyg e C:|{|<1}. Writing

{=exp(2it), (61)
we say thatF(¢) hasorder t. GivenE(¢), the real part ot is well-defined up to congruence

modulo 1. The conditiom|<1 is precisely the condition thatlies in the closed upper half of the
complex plane. By Eq(17),

F(0)=exp2mitN).
The continuum fractional Fourier transforms are precisely the unitary continuum complex-order
Fourier transforms. By Eq956) and (59), the continuum Hermite semigroup permutes the
Glauber coherent statégp to scalar factoysaccording to the equation

F(0) |2)C =expl|zZ|?12—|2|?12) |£2)C . (62)

Now let us look at the discrete scenario. THiscrete annihilation operator An and its
Hermitian conjugate, thdiscrete creation operatorAE, are defined to be

Ay=(Qu+iPIv2, Al=(Q,—iP,)IV2.

From Egs.(47) and (48) we have

~ s—1 At S
An|S>n: 5(1_7) |S_1>n ) An|s>n: (s+1) 1_ﬂ) |S+1>n .
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The spin coherent state|z)S with label ze C is defined by

22\ e a0 = S R ]
1+7 |Z>n _EXF(ZAhHO)n _s=O s A |S>n : (63)
We also allow a spin coherent state

o) = lim [2)7 =2¢)7 .

Z— 0

For arbitraryZ e C, thediscrete complex-order Fourier transform F,(¢) is defined to be the
operator onL2(R) such that

Fa(0) |8)n =C%|S)n - (64)

Using Eqgs.(30) and (31), followed by Lemma 4.1 and Proposition 4.8, it can be shown that

. 1(1+¢ 1-¢
Fa(8)=pn(K({)), K(O=5 1-¢ 1+¢) (65)
Evidently, we have a composition law
Fa(OF(¢)=Fn(£). (66)

The semigroup{ﬁ(g):geC} is called thediscrete Hermite semigroup Lettingt be as in Eq.

(61), we say thaf ,(¢) hasorder t. The real part of is still well-defined only up to congruence
modulo 1, but there are now no constraints on the range Bfy Eq. (50),

F.(O)=exp2mitN,).

The discrete fractional Fourier transforms are precisely the unitary discrete complex-order Fourier
transforms. By Eqs(63) and (59), the discrete Hermite semigroup permutes the spin coherent
states(up to scalar factojsaccording to the equation

2¢+|¢z)?

€
Fa(O) |2)5 = mz‘) 1£2)5 . (67)

Theorem 6.1: Given z= C, then|z)€ =lim, |2)$ .
Proof: Consider a vectorye L?(R) and vectorsy, e L, such that the sefl|y,|:ne N} is
bounded. By Eq(53) and Ref. 1, Theorem 3.44=Ilim, ¢, if and only if

(slyy=lim n{s| )

for all se N. These two equivalent conditions hold wher-|z)¢ and zpn=|z)ﬁ because

Lﬁ:ﬁm(ﬁ%)e\/@(%)s'

{—o

O

Theorem 6.2: Given (e C with |¢|]<1, then F¢)=lim, F(?).
Proof: Let e L2(R) and ¢, € £, such thaty=1lim, ,. Using the criterion for limits noted
in the previous argument,
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<S| IA:(() (ﬂ) = §s<s| ¢> =lim ¢® n<S| ¢n> =lim n<S| IA:n(() ¢n>1

andF () y=lim, Fo() . O

VII. CONCLUSIONS

We have used inductive limits to express the way in which the discrete scenario and the
continuum scenario are related to each other. From a procedural point of(eremted, say,
towards implementation of numerical calculatipnthe relationships between the two scenarios
has two significant aspectapproximationandanalogy Not only do the discrete objects serve as
approximations to their corresponding continuum objects, but they are also analogs in the sense
that the algebraic structures in the discrete scenario mirror the algebraic structures in the con-
tinuum scenario. For the purpose of numerical calculation, that feature is important, because it
ensures that errors due to inaccuracy of the approximating formulas are not compounded under
repeated composition. Our approach provides some rationale for both of those aspects: inductive
limits serve as approximations; they also preserve algebraic structures, specifically, they preserve
inner products, operator-vector compositions, and operator-operator compositions.

We propose inductive limits as a way of providing theoretical justification for discrete ap-
proximations in cases where precise error analysis would be too difficult. As concrete examples
become more complicated, intuition may become unreliable, and a precise criterion for the limits
may become increasingly useful. Inductive limits of representations, as in Sec. V and Ref. 4,
appears to be applicable to various other limits of representations. See, for instance, Refs. 8 and
32-35. It is to be expected that, through moderately complicated but routine exercises in epsilon-
ics, the limits of operators in those works can be shown to be inductive limits.

However, to plough through such calculations would be to overlook a more interesting line of
study. Limits of representations are more subtle than limits of individual operators. The result
(Ref. 4, Theorem 9)on convergence of structural constants requires, in addition to convergence
of individual operators, an analytic convergence hypothesis. The hypothesis is potentially verifi-
able, in practice, for concrete examples, but some simplifications may be possible; perhaps it
suffices to check the uniformity condition in Ref. 4, Sec. 8 only for a spanning set of infinitesmal
generators. Thus, at the time of writing, the criterion for inductive limits of representations should
be regarded as subject to simplification or modification.

Besides, in order to be of significant practical use, the theory of inductive limits of represen-
tations is in need of general theorems. For a limit of representagierisn,, p, (Ref. 4. Proposi-
tion 9) asserts that, ip is faithful, thenp,, is faithful for largen. That result is unlikely to be useful
in application to concrete examples, since faithfulness is usually obvious to start with. However,
the result may point the way forwards: gfis irreducible, musp,, be irreducible for large? To
prove theorems, of course, it is sometimes necessary to tinker with definitions. So, again, we
conclude that the present criterion for inductive limits of representations should be regarded as
subject to change.

It appears that inductive limits can also be used to describe a correspondence between a
finite-discrete periodic scenario based on the integers maulliland a continuous periodic sce-
nario based on thp-adic integers. Herey is a rational prime. For the discrete context, see Refs.

36 and 37; for the continuous context, see Refs. 38, and 39. Ip-thiic scenario, purely intuitive
arguments are to be distrusted, so the use of some or another precise notion of limit is essential.

Discrete versus continuum correspondences of operators and representations arise frequently.
Without attempting to classify the various directions of study, let us list some papers on the topic
where the ternlimit is used explicitly and is probably interpretableimguctive limit: Refs. 40, 6,

7,8, 32,10, 41, 42, 5, 43, 44, 35, and 45—47. We have given a broad spread of citations so as to
provide evidence that an intuitive equivalent of the notion of an inductive limit is in widespread
use. The list could be extended considerably. The author has come across only oreifzjer
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omitted in which the limits of operators are nonsensitaibitrary SL2,R) canonical transforms
written as “limits” of SL(2,p) canonical transforms, whegeruns over the rational primgs

There are also a great many works where the témit is not used for our purpose, but
inductive limits seem to be involved implicitly. This point pertains, in particular, to many single-
parameter discrete systems used as approximations to continuum systems in signal processing. For
some examples, see Refs. 48 and 49 and references therein.

APPENDIX A: A COUNTER-EXAMPLE

By the definition of inductive limits of operators, Theorem 6.2 can be expressed as follows.

Theorem A.1: Given a vectony e L?(R) and vectorsy, € £, such thaty=lim, ¢, , then, for
all £eC with |{|<1, we have R?)y=lim,F () ¢n.

For arbitrary e C*, we can still definef?(g) to be the operator oh?(R) satisfying Eq.(59).
If [>1, thenF (¢) is unbounded. The domain &f(¢), in this case, has been studied by Byfin.
Plainly, for arbitraryZ, the conclusion of Theorem A.1 still holds whenis a Glauber cat state
(linear combination of coherent statés L2(R) and ¢ is the corresponding spin cat state/p.
However, for arbitraryl and arbitrary:s in the domain oﬂA:(g), the conclusion of Theorem A.1
can fail. A counter-example ig=0 and,=2"2¢|2¢) with /=3,

It is difficult to imagine how the mainstream techniguésmal manipulation could be used
to “derive” Theorem A.1 without also “deriving” the fallacy refuted in the previous paragraph.

APPENDIX B: IDENTITIES FOR THE KRAVCHUK FUNCTIONS

Let n be a positive integer. As in Sec. IV, we write=2¢+1 and[n]={—¢,1-¢,... £
-1} and we define, 1= (£ —Kk)(£+k+1), equivalently,c,_1,=(€+k)(€—k+1), where
2keZ. The Kravchuk polynomials Kg,,Kqy, ... Koy are the functions(0,1,...,20}—C
given by

20 )1 min(¢ +j,€+k) (€+k)( 0=k

KHj,n(Hk):( Hj_ﬂ)<—1w

[+] u=max(oj+k) \ M
min(¢+j,¢+k) 1 .

20\ "M e+j\ (0K
-5 BN e

wherej,ke[n]. Note that, in each of the two formulas, the ind@xr v runs over all values for
which the terms are defined. In Sec. 1V, it is shown that the two formulas are equivalent to each
other. It is also shown that the Kravchuk polynomials satisfy

Kerkn(€+1)=Kesjn(€+K), (B1)
Kesjn(€=K)=(=1)"TKpsj n(£+k), (B2)
Kg,j’n(€+k)=(—l)“kK€ﬂ-’n(€+k), (B3)

(€ —K)Kgsjn(€+k+1)+2]K i n(€+K) +(€+K)Kyjo(€+k=1)=0, (B4)
(€ =Kt jr1n(€+K) +2KK 1 n(€+K) +(€+])Kgpj-10(€+K)=0. (B5)
The Kravchuk functions hgp,hyy, ... hye , are the functiongn]—C given by

—-1)° [[2¢\( 2¢
hs,n(k):(z—() ( S) £+k Ks,n(€+k)- (BG)

In other words,



1552 J. Math. Phys., Vol. 44, No. 4, April 2003 Laurence Barker

_(—1)“1 (C+)—ij)! C+k\[ €—-k
o= i S [ e a3

(=D eI+ k)! (20—v)1(—2)"
-2 (€—j)!(€+k)!z,,V!(€+j—v)!(€+k—v)!' B9

Equations(B1-B5) can be rewritten as

herin(D)=(=D* e oK), (B8)
hesin(—K)=(=1)The, oK), (BY)
he-pn(K)=(=1) " e a(K), (B10)

Vews ekt 1) +2jh g oK)+ Ve 104 n(k—1)=0, (B11)
Ve e 1n(K) = 2KNg o n(K) +E g - 1n(K)=0. (B12)

Proposition 4.7 says that Kravchuk functions comprise an orthonormal basis for the space of
functions[n]—C.
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