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Abstract—This article describes LineKing, a crowdsensing system for monitoring and forecasting coffee shop line wait times. LineKing

consists of a smartphone component that provides automatic and accurate wait-time detection, and a cloud backend that uses the

collected data to provide accurate wait-time estimation. LineKing is used on a daily basis by hundreds of users to monitor the wait-times

of a coffee shop in the University at Buffalo, SUNY. The novel wait-time estimation algorithms of LineKing deployed at the cloud

backend provide median absolute errors of less than 3 minutes.
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1 INTRODUCTION

LONG and unpredictable lines at coffee shops are incon-
veniences of city life. A webservice that provides real-

time monitoring and estimation of line wait-time would
help us make informed choices and improve the quality of
our lives. Furthermore, understanding line waiting has ben-
efits beyond improving the end-user experience because
this has been a long standing problem in the operations
research area.

Traditional solutions to the line wait-time monitoring are
based on infrastructure-based solutions such as camera
placement, sensor deployment or monitoring signals that
are generated through bluetooth or Wi-Fi capable devices
[1], [2], [3], [4], [5]. However, these solutions usually do not
scale well as they are costly to deploy and mostly designed
for specific places. In order for the line wait-time monitoring
service to become widely adopted the service should be
infrastructure-free, fairly-accurate, easy-to-use, and should
work automatically without relying on manual input from
users. In this article, we take a novel approach and try to
solve the line wait-time monitoring problem through
crowdsensing with smartphones.

Addressing line wait-time monitoring problem using
smartphones has two main challenges. First, we need to
detect the wait-time using off-the-shelf sensors that are pro-
vided by the smartphones. However, wait-time detection
using smartphones requires use of costly location sensors to
understand the presence of the user at the coffee shop.
Moreover, to understand if the user is waiting in the line, or
sitting at the coffee shop, we may need to use additional
sensors, such as accelerometer, to recognize the relevant

activity. But, performing all of these operations in smart-
phones may drain user’s battery very quickly and therefore
has the risk of being deemed unattractive for users to install
our application.

Second, since this is a crowdsensing architecture, we may
not always have a person waiting in the line. We find that
even when our automated wait-time detection component
is returning dozens of readings daily, these readings are still
too sparse and non-uniform to provide accurate answers to
real-time queries about line wait-time. Additionally, newly
arriving customers may not experience the same wait-time
as the one who leaves the line. Hence as a second challenge,
we need to estimate the current and future wait-time using
the sparse and non-uniform previous history of the col-
lected data.

Our method to address the wait-time detection is to uti-
lize the low-cost network location provider of Android. We
calculate the distance of the user from the coffee shop to
dynamically set the location-sensing frequency. Since the
network localization provides coarse-grained information,
once we make sure that the user is around the coffee shop,
we periodically scan the Wireless Access Points (WAP)
around the user. By exploiting the unique fingerprint of
WAP beacons in the coffee shop, we detect the entrance and
exit in high precision. For the coffee shop we performed our
experiments, majority of the customers pick their orders to-
go, and therefore after appropriately filtering out the out-
liers, we obtain the wait-time of the customers. Moreover,
to scale LineKing (LK) to other coffee shops and franchises,
we propose an improvement to the wait-time detection
component further by utilizing the activity recognition tech-
niques using the accelerometer sensor on the smartphones.

Our method to address the second challenge, the wait-
time estimation problem, is based on a search in the previ-
ous history of the collected data. More specifically, to over-
come the difficulty of constructing time-series data from
sparse and non-uniform data, our solution in essence finds
the best k candidates from the past data in order to estimate
the future wait-time.
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Our contributions are as follows:

1) We designed, implemented, and deployed a crowd-
sourced line wait-time estimation system called
LineKing. Our LK app1 for Android platform has
been downloaded by more than 1,000 users in our
university, and are used on a daily basis by hun-
dreds of users to monitor the wait-time of a coffee
shop in the student union of our university. To the
best of our knowledge, LK is the first automated
crowdsensing wait-time estimation service.

2) As a part of LK, we implemented a fully automatic
and accurate wait-time detection component on
Android platform. Our method utilizes network
localization and WAP scanning capabilities of
Android to detect presence of the user at the coffee
shop.

3) As a part of the wait-time detection component, we
developed a lightweight, variance-based activity rec-
ognition unit to detect the wait-time more accurately
by utilizing continuous streams of accelerometer
data. Our experiments showed that, we can detect the
actual wait-time of a user with a median error of 20 sec-
onds accuracy.

4) Our solution to wait-time estimation problem
works well with non-uniform and sparse data by
finding the best possible k candidates using the
regression analysis on the previous history of
wait-times. Our results indicated that LK can esti-
mate the wait-time of the coffee shop with less than 3
min. median absolute error (MdAE). We believe that,
our solution for wait-time estimation problem can
be extended to other similar crowdsensing sys-
tems which have sparse and non-uniform data.

Outline of the rest of the paper. We describe the model and
assumptions of our deployment next. Section 3 presents the
wait-time detection component of LK. In Section 4, we
explain how we improve the wait-time detection compo-
nent by using activity recognition. In Section 5, we discuss
LK’s wait-time estimation component along with the experi-
mental results. Section 6 discusses how to scale LK to other
coffee shops and franchises. Section 7 discusses the chal-
lenges we faced during the development and deployment
process of LK. Finally, we present the related work in
Section 8 and conclude with Section 9.

2 MODEL AND ASSUMPTIONS

Although line waiting has an intrinsic problem of many
venue types (such as grocery stores, banks and DMVs),
every venue type has different layouts and waiting condi-
tions. Hence, in this article we only focus on coffee shops.
Particularly, we chose coffee shops due to their popularities
and dynamically changing conditions; such as the variation
in wait-times and number of employees.

We developed LK for a popular coffee shop at the Stu-
dent Union of University at Buffalo and this article only
examines the deployment and experiments of this particular
coffee shop. Floor plan of the coffee shop is shown in Fig. 1.2

The coffee shop does not have a drive-through. The custom-
ers who arrive at the coffee shop join the back of a single
FIFO queue. After waiting the line, the customer is served
by the staff. There are two service desks and the customer is
served by either one of them. During low traffic times one
of the service desk may close temporarily and only a single
service desk is used. Customers who are served usually
leave the coffee shop immediately. However there are some
Student Union tables near the service desks and some cus-
tomers sit there after picking up their coffees. There is a Wi-
Fi Access Point (WAP) on the nearby wall of the line to
serve customer’s need for internet access. The WAP has a
range of approximately 50 meters. LK utilizes BSSID of the
WAP for wait-time detection.

Assumptions. LK aims to estimate the total wait-time of a
customer until she is served, and does not aim to calculate
neither the line length nor the service time. In reality to get
a sense of how the wait-time changes over the time, we
physically observed the coffee shop continuously for a
week. Fig. 2 shows the wait-time of the coffee shop for each
10 min. intervals for a day. As the figure indicates, wait-
time fluctuates a lot during the day. Sudden increases and
decreases are also prevalent. In addition, our observation
show that the wait-time almost never falls below 2 minutes
(i.e., min. service time) and above 20 minutes. This provides
us a way to eliminate some of the false positives.

Finally, the wait-time detection component on the smart-
phones can only detect the wait-time of a customer in the
coffee shop, hence, many parameters remain unknown,

Fig. 1. Coffee shop floor plan.

Fig. 2. Graph of actual wait-time for a day.

1. http://ubicomp.cse.buffalo.edu/ubupdates
2. LK would be readily adaptable to coffee shops with similar

layouts and operations
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such as arrival rate, service rate, service time. This prevents
us from having a complete understanding of the line’s oper-
ational model and introduce many challenges that need to
be addressed in wait-time estimation component.

Deployment. We developed the client side of LK as a
smartphone application and the server side as a service
at the cloud. Although we developed both Android and
iOS versions, due to the limitations imposed by iOS
development framework on background tasks, in this
article we only present the design, statistics and results
of the Android app.

Fig. 3 shows a screen from our Android app. In order to
incentivize our app, we distributed fliers in the campus,
post messages on Facebook and Twitter groups. As of this
writing, our app has been downloaded by more than 1,000
users and has been used daily by more than 300 active
users. We retrieve tens of readings daily from users regard-
ing the wait-time of the coffee shop.

3 WAIT-TIME DETECTION

The overall architecture of the system is shown in Fig. 4. LK
consists of two main components: the client-side component

on the smartphone (which is responsible for detecting the
wait-time and uploading to our server), and the server-side
component in the cloud. In this section, we present the cli-
ent-side component on the smartphone. The server-side
component is explained in Section 5.

The client-side component includes a controller and
three subcomponents: Phone-state receiver,Wait-time detection
unit and Data-Uploader. The controller is responsible for
managing and handling the interactions between these sub-
components. We explain each subcomponent in detail next.

3.1 Phone State Receiver

This component serves as a notification center for the appli-
cation. Android provides a notification service to let apps
know about various events occurring on the device, such as
Boot, Reboot, Wi-Fi connected/disconnected, Wi-Fi Signal
Strength Change etc. These notifications enable apps to take
action based on relevant events. We exploit this notification
service in order to improve the wait-time-detection
subsystem.

The Phone-State-Receiver subsystem has three different
receivers which are Boot Receiver, Wi-Fi State Receiver and
Power Connected Receiver. In Android, receivers work as
follows: First, each receiver registers itself to listen specific
events occurring on the device. Whenever the registered
action happens, the operating system broadcasts a special
object, i.e., an Intent, and delivers the event specific infor-
mation to all registered receivers. We utilize this mechanism
to monitor various relevant events for our application. For
example, the Wi-Fi State Receiver gets notified when the
state of the Wi-Fi connection is changed: So if the user turns
the Wi-Fi off, this receiver fires at the Controller to stop the
Wi-Fi Tracking Service if it is running. In addition, when a
user connects to a WAP, we request the network location of
the user to learn her distance from the coffee shop
opportunistically.

3.2 Wait-Time Detection

An intuitive way to detect wait-time of a user is to track
user’s location continuously and timestamp the entrance
and exit of user from the coffee shop. However, excessive
use of location providers (i.e., GPS or network) results in
rapid battery consumption, which is undesirable for smart-
phone users. In order to minimize the battery consumption,
we embraced the following. First, due to the cost of GPS,

Fig. 3. A screen from the Android app.

Fig. 4. Overall system architecture. Left: smartphone architecture for wait time detection. Right: cloud architecture for wait time estimation.
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while tracking user’s location, we solely use the network
location. Second, we exploit the user’s distance from the cof-
fee shop in order to dynamically determine the location-
sensing frequency. Third, once we detect that the user is
around the coffee shop, we use the unique BSSID of the
WAP to understand user’s presence at the venue. These
help conserve considerable energy; impact of 2-8 percent in
the battery stats of the Android for a person who lives
nearby the campus. We note that the principles that we dis-
cuss here are derived from our previous works. For more
detailed energy-efficiency evaluation, please refer to our
previous works [6], [7].

More specifically, LK’s wait-time detection component
works as follows. LK periodically probes user’s location
based on the user’s distance from the coffee shop. If user’s
distance is greater than the threshold value (which means
user is currently not in the campus), we schedule the next
location probing assuming that the user is driving (30 mph).
We make this conservative assumption because our experi-
ments have found that detecting user’s transportation mode
(driving versus walking or biking) is in fact more costly
than checking network location for every 1 minute [6].

If the user’s distance to the coffee shop is less than the
threshold value, we start scanning WAPs around the user
every 2 minutes. Thanks to the API provided by Android,
it is possible to scan the WAPs around the device without
connecting to them. If the unit detects the BSSID of the cof-
fee shop, then we detect user’s entrance to the place (t1)
and reduce the scanning period to 20 seconds to detect the
departure more accurately. When the BSSID is heard no
longer, we assume that the user exited the coffee shop (t2).
We regard the difference of t2 � t1 as the wait-time of the
user. Since we observed that most of the customers who
are served usually leave the coffee shop immediately, we
assume that the resulting wait-time would reflect the actual
wait-time of the customers in the coffee shop (we explain a
way to overcome this limitation in Section 4). In addition,
while WAP scanning is enabled, we check the user’s loca-
tion every 5 minutes (until the user enters the coffee shop)
to detect if the user left the boundary of the threshold dis-
tance (i.e., campus boundary). If so, we stop WAP scan-
ning and start location-sensing based on the distance from
the coffee shop.

3.3 Data Uploader

After completing the wait-time-detection, the smartphone
component tries to upload the resulting data to the cloud as
an input to our wait-time estimation system. The uploading
process is mostly successful in real time. However, due to
the status of the device or connection, sometimes it is not
possible to transmit data immediately. However, this data
is still useful even if it belongs to the past. To handle this
case, we have a data uploader subsystem. The data
uploader is responsible for transmitting the pending wait-
time detection data whenever the Phone-State-Receiver
notifies the Controller about the availability of a Wi-Fi or
GSM data connection.

Since a failed data transfer costs some energy, the data
uploader uses some simple heuristics to increase the upload
success rate. We assume that the device is charged mostly

when the user is at home or office where she has a reason-
ably fast and reliable data connection, which is most of the
time a Wi-Fi connection. Therefore, the data uploader is
triggered when the device is connected to a power outlet to
leverage this efficient and reliable connection. Under some
circumstances, even if the device is being connected to a
power outlet, it may not have such data connection avail-
able. If so, then the data uploader periodically (once an
hour) checks for a data connection.

Data uploader stores the pending transfers inside a data-
base that resides on the device. The data is sent to server as
a JSON object using HTTP POST. Once the data is success-
fully sent, which is confirmed by a response from the server
side, then the Data uploader clears up the database in order
to save some storage on the device.

4 WAIT-TIME DETECTION USING ACTIVITY

RECOGNITION

Our initial design assumes that most of the customers leave
the coffee shop after getting their orders. Also, we remove
the wait-time which is less than 2 min. and longer than
20 min. Since, users who pass nearby of the coffee shop usu-
ally spend less than 2 min. and the customers who seat at
the coffee shop usually spend more than 20 min., according
to our wait-time detection approach most of the time they
do not constitute a problem. However, some customers
may stay in between 2 to 20 min. and these insert false posi-
tives to our system. In addition, by removing long stays
(more than 20 min.), we miss out the data that we can poten-
tially use. Finally, in order for LK to scale any place we need
a mechanism to differentiate customers who prefer to sit
and the customers who prefer to-go. Therefore, in this sec-
tion, we discuss how to extract the actual wait-time regard-
less of customers’ willing to stay or leave. Below, we
explain how we achieve this.

In order to detect the actual wait-time of a customer, we
need to distinguish line waiting from other activities such
as walking and sitting in the coffee shop. We utilize activity
recognition [8], [9] in order to detect the actual wait-time of
the user. However, we would like to emphasize that our
aim is to correctly identify the wait-time of the user, not to
recognize the activities that the user make while in the cof-
fee shop. As we show in the remaining of the section, even
in the presence of wrongly classified activities we were able
to detect the wait-time of the user accurately.

We find that we can reliably detect the wait-time by uti-
lizing only the accelerometer sensor on the smartphones
while spending minimum battery. Fig. 5a shows a represen-
tative graph for the l2-norm (i.e., euclidean norm: length of
three-dimensional ½x; y; z� vector) of accelerometer readings
of a customer while in the coffee shop. As shown in the
figure, during its stay in the coffee shop, a customer can be
in one of the 4 different regions. First is the region when the
customer enters into the range of WAP. In this region cus-
tomer is walking into the end of the line. High variance in
accelerometer readings in this region is prevalent and indi-
cates that the user is walking. This region may or may not
be present depending on the accuracy of the presence detec-
tion component (i.e., particularly the period of WAP-sense
component as explained in Section 3.2). In the second
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region, consecutive stationary (very low variance) and low-
speed walking (medium variance) is observed and indicates
the presence of line waiting activity. In this region, occa-
sional walking (high variance) is allowed as the customer
may walk in the line for a short period. However, in general
walking in this region is short and hence results in low-
speed walking activity. Then in the third region, mostly sta-
tionary (low-variance) behavior is observed. In this region,
customer is actually sitting at the coffee shop. Note that
while customer is sitting at the table, she may play with her
phone and therefore may result in similar variance as hap-
pened in low-speed walking activity. However, most of the
time user left her smartphone either in his pocket or on the
table due to eating/drinking and therefore results in low-
variance. Also note that third region may not present if the
customer picked the order to-go (which is predominantly
the case). In the final fourth region, there is a sharp increase
in the variance, this indicates that the user is walking again.
After a short period, user is out of the range of the WAP
which indicates that the user left the coffee shop.

Based on these observation, we classified user’s activity
in every 5 sec. to one of the three base events: Stationary (S),
Walking (W) and Others (O), using variance as the main fea-
ture (see Fig. 5b). We then form a sequence based represen-
tation (similar to that in [10]) of the user’s activities while
the user is in the coffee shop. Then, our classifier look
for the leaving-from-the-line point which is usually the point
where user performs at least 15 sec. of consecutive high-
variance (walking) activities. We also consider the cases

where the tables are very close to the service area. In this
case, customers usually sit the table in a short period (less
than 15 seconds). In those cases, we look for low-variance
activity (stationary) which lasts more than 2.5 minutes.
Starting point of this low-variance activity is what we call
leaving-from-the-line point again. Lastly, we assume that the
customers enter to the coffee shop and directly go to the line
without sitting at the beginning. We confirm this with our
observation that this is the case almost all of the time and
therefore a reasonable assumption to make. Moreover, after
entering into the range of WAP, we assume that the custom-
ers enter to the line when they stop high-variance activity.
In this way, we eliminate the time difference of entering
into the range of WAP and walking into the end of line in
wait-time detection. We also consider the cases where user
turns on and off the screen of her smartphone. Since those
are usually the moments of the transition periods, i.e., tak-
ing from the pocket to hand or vice versa, we ignore those
periods when deciding leaving-from-the-line point. In this
way, we aim to eliminate the temporary unexpected varia-
tion caused by user’s use of the smartphone while in the
line. Fig. 5b shows the classified base events for every 5 sec.
along with the detected leaving-from-the-line points for
Fig. 5a. Below, we explain the base event detection and
wait-time extraction in details.

Base Event Detection. Once the user enters into the range
of WAP, we start to record the accelerometer readings.
Recording continues until we detect the leaving-from-the-line
point. We request at a sampling frequency of 50 Hz

Fig. 5. a) Four regions of a graph of l2-norm of accelerometer readings while a customer is in the coffee shop. b) Classified base events for each
5 seconds, annotated with leaving-from-the-line points.
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approximately. For each t seconds interval (t ¼ 5 in our
implementation), we have a sequence of timestamped raw
accelerometer readings. In order to deal with orientation

issues, we first compute the l2 � norm of the raw data.
Then, we calculate the variance for every t seconds and clas-
sify the activity based on this value (We trained our model
by visiting the coffee shop several times and note the differ-
ent variance values). If the variance turns out to be high,
then we classify the activity asW . If the variance is very low
then we classify it as S. Finally, if the variance is in between
the high and low thresholds, we classify the activity as O,
which could be low-speed walking in the line or being sta-
tionary while playing with phone.

Extracting wait-time. As we explained earlier, we assume
that the user leaves the line if she performs more than
15 sec. of consecutive walking activities or more than 2.5
min. of consecutive stationary activities (which signifies
that user is no longer in the line and sitting). With the later,
we try to capture the cases where users is very close to the
table and just sits without walking too much. Also note that
2.5 min. is more than enough for the line we are interested
in (due to high turnover), however it can be easily adjusted
based on the line or can also be automatically determined
by examining the accelerometer sensor readings. To extract
the wait-time, we keep a sequence of streaming base events
for the last 2.5 minutes and check the conformity in real-
time. If we realize that user is no longer in the line, we stop
accelerometer recording. Note that even in the presence of a
short unexpected behavior or wrongly classified base event,
since we are looking for consecutive events, our method
will be able to extract wait-time correctly.

Accuracy. In order to verify the accuracy of our approach,
we have collected 2 months of accelerometer data (along
with the screen on/off status) from 5 Nexus S 4G devices,
each one of them runs Android Jelly Bean 4.1. This data is
collected by the members of our lab and we asked partici-
pants to record the entrance, exit time and the line-waiting
start/end time in minutes. Later, we examine each file by
visualizing it and find out the exact entrance and departure
time based on the input from the participants.

During the 2 months period, we have collected 268 files
in total, consisting of accelerometer readings and screen sta-
tus for each visit to the coffee shop. We try to exhibit a
diverse behavior during the collection process, such as
using the phone during the line-waiting, sitting after the
order etc. Mean presence time of the collected data is
11.3 minutes with 106.81 min. maximum. On the other
hand, mean actual line wait-time of the collected data
reported by the participants is approximately 6.83 min. with
18.85 min. maximum.

Using the variance-based classification algorithm
described above, we calculate the actual wait-time for each
visit to the coffee shop. Our experiment indicates that the
mean absolute error (MAE) of our wait-time detection sys-
tem is 47 sec. with a median error of 20 sec. Fig. 6 shows the
cumulative error distribution function for our experiment.
As shown in the figure, almost 85 percent of the errors are
less than 1 min. In comparison to previous work [5], which
reportedly has 10 sec. mean error, we believe that our vari-
ance-based classifier is accurate enough for our end goal of

estimating the wait-time for newly arrived customers with-
out requiring to place special equipments in the coffee shop.

5 WAIT-TIME ESTIMATION

In this section, we present the wait-time estimation compo-
nent of LK. This component resides on the server-side
(hosted on AWS EC2 cloud for scalability) and consists of
four main components: Web service, Pre-processor, Model-
builder andWait-time estimator. The web service serves as the
interface between smartphones and the back-end. It accepts
wait-time collected from the smartphones and provides
wait-time estimation for the querying smartphones. Data col-
lected from web service is fed into pre-processing module
which is responsible mainly for removing outliers. After pre-
processing, model builder builds a model periodically from
all the collected data. Lastly, the wait-time estimator module
uses the model and estimates the future wait-time. Belowwe
first describe wait-time estimation problem, then we outline
our methods for wait-time estimation. Finally, we present
results about the performance of ourmethods.

5.1 Wait-Time Estimation Problem

The problem is to estimate the line wait-time for any arriv-
ing query by using Crowdsensed data (CD), i.e., the wait-
time data that is collected from the participants. Although
the queries can be for anytime (past, now, future); we expect
real-time querying for the current time (e.g., 5-10 minutes in
to the future) to be most useful. Hence, the wait-time esti-
mation models need to access the most up-to-date informa-
tion in CD. Wait-times usually depend on i) the time of the
day, ii) weekday vs. weekend, and iii) seasonality depend-
ing on the nature of the business. For our specific coffee
shop, there is less traffic in off-school days and weekends,
and slightly more traffic in certain times of a day. An esti-
mation method should capture all of these variables
accurately.

The theory of time-series analysis has been usually based
on a regular uniform time-series that contain enough sam-
ples [11], [12], [13]. In our case, the data is neither complete
nor uniform. Therefore, a general theory of time-series is

Fig. 6. CDF of errors for wait-time detection using activity recognition.
85 percent of the errors are less than 1 min.
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not directly applicable on CD. However, as the popularity
of the application increases and by employing techniques
for filling missing data, we can overcome this challenge and
build robust models to estimate wait-times.

In this article, we consider an approach that is designed
to handle insufficient data and that adapts/improves as
more data becomes available. We call this approach Nearest
Neighbor Estimation (NNE). NNE is based on constrained
nearest-neighbor search in a multi-dimensional space. This
approach is dynamic and works well with non-uniform and
sparse CD. We believe that our method fits well to the
quickly and sometimes unpredictably changing wait-time
of the coffee shop.

5.2 NNE: Nearest Neighbor Estimation

The main idea in this method is to predict the queried value
(i.e., wait-time for a particular time) using the previous his-
tory of wait-time based on their closeness in time and simi-
larity of values. As a strawman, we first consider returning
the last uploaded data as the estimated value assuming the
last one would be the most closest one to the estimated
interval. We call this approach NNE-last. When the system
has enough incoming data points, the last uploaded value
can in fact reflect the actual situation of the line accurately.
However, this approach may fail if the data is scarce or if
the data includes false positives in it. We regard NNE-last
as a baseline method in our experiments.

In our second approach, we try to identify the k nearest
neighbor points for the query where similarity is defined
with respect to the estimation potential. The key here is to
design a similarity (neighborliness) function that minimizes
the estimation error for the query. In order to realize this
method, we define every data point with 3 dimensions:
week, day and day-interval, ½w; d; g�. Each data is associated
by a vector ½wi; di; gi�, where wi stands for the week of the
year and is from the domain [1, 52], di stands for day of the
week and from the domain [1, 7], gi stands for interval of
the day and is from the domain [1, 48] (there are 48 intervals
of 10 minutes between 9am and 5pm). We use euclidean
distance Lij to denote the similarity measure between two
vectors as shown in Equation (1).

Lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwi � wjÞ2 þ ðdi � djÞ2 þ ðgi � gjÞ2

q
: (1)

Once we define the similarity metric, similar to the
k-nearest neighbor algorithm in machine learning, we aim
to find the k nearest neighbors for the queried data point.
For this purpose, we first calculate the distance of the query
to each of the labeled data points (previous history of wait-
times). Then we find the minimum distanced k data points
and calculate the average of their wait-time as the estimated
value. We call this approach NNE-basic.

Regression-based optimization. Although, NNE-basic is sim-
ple and takes the time difference between data points into
account, it does not differentiate between different dimen-
sions of the data vector, that is, the week, day and the inter-
val are assumed to have equal weights on the distance. As
an alternative, we consider multiplying each dimension
with weights (a;b; g) that are optimized based on the previ-
ous history of wait-times of the same venue.

In statistics, it is a common practice to use regression to
understand the relationship between regressand and regres-
sors. For our case, we want to quantify the relation between
the wait-time (vi) and the data vector (½wi; di; gi�). Here, we
first assume that wait-time (v) is linearly dependent to the
dimensions of the data vector (½w; d; g�). Then, we utilize the
labeled data points (previous history of wait-times) and
assign the weights that optimize the regression function (as
shown in Equation (2)) for the labeled data. Next, we define
the new similarity metric Lij as the weighted euclidean dis-
tance as shown in Equation (3). Then similar to our NNE-
basic approach, we find the minimum distanced k data
points and calculate the average of their wait-time as the
estimated value. We call this approach NNE-regression.

vi ¼ awi þ bdi þ ggi þ u (2)

Lij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaðwi � wjÞ2j þ jbðdi � djÞ2j þ jgðgi � gjÞ2j:

q
(3)

5.3 Estimation Results

In this part, we present the estimation results of the meth-
ods we developed. However, before that, for both NNE-
basic and NNE-regression approaches, we need to choose
the right k value: the number of neighboring points to con-
sider. Given the sparseness and scarcity of the data in the
first few months, it is not logical to select large values. As
the data grows, we can select larger values. However, select-
ing large values can lead to lose the impact of recent data
points. To simplify our analysis, based on our experiments,
we selected k ¼ 5.

Data. In order to validate the estimation accuracy of LK,
in this article, we conducted an academic year of experi-
ment from September 3, 2012 to May 3, 2013. In that analy-
sis, we focus on the time interval 9am to 5pm every
weekdays. We excluded winter break and spring break
from our analysis.

During that period, we collected two types of data. First
is the crowdsensed data collected from the participants as
explained in Section 3. Due to the nature of crowdsensing,
CD is sparse and non-uniform along the time line. We have
a total of 2,865 data points in our CD dataset. Fig. 7 shows
the monthly distribution of the data points. As shown in the
figure, there is less data points on December and January

Fig. 7. Monthly counts of uploaded wait-times to our server.
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due to the winter break. In addition, there is surplus of data
points on April due to the new advertisement campaign
along with the deployment of the new version of our app as
explained in Section 4. We deployed the new version to col-
lect data for testing the estimation accuracy of our activity
recognition based wait-time detection approach. With the
new version of our app, we were able to collect 552 extra
data points. This data was collected from April 8th to May
3rd, 2013.

The second type of data we collected is the ground truth
data (GD). This data is collected manually by sitting at the
coffee shop and observing the customers’ wait-time for
every 10 minute intervals. GD is collected for the last
month of our experiment (April 8th to May 3rd, 2013 for
every weekday) to evaluate the estimation accuracy of LK.
Due to a special event at the student union, coffee shop
was closed in April 26th and therefore we excluded it from
our analysis. For GD collection, every 10 minutes the
experimenters (authors) pinpointed the person at the end
of the line and ran a stopwatch until that person is served.
As such, GD reflects the actual wait time at the coffee shop
for every 10 minutes. Contrary to CD, GD is uniformly dis-
tributed along the time line. However, since we want LK
to be scalable and self-bootstrapping, the estimation techni-
ques we presented in Section 5 uses only CD. We note that
we use GD only for validation purpose—to calculate esti-
mation error of our models.

Evaluation. We evaluate LK using the ground-truth
data we collected for the last month of our experiment.
Since we excluded the weekends, we have 19 days in
total for testing and evaluations. We evaluate the
approaches using their resulting Mean Absolute Error
and Median Absolute Error. More specifically, given a
set of n ground truth wait-time: y1; y2; . . . ; yn and their

estimated values (using CD): f1; f2; . . . ; fn, MAE is
defined in Equation (4) while MdAE is defined in Equa-
tion (5). Note that mean error is highly affected by the
outliers in the data, on the other hand median error is
more robust to such extremities. Therefore, we consider
median error as the most representative metric for this
problem. We also give the first (25 percent) and third
quartiles (75 percent) for comparison.

MAE ¼ 1

n

Xn

i¼1

jfi � yij (4)

MdAE ¼ medianfjf1 � y1j; jf2 � y2j; . . . ; jfn � ynjg (5)

Estimation results without activity recognition. Table 1
shows the estimation errors for the three different
approaches using the wait-time detection method as
explained in Section 3. Median error of the NNE-last is
225.79 seconds, NNE-basic is 180.70 sec. and NNE-
regression is 180.73 seconds. Mean errors are approximately
30 sec. higher than the median errors. We believe that this is
due to the sensitivity of MAE to the outliers which usually
occur in intervals where sudden increases/decreases are
observed in wait-time.

We also observed that both NNE-regression and NNE-
basic are performing better than the NNE-last. We believe
that sparseness of the data is the main cause of the worst
performance of NNE-last. In addition, although we
expected NNE-regression to overperform NNE-basic, the
results show similar errors. We believe that due to the inac-
curacies in detecting presence of the user (i.e., WAP scan-
ning period), variation in service time and the false
positives, we reach the point where we can improve the
wait-time estimation more. Hence, NNE-regression and
NNE-basic are both performing similar and results in simi-
lar errors. Next, we show that we could improve the results
of NNE-regression by using a more accurate wait-time
detection component.

Figs. 8a and 8b show the daily MAE and MdAE of the
three different approaches for the last month of our experi-
ment (only weekdays and a day is excluded since the coffee

TABLE 1
Estimation Errors (in Seconds) for the Experiment

Method MAE MdAE 1st q. 3rd q.

NNE-last 260.53 225.79 98.26 380.35
NNE-basic 210.18 180.70 87.52 290.90
NNE-regression 211.93 180.73 80.69 301.67

Fig. 8. a) Daily mean absolute errors. b) Daily median absolute errors.
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shop was closed). Almost all of the days NNE-last is the
worst performing method. On the other hand, for some par-
ticular days NNE-last perform well. We believe that this is
directly related to the surplus of incoming data points in
those days. On the other side, NNE-regression and NNE-
basic mostly exhibit similar errors while the NNE-regres-
sion is a little better than the NNE-basic.

Figs. 9a and 9b shows the comparison of ground truth
and estimated values using NNE-basic and NNE-regression
respectively for the day 18 and Figs. 9c and 9d for the day
19. Even though we do not consider the variation in service
time in our design, our estimations are close to the actual
values. However, as the graphs show, sudden increases and
decreases sometimes constitute a problem for both NNE-
basic and NNE-regression.

Estimation results with activity recognition. In here we
examine the estimation accuracy of LK using activity rec-
ognition based wait-time detection unit as explained in
Section 4. Since we deployed this version in the last month
of our experiment, in order to have a fair amount of data,
we use the first two weeks for training and the next two
weeks (remaining nine days) for testing and evaluation.
Table 2 shows the estimation errors of our three different
estimation approaches. Median error of the NNE-last is
183.23 seconds, NNE-basic is 168.83 sec. and NNE-
regression is 158.87 sec. Similar to our previous findings,
due to the outliers (mostly the sudden increases/decreases
in wait-time) that are sometimes missed by our methods,
mean errors are little higher than the median errors (almost
30 seconds). In overall, based on the results, NNE-regres-
sion is the best performing approach for our dataset. We
believe that NNE-regression outperforms the other
approaches due to its power of determining the right
weights for each dimension of the data vector. In compari-
son to our previous finding (see Table 1), we found that
new method of wait-time detection using activity recogni-
tion improved the estimation errors considerably even
though we use less data (only 4 weeks) in comparison to
our previous experiment. Especially the increase in the
accuracy of NNE-last is prevalent. We believe that this is
due to the elimination of false positives using the more
accurate wait-time detection and the inclusion of more
data points due to the elimination of pre-processing step
on the data.

Figs. 10a and 10b shows the daily MAE andMdAE of our
approaches. As shown in the figure, in most of the days
NNE-regression is better than the NNE-last and NNE-basic
approaches. Figs. 11a and 11b shows the comparison of
ground truth and estimated values using NNE-basic and
NNE-regression respectively for the day 12 and Figs. 11c
and 11d for the day 18. Similar to our previous findings,
even though we do not consider the variation in service
time in our design, our estimations are close to the actual
values. In addition, we observed that sometimes NNE-
regression fails to adopt itself to the sudden increases/
decreases in wait-time while the NNE-basic and NNE-last
are more successful in adapting to sudden increases and
decreases. In future, we may consider to merge NNE-
regression with NNE-last so that LK can adapt itself to
changing conditions more accurately. However, in overall,
our estimations are close to the actual values.

We believe that variation in service time for different
users (which we did not consider), and the inaccuracy in
detecting the user’s entrance/exit to the coffee shop due to
WAP scanning period are the limiting factors for better esti-
mation results. Moreover, variation in the number of
employees working in the coffee shop during the day, dif-
ferent speed-of-service for different employees are also
other limiting factors for better estimation. However, in
overall, we believe that LK performs well enough for a cof-
fee shop whose wait-time ranges from 2 to 20 minutes by
estimating the wait-time with only 2.5 min. median error.

6 SCALING LK TO MULTIPLE VENUES

While we presented LK’s deployment for one coffee shop,
we believe LK’s deployment can be extended for other cof-
fee-shops too. To add a new business to the LK, we only
require the geographical locations, i.e., latitude and longi-
tude, and the BSSID of the business. After a business is
added, LK immediately starts receiving wait-time data
from the users visiting that business. Depending on the
number of LK users visiting the business, it may take time
for LK to construct a model and start providing accurate
wait-time estimations for the business. To speed up this
process, a business added to LK may manually provide
wait time for a week, or offer promotions and coupons for
users who install the LK app and check-in frequently. As
an alternative, we could use data from similar businesses
to help bootstrapping effort for the newly added busi-
nesses. Below, we include more details on how to scale LK
to a large set of locations.

Automated learning of BSSID. In our reported deploy-
ment we manually learned the BSSID of the WAP in the
coffee shop. However, in order to scale LK to other loca-
tions quickly, we can automate this process as follows. Ini-
tially when the BSSID of the WAP in a business is still
unknown, LK relies on just the Location sensing mecha-
nism for wait-time detection (this time GPS is utilized for
accurate presence detection). During this phase, LK app
instances scan for the available WAPs in that business loca-
tion and upload these to the LK servers. Learning and
validating the BSSID of a business involves recurring
observations of the same BSSID by different users at differ-
ent times. After the BSSID of the business is learned, LK
starts accepting line wait-time detections from that busi-
ness via WAP as well. This increases the data collected
from that business and shortens the period for constructing
an accurate wait-estimation model.

Integrating LK with social networks. We plan to use social
network services and APIs to quickly scale LK for line wait-
time monitoring of businesses nationwide and worldwide.
For example, we will obtain the geographical locations of
new businesses to add to LK by using the Foursquare [14]
Venue API (which does not even require a login to Four-
square). We also plan to integrate/embed LK as an exten-
sion to the existing popular location-based services such as
Facebook, Foursquare and Google+.

Offline wait-time estimation. Although LK’s wait-time esti-
mation component resides on EC2 for scalability, sometimes
it is desirable for users to have the estimation models on
their phone for immediate and offline access to the future

BULUT ET AL.: LINEKING: COFFEE SHOP WAIT-TIME MONITORING USING SMARTPHONES 2053



Fig. 9. Plot of ground truth vs. forecasted data using a) NNE-basic for the day no. 18. b) NNE-regression for the day no. 18. c) NNE-basic for the day
no. 19. d) NNE-regression for the day no. 19.
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wait-time. Although it is not scalable to hold models for all
of the franchises, it is possible for user’s to have their favor-
ite shops’s model on their smartphones which is assumably
a few.

7 DISCUSSION

During our deployment, we faced several challenges and
learned some lessons.

Device fragmentation in Android ecosystem. Android eco-
system consists of a large number of different vendors and
manufacturers. Therefore, unexpectedly, same API in differ-
ent phones may give different values. For example, in our
line wait-time detection component, we set the acceler-
ometer’s sampling frequency to the same scale. However,
we quickly noticed that this same scale gives different
results even in Google’s own phones; Nexus S and Galaxy
Nexus. Hence, an approach to generate uniform accelerom-
eter readings for different devices was necessary. We
resolve this problem by taking time as a threshold rather
than the number of sampling points accumulated. Support-
ing for different screen sizes was also another challenge that
we encountered during our design process.

Bootstrapping. Finding enough user-base is a classical
problem of any crowdsensing system. Although, LK does
not require everyone in the line to have our application, we
need a reasonable amount of users so that LK can give accu-
rate line wait-time estimations. To achieve this objective, we
distributed fliers and post status updates on social media
such as in Facebook and Twitter for several weeks.
Although, we did not incorporate any monetary incentives
in our current deployment, we think that in future we may
give coupons randomly while the user is in the coffee shop
as an incentive for others to install our application. For

similar future apps, we will also consider using the Phone-
Lab [15] testbed to help with bootstrapping efforts.

Design decisions. For simplicity’s sake, we decided early
on to handle the general case accurately, and ignore most
rare corner cases which can increase the battery consump-
tion. For example, LK’s presence detection component does
not use GPS and uses 2-minutes Wi-Fi scanning periods to
detect user’s presence at the coffee shop. We believe that
this is a good tradeoff to take: inaccuracy incurred by not
being so precise here provides LK to be energy-efficient and
attract more users to install our application. As another
example, in our activity recognition based wait-time detec-
tion component we assume that customers first go into the
line before sitting at the tables. Although, there might be
cases where people first sit and then go in to the line, we
observe that these are very few and handling them may
increase the complexity of our line wait-time detection
component.

Dynamic adaptation of estimation models. The question of
“Can LK know/learn about its accuracy and later adopt its estima-
tion methods/parameters accordingly?” is an important one.
We believe that the answer for this question is yes. To calcu-
late the accuracy, LK can observe the difference between its
estimate and the wait-time that has just been collected by
the wait-time detection unit of LK. Based on the error, LK
can switch to whichever NNE works best, or whichever k
value works best. This switching can be done periodically
in every day/week. We consider to incorporate this feature
in our future design.

8 RELATED WORK

Mobile crowdsensing. Participatory [16] and opportunistic
[17] sensing are the two ends of the sensing spectrum where
both have pros and cons and choice of which one to use
depends on several factors. The former depends on users’
explicit participation, while the latter does not and therefore
can scale more easily. In parallel to the widespread use of
smartphones in recent years, we have witnessed an increas-
ing interest in opportunistic sensing with smartphones—
which is usually dubbed as mobile crowdsensing [18]. To
the best of our knowledge, LK is the first mobile crowdsens-
ing system that explore line wait-time estimation in a coffee

TABLE 2
Estimation Errors (in Seconds) with More Accurate

Wait-Time Detection

Method MAE MdAE 1st q. 3rd q.

NNE-last 214.86 183.23 77.94 312.75
NNE-basic 201.16 168.83 71.09 295.58
NNE-regression 192.32 158.87 73.14 279.45

Fig. 10. a) Daily mean absolute errors. b) Daily median absolute errors.
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Fig. 11. Plot of ground truth vs. forecasted data using a) NNE-basic for the day no. 12. b) NNE-regression for the day no. 12. c) NNE-basic for the day
no. 18. d) NNE-regression for the day no. 18.
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shop. However, there are other researchers who explore dif-
ferent domains of mobile crowdsensing. For example, in
TagSense [19], authors leverage camera, compass, acceler-
ometer and GPS sensors of the phones to provide an image
tagging system. In [20], Bao and Choudhury introduce
MoVi that employs smartphones to enable collaborative
sensing using videos for recognizing socially interesting
events. In [21], authors develop a smartphone-based solu-
tion to monitor road and traffic condition of a city.

Line wait-time detection and estimation. Traditional solu-
tions to the line wait-time monitoring problem are based on
infrastructure-based solutions such as camera placement
[1], [2], sensor deployment [3] or monitoring signals gener-
ated through bluetooth [4] or Wi-Fi capable devices [5].
However, these solutions usually do not scale well as they
are costly to deploy and mostly designed for specific places.
Also most of the time, extensive training and testing are
required before real-world deployment. Among these, we
identified [5] as the most relevant work to ours. In [5],
authors monitor the received signal strength of the smart-
phones using a specially placed WAP. Using the signal
strength pattern resulted from user’s movement, they try to
identify the wait-time of the user. On the other hand, LK
provides a more holistic approach, from detecting user’s
presence at the coffee shop to wait-time detection and wait-
time estimation. In addition, LK provides an infrastructure-
free solution (assuming most of the coffee shops have
already WAPs) for wait-time detection by solely relying on
crowd’s automatically generated input. Finally in [5], the
aim is to detect the wait-time of a customer who leaves the
line, while in ours, we try to estimate the wait-time for a
newly arriving customer.

Besides, line wait-time detection is only one part of the
problem. Due to the sparse and non-uniform nature of the
collected data, we need to estimate the current and future
wait-times. In literature, line wait-time estimation has been
explored mostly in the context of Queue Theory [22]. Those
works usually assume that examiners have the full knowl-
edge of the parameters, i.e., queue discipline, arrival rate,
service rate etc. However, in our problem we only have
wait-times and the associated timestamps. So queueing the-
ory is not easily applicable for our problem. On the other
hand, line wait-time estimation is related to some problems
in general time series theory where the task is to forecast
future data using the previous ones. Number of different
techniques have been proposed in the literature ranging
from ad hoc methods (i.e., moving average, exponential
smoothing) to complex model-based approaches which take
trend and seasonality into accounts (i.e., Decomposition,
Holt-Winters, ARIMA) [11], [12], [13]. A major challenge is
that general time series analysis depends on data that is uni-
formly distributed along the time. However, our application
has non-uniform and initially sparse data that prevent us
from applying the general time series theory easily.

Localization. LK needs to achieve energy-efficient locali-
zation in order to detect user’s presence at the coffee shop.
In the literature, both localization and power-aware sensing
are explored. In [23], authors examine the human localiza-
tion in a building using smartphone sensors and randomly
placed audio beacons in the building. In UnLock [24],
authors propose an unsupervised indoor localization by

exploiting an identifiable signature in one or more sensing
dimensions such as the pattern of accelerometer readings
while in an elevator. Similarly, in LK we use the unique
BSSID of WAP in the coffee shop in the interest of localiza-
tion. Finally, in [25], authors identify four factors that waste
energy: static use of location sensing mechanism, absence of
use of other sensors, lack of cooperation among applica-
tions, and finally ignoring battery level while sensing. LK
uses dynamic location sensing based on the user’s distance
from the coffee shop to achieve energy-efficiency.

Activity Recognition. Due to the proliferation of sensors in
commodity mobile devices, identifying the physical activity
of a user has recently gained attention in pervasive commu-
nity. Aside from using sensor motes to recognize user’s
activity [26], there has been an increasing interest on using
smartphones to perform activity recognition. In [8] authors
use accelerometer in smartphones to recognize different
activities including walking, jogging and standing. In [9],
authors use smartphones to determine transportation mode
of a user. In most of these works, researchers utilize acceler-
ometer along with some other sensors such as GPS. As
explained in Section 4, LK exploits accelerometer on smart-
phones for more accurate wait-time detection.

9 CONCLUSION AND FUTURE WORK

In this article, we presented LineKing, a novel crowdsens-
ing line wait-time monitoring system. LK alleviates the
limitations of the infrastructure-based solutions by propos-
ing an automatic and accurate wait-time detection on the
smartphones along with accurate wait-time estimations in
the cloud. We deployed LK in a coffee shop of the Univer-
sity at Buffalo, SUNY. LK has been available for more than
a year and has been downloaded by more than 1,000 users.
Our experiments indicated that we can estimate the actual
wait-time of the coffee shop with 2-3 minutes median abso-
lute error.

For future work, we consider several extensions of LK. In
our current design, we focused on the total wait-time of a
user without considering the service time. However, detect-
ing the service time could be useful for both the venue own-
ers and the customers. As a second extension, LK can be
extended to report the line length along with the current
wait-time. As shown in the Fig. 5a, when the customer is
waiting in the line, she generates peaks which mostly occur
when another person has left the line. Therefore counting
such peaks in the accelerometer graph roughly corresponds
to the number of customers in the line. As another exten-
sion, we consider scaling LK’s estimation component to
support multiple (possibly hundreds) venues at the same
time. For this, LK needs to handle the incoming stream of
big data while forecasting the wait-times of different venues
accurately.
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