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ABSTRACT

DISTRIBUTED CACHING AND LEARNING OVER
WIRELESS CHANNELS

Büşra Tegin

M.S. in Electrical and Electronics Engineering

Advisor: Tolga Mete Duman

January 2020

Coded caching and coded computing have drawn significant attention in recent

years due to their advantages in reducing the traffic load and in distributing

computational burden to edge devices. There have been many research results

addressing different aspects of these problems; however, there are still various

challenges that need to be addressed. In particular, their use over wireless chan-

nels is not fully understood. With this motivation, this thesis considers these two

distributed systems over wireless channels taking into account realistic channel

effects as well as practical implementation constraints.

In the first part of the thesis, we study coded caching over a wireless packet era-

sure channel where each receiver encounters packet erasures independently with

the same probability. We propose two different schemes for packet erasure chan-

nels: sending the same message (SSM) and a greedy approach. Also, a simplified

version of the greedy algorithm called the grouped greedy algorithm is proposed

to reduce the system complexity. For the grouped greedy algorithm, an upper

bound for transmission rate is derived, and it is shown that this upper bound is

very close to the simulation results for small packet erasure probabilities. We then

study coded caching over non-ergodic fading channels. As the multicast capacity

of a broadcast channel is restricted by the user experiencing the worst channel

conditions, we formulate an optimization problem to minimize the transmission

time by grouping users based on their channel conditions, and transmit coded

messages according to the worst channel in the group, as opposed to the worst

among all. We develop two algorithms to determine the user groups: a locally

optimal iterative algorithm and a numerically more efficient solution through a

shortest path problem.

In the second part of the thesis, we study collaborative machine learning (ML)
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systems, which is also known as federated learning, where a massive dataset

is distributed across independent workers that compute their local gradient es-

timates based on their own datasets. Workers send their estimates through a

multipath fading multiple access channel (MAC) with orthogonal frequency di-

vision multiplexing (OFDM) to mitigate the frequency selectivity of the channel.

We assume that the parameter server (PS) employs multiple antennas to align

the received signals with no channel state information (CSI) at the workers. To

reduce the power consumption and hardware costs, we employ complex-valued

low-resolution analog to digital converters (ADCs) at the receiver side and study

the effects of practical low cost ADCs on the learning performance of the system.

Our theoretical analysis shows that the impairments caused by a low-resolution

ADC do not prevent the convergence of the learning algorithm, and fading effects

vanish when a sufficient number of antennas are used at the PS. We also validate

our theoretical results via simulations, and further, we show that using one-bit

ADCs causes only a slight decrease in the learning accuracy.

Keywords: Coded caching, erasure broadcast channels, wireless fading channels,

distributed machine learning, federated learning, stochastic gradient descent,

multipath fading MAC, OFDM, low-resolution ADCs.



ÖZET

KABLOSUZ KANALLAR ÜZERİNDE DAĞITIK
ÖNBELLEĞE ALMA VE MAKİNE ÖĞRENMESİ

Büşra Tegin

Elektrik Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Tolga Mete Duman

Ocak 2020

Son yıllarda, kodlanmış önbellekleme ve hesaplama, trafik yükünü azalttığı ve

hesaplama yükünü uç cihazlara dağıttığı için oldukça dikkat çekti. Bu problem-

lerin çeşitli yönlerini ele alan birçok araştırma olsa da hala ele alınması gereken

birçok zorluk bulunmaktadır. Özellikle, kablosuz kanallar üzerindeki kullanımları

tam olarak anlaşılamamıştır. Bu motivasyon ile bu tez, gerçekçi kanal efektleri ve

pratik uygulama kısıtlamaları dikkate alınarak bu iki dağıtılmış sistemi kablosuz

kanallar üzerinden ele almaktadır.

Tezin ilk bölümünde, her alıcının paketinin birbirinden bağımsız ve aynı

olasılıkla silindiği paket silme kanalı ile kodlanmış önbellekleme üzerinde

çalışmaktayız. Paket silme kanalları için aynı mesajı gönderme (SSM) ve

açgözlü kodlanmış önbellekleme olmak üzere iki kodlanmış önbelleğe alma şeması

önermekteyiz. Ayrıca, sistem karmaşıklığını azaltmak için açgözlü algorit-

manın basitleştirilmiş bir versiyonu olan gruplanmış açgözlü algoritmayı da

önermekteyiz. Gruplanmış açgözlü algoritmanın iletim hızı için üst sınır elde et-

mekte ve bu üst sınırın küçük paket silme olasılıkları için simülasyon sonuçlarına

çok yakın olduğunu göstermekteyiz. Sonrasında ise ergodik olmayan sönümleme

kanalları üzerinde kodlanmış önbellekleme çalıştık. Bir yayın kanalının çok

noktaya yayın kapasitesi en kötü kanal koşullarını yaşayan kullanıcı tarafından

kısıtlandığı için, kullanıcıları kanal koşullarına göre gruplandırarak iletim süresini

en aza indirecek kodlanmış mesajların üretimine olanak sağlayan optimizasyon

problemini elde ettik. Bu sayede, her grup için oluşturulan kodlanmış mesajlar

bütün kullanıcıların arasındaki en kötüye göre değil, gruptaki en kötü kullanıcının

kanal koşullarına göre gönderilmektedir. Kullanıcı gruplarını belirlemek için yerel

olarak en uygun yinelemeli algoritma ve en kısa yol problemiyle sayısal olarak

daha verimli bir çözüm olmak üzere ki algoritma geliştirdik.
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Tezin ikinci bölümünde, büyük bir veri kümesinin bağımsız olarak çalışan

makinelere dağıtıldığı, ve her bir bağımsız makinenin kendi veri kümelerine göre

yerel gradyan tahminlerini hesapladığı federasyon öğrenimi olarak da bilinen

işbirlikçi makine öğrenme (ML) sistemlerini inceledik. Her bir makine hesaplamış

olduğu gradyan tahminini kanalın frekans seçiciliğini azaltmak için dikey frekans

bölmeli çoğullamalı (OFDM) çok yollu bir sönümlemeli çoklu erişim kanalı (MAC)

üzerinden göndermektedir. Makinelerde kanal bilgisi yer almadığından parame-

tre sunucusu (PS) alınan sinyalleri hizalamak için birden fazla anten kullanmak-

tadır. Güç tüketimini ve donanım maliyetlerini azaltmak için, alıcı tarafında

karmaşık değerli düşük çözünürlüklü analog-dijital dönüştürücüler (ADC’ler) kul-

lanmakta; pratik ve düşük maliyetli ADC’lerin sistemin öğrenme performansı

üzerindeki etkilerini incelemekteyiz. Teorik analizler ile düşük çözünürlüklü ADC

kullanmanın neden olduğu bozuklukların öğrenme algoritmasının yakınsamasını

önlemediğini ve PS’de yeterli sayıda anten kullanıldığında sönümleme etkilerinin

ortadan kalktığını göstermekteyiz. Ayrıca teorik sonuçlarımızı simülasyonlarla

doğrulamakta ve bir bitlik ADC’lerin kullanılmasının öğrenme doğruluğunda çok

küçük bir düşüşe sebep olduğunu göstermekteyiz.

Anahtar sözcükler : Kodllanmış önbellekleme, silme yayın kanalı, kablosuz

sönümleme kanalları, dağıtılmış makine öğrenimi, federasyon öğrenimi, stokastik

gradyan iniş, çok yollu sönmlemeli MAC, OFDM, düşük çözünürlüklü ADC.
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Chapter 1

Introduction

1.1 Overview

Caching is a strategy to prefetch server’s contents at individual user caches during

off-peak hours, i.e., when the network is not congested, and to exploit the cache

contents during the delivery phase where communication is more expensive. The

gain of traditional caching strategies is only due to the local memory of inde-

pendent users. It has recently been shown that with a novel centralized coded

caching scheme, a global caching gain can also be obtained by jointly optimiz-

ing the placement and delivery phases along with the usual local caching gain.

Further, a decentralized coded caching scheme is developed outperforming the

traditional caching strategies without any coordination in the placement phase.

On a different front, the rapid growth of data sensing and collection capability

of computation devices facilitates the use of massive datasets enabling machine

learning (ML) systems to make more intelligent decisions than ever. However, this

growth makes the processing of all the data in a central processor troublesome due

to energy inefficiency and privacy concerns. Recently, instead of using a central

processor, performing the ML task in a distributed manner where each device

connected to the central server over a finite capacity link performs the task on

2



its local dataset has drawn significant attention.

In this thesis, we investigate both distributed caching and distributed learning

algorithms in more realistic scenarios, specifically, we take into account (wireless)

channel effects and transmission constraints. For coded caching, we firstly focus

on the case where the channel between the users and the server is modeled as

a packet erasure channel. Secondly, we follow a coded caching model where the

placement phase is performed in a decentralized manner and the delivery phase

takes place over a wireless fading channel. Our objective is to study non-ergodic

channels and minimize the transmission time with low complexity user group-

ing approaches. Finally, we study distributed learning algorithms over wireless

channels taking into account the channel effects and considering the use of low-

resolution analog to digital converters (ADCs) in the receive chain, and show that

the convergence of the learning algorithm is guaranteed despite these practical

implementation issues.

1.2 Thesis Outline

The thesis is organized into six chapters. In Chapter 2, we overview the concepts

of coded caching and coded computing necessary for the rest of the thesis, and

provide a detailed literature review.

In Chapter 3, we investigate coded caching over packet erasure channels and

present a baseline algorithm along with newly proposed greedy and grouped

greedy approaches to create multicast opportunities for erased messages. While

grouped greedy coded caching gives slightly higher transmission rates than the

greedy algorithm, it may be attractive due to its lower complexity. We also ob-

tain an upper bound on the transmission rate of grouped greedy coded caching,

which is tight for small erasure probabilities.

In Chapter 4, we analyze coded caching over non-ergodic fading channels,

and propose a locally optimal iterative solution and a more efficient algorithm

3



through a shortest path problem. The basic objective of all these algorithms is

to alleviate the effects of the users experiencing worse channel conditions on the

multicast capacity via user grouping. The results demonstrate that user grouping

for coded caching over wireless channels is highly advantageous, particularly,

when the cache sizes are small.

In Chapter 5, we study distributed learning over wireless channels. Specifically,

we consider practical implementation issues as well as wireless channel effects.

We study and quantify the performance of a distributed learning system at the

wireless edge implemented through an orthogonal frequency division multiplexing

(OFDM) based transmission using low cost ADCs at the receiver side. Through

analytical results, we show that the convergence of the learning algorithm is

guaranteed when the number of receive antennas goes to infinity. We also argue

through simulations that even a moderate number of receive antennas is sufficient

to obtain a good learning performance.

Finally, in Chapter 6, we present our conclusions and provide directions for

future research.
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Chapter 2

Preliminaries and Literature

Review

In this chapter, we provide the necessary preliminaries and a literature review

required for the rest of the thesis. Firstly, coded caching is presented in detail to

provide a basis for Chapters 3 and 4. Then, fundamentals of coded computing is

explained which is studied in Chapter 5.

The chapter is organized as follows. In Section 2.1, centralized coded caching

scheme is presented, while decentralized coded caching is covered in Section 2.2.

In Section 2.3, machine learning at the wireless edge is explained. The chapter is

concluded with a summary in Section 2.4.

Notation: Throughout the thesis, we will use the notation [a b] to indicate

the integer set {a, . . . , b} where a ≤ b, a and b are positive integers, and simply

[b] = [1 b].

5



2.1 Coded Caching

2.1.1 Centralized Coded Caching

Caching is a strategy to prefetch server’s contents at individual user caches during

off-peak hours, i.e., when the network is not congested, and to exploit the cache

contents when communication is more expensive. Hence, the caching problem can

be analyzed in two phases: 1) users prefetch the server’s content at their caches

during off-peak hours which is called the placement phase, 2) cached content is

used along with the server’s transmissions to satisfy the users’ requests which is

called the delivery phase.

Conventionally, caching is considered as a strategy to minimize the number

of transmitted bits during the delivery phase by only using transmitted bits and

individual cache contents of each user separately without employing any coding

for both cache and transmitted contents. Hence, the gain of conventional schemes

only depends on the size of local caches of each user, called the local caching gain.

In [1], Maddah-Ali and Nielsen introduced a novel centralized coded caching

scheme where a server with N files (each of F bits) connected to K users each with

cache capacity of M files through an error-free shared link as shown in Fig. 2.1.

During the delivery phase, each user requests a file from the server. The proposed

coded caching scheme provides a global caching gain by jointly optimizing the

placement and delivery phases along with the usual local caching gain even if

there is no cooperation among the users. This scheme aims to construct coded

multicast messages to satisfy the demands of each user during the delivery phase.

Thus, significantly lower transmission rates than those obtained by conventional

uncoded caching are achieved.

In the following, we present an illustrative example of centralized coded caching

taken from [1].

Example 1. Consider a system with N = K = 2, M = 1, where files in the

6
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Figure 2.1: System model for centralized coded caching with K users with M = 1
local cache memories and a central server with N files.

server are denoted as A and B. Both files are split into equal size two subfiles,

i.e., A = (A1, A2) and B = (B1, B2). The normalized size of each subfile is

MK/N = 1/2. During the placement phase, user one caches Z1 = (A1, B1) while

user two caches Z2 = (A2, B2) in their local caches. Thus, users store 1/2 of

each file exclusively. We can analyze the delivery phase for four different cases as

shown in Fig. 2.2.

Case 1: User 1 requests file A while user 2 requests file B. User one already

has A1 in its cache, hence it only needs to receive A2. User 2 has B2 which means

that it only needs B1. Also note that, each user has the requested subfile of

other user in their own caches. Therefore, reconstruction of the requested files

is possible when the server transmits A2 ⊕ B1 whose size is F/2 bits, where ⊕
represents the bit-wise XOR operation.

Case 2: User 1 requests file B while user 2 requests file A. User one already

has B1 in its cache, hence it only needs to receive B2. User 2 has A2, i.e., it

only needs A1. Therefore, users can reconstruct their requested subfile when the

server transmits A1 ⊕B2 whose size is F/2 bits.

Case 3: Both users request file A. User one already has A1 in its cache, i.e.,

7
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Figure 2.2: All four possible combinations of centralized coded caching configura-
tions where K = 2 users with MF bit local cache memories and a central server
containing N = 2 files [1].
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it only needs A2. User 2 has A2, i.e., it only needs A1. Therefore, the users can

reconstruct their requested subfile when the server transmits A1 ⊕A2 whose size

is F/2 bits.

Case 4: Both users request file B. User 1 already has B1 in its cache, i.e., it

only needs B2. User 2 has B2, i.e., it only needs B1. Therefore, the users can

reconstruct their requested subfile when the server transmits B1 ⊕B2 whose size

is F/2 bits.

Thus, the centralized coded caching transmits only F/2 bits. In traditional

uncoded caching, the server needs to transmit (1 − M/N) portion of each file

resulting in RU(M) , K · (1 −M/N) · min{1, N/K} · F = F bits of transmis-

sion. Hence, the centralized coded caching attains lower transmission rate than

uncoded caching for all possible cases. �

In general, we can describe the coded caching algorithm as follows:

• During the placement phase, each file is split into
(
K
t

)
non-overlapping equal

size subfiles with t = MK/N . Let us denote the subfiles of Wn by Wn,S

where S ⊂ [K], |S| = t.

• For each file in the server, subfile Wn,S is stored in the user k’s cache if

k ∈ S. Thus, each user caches N
(
K−1
t−1

)
F

(Kt )
= FM bits in total.

• During the delivery phase, the server receives a request vector (d1, · · · , dK),

i.e., user k wants file Wdk .

• The server transmits ⊕s∈SWds,S\{s} for each subset S ⊂ [K] with |S| = t+1.

Accordingly, the achievable rate RC(M) of the centralized coded caching

scheme is given in Theorem 1 of [1] as

RC(M) , K · (1−M/N) ·min

(
1

1 +KM/N
,
N

K

)
. (2.1)

The factor (1−M/N) in (2.1) is due to the local caching gain, and it is present

in both uncoded caching and coded caching while the factor 1
1+KM/N

is due to

the global caching gain, and it is only provided by the coded caching scheme.
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Figure 2.3: Transmission rate R required for traditional uncoded caching and
coded caching with N = K = 20 with different cache sizes.

In Fig. 2.3, the transmission rate required for uncoded caching and coded

caching with N = K = 20 is illustrated to emphasize the importance of global

caching gain. For example, when the cache size is M = 10, the coded caching

requires to transmit only 0.91 · F bits while uncoded caching needs to transmit

10 · F bits. Hence, coded caching achieves a 90.9% reduced transmission rate

than uncoded caching.

2.1.2 Decentralized Coded Caching

In centralized coded caching, the placement phase is centrally coordinated, and

both the number and identity of users are known to the server at the placement

phase. However, this kind of coordination is not possible in real-life networks.

Hence, in [2], Maddah-Ali and Nielsen propose a decentralized coded caching

scheme that can provide a global caching gain even when there is no coordination.

Consider the same system with the centralized coded caching setup where K

users each equipped with M caches are connected to a server containing N files

10



each of size F bits through an error-free shared link. Similar to the centralized

coded caching, the system operates in two phases: placement and delivery phase.

During the delivery phase, each user independently caches MF/N bits of each

file chosen uniformly at random. Note that, unlike the centralized coded caching,

the size of the cached contents for each file does not depend on the number of

users K, instead it only depends on M and N . At the beginning of the delivery

phase, the number and identity of the users are known to the server, and we

can consider each file as a combination of 2K exclusive subfiles. Let us use the

notation Vk,S to denote the bits of the file requested by the k-th user stored by

the users exclusively in S. During the delivery phase, the server selects one of

the following described procedures to minimize the transmission rate.

Algorithm 1: Delivery procedures for decentralized coded caching algo-
rithm [2].

Procedure 1:
for s = K,K − 1, · · · , 1 do

for S ⊂ [K] : |S| = s do
server trasnmits ⊕k∈SVk,S\{k}

end

end

Procedure 2:
for n ∈ [N ] do

server transmits enough random linear cominations of bits of file n
until each user can decode its requested file.

end

Procedure 1 can be explained with the following illustrative toy example:

Example 2: Consider a caching problem with K = 2 users each equipped

with a cache of size M = 1, and there are N = 2 files in the server denoted by A

and B. User one request file A, while the other one requests file B as illustrated

in Fig. 2.4.

• During the placement phase, each user caches MF/2 = F/2 bits of each

file randomly and independently.
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Figure 2.4: Transmission rate R required for traditional uncoded caching and
coded caching with N = K = 20 with different cache sizes.

• At the beginning of the delivery phase, the server has access to the con-

nected user identities and their requests.

• Each bit of a file is stored in a specific user’s cache with probability M/2 =

1/2, and a specific bit of a file can be cached by none of the users, only

by user 1, only by user 2, or by both of the users. Hence, we can consider

a file as a combination of four exclusive subfiles, i.e., file A is partitioned

into A = (A∅, A1, A2, A1,2), and AS represents the bits of file A stored in S
where S ⊂ {1, 2}. Using the law of large numbers, for large F , the size of

each subfile can be approximately calculated as

|AS | ≈
(
M

2

)|S|(
1− M

2

)2−|S|

F (2.2)

with probability one. Hence, we have |A∅| ≈
(
1− M

2

)2
F , |A1| ≈(

M
2

) (
1− M

2

)
F , |A2| ≈

(
M
2

) (
1− M

2

)
F and |A1,2| ≈ (M

2
)2F .

• In Algorithm 1, when s = 2, we have V1,2 = A2 and V2,1 = B1. Thus, the

server transmits A2 ⊕ B1 whose size is ≈
(
M
2

) (
1− M

2

)
F , and each user

can decode their required subfile using the received signal and their cache

contents.
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Figure 2.5: Transmission rate R required for traditional uncoded caching, decen-
tralized coded caching, and centralized coded caching with N = K = 20, and
different cache sizes.

• When s = 1, V1,∅ = A∅ and V2,∅ = B∅. Since none of the users have these

subfiles in their local caches, no multicasting opportunities can be attained

by coding. Hence, each of these subfiles are transmitted separately by the

server resulting in ≈ 2
(
1− M

2

)2
F bit of transmission.

• Note that A1,2 and B1,2 are cached by both of the users which means there

is no need to transmit them.

Combining the results of the above cases, the overall transmission rate becomes

≈ 3
4
F. �

Generalizing this illustrative example, the authors show that for N files and

K users each with a cache size of M , for F large enough, Algorithm 1 gives a

transmission rate arbitrarily close to

RD(M) , K · (1−M/N) ·min

(
N

KM

(
1− (1−M/N)K

)
,
N

K

)
. (2.3)

As in the centralized coded caching, the term (1−M/N) is the local caching
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gain, while N
KM

(
1− (1−M/N)K

)
is the result of global caching gain which is

attained via the coded multicasting opportunities.

The performances of uncoded caching, centralized coded caching, and decen-

tralized coded caching with K = N = 20 are illustrated in Fig. 2.5 which verifies

the efficiency of decentralized coded caching. Uncoded caching only achieves a lo-

cal caching gain, while the centralized and decentralized coded caching algorithms

have a global caching gain along with the local one. Hence, both outperform the

uncoded caching. However, in centralized coded caching, the server knows the

identity of the users, which will be connected to the server during the delivery

phase. Thus, the distribution of files is coordinated by the server, which results

in a higher global caching gain. In decentralized coded caching, the server does

not have any knowledge about users; hence the placement phase is performed in a

random manner without coordination resulting in a slight decrease in the global

caching gain.

2.1.3 Literature Review on Coded Caching

With its promised global caching gain, coded caching has drawn significant at-

tention, and various extensions have been proposed over the last few years. In [3],

the authors investigate the gap between the caching rate and the cut-set bound.

They develop a coded caching strategy via network coding for both the delivery

and placement phases, where the number of users is higher than the number of

files in the server, and each user equipped with a small buffer. Their proposed

strategy outperforms most of the existing coded caching schemes, and they show

that the cut-set bound rate is achievable. In [4], a novel centralized coded caching

scheme is proposed for the specific case of a cache capacity of M = (N − 1)/K,

and a lower transmission rate is achieved via the proposed scheme than the exist-

ing ones when K ≥ N ≥ 3F . In [5], the authors investigate the lower bound on

the transmission rate of the centralized coded caching, and improve the bound

introduced in [1, 2] for the average and the worst-case rate-memory trade-offs.

Specifically, the authors compare their newly derived lower bound and the upper
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bound given in [2], and show that the ratio of the upper bound to the new lower

bound is decreased to 2.315 and 2.507 for the worst case and the average case,

respectively.

Different from other studies, [6] considers a more flexible setup where each

user decides which files to store arbitrarily. The delivery process is optimized

by solving an integer linear program. The numerical results show that the pro-

posed scheme achieves a lower bandwidth usage than the existing ones when the

placement phase is uniformly random.

Ref. [7] focuses on asynchronous file requests where requests of each user arrive

to the server at different times. Also, each user specifies a deadline to receive their

requested files. They propose a linear programming formulation to determine the

transmission schedule for asynchronous coded caching and propose a minimum

cost network flow algorithm to reduce the complexity of the linear program. In

[8], the authors study the trade-off between coded caching and delivery delay for

delay-sensitive contents. They present three computationally efficient merging

functions to combine the requests as much as possible, thereby minimizing the

number of transmissions while considering the delivery-delay constraint. For large

delay constraints, they can achieve the optimal performance given in [1, 2]. For

strict delay constraints, the proposed approach does not achieve the optimal

solution, however, it can still offer an important gain.

Ref. [9] introduces secure coded caching which uses random keys to pro-

tect users from an external eavesdropper. The goal of the paper is to minimize

the information leakage to an unintended wiretapper. They obtain a memory-

transmission rate trade-off for secure communication and show that security can

be attained with a negligible cost. A related study, private coded caching, is per-

formed in [10] where the authors aim at protecting the user requests and cache

contents from all the other users in the system, i.e., no user can extract any in-

formation about the files it does not demand. They propose a feasible private

coded caching scheme and prove the order-optimality of the proposed solution

via information theoretical lower bounds.
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Another interesting line of research is to study the case where the popularity

distribution of the files in the server is not uniform, i.e., some files has a higher

probability of being requested. For different popularity distributions, in [11], the

authors optimally perform the placement phase by utilizing the distribution of

the files in the server to minimize the load during the delivery phase. For a

cache size equal to M = 1, the optimal placement algorithm is to store the most

popular file in the cache. However, when M > 1, caching the most popular file

is suboptimal. Hence, they propose a novel scheme by separating contents into

groups according to their popularity distribution. During the placement phase,

the same amount of cache is allocated for the files in the same group while the

files in different groups may have a different amount of cache allocation. During

the delivery phase, the authors only consider the coding opportunities among

the same group and ignore the remaining ones. They show that their proposed

solution is near optimal. In [12], the authors study online coded caching where

the popularity of files in the server changes according to a Markov model during

the delivery phase. They show that online coded caching achieves a very close

performance to offline coded caching in terms of long-term average rates. In [13],

hierarchical coded caching is investigated where the system consists of two layers

of caches, and multicasting opportunities within each layer and across multiple

layers are simultaneously created.

There have also been works on coded caching when the links between the users

and the server during the delivery phase are non-ideal. In [14], a centralized joint

encoding scheme has been proposed based on the coding scheme of [15] where

the delivery phase is over a packet erasure channel. Receivers are divided into

two groups as strong and weak, considering their erasure probabilities. Only

weak receivers are equipped with local caches, and it is shown that even if strong

receivers do not have any caches, they take advantage of the presence of weak

receivers’ local caches. Also, the theoretical trade-off between the achievable

transmission rate and cache memory is analyzed. Reference [16] investigates

decentralized coded caching over packet erasure broadcast channels by separating

receivers as weak and strong with and without a secrecy constraint. The results

show that communication can be secured against an external eavesdropper by a
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slight increase in the transmission rate.

In [17], the authors aim to overcome the detrimental effects of weak users

by designing opportunistic scheduling policies using a long-term average rate

utility function. They also propose a threshold-based scheduling algorithm for

asymmetric channel statistics to balance fairness among users. Both of these

approaches focus on long-term averages and ignore the users whose channel gains

are below a threshold, and hence, are not served. Ref. [18] exploits the pattern of

coded messages by adjusting power and bandwidth allocation among submessages

designated for a different subset of users to maximize the throughput, and applies

both time division and frequency division modes during the delivery phase over

fading channels. Ref. [19] considers a system with coded multicasting and channel

coding over slow fading channels and study average delay and outage trade-off.

In [20], the authors consider a coded caching system where the power allocation

for the subfiles is designed according to the intended users, and they analyze the

long-term average sum content delivery rate over fading channels. Furthermore,

in [21, 22], the authors investigate coded caching over multiple input multiple

output (MIMO) wireless networks where each user is equipped with a single

antenna while the server is considered as a multi-antenna basestation. Ref. [23]

applies interference management to alleviate the negative effect of link quality

differences among users due to channel variations.

2.2 Coded Computing

With the rapid growth of the amount of data available, the accuracy and reli-

ability of machine learning algorithms are enhanced, since training with more

extensive training sets increases the accuracy of the learning algorithms [24]. In

addition, the capability of computing devices has increased, which makes the

processing of the dataset faster. However, the total amount of data is nearly in-

calculable, and increasing the computation speed of a single device is difficult due

to the saturation of Moore’s law [25]. Therefore, distributing the data to mul-

tiple devices/workers to perform parallel computing has become an inevitable
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approach to speed up computations.

To reduce the computation time of linear transforms, which are the core op-

erations performed in many machine learning algorithms, classical approaches

consider the following setup: A fusion node distributes the computational task

to all the connected computation nodes equally without adding redundancy. At

the end of the computation process, the fusion node needs to wait for all these

devices to complete and send the results of their computation [26, 27]. The basic

idea is the following: consider the multiplication operation

C = A ·B, (2.4)

where A, B, and C are M×M full matrices. Instead of performing multiplication

at one step, we decompose A and B into Âlk = Aij and B̂lk = Bij with 1
4
Ml ≤

i ≤ 1
4
M(l + 1) and 1

4
Mk ≤ j ≤ 1

4
M(k + 1), as shown in Table 2.1.

Table 2.1: Subblock decomposition of square matrices.

Â00 Â01 Â02 Â03 B̂00 B̂01 B̂02 B̂03

Â10 Â11 Â12 Â13 B̂10 B̂11 B̂12 B̂13

Â20 Â21 Â22 Â23 B̂20 B̂21 B̂22 B̂23

Â30 Â31 Â32 Â33 B̂30 B̂31 B̂32 B̂33

By considering each submatrix as a single element, we can write

Ĉlk =
∑
n

Âln · B̂nk, (2.5)

and calculate the result of (2.4) by executing the following steps:

1. Diagonal submatrices of A are broadcast to all the processors in a horizontal

direction, i.e., processor i receives Âii.

2. Each processor i ∈ [M ] performs (2.5) with Âii and B in their hand resulting

in the matrix shown in Table 2.2.
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3. Submatrices of B are vertically rolled. The result of first roll is shown in

Table 2.3.

4. Horizontal broadcasting for ‘diagonal+1’ submatrices of A is performed,

e.g., the submatrices shown in Table 2.4 are broadcast.

5. Each processor multiplies the currently transmitted submatrices (dio-

ganal+1) of A and rolled B to perform (2.5).

This steps are repeated until B rolled completely.

Table 2.2: Result of Step 2 in matrix multiplication.

Â00B̂00 Â00B̂01 Â00B̂02 Â00B̂03

Â11B̂10 Â11B̂11 Â11B̂12 Â11B̂13

Â22B̂20 Â22B̂21 Â22B̂22 Â22B̂23

Â33B̂30 Â33B̂31 Â33B̂32 Â33B̂33

Table 2.3: Vertical rolling of B.

B̂00 B̂01 B̂02 B̂03 B̂10 B̂11 B̂12 B̂13

B̂10 B̂11 B̂12 B̂13 B̂20 B̂21 B̂22 B̂23

⇒
B̂20 B̂21 B̂22 B̂23 B̂00 B̂01 B̂02 B̂03

B̂30 B̂31 B̂32 B̂33 B̂00 B̂01 B̂02 B̂03
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Table 2.4: Horizontal broadcasting for ‘diagonal+1’ subbmatrices of A.

Â01

Â12

Â23

Â30

Note that, the algorithm does not perform any redundant operation, and waits

until all the computation devices complete their operations to obtain C.

In most parallel computing systems, some of the computation devices, called

stragglers, are slower than others and cause delays in computation. In [28], the

authors categorize the reasons for outliers/stragglers into three classes as ma-

chine characteristics, network characteristics, and imbalance in work-partitioning.

They present an approach called as Mantri which classifies outliers according to

their causes and prevent slowdown of the system by the following procedures: 1)

they restart the task of outliers to get rid of work imbalance, 2) the work-sharing

is done according to the network characteristics, 3) the result of the task is pro-

tected by replicating the task according to the proposed cost-benefit analysis

while preventing excessive task replication. Ref. [29] considers a heterogeneous

system where some of the computation devices are stragglers. They take advan-

tage of the estimated completion time of the works to obtain a robust scheduling

algorithm in order to distribute the work based on finish times.

Another approach to eliminate the slowdown effects of stragglers is to intro-

duce redundancy into the computation task. In [30], a fault-tolerant encoding

algorithm for multiprocessor systems is introduced with low redundancy. In [31],

the authors perform a theoretical analysis of the trade-off between response time
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and resource usage in parallel computing systems. With the awareness of vari-

ability of the task execution time of each machine, they investigate replication

and scheduling policies that are optimal and nearly optimal, and they analyze the

conditions where and when the task replication is beneficial for the distributed

systems. Furthermore, in [32], they expand their task replication analysis for mul-

tiple tasks by investigating the effects of execution time distribution of machines

on the trade-off between cost and execution time, and propose new replication

strategies for multiple tasks.

While the previously mentioned works focus on latency and source usage in dis-

tributed computation, Ref. [33] uses Maximum Distance Separable (MDS) codes

to speed up the computation in distributed systems where some of the connected

servers are stragglers. The authors analyze the trade-off between computation

time and communication (shuffling) load. For a predetermined computation time,

they prove a lower bound on the communication load for matrix multiplication

through an information theoretic analysis.

In [34], the authors prove the superiority of coded distributed computation

over uncoded ones. For matrix multiplication, they use MDS codes to reduce the

destructive effects of stragglers, and prove that completion time of distributed

matrix multiplication can be reduced by a factor of log n where n is the number

of homogeneous workers. For data shuffling, they aim to reduce the load of com-

munication. The authors show that coded shuffling reduces the communication

load by a factor of
(
α + 1

n

)
δ(n) with respect to uncoded shuffling where n is the

number of workers, α is the fraction of the matrix stored in each worker, and δ(n)

is the ratio of cost of unicasting messages to n users to multicasting to n users.

A related topic evolving from coded computing is distributed machine learning

where the computation load of the main server which performs the calculations

during the training process are divided among edge devices as in coded computing

[35, 36]. Different aspects of distributed ML are studied in the recent literature.

In [37], digital and analog distributed stochastic gradient descent (D-DSGD and

A-DSGD) algorithms over a Gaussian multiple-access channel (MAC) are pro-

posed where the authors use the superposition property of the MAC to recover
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the mean of local gradients computed at remote workers. In D-DSGD, workers

digitally compress their locally computed gradients into a finite number bits while

in A-DSGD workers use an analog compression similar to what is done in com-

pressed sensing to obey the bandwidth limitations over wireless channels. In [38],

for low latency distributed learning systems, the authors propose broadband ana-

log aggregation scheme for a random network model with randomly distributed

workers over a disk where the global model is updated at the central server using

the average of locally computed models by focusing on power control and worker

scheduling according to their channel state information (CSI). Ref. [39] models

the channel between the workers and the parameter server (central server) as a

band-limited fading MAC, and proposes analog compression schemes using both

opportunistic scheduling and compressed sensing based on CSI to reduce the di-

mensionality of the gradient estimates. Also, they propose a worker scheduling

scheme to align the received gradients based on beamforming.

In addition to the imperfections caused by fading, in [40], each worker trans-

mits its gradient in a quantized form to effectively reduce the data exchange rate.

The authors study the trade-off between the learning accuracy and precision of

the transmitted gradients, and show that the convergence of the proposed ap-

proach is guaranteed. Ref [41] proposes the Quantized Epoch-SGD (QESGD)

method, which compresses the updated model parameter at the parameter server

by quantization, and sends the quantized version to the workers to reduce the

communication load of the distributed learning system. Through numerical simu-

lations of deep learning algorithms, the authors show that the proposed approach

outperforms the other state of the art methods. In [42], the communication cost

of federated learning is studied. The authors propose two approaches to reduce

the uplink communication cost for poor network connections: 1) by restricting

the parameter space using a structured update, 2) by compressing the local model

after learning with a full model, and sending the compressed ones to the server.

In [43], the secure aggregation method for federated learning systems is consid-

ered where the model is learned only by the server, and the data of participants

are protected. The authors introduce two protocols, one is secure against honest

adversaries with a lower communication cost while the other is against active
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adversaries and comes with an extra communication load.

2.3 Thesis Contributions

In this thesis, firstly, we consider a coded caching system where the placement

phase is performed in a decentralized manner, and the delivery phase takes place

over a packet erasure channel where each receiver sees an independent channel

with the same erasure probability. Although [14] and [16] give theoretical limits

of coded caching over packet erasure channels; our proposed algorithms are prac-

tical and feasible. Firstly, we present a coding scheme called sending the same

message algorithm (SSM) based on [2], and perform analytical calculations on the

average transmission time for the worst-case scenario. Secondly, a greedy coded

caching algorithm is proposed, and through simulation results, it is shown that

it outperforms the proposed SSM algorithm. Finally, we introduce a grouped

greedy coded caching algorithm which has a lower complexity than the greedy

algorithm with a slight increase in the transmission rate. We also develop an up-

per bound on the transmission rate for the grouped greedy coded caching scheme

which is tight for small erasure probabilities.

As a second contribution, we follow a coded caching model where the placement

phase is performed in a decentralized manner and the delivery phase takes place

over a wireless fading channel. Different from [17], which considers long-term

average rates, our interest is to study non-ergodic channels and minimize the

transmission time by letting some of the weak users to be in outage. With a fixed

outage probability, we formulate an optimization problem to reduce the total

transmission time by grouping the participating users to overcome the detrimental

effects of channel fading. We also propose a locally optimal iterative algorithm to

compute the signal to noise ratio (SNR) thresholds. Furthermore, we quantize the

SNR thresholds and model the optimization process with the quantized thresholds

as a shortest path problem for a reduced complexity solution.
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Finally, we study distributed learning algorithms over wireless channels in re-

alistic settings, also considering practical implementation issues, including the

channel effects. We model the communication link as a frequency selective fad-

ing channel, and transmit the local gradients using OFDM. Furthermore, in an

effort to reduce the hardware complexity and power consumption, we employ

low-resolution ADCs at the receiver side, which employs multiple (even a massive

number of) receive antennas. While decreasing the resolution of ADCs reduces

the implementation cost and the power consumption, it also deteriorates the per-

formance of a communication system. Our objective is to study and quantify the

performance of a distributed learning system at the wireless edge implemented

through OFDM based transmissions and low cost ADCs at the receiver side.
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Chapter 3

Coded Caching over Packet

Erasure Channels

In this chapter, we study coded caching over packet erasure channels, and propose

practical and feasible algorithms to reduce the overall transmission rates. Firstly,

we study sending the same message (SSM) algorithm, which simply retransmits

the erased coded messages until all of the users successfully receive them. We pro-

vide analytical calculations for the average transmission rate considering distinct

user demands. Secondly, we propose a greedy coded caching algorithm which

gives a lower transmission rate than the SSM by exploiting the multicasting op-

portunities among all the erased subfiles in a greedy manner. Furthermore, we

propose a grouped greedy algorithm which only considers multicasting opportuni-

ties within a range of erased messages; thus the complexity of the grouped greedy

algorithm is less than that of the greedy one with a slight sacrifice in performance.

Also, an upper bound of the overall transmission rate of the grouped greedy coded

caching algorithm is developed, which is tight for small erasure probabilities.

The chapter is organized as follows. Section 3.1 introduces the system model.

The SSM algorithm is introduced in Section 3.2, and a greedy coded caching algo-

rithm is proposed in Section 3.3. A lower complexity solution called the grouped

25



greedy approach is presented in Section 3.4. Performance of the proposed algo-

rithms are studied via simulations in Section 3.5, and the chapter is summarized

in Section 3.6.

3.1 System Model

We consider a system which contains a server and K users which are connected

through a packet erasure channel as shown in Fig. 3.1. There are N different files

in the server where K ≤ N and W , (W1,W2, · · · ,WN) represents the files each

of size F bits in the server. Users are equipped with local caches which are able

to store MF bits. During the placement phase, each user randomly caches M/N

fraction of each file in their local caches in a decentralized manner as described

in [2] and summarized in Chapter 2. We use the notation Wi,{S} to represent the

bits of the file Wi which are present in the cache of every user in S exclusively.

After the decentralized placement phase, each file can be split into 2K subfiles

as Wi = (Wi,{∅},Wi,{1},Wi,{2}, · · · ,Wi,{K},Wi,{1,2},Wi,{1,3}, · · · ,Wi,{1,2,··· ,K}). We

use dk to denote the demand of the k-th user where dk ∈ [N ], ∀k ∈ [K]. The aim

of the server is to satisfy the demands of all the users.

Coded caching takes place in two steps. During off-peak hours, the content of

the server is distributed over local user caches randomly without considering the

user demands over an error-free shared link. This phase is called the placement

phase. At the end of this phase, each user determines its cache content using

the placement function gk, where cache content of the k-th user is denoted by Zk

with k ∈ [K] and defined as

Zk , gk(W1,W2, · · · ,WN). (3.1)

The second phase is the delivery phase in which the user requests are revealed

to the server. In this phase, the server encodes library contents with encod-

ing function fd using the users’ request vector d , (d1, d2, · · · , dK) and library
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Figure 3.1: Packet erasure channel with K users with MF bit local cache mem-
ories and a central server with N content.

content to obtain a length-n codeword Xn as

Xn , fd(Wd1 ,Wd2 , · · · ,WdK ). (3.2)

Similar to [1] and [3], the channel between the users and server is modeled

as packet erasure channel during the delivery phase. The input alphabet of the

packet erasure channel is X , {0, 1}F while the output alphabet is Y , X ∪∆

where F is the packet size and ∆ represents the packet erasure symbol. Each user

encounters independent packet erasures over a channel with erasure probability

ε.

Receiver k ∈ [K] uses the decoding function ϕk to reconstruct its demanded

content Wdk based on its observation Y n
k , cache content Zk, and demand vector

d as Ŵdk , ϕk(Y
n
k , Zk,d).
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3.2 Sending The Same Message Algorithm

This algorithm employs the decentralized coded caching technique introduced in

[2] as the baseline algorithm. The placement phase, and the first transmission in

the delivery phase are exactly the same as the baseline system. After the first

transmission, when at least one of the users encounters a packet erasure, this

algorithm simply retransmits the same coded messages until all of the users are

able to decode their own messages successfully.

Example 1: Consider a coded caching system where K = 3 users with cache

size M = 1 are connected to a server which contains N = 3 files denoted by

(W1,W2,W3) via a packet erasure channel. The demand vector of users is d =

(W1,W2,W3). Focusing on the coded message W1,{2,3} ⊕W2,{1,3} ⊕W3,{1,2}, the

server needs to transmit this same message even if only one of the users encounters

erasure, i.e., server will retransmit W1,{2,3} ⊕W2,{1,3} ⊕W3,{1,2}.

The average transmission rate of the SSM algorithm is analyzed in the next

theorem assuming the worst-case scenario where each user has a distinct demand.

Theorem 1 Consider the coded caching problem over a packet erasure channel

with N files each of size F bits in the server and K users equipped with a cache

of MF bits with K ≤ N , and M ∈ [N ]. Each user sees an independent packet

erasure channel with the same erasure probability ε. The average transmission

rate of the SSM algorithm is arbitrarily close to

RSSM(M, ε) =
K∑
i=1

(
K

i

)
LiXi, (3.3)

where

Xi =
1 +

∑i−1
k=1 pk,iXk

1− pi
, for i = 2, · · · , K,

Li =
(M
N

)i
·
(

1− M

N

)K−i
, for i = 0, · · · , K,

pk,n =

(
n

k

)
· εk · (1− ε)n−k, for k ≤ n,

pk = pk,k.
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Proof Let R′j denote the expected value of transmission rate to send j XOR-ed

subfiles until it is received by all of the targeted users where the number of targeted

users is j. Then Xj is the expected value of normalized transmission rate i.e.,

Xj = R′j/Lj which is normalized by the subfile size where Lj and Xj are given in

(3.4), (3.4) respectively.

The total transmission rate for the SSM algorithm is analyzed iteratively, as

in the following.

Transmission rate for the messages with one targeted user:

Consider a subfile which is not stored by any of the users, and assume that only

one user requests this subfile. Therefore, it can be recovered only when it is sent

separately. The algorithm starts with sending this message without coding, which

gives L1 in (3.4), where L1 is the size of the subfile. Then if this message is

successfully transmitted (no erasure) which occurs with probability p0,1, we do not

need to transmit anything (0 · p0,1 in (3.4)) where pk,n is defined in (3.4). When

there is an erasure which occurs with probability p1,1, this event will be equal to

the beginning of the transmission, this leads p1,1 ·X1 in (3.4).

R′1 = L1 ·
(
1 + p0,1 · 0 + p1,1 ·X1

)
= L1 ·X1,

(3.4)

Here, p1,1 means that targeted user encounters erasure. When such an event oc-

curs, the remaining expected transmission rate is equal to the one at the beginning

of the transmission (when no message is sent), i.e., the right-hand side of (3.4)

is equal to L1 ·X1.

Hence, X1 is obtained as:

X1 =
1

1− p1,1
. (3.5)

Since there are
(
K
1

)
such messages, the total transmission rate for one targeted

user can be calculated as:

R1 =

(
K

1

)
L1X1. (3.6)

Transmission rate for the messages with two targeted users, e.g.

W1,{2} ⊕W2,{1}:

29



Without loss of generality, assume user one requests subfile W1,{2} and has subfile

W2,{1} in its own cache while user two requests subfile W2,{1} and has subfile

W1,{2}. Hence, these subfiles can be recovered when they are XOR-ed according to

the baseline algorithm.

At the beginning of the transmission, we need to send the XOR-ed message

(L2 · 1 in (3.7)). Then, if this message is successfully transmitted (no erasure)

which occurs with probability p0,2, we do not need to transmit anything (L2 ·p0,2 ·0
in (3.7)). When there is an erasure for one of the users, which is with probability

p1,2, this will be the same as the previous case (when one user is targeted) and

leads to p1,2 ·X1 in (3.7). Hence, while both of the users encounter erasure, it is

the beginning scenario of the transmission, which results in L2 ·X2 in (3.7).

R′2 = L2 ·
(
1 + p0,2 · 0 + p1,2 ·X1 + p2,2 ·X2

)
= L2 ·X2.

(3.7)

Hence, X2 is obtained as:

X2 =
1 + p1,2X1

1− p2,2
. (3.8)

There are
(
K
2

)
such messages when 2 users are targeted, hence the total transmis-

sion rate can be calculated as:

R2 =

(
K

2

)
L2X2. (3.9)

Similar calculations can be performed for all possible number of targeted users.

By induction, we can obtain general formulas for Xi and Ri as:

Xi =
1 +

∑i−1
k=1 pk,iXk

1− pi
, (3.10)

where i = 2, · · · , K, and

Ri =

(
K

i

)
LiXi. (3.11)

Note that, pk,k = pk, and X1 =
1

1− p1
.

Then, the total transmission rate is found as

RSSM(M, ε) =
K∑
i=1

Ri =
K∑
i=1

(
K

i

)
LiXi, (3.12)
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where
(
K
i

)
is the number of messages with i subfiles.

3.3 Greedy Coded Caching Algorithm

The SSM algorithm simply retransmits the same coded messages over the packet

erasure channel when at least one of the users encounters erasure. However,

when there is at least one successful transmission of the coded message, new mul-

ticasting opportunities may be available among the erased packets, which would

potentially result in a lower transmission rate than sending the same message

algorithm again over the channel without considering the successfully received

ones. Here, we propose a greedy coded caching algorithm that aims to send a

multicast stream benefiting the maximum number of users at each transmission.

This algorithm is utilized recursively until all of the users decode their required

contents.

The first step of the transmission is to construct the usual coded caching

messages for the desired contents. After the first transmission, coded messages

are constructed using brute force search to find decodable coded messages in

order to benefit the maximum number of users, e.g., if there are K = 8 users,

the greedy algorithm’s initial purpose is to reconstruct coded messages from 8

subfiles whose targeted users are distinct. A coded message X is decodable if

and only if all the users can extract their requested subfile from X along with the

cache contents. For instance, assume that the requests of user 1 and 2 are W1 and

W2 while their caches contain {W2,{1,3}} and {W1,{2}}, respectively. Since both

users can reconstruct their desired subfile from the message W1,{2}⊕W2,{1,3} using

both the message and their local cache content, the message W1,{2}⊕W2,{1,3} is a

decodable message. Note that, if the number of bits of XOR-ed messages is not

the same, the smaller one is zero-padded.

The above greedy algorithm has O(εK · 2K2
) average-case complexity at each

iteration which prevents real-time processing. Hence, we offer a grouped greedy

algorithm, which has a lower complexity in the next section.

31



3.4 Grouped Greedy Coded Caching

Since the computational cost of the greedy algorithm is high, we propose another

approach which constructs similar coded messages to [2], but at the same time

tries to take advantage of new multicasting opportunities in a greedy manner

when there is an erasure.

The following definitions are used to describe the proposed approach.

Definition 1 Companion subfiles are the subfiles which construct the same coded

message according to the decentralized coded caching algorithm.

Definition 2 Successive subfile of Wi,S is the subfile Wi,U where U is the

nonempty proper (or strict) subset of S.

In the following, we present an example of companion subfile and successive

subfiles.

Example 2: Consider the same scenario with Example 1 in Section 3.2. For

the coded message W1,{2,3} ⊕ W2,{1,3} ⊕ W3,{1,2}, subfiles W1,{2,3}, W2,{1,3}, and

W3,{1,2} are companions of each other, since they construct a single coded message.

Focusing on the subfile W1,{2,3}, S = {2, 3}. Then W1,{2} and W1,{3} are the

successive subfiles of W1,{2,3}. �

Similar to the greedy algorithm, grouped greedy coded caching initially trans-

mits the same set of coded messages with [2]. After the first transmission of all

the messages, each erased subfile’s companion and successive subfiles are checked

to determine whether new multicasting opportunities can be attained. In the

SSM algorithm, these new multicast coded messages are disregarded, and mul-

tiple coded messages retransmitted even if it is not necessary. Therefore this

method is expected to achieve a lower transmission rate then SSM. In the greedy

coded caching, while we greedily explore new multicasting opportunities, its com-

plexity is high, which makes the greedy approach undesirable. However, grouped
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Table 3.1: Outputs of the First Message

Targeted users Coded message: W1,{2,3} ⊕W2,{1,3} ⊕W3,{1,2}
User 1 ∆
User 2 W1,{2,3} ⊕W2,{1,3} ⊕W3,{1,2}
User 3 W1,{2,3} ⊕W2,{1,3} ⊕W3,{1,2}

greedy coded caching requires to check only companion and successive subfiles.

Accordingly, our grouped greedy coded caching algorithm attains a lower trans-

mission rate than the SSM algorithm, and it has a lower complexity than the

greedy coded caching approach.

In the following, we present an illustrative example to highlight the critical

points of the proposed algorithm.

Example 3: Consider the same scenario with Example 1 in Section 3.2. In

Table 3.1, a sample output over packet erasure channel for each targeted user is

given for the first coded message W1,{2,3}⊕W2,{1,3}⊕W3,{1,2}, while in Table 3.2 it

is given for the second coded message W1,{2}⊕W2,{1}. Note that, coded messages

which encounter erasure are represented by ∆.

The subfile W1,{2,3} of the first message is transmitted for user 1, and it is

received as ∆ by the first user while other users successfully receive companion

subfiles in the first message. Before constructing a new message, the server needs

to check successive subfiles of W1,{2,3} which are W1,{2} and W1,{3}. In the second

coded message, W1,{2} is targeted for user 1 and received successfully by user

1, while user 2’s input is ∆ (W1,{2,3} is necessary for user 2, but it encounters

erasure). Grouped greedy coded caching uses W1,{2,3} and its successive subfile

W2,{1} and sends a single coded message W1,{2,3}⊕W2,{1}. Since the shorter subfile

is zero-padded, the required transmission rate will be the size of the subfile with

the maximum length. On the other hand, the SSM algorithm retransmits first

and second coded messages separately in such a scenario, whose transmission rate

is the summation of the sizes of two messages. �
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Table 3.2: Outputs of the Second Message

Targeted users Coded message: W1,{2} ⊕W2,{1}
User 1 W1,{2} ⊕W2,{1}
User 2 ∆

An upper bound for the average transmission rate of grouped greedy coded

caching algorithm is given in the next theorem.

Theorem 2 Consider the coded caching problem over a packet erasure channel

with N files each of size F bits in the library and K users equipped with a cache of

MF bits with K ≤ N , and M ∈ [N ]. Assume that each user sees an independent

packet erasure channel with the same erasure probability ε. An upper bound for

the average transmission rate of grouped greedy coded caching algorithm is

Rgreedy(M, ε) ≤ RSSM(M, ε)−Rgain(M, ε), (3.13)

where RSSM(M, ε) is given in (3.3), and Rgain(M, ε), E(k, j,m), and A(K, j,m)

are given by

Rgain(M, ε) =
K∑
j=2

j−1∑
m=1

j−m−1∑
k=1

E(k, j,m)·
(
XjLj+Xj−1Lj−1−A(k, j,m)

)
, (3.14)

E(k, j,m) =

(
K

j

)
·
(
j

m

)
·
(
j −m− 1

k

)
· (j −m) · qk+m,2j−1, (3.15)

A(k, j,m) =

max{Lj−1, Lj}
(

1 +
∑k+m−1

u=1 qu,k+m
∑m

t=0

(
m
m−t

)
·
(

k
u−m+t

))
1− qk+m,k+m

, (3.16)

with Lj and Xj being defined in the previous section.

Proof Let us assume that there are j subfiles in the first coded message, and

m of these subfiles are erasured after the first transmission. There are k erasures

in the second coded message, which contains successive subfiles for the erasured

subfiles, and these subfiles are successfully transmitted, i.e., j − k − 1 successful

transmission in the second message.
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There will be
(
K
j

)
such messages in the first transmission, and m erasures

may occur in
(
j
m

)
different ways. There will be j − m messages in the second

transmission which can be coded with the erased subfiles of the first message, and

in the second message, erasures can occur in
(
j−m−1

k

)
ways.

The probability of having such an erasure pattern is qk+m,2j−1 = εk+m · (1 −
ε)2j−k−m−1 where qk,n = εk · (1 − ε)n−k for k < n. Then expected value of this

scenario is represented by E(k, j,m) as analyzed in (3.15).

Let us define the new transmission rate as A(k, j,m), where the first message

has j subfiles, and m of the subfiles are erased. There are k erasures in the

second message which has j − 1 subfiles in total. When these two successive

groups construct a new coded message, this new message will have k+m subfiles.

Hence, k + m users are targeted by the new message. Thus, we have A(k, j,m)

for 1 ≤ k ≤ j −m− 1, 1 ≤ m ≤ j − 1, and 2 ≤ j ≤ K as shown in (3.17).

A(k, j,m) = max{Lj−1, Lj}+ q0,k+m

(
m

0

)(
k

0

)
· 0

+ q1,k+m

[(
m

1

)(
k

0

)
Lj +

(
m

0

)(
k

1

)
Lj−1

]
+ · · ·

+ qu,k+m

[(
m

u

)(
k

0

)
Lj +

u−1∑
l=1

(
m

l

)(
k

u− l

)
max{Lj−1, Lj}

+

(
m

0

)(
k

u

)
Lj−1

]
+ · · ·

+ qk+m,k+mA(k, j,m). (3.17)

The first term max{Lj−1, Lj} in (3.17) is due to the first XOR-ed transmission

of newly coded messaged where smaller subfiles are zero-padded, hence we need to

use maximum length as transmission rate.
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The term q0,k+m
(
m
0

)
·
(
k
0

)
· 0 is when all of users receives message successfully

which leads zero transmission rate. The term q1,k+m

[(
m
1

)
·
(
k
0

)
·Lj+

(
m
0

)
·
(
k
1

)
·Lj−1

]
is

when one of k+m users encounters an erasure. If erasured subfile is from the first

message, its required transmission rate will be Lj. If the erasured subfile is from

the second message, its required transmission rate will be Lj−1. Number of such an

erasure pattern is determined by the binomial terms. The term q2,k+m

[(
m
2

)(
k
0

)
Lj+(

m
1

)(
k
1

)
max{Lj−1, Lj}+

(
m
0

)(
k
2

)
Lj−1

]
is when two targeted users encounter erasure.

When all of the erasures are in the first message, required transmission rate is Lj,

otherwise Lj−1. In other cases, we need to use max{Lj, Lj−1} since there is an

erasure in both messages. Other erasure patterns can be determined in a similar

way.

When all of the users encounter erasures (corresponding to the term

qk+m,k+mA(k, j,m) in (3.17)), this event will be equal to the beginning of the

transmission. Hence a general formulation for A(k, j,m) is obtained as (3.16)

where
(
n
m

)
= 0 for n < m, n < 0 and m < 0. Since upper bound is analyzed,

max{Lj−1, Lj} is used as size of newly coded messages in all cases. Thus, a gain

on transmission rate Rgain(M, ε) is obtained as (3.14).

Finally, the upper bound for total transmission rate Rgreedy(M, ε) is calculated

by subtracting Rgain(M, ε) from RSSM(M, ε). �

In Theorem 2, we derive the result on the average transmission rate of the

grouped greedy coded caching algorithm by considering only certain coding op-

portunities among the erased subfiles. Thus, some new multicasting opportunities

are ignored, and the result is an upper bound on the transmission rate. Also,

for smaller erasure probabilities, the expected number of erased subfiles after the

first transmission is lower, hence the amount of additional coding opportunities

is limited. Hence, the derived upper bound is expected to be tight for smaller

erasure probabilities and can be used for the expected transmission rate analysis

of the grouped greedy coded caching.
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Figure 3.2: Theoretical analysis and simulation results of the transmission rate
for N = K = 8, and M = 2 with different erasure probabilities with the SSM
algorithm.

3.5 Numerical Examples

In this section, we numerically evaluate the performance of the proposed algo-

rithms.

Consider a system where K = 8 users are connected to a central server through

a packet erasure channel. The number of files in the server is N = 8, and each user

randomly picks and stores M/N = 1/4 fraction of each file during the placement

phase.

Fig. 3.2 illustrates the transmission rate of the SSM algorithm both via sim-

ulation and analysis results as a function of the erasure probability ε. It is ob-

served that the theoretical result given by (3.3) matches the simulation results

well. However, beyond a certain erasure probability, the average transmission

rate of the greedy approach increases significantly which suggests a need for new

approaches which can exploit additional multicasting opportunities among the

erased subfiles.
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Figure 3.3: Simulation results of the transmission rate for N = K = 8, and
M = 2 with different erasure probabilities with the SSM and greedy algorithm.

In Fig. 3.3, we present simulation results for the proposed greedy coded caching

and the SSM algorithm. As expected, the proposed algorithm performs better

than the SSM approach since it takes advantage of new multicasting opportuni-

ties. It is worth noting that, as the erasure probability gets higher, the differ-

ence between the greedy and the SSM algorithms becomes more apparent, since

a higher erasure probability induces more multicasting opportunities involving

more number of users.

In Fig. 3.4, we compare the performance of the greedy and grouped greedy

coded caching. Since the grouped greedy approach only evaluates the multicasting

opportunities among companion and successive subfiles, it may miss some of the

multicasting opportunities involving other subfiles. Hence, it results in a higher

transmission rate than that of the greedy approach. However, it may still be

preferable because of its lower complexity. Also, as shown in Fig. 3.4, for smaller

erasure probabilities, the upper bound on the transmission rate of the grouped

greedy algorithm is very close to the simulation results, particularly, for small

erasure probabilities.
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Figure 3.4: Upper bound of the grouped greedy coded caching and simulation
results for N = K = 8 with different erasure probabilities for the greedy and the
grouped greedy coded caching algorithms.

3.6 Chapter Summary

In this chapter, we have studied coded caching over packet erasure channels where

each user sees an independent channel. We propose three algorithms for the

delivery phase: the SSM algorithm, a greedy algorithm, and a grouped greedy

algorithm for packet erasure channels. For the SSM algorithm, we have shown

that our analytical calculations match well the simulation results. While grouped

greedy coded caching gives a slightly higher transmission rate than the greedy

algorithm, it has a lower complexity. We have also obtained an upper bound on

the transmission rate of the grouped greedy coded caching algorithm, which is

tight for small erasure probabilities.
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Chapter 4

Coded Caching with User

Grouping over Wireless Channels

In this chapter, we follow a coded caching model where the placement phase is

performed in a decentralized manner and the delivery phase takes place over a

wireless fading channel. Different from [17], which considers long-term average

rates, our interest is to study non-ergodic channels and minimize the transmission

time by letting some of the weak users to be in outage. With a fixed outage prob-

ability, we formulate an optimization problem to reduce the total transmission

time by grouping the participating users to overcome the detrimental effects of

channel fading. We also develop a locally optimal iterative algorithm to compute

the signal to noise ratio (SNR) thresholds. Furthermore, we quantize the SNR

thresholds, and model the optimization process with the quantized thresholds as

a shortest path problem, and obtain a reduced complexity solution.

The chapter is organized as follows. Section 4.1 introduces the system model

and preliminaries. The optimization problem for grouping users is studied in Sec-

tion 4.2, and an iterative algorithm to determine the SNR thresholds is proposed.

The simplified approach to the problem by quantizing the possible threshold val-

ues and using the shortest path model is presented in Section 4.3. Performance

of the proposed algorithms are studied via simulations in Section 4.4, and the
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chapter is summarized in Section 4.5.

4.1 System Model and Preliminaries

We consider a system which contains a server with N files each of size F bits

connected through a fading channel to K users. Users are equipped with local

caches which are able to store MF bits. The normalized cache size for each user

is defined as m = M/N which is the ratio of cache size to the total number of files

in the server. We consider the decentralized coded caching framework introduced

in [2], where the placement phase is performed during the off-peak hours over

an error-free shared link. However, the delivery phase takes place over a wireless

(fading) channel.

We model the (wireless) channel between the server and the users during the

delivery phase as a non-ergodic (quasi-static) fading channel. We examine the

coded caching system where the server only knows the channel statistics to de-

termine the SNR thresholds of user groups. During the delivery phase, it receives

limited feedback from the users indicating their groups with a low overhead (a few

bits of feedback). Since the channels are non-ergodic, the server chooses not to

serve the users with low SNRs, and puts them in outage. If user k ∈ [K] is not in

outage, it receives yk =
√
ρkhkX + n where the coded message X is constructed

according to [2], components of n are independent and identically distributed

(i.i.d.) zero mean circularly symmetric complex Gaussian random variables, i.e.,

each follows ∼ CN (0, 1). hk’s are fading coefficients which are independent com-

plex random variables. For instance, if hk’s are zero mean circularly symmetric

complex Gaussian random variables with variance 1/2 per dimension, then the

channels are Rayleigh fading with ρk denoting the average SNR for user k.

Receiver k ∈ [K] reconstructs its demanded content based on yk, cache con-

tent, and the demand vector, and an error occurs for the user when the recon-

structed content is different than the requested one.
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4.2 Grouping Users Using Channel Statistics

In this section, we examine the optimal user grouping problem for the case where

the server only has access the channel statistics of users to form the user groups.

First, we note that for multicast transmission to a group of users, the capacity of

the channel is restricted by the user with the worst channel condition [21], and

conditioned on the channel gains, it is given byR(Λn∈[Ng ]) = log2(1+minn∈[Ng ] Λn)

whereNg is the number of users in consideration, and Λn is the instantaneous SNR

of user n. Therefore, the rate R(Λn∈[Ng ]) dictates the reliable transmission limit.

Obeying this limitation, the corresponding transmission takes Treq = T (m,Ng)

R(Λn∈[Ng ])

units of time [17] where the normalized length of the coded message to serve Ng

users each equipped with a normalized cache size of m is T (m,Ng) = 1−m
m

(1 −
(1−m)Ng) [21].

By taking into consideration the limitation due to the user with the worst

channel condition, creating a single coded message for all the users which are to

be served may increase the total transmission time dramatically. We argue that

this can be alleviated by grouping users and creating specific coded messages to

the different groups of users experiencing instantaneous SNRs close to each other,

and based on this intiution, we formulate an optimization problem to minimize

the total required transmission time. Also, since the server does not have access

to the instantaneous SNR values as it only receives limited feedback from users

indicating their group, we use a single transmission rate for every user in the

same group, and transmit the coded messages accordingly.

4.2.1 Optimization Problem for Threshold Determination

Since the individual links between the server and the users are modeled as non-

ergodic channels, Shannon type capacity is zero, hence we adopt an outage ca-

pacity formulation. According to this model, for a given rate R, the outage

probability for user k ∈ [K] is Pout = P (C(λk) < R) where C(λk) = log2(1 + λk)

where λk = |hk|2ρk is the effective SNR of user k with cumulative distribution
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function (CDF) Fk(·).

Let us denote the SNR thresholds for user groups by xj with j = 0, 1, . . . , t−1

where t is the number of groups and x0 is the SNR threshold that determines

the users in outage, i.e., users with a lower instantaneous SNR than x0 are not

served. The expected number of users that are not served and number of users

in each group can be determined using the following propositions, whose proofs

are straightforward.

Proposition 1 For independent fading links, the outage SNR threshold x0 with

a given ratio of the expected number of users that are not served (Pout) can be

obtained by solving

Pout =
1

K

(
K −

K∑
k=1

1− Fk(x0)

)
, (4.1)

where Fk(·) is the CDF of the effective SNR for user k ∈ [K], and K is the total

number of users.

Proposition 2 For independent fading links, the expected number of users in a

group formed by users with SNR ∈ [xj−1, xj) (denoted by Kj) is given by

Kj =
K∑
k=1

(Fk(xj)− Fk(xj−1)) , (4.2)

where j = 0, 1, . . . , t, x−1 = 0, xt = ∞, and K0 is the expected number of users

in outage.

Note that, if hk ∼ CN (0, 1), we have Rayleigh fading channels, which result

in Pout = 1
K

(
K −

∑K
k=1 e

−x0
ρk

)
, and Kj =

∑K
k=1

(
e
−
xj−1
ρk − e−

xj
ρk

)
.

As stated before, each group’s multicast capacity is limited by the worst user

in that group. Hence, to calculate the transmission time to serve the requests of

group j, we focus on the coded message constructed for that group with a normal-

ized length of T (m,Kj), and the worst user’s capacity in the group log2 (1 + xj−1).
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We emphasize that the server does not have access to the instantaneous SNR val-

ues as each user only sends dlog2(t)e bits of feedback indicating their group along

with their demands at the beginning of the delivery phase to keep the commu-

nication overhead low. This limited feedback enables the server to create coded

messages for different user groups. Hence, it is clear that the total required time

to satisfy all the requests except for those in outage can be written as

Treq =
t∑
i=1

T (m,Ki)

log2 (1 + xi−1)
. (4.3)

Given the number of groups t, we are interested in minimizing the required

transmission time Treq over the SNR threshold vector x = [x1 . . . xt−1], i.e., we

need to solve the following optimization problem.

minimize
x1···xt−1

t∑
i=1

T (m,Ki)

log2 (1 + xi−1)
(P1)

subject to xi−1 ≤ xi, i = 1, . . . , t− 1.

Since P1 does not have any appealing structure, it requires a brute force search

to determine the continuous valued parameters x1, x2, . . . , xt−1, which is infeasible

for nontrivial values of t. To reduce the computational complexity, we propose

an iterative algorithm to find the threshold values. The proposed approach is

practical, and it is guaranteed to converge to a locally optimal solution.

4.2.2 An Efficient Locally Optimal Algorithm for Thresh-

old Determination

We notice that each parameter to be optimized in P1 is only present in two dif-

ferent terms of the objective function. Let us now focus on the terms that involve

a given threshold value xj of the summation. That is, for the SNR threshold xj,

we consider

T̄xj =
T (m,Kj)

log2 (1 + xj−1)
+
T (m,Kj+1)

log2 (1 + xj)
. (4.4)
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Recall that Kj’s can be calculated using (4.2). It is clear that if j is even the

only other dependence is to the adjacent odd indexes and vice versa. Hence,

to simplify the optimization process, we can exploit this structure to obtain sub-

problems which only depend on a single parameter and solve the original problem

by using an iterative approach. Our proposed solution proceeds as follows: we

first select arbitrary initial values for xj’s. We minimize (4.4) over the odd indexed

thresholds by fixing the even indexed ones. And then, we apply same procedure by

reversing the roles of odd and even indices, i.e., we fix the odd indexed thresholds,

and determine optimal values for the even indexed ones. We continue these

iterations for a predetermined number of times to find the final set of (optimal)

SNR thresholds.

The proposed approach divides the initial problem into two sub-problems each

containing t/2 minimization problems with a single unknown parameter in each

step, hence simplifying the search considerably. We also note that, the overall

cost function reduces at each iteration, and since it is bounded from below, the

algorithm is guaranteed to converge by the Monotone Convergence Theorem [44].

However, since the problem is not convex, the algorithm is only guaranteed to be

locally optimal.

To obtain the best solution, we repeat the above described steps for different

number of thresholds, and the solution which gives the minimum transmission

time is selected as the final set of SNR thresholds to be employed.

4.3 A Reduced Complexity User Grouping Ap-

proach

In this section, we propose a reduced complexity approach for user grouping by

reformulating the non-convex optimization problem P1 using quantized threshold

values and solving a corresponding integer program.

We first quantize the SNR threshold values using a large number of possible
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groups, denoted by q. Although different quantizers can be used, we utilize a

uniform quantizer where τi is the ith quantization level with i = 1, . . . , q − 1.

With this discretization, the problem P1 can be converted into the following

integer program which minimizes the total transmission time over the set of SNR

thresholds x.

minimize
x1···xq−1

q∑
i=1

T (m,Ki)

log2 (1 + xi−1)
(P2)

subject to xi−1 ≤ xi, i = 1, . . . , q − 1,

xj ∈ {τ1, . . . , τq−1}, j = 1, . . . , q − 1,

where x0 and Ki’s are determined using (4.1) and (4.2), respectively. Note that,

even though we start with a large number of possible groups q, the solution de-

termines the optimal number of groups which minimizes the overall transmission

time.

Although formulating P2 as an integer program and utilizing quantized thresh-

olds decreases the complexity of the brute force search solution, the problem still

does not have any appealing structure to be exploited. Therefore, to interpret the

optimization problem further, we construct a directed graph G = (V,E) which

comprises of a set V of vertices and a set E of edges. In this model, each ver-

tex represents a quantization level for the SNR thresholds and each edge carries

the corresponding transmission time by choosing the thresholds according to its

incident vertices. With this, the minimization problem given in P2 becomes an

instance of a well-known graph theory problem, namely, the shortest path prob-

lem which can be solved in polynomial time if there are no negative dicycles [45].

In this way, the worst case complexity can be reduced to O(q2) using existing ap-

proaches in the literature. In the shortest path problem, the aim is to minimize

the length of the path (transmission time) between the starting vertex and the

terminating one. It is clear that determination of shortest path automatically

finds the optimal number of user groups, and hence there is no need to try differ-

ent number of groups as needed for the case of the iterative approach proposed

in Section III.
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Figure 4.1: Sample of a directed graph with 3 quantization levels and edge costs
cij.

To compose the corresponding graph and determine the cost of each edge, the

expected number of users whose SNRs are between τi and τj with τi ≤ τj can be

found as

Kij =
K∑
k=1

(Fk(τj)− Fk(τi)) , (4.5)

where τi’s are the possible quantization levels with i = 1, . . . , q − 1, and Fk(·) is

the CDF of k-th user’s SNR. And, the cost (required transmission time) of each

edge (for the users whose SNRs are between τi and τj) can be calculated as

cij =
T (m,Kij)

log2(1 + τi)
. (4.6)

As illustrated in Fig. 4.1, cij’s represent the cost of each edge. If the optimal

solution contains only the starting and terminating vertices, there will only be

a single edge in the solution. Hence, we need to create a single coded message

for all the users using the algorithm introduced in [2]. If the optimal solution

contains vertices other than the starting and terminating ones, the users will be

placed in multiple groups and separate coded messages will be created.

4.4 Numerical Examples

We now provide several examples of coded caching over wireless channels that

illustrate the effectiveness of the developed solutions. We consider Rayleigh fading
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Figure 4.2: Simulation results with uncoded caching, coded caching with t =
1, 2, 3 and 4 groups.

for all the examples, i.e., hk’s are independent zero mean circularly symmetric

complex Gaussian random variables with variance 1/2 per dimension.

In the first example, the total number of users is K = 400, and the mean

values of the user SNRs are taken as −3, 0, 3, and 6 dB each for a quarter of

them. The server contains N = 1000 files, and the outage probability is set to

Pout = 0.05. The normalized required transmission time obtained by solving P1

with brute force search for different cache capacities is depicted in Fig. 4.2. The

results show the performance of the uncoded (traditional) caching, coded caching

with no grouping, and coded caching with 2, 3 and 4 user groups. It is observed

that even with small cache sizes coded caching can be effective, and allowing for

a greater number of user groups results in lower normalized transmission times,

especially for smaller cache sizes.

Next, we consider a network consisting K = N = 1000 users. User SNRs are

exponentially distributed with means −3, 0, 3, and 6 dB, each for a quarter of

users, and Pout = 0.05. For the iterative algorithm, the maximum number of

thresholds tmax is set to 8. The number of quantization levels in the shortest

path algorithm is determined by quantizing the SNR range from the outage SNR
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Figure 4.3: Effect of normalized cache size (m) with K = 1000.

threshold x0 to 30 dB uniformly with a step size of 0.3 dB. Fig. 4.3 illustrates

the normalized transmission times as a function of the normalized cache size for

different cases. As expected, both of the proposed algorithms outperform the

coded caching solution without any user grouping, and are very effective (again,

particularly, for smaller cache sizes). We also note that while the performance

of the shortest path algorithm is slightly inferior to the one using the iterative

approach to find the optimal SNR thresholds, it may still be preferable due to its

reduced complexity (as it avoids the many line searches needed for determination

of continuous threshold values).

As another example, we consider a network whose parameters are the same

as the one above, except that we set N = K = 5000, and the user SNRs are

exponentially distributed with means −6, 0, 6, and 12 dB, each for K/4 users.

The normalized transmission times are depicted as a function of the normalized

cache size in Fig. 4.4. We observe that the performance with only the channel

statistics is slightly inferior to the one with the exact SNR knowledge as shown

in Fig. 4.4.

In Fig. 4.5, the number of vertices in the optimal solution of the shortest path

problem (i.e., the number of selected thresholds) is given, which shows that, for
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Figure 4.4: Effect of normalized cache size (m) with K = 5000 on the normalized
transmission time.
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Figure 4.6: Effect of quantization level (q) with K = 5000 on the normalized
transmission time.

relatively low normalized cache sizes, grouping gain obtained by serving the weak

users separately from the strong ones is higher.

Next, without changing the other parameters of the network, we set the nor-

malized cache size to m = 0.0005, and consider the number of quantization levels

as a variable by changing the quantization step size. Fig. 4.6 shows the perfor-

mance results for both cases of exact SNR knowledge and using channel statistics

only. As in the previous examples, the performance of knowing only the channel

statistics is slightly worse than the one with the exact SNR knowledge. Also, it

is obvious that, increasing the number of quantization levels decreases the nor-

malized transmission times as it allows for further grouping opportunities for the

users.

Finally, in Fig. 4.7, we consider a network whose parameters are the same

as the one above, except all the user SNRs are exponentially distributed with

mean −6 dB. We remark that, even when all of the users have same channel

statistics, as the instantaneous SNRs are different due to channel fading, the

proposed grouping approach attains lower transmission time than no grouping

and uncoded caching. For instance, when m = 10−3, the transmission time of the
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Figure 4.7: Effect of normalized cache size (m) on shortest path solution with
same user channel statistics.

shortest path algorithm is 28.9% and 24.6% less than no grouping and uncoded

caching, respectively.

4.5 Chapter Summary

In this chapter, we propose grouping of users for coded caching over non-ergodic

fading channels to minimize the total transmission time by utilizing only the

channel statistics users for threshold determination, and relying on a few bits of

feedback from each user indicating the group it belongs to. The first proposed

approach for the threshold determination is a locally optimal iterative solution,

while in the second one, we quantize the possible threshold values and convert the

original problem into a shortest path problem enabling highly efficient solutions

with a slight sacrifice in performance. The results demonstrate that user grouping

for coded caching over wireless channels is highly advantageous, particularly,

when the cache sizes are small.
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Chapter 5

Machine Learning at the Wireless

Edge with Low-Resolution

Analog to Digital Converters

In this chapter, our main objective is to study distributed learning algorithms

over wireless channels in more realistic settings considering practical implemen-

tation issues, including the channel effects, e.g., the effect of frequency selective

channels and low-resolution receive chains. Hence, we model the communica-

tion link as a frequency selective fading channel, and transmit the local gradients

using orthogonal frequency division multiplexing (OFDM). Furthermore, in an

effort to reduce the hardware complexity and power consumption, we employ

low-resolution analog to digital converters (ADCs) at the receiver side, which

employs multiple (even a massive number of) receive antennas. While decreasing

the resolution of ADCs reduces the implementation cost and the power consump-

tion, it also deteriorates the performance of a communication system. From a

communication theory perspective, the effects of ADCs at the base station with

a massive number of antennas and orthogonal frequency division multiplexing

(OFDM) is studied in [46]. The authors analyze the uplink performance of the

massive multiple user MIMO systems for wideband communication. They focus

on the trade-off between the quantization precision and performance of channel
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estimation and data detection, show that even with coarse quantization, they

achieve almost no performance loss compared to infinite resolution case. In [47],

single carrier and OFDM transmission for massive MIMO with one-bit ADCs are

analyzed, and achievable rate for a wideband system with a higher number of

channel taps are derived. They show that the quantization causes two types of

error in symbol detection: the circularly symmetric error and amplitude distor-

tion. As the number of antennas increases, the circularly symmetric error follows

a Gaussian distribution while the amplitude distortion reduces as the number

of channel taps increases. Thus, they show that using one-bit ADC is effective

with wideband massive MIMO. Ref. [48] investigates the quantization, clipping,

and thermal noise in OFDM systems due to finite resolution ADCs by jointly

analyzing quantization type, sampling rate, and filter type. In [49],low-resolution

ADCs are utilized at the receiver for mmWave massive MIMO systems. They

study difficulties regarding channel estimation, feedback, precoding, and signal

detection with ADCs.

In [50], extreme the extreme case of one-bit ADC is analyzed. They obtain

achievable throughput for a multi-user MIMO system where a large number of

low-resolution ADCs is placed in the base station and model the system for the

case of no CSI at both receiver and transmitter, hence CSI can be learned via

coarse observations obtained by pilot transmissions. To overcome the limita-

tion caused by finite resolution observations, they propose a channel estimation

method based on Bussgang Theorem [51] and show that one-bit quantization can

attain almost the same achievable rate with infinite resolution. A similar ap-

proach is used in [52], where the authors propose a channel estimation approach

for frequency selective and flat fading channels based on Bussgang Therem [51]

by formulation nonlinear quantization operation as a linear function. For flat

fading channels, the achievable rate for a large number of users and low SNR is

obtained, and significant design aspects are investigated, e.g., energy and spectral

efficiency, optimal resource allocation, and the number of antennas to be used.

The chapter is organized as follows. Section 5.1 introduces the system model

and preliminaries. DSGD with low-resolution ADCs is analyzed in Section 5.2
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while the results are specialized to the case of 1-bit ADCs in Section 5.3. The per-

formance of distributed machine learning systems over fading multipath channels

with OFDM and low-resolution ADCs at the receiver is studied via simulations

in Section 5.4, and the chapter is concluded in Section 5.5.

Notation: Throughout this chapter, the real and imaginary parts of x ∈ C are

represented by xR and xI , respectively. We denote l2 norm of a vector x by ||x||2.

5.1 System Model

We consider a distributed ML system where each worker calculates its gradient

estimate and sends it to a central PS through a multipath fading MAC with

OFDM as illustrated in Fig. 5.1. At the receiver side, analog to digital conversion,

OFDM demodulation, signal combining and global model parameter update are

performed, and the global parameter is broadcast to the workers over an error-

free link. We assume that there is no transmit side CSI, and that the PS employs

multiple antennas to recover the average of the workers’ gradients. With the

use of many antennas, a significant amount of power at the receiver is consumed

by the ADCs [53]. As the power consumption of ADCs increases linearly, and

their hardware cost increases exponentially with the number of quantization bits

[54], we consider a distributed learning system where receiver side ADCs have a

low-resolution to keep the implementation cost and power consumption small.

In the distributed learning at the wireless edge setup, we jointly train a learning

model by using iterative SGD to minimize a loss function f(·). During the t-th

iteration, worker m ∈ [M ] calculates the gradient estimate gtm ∈ Rd by processing

its local dataset Bm according to 1
|Bm|

∑
u∈Bm Of(θt, u) where θt ∈ Rd is the vector

of model parameters, d is the number of model parameters, and gtm[n] represents

the n-th entry of the gradient estimate vector.

Since the local gradient vector has real components, we obtain the frequency

55



Local 

Gradient 

Calculation

OFDM

Modulator

Worker 1

ADC
OFDM

Demodulator

Model

Parameter

Update

PS

Local 

Gradient 

Calculation

OFDM

Modulator

Worker M

… …

Figure 5.1: System model for distributed machine learning at the wireless edge.

domain representation of the gradients as

ĝtm =
[
gtm[1] + jgtm[e+ 1], gtm[2] + jgtm[e+ 2], · · · , gtm[e] + jgtm[2e]

]
, (5.1)

where e = dd/2e, ĝtm ∈ Re, and gtm[2e] is assigned as zero if d ≡ 1 (mod 2).

After obtaining the the frequency domain representation of the local gradient

estimates, the first step is to form the OFDM signal by taking an N -point inverse

discrete Fourier Transform (IDFT) of the gradient vector as

Gt
m[u] =

1

N

N∑
n=1

ĝtm[n]ej2πnu/N , (5.2)

for u ∈ [N ]. If e < N , ĝtm[n] = 0 for n > e, i.e., ĝtm is zero padded if e < N .

To mitigate the ISI caused by the multipath, cyclic prefix (CP) addition is

performed by

Ḡt
m =

[
Gt
m[N −Ncp + 1] . . . Gt

m[N ] Gt
m[1] . . . Gt

m[N ]
]
, (5.3)

where Ḡt
m ∈ CN+Ncp is the OFDM word to be transmitted by the m-th worker.

The resulting OFDM words are transmitted to the PS which are equipped with K

receive antennas. The corresponding receive chains are equipped with a complex-

valued low-resolution ADC which performs elementwise complex-valued mapping.
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The PS uses the received signal to update the model and sends it back to all the

receivers over an error-free link.

The channel between worker m and the k-th antenna of the PS is modeled as a

wireless multipath MAC. We assume that the channel does not change during the

transmission of one OFDM word, while it may be different for different OFDM

words. The impulse response of the channel is

htmk[n] =
L∑
l=1

htmklδ[n− τmkl], (5.4)

where n ∈ [N +Ncp], L is the number of channel taps, τmkl is the time delay and

htmkl ∈ C is the gain of the l-th channel tap from the m-th worker to the k-th

antenna of the PS. We assume that htmkl is a zero-mean complex Gaussian variable

with E [(htmkl) · (htm′k′l′)∗] = 0 for (m, k, l) 6= (m′, k′, l′), and E [|htmkl|2] = σ2
h,l, i.e.,

all the channel taps experience Rayleigh fading.

At the k-th receive chain, after removing CPs, the n-th entry of the received

vector at the output of the ADC during iteration t is written as

Y t
k [n] =

M∑
m=1

L∑
l=1

htmklG
t
m[n− τmkl] + ztk[n], (5.5)

where the additive noise terms ztk[n] ∈ C are independent and identically dis-

tributed (i.i.d.) circularly symmetric zero mean complex Gaussian random vari-

ables, i.e., ztk[n] ∼ CN (0, σ2
z) for k ∈ [K]. Estimate of the gradient vector is

obtained by processing the quantized input signal to recover the average of the

gradient estimates by 1
M

∑M
m=1 gtm. At the PS, the model parameter is updated

according to θt+1 = θt − µt 1
M

∑M
m=1 gtm, and it is shared with the workers over

an error-free link.

5.2 DSGD with b-bit Low-Resolution ADCs

In this section, we analyze the effect of multipath fading and low-resolution ADCs

at the receiver on the convergence of the distributed ML solutions. For ease of

notation, we drop the subscripts referring to iteration count t.
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At each receive chain, after removing CPs of the received OFDM word, a

complex-valued b-bit low-resolution ADC performs quantization with the quan-

tizer output denoted by Q(·). A complex-valued ADC consists of two parallel

real-valued ADCs with quantization function Qb(·) that independently quantizes

the real and imaginary parts into β = 2b reconstruction levels. The reconstruc-

tion levels are denoted by â = [â1 â2 · · · âβ] ∈ Rβ while the boundaries of the

quantization regions are denoted by x̂ = [x̂1 x̂2 · · · x̂β+1] ∈ Rβ+1 where x̂1 = −∞
and x̂β+1 = +∞ for convenience. Also, we have, âi < âj, if 1 ≤ i < j ≤ β,

x̂i < x̂j if 1 ≤ i < j ≤ β + 1, and x̂i ≤ âj < x̂k if 1 ≤ i ≤ j < k ≤ β + 1.

The corresponding real valued quantizer is Qb(z) = âi for x̂i ≤ z < x̂i+1, i ∈ [β],

z ∈ R. The complex-valued ADC operation can be expressed as

Q(x) = Qb(x
R) + jQb(x

I). (5.6)

Hence, at the k-th receive chain, the received signal at time n is given by

Rk[n] = Qb

(
M∑
m=1

L∑
l=1

hmklGm[n− τmkl] + zk[n]

)
. (5.7)

In [55], it is shown that, if the input data which forms the OFDM word is

i.i.d. and bounded, the convex envelope of the OFDM word weakly converges to

a Gaussian random process as the number of subcarriers goes to infinity through

an application of central limit theorem (CLT). Similarly, if we assume that the

elements of the gradient vector in the learning process are i.i.d. and bounded,

then the real and imaginary parts of the baseband OFDM word obtained from

the gradient vector can be modeled as independent zero-mean stationary Gaus-

sian processes. Therefore, we model the OFDM words as Gaussian processes. As

a verification, in Fig. 5.2 and Fig. 5.3, we provide an exemplary histogram of

the OFDM word samples obtained through the 10-th iteration of a certain learn-

ing task with our setup, demonstrating the received samples are approximately

Gaussian.

Modeling the real and imaginary parts of the received OFDM words with

identical autocorrelation functions RG(n1, n2) where RG(n, n) = σ2
G, and using

Bussgang’s theorem [51], we can decompose the quantized signal into two parts
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Figure 5.2: Histogram of the real part of the received OFDM word.

Figure 5.3: Histogram of the imaginary part of the received OFDM word.
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as the desired signal component and quantization distortion which is independent

of the desired signal. Analytically, we can write the quantized signal as

Rk[n] = (1− ηk)
( M∑
m=1

L∑
l=1

hmklGm[n− τmkl] + zk[n]

)
+ wq[n], (5.8)

where ηk is the distortion factor, and wq[n] is a non-Gaussian distortion noise

whose variance is σ2
wq . The detailed calculations for the distortion factor and

quantization noise are given in the following subsection. If we define the total

effective noise caused by the channel and quantization as

wk[n] = (1− ηk)zk[n] + wq[n], (5.9)

the output of the complex ADC can be written as

Rk[n] = (1− ηk)
M∑
m=1

L∑
l=1

hmklGm[n− τmkl] + wk[n], (5.10)

where wk[n] is non-Gaussian total noise with variance σ2
wk

= (1 − ηk)2σ2
z + σ2

wq .

To perform OFDM demodulation, we take the discrete Fourier Transform (DFT)

of (5.10) which gives

rk[i] = (1− ηk)
M∑
m=1

Hmk[i]gm[i] +Wk[i], (5.11)

where Hmk[i]’s are the channel gains from the m-th worker to the k-th receive

chain for the i-th subcarrier, given by

Hmk[i] =
N−1∑
n=0

hmk[n]e−j2πin/N (5.12a)

=
N−1∑
n=0

(
L∑
l=1

hmklδ[n− τmkl]

)
e−j2πin/N (5.12b)

=
L∑
l=1

hmkle
−j2πiτmkl/N . (5.12c)

Since the channel taps are Rayleigh fading, Hmk[i]’s are zero-mean Gaussian

random variables with variance σ2
H =

∑L
l=1 σ

2
h,l.

60



Taking DFT of the effective noise, Wk[i] is evaluated as

Wk[i] =
N−1∑
n=0

wk[n]e−j2πin/N . (5.13)

We know that the channel noise is i.i.d., and we assume that the distortion noise

is m-dependent to decorrelate fast enough, i.e., m� N . Hence, Wk[i] converges

absolutely to a Gaussian random variable by an application of CLT [56], i.e.,

Wk[n] ∼ CN (0, σ2
Wk

) where σ2
Wk

= Nσ2
wk

.

Assuming that the CSI is available at the PS as proposed in [57], the received

signals from the K antennas can be combined to align the gradient vectors as

y[i] =
1

K

K∑
k=1

1

1− ηk

( M∑
m=1

(Hmk[i])
∗
)
rk[i]. (5.14)

By substituting (5.11) into (5.14), we obtain

y[i] =
1

K

K∑
k=1

M∑
m=1

|Hmk[i]|2gm[i]︸ ︷︷ ︸
signal term

(5.15a)

+
1

K

K∑
k=1

M∑
m=1

M∑
m′=1,m′ 6=m

(Hmk[i])
∗Hm′k[i]gm′ [i]︸ ︷︷ ︸

interference term

(5.15b)

+
1

K

K∑
k=1

1

1− ηk

( M∑
m=1

(Hmk[i])
∗
)
Wk[i]︸ ︷︷ ︸

noise term

. (5.15c)

There are three different terms in (5.15): the signal component, interference

and noise. Using the law of large numbers, as the number of antennas at the PS

K →∞, the signal term approaches

ysig[i] = σ2
H

M∑
m=1

gm[i]. (5.16)

Thus, the PS can recover the i-th entry of the desired signal

1

M

M∑
m=1

gm[i] =
ysig[i]

Mσ2
H

. (5.17)
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To analyze the interference term (5.15b), we define

κ[i] =
1

K

K∑
k=1

M∑
m=1

M∑
m′=1,m′ 6=m

(Hmk[i])
∗Hm′k[i], (5.18)

where i ∈ [N ]. Since Hmk[i] and Hm′k[i] are independent for m′ 6= m, the mean

and variance of κ[i] are calculated as

E [κ[i]] = 0, (5.19a)

E
[
|κ[i]|2

]
=
M(M − 1)σ4

H

K
. (5.19b)

Accordingly, for fixed gradient values, the interference term (5.15b) has zero mean

and its variance scales with M2/K. Thus, similar to the ideal case (where the

receive chains have infinite resolution as considered in [57]), the interference term

approaches zero as K → ∞. Therefore, using a sufficiently large number of

antennas at the PS diminishes the destructive effects of the interference on the

learning process, and the estimate for the gradient vector can be determined by

1

M

M∑
m=1

gm[i] =


yR[i]

Mσ2
H
, if 1 ≤ i ≤ e,

yI [i−e]
Mσ2

H
, if e < i ≤ 2e,

(5.20)

for i ∈ [d] from the noisy version of the received local gradients. This result

clearly shows that the convergence of the learning process is guaranteed even if

we employ low cost low-resolution ADCs at the receiver.

5.2.1 Distortion Factor (ηk) and Noise Variance Calcula-

tions for b-bit ADCs

Focusing on the real part of Yk[n] defined in (5.5), we have

Y R
k [n] =

[
M∑
m=1

L∑
l=1

(
hRmklG

R
m[n− τmkl] (5.21a)

− hImklGI
m[n− τmkl]

)]
+ zRk [n], (5.21b)
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whose variance is evaluated as follows:

σ2
Y Rk

=
M∑
m=1

L∑
l=1

|hmkl|2σ2
G (5.22a)

+

[
M∑
m=1

L∑
l=1

M∑
m′=1

L∑
l′=1

∀m′,l′\{m′=m,l′=l}

(
hRmklh

R
m′kl′ (5.22b)

+ hImklh
I
m′kl′

)
·RG(mkl,m′kl′)

]
+ σ2

zR . (5.22c)

Thus, Y R
k [n] ∼ N (0, σ2

Y Rk
).

For b-bit low-resolution ADCs, the distortion factor for the real part of the

ADC input can be calculated by dividing the MSE by the signal power as:

ηk,real =
E
[(
Q(Y R

k [n])− Y R
k [n]

)2]
E
[
(Y R

k [n])
2
] . (5.23)

The MSE is obtained as

E
[(
Q(Y R

k [n])− Y R
k [n]

)2]
(5.24a)

=
1√

2πσ2
Y Rk

( β∑
i=1

∫ x̂i+1

x̂i

(r − âi)2e
− r2

2σ2
Y R
k dr

)
, (5.24b)

and E
[(
Y R
k [n]

)2]
= σ2

Y Rk
which gives

ηk,real =

1√
2πσ2

Y R
k

(∑β
i=1

∫ x̂i+1

x̂i
(r − âi)2e

− r2

2σ2
Y R
k dr

)
σ2
Y Rk

. (5.25)

Similar to [58], the variance of the real part of the noise term wk[n] which is

denoted by σ2
wRk

is calculated as

σ2
wRk

= (1− ηk,real)2σ2
zR + ηk,real(1− ηk,real)σ2

Y Rk
. (5.26)

It is assumed that the total effective noise wk[n] is a non-Gaussian m-dependent

random variable whose variance is σ2
wk

= 2σ2
wRk

. The PS takes N-point DFT of
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the ADC output. Hence, Wk[i] =
∑N

n=0wk[n]e−j
2π
N
in, which converges absolutely

to a Gaussian random variable by the CLT [56] with zero mean and variance is

calculated as

σ2
Wk

=
N−1∑
n=0

σ2
wk

= Nσ2
wk
. (5.27)

5.3 One-bit ADCs

When large number of receive chains are used at the PS, it is one of the most

important bottlenecks in terms of hardware cost and power consumption. Hence,

using one-bit ADCs significantly reduces the cost for practical energy efficient PS

system design. With this motivation, we now specialize the results of the previous

section to this case.

A one-bit ADC is used to map non-negative inputs to a positive reconstruction

level a, and the negative inputs to −a. The corresponding quantization function

Q1(·) is simply

Q1(x) =

a, if x ≥ 0

−a, otherwise.
(5.28)

The mean squared error (MSE) of the quantized signal is calculated as

E
[
|Q(Y R

k [n])− Y R
k [n]|2

]
=

1√
2πσ2

Y Rk

(∫ ∞
−∞
|Q(r)− r|2e

− r2

2σ2
Y R
k dr

)
(5.29a)

= a2 + σ2
Y Rk
−

4aσY Rk√
2π

. (5.29b)

The distortion factor for the real part of the ADC input can be calculated by
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dividing the MSE by the signal power as:

ηk,real =
E
[(
Q(Y R

k [n])− Y R
k [n]

)2]
E
[
(Y R

k [n])
2
] (5.30a)

=
a2 + σ2

Y Rk
−

4aσ
Y R
k√

2π

σ2
Y Rk

. (5.30b)

Thus, the PS can use the same approach to combine the received signal from

different antennas to align them by simply changing the ηk value in (5.14) with

(5.30).

Remark 1 Since the real and imaginary parts of (5.5) have same statistics and

independent of each other, the calculations for these two cases will be the same.

Hence, ηk = ηk,imag = ηk,real.

Remark 2 Note that (5.29c) is a convex function of a, hence
d
(
E
[
(Q(Y Rk [n])−Y Rk [n])

2
])

da
=

0 whose solution a =
2σ
Y R
k√
2π

results in the minimum distortion.

5.4 Numerical Examples

In this section, we evaluate the performance of the distributed learning algorithms

at the wireless edge with realistic channel effects and hardware limitations. We

use the MNIST dataset [59] with 60000 training and 10000 test samples to train a

single layer neural network using the ADAM optimization algorithm. We perform

the training for T = 400 iterations. At the beginning of the training process, each

worker caches B = 1000 training samples randomly. The number of parameters

is d = 7850.

Our system consists of M = 20 workers connected to a PS through a multipath

fading channel with L = 3 taps and σ2
h,l = 1/L, hence we have a normalized
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Figure 5.4: Test accuracy of the system with K = 5, σ2
z = 4× 10−3 for the cases

1) infinite resolution, 2) two-bit ADC, 3) one-bit ADC.

uniform multipath delay profile where each tap experiences Rayleigh fading. The

number of subcarriers is taken as N = 4096. We assume that first tab has no delay

and coherence time corresponds to 1000 indexes of the OFDM word. Also, time

delays are uniformly spaced, i.e., τmk1 = 1, τmk2 = 501, τmk3 = 1001 for ∀m, k.

The cyclic prefix length is set to Ncp = 1024, which is enough to remove the ISI

effects caused by the multipath. The average transmit power of the OFDM word

transmitted by the m-th worker is calculated as PT = 1
T

∑T
t=1

∣∣∣∣Ḡt
m

∣∣∣∣2
2
, which

gives PT = 1.3267× 10−4 for this setup.

In Fig. 5.4, we compare the test accuracy for the above setup by fixing the

number of PS antennas as K = 5, and the channel noise variance as σ2
z = 4×10−3

for different ADC resolutions. We observe that the system with two-bit ADCs

experiences almost no degradation while there is a slight accuracy loss when one-

bit ADCs are used compared to the ideal case. Clearly, the DSGD algorithm

with OFDM transmission is highly robust against the distortion caused by low-

resolution ADCs at the receiver side.

In Fig. 5.5 and 5.6, the test accuracy for different number of antennas K ∈
{1, 5, M, 2M2} each equipped with one-bit ADC is illustrated for a system with
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Figure 5.5: Test accuracy of the system with infinite resolution and one-bit ADC
with channel noise variance σ2

z = 8× 10−4, and K = 2M, 2M2.
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Figure 5.6: Test accuracy of the system with infinite resolution and one-bit ADC
with channel noise variance σ2

z = 8× 10−4, and K = 1, 5.
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Figure 5.7: Test accuracy of the system with infinite resolution and one-bit ADC
with channel noise variance σ2

z = 4× 10−3, and K = 2M, 2M2.

0 50 100 150 200 250 300 350 400

Iteration

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

Error-free shared link

K = 5 - inf. res.

K = 5, 1-bit ADC

K = 1, inf. res.

K = 1, 1-bit ADC

Figure 5.8: Test accuracy of the system with infinite resolution and one-bit ADC
with channel noise variance σ2

z = 4× 10−3, and K = 1, 5.
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σ2
z = 8 × 10−4, and compared with the error-free shared link case. As expected,

using higher number of receive antennas results in an improved learning accuracy.

Indeed the results are very close to those of the case of error-free shared link. For

instance, after the 10-th iteration, using one-bit ADCs causes only 4.69%, 2.44%,

0.89%, and 0.28% accuracy loss on average compared to infinite resolution case

for K = 1, K = 5, K = 2M , and K = 2M2, respectively. These excellent

results are due to the fact that increasing the number of antennas reduces the

interference dramatically which makes the combined signal a very good estimate

of the gradient vector, even with low-resolution ADCs.

Without changing any other parameters of the setup described above, we in-

crease the noise variance to σ2
z = 4× 10−3 in Fig. 5.7 and 5.8. As in the previous

case, for both infinite resolution and one-bit ADC case, the performance of the

proposed scheme is very close to the error-free case for large number of receive an-

tennas. When the number of antennas is decreased, with the detrimental effects

of the channel noise and interference caused by shared multipath fading chan-

nels, the accuracy decreases. However, even for this high level of channel noise,

using one-bit ADCs causes only 10.65%, 6.28%, 2.69%, and 0.91% accuracy loss

on average compared to infinite resolution case for K = 1, K = 5, K = 2M ,

and K = 2M2, respectively. Hence, with a slight sacrifice on the accuracy rate

of the learning algorithm, power and hardware efficient systems can be designed

and implemented for distributed learning at the wireless edge for realistic channel

scenarios.

5.5 Chapter Summary

In this chapter, we investigate a distributed learning system at the wireless edge

with OFDM based transmission and low-resolution ADCs at the receiver side for

practical and inexpensive PS design. Our analytical results illustrate that even

with the use of one-bit ADCs at the PS, the convergence of the learning algorithm

is guaranteed when the number of receive antennas goes to infinity as in the ideal

case of infinite resolution ADCs. Through extensive numerical examples, it is also
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observed that using a moderate number of antennas, e.g., using 5 PS antennas,

significantly improves the accuracy of the learning algorithm. It is also observed

that, in case of low channel noise, the learning performance is decreased only

slightly even with one-bit ADCs while the system with two-bit ADCs achieves

almost the same accuracy as the ideal case.
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Chapter 6

Conclusions and Future Work

In the first part of the thesis, we study the coded caching over packet erasure

channels where each user in the system encounters independent packet erasures.

We first construct a baseline scheme called sending the same message (SSM)

algorithm where the erased submessages are retransmitted until they are received

successfully by all the targeted users. Observing that the transmission rate of the

SSM algorithm increases significantly beyond a certain erasure probability due

to the ignored additional multicasting opportunities among the erased subfiles,

we propose a greedy coded caching algorithm which exploits new multicasting

opportunities and outperforms the SSM algorithm. Then, we propose a grouped

greedy coded caching algorithm, which reduces the complexity of the greedy one

with a slight increase in the transmission rate.

We extend our study on coded caching to the case of non-ergodic fading chan-

nels where (conditioned on the channel gains) the multicast capacity of the broad-

cast channel is restricted by the user with the worst SNR. To overcome this limi-

tation, we propose an optimization problem to minimize the transmission time by

grouping the users based on their channel conditions, and transmitting the coded

messages according to the worst user in the corresponding group, as opposed to

the worst user among all. We consider solutions obtained by channel statistics

as opposed to their instantaneous SNR knowledge. We derive a locally optimal
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iterative solution to find signal to noise ratio thresholds for user grouping. We

also develop a simplified approach through a corresponding shortest path prob-

lem enabling a numerically efficient solution. We demonstrate that the proposed

user grouping is particularly advantageous when the cache sizes are small.

Finally, we study distributed machine learning at the wireless edge with low-

resolution analog to digital converters at the receive chains. We assume that the

workers independently perform their computation and send the gradient estimates

to the PS through a multipath fading MAC via OFDM. At the receiver side, the

PS employs multiple antennas to eliminate the fading effect caused by the lack

of CSI at the transmitters and uses low-resolution ADCs to reduce the hardware

cost and power consumption. We show that the undesired interference term due

to the lack of CSI and impairments caused by low-resolution ADCs do not prevent

the convergence of the learning algorithm.

As further work, there are several directions to be followed for a complete un-

derstanding of distributed caching and distributed learning over wireless channels,

especially, considering practical limitations and impairments.

One potential direction for coded caching is to study delay-sensitive contents as

considered in [8] where each user has a delay constraint, and the coded transmis-

sions are performed by obeying these constraints. Extending the approach in [8]

to the case considering the particular channel characteristics would be interesting.

Another interesting study on coded caching is its use over wireless networks

where there is more than one main server which may store the same files in their

libraries. Hence, an optimization problem can be formulated to determine the

best user assignment protocol based on the quality of the links and the server

contents. Also, similar to our study with user grouping over wireless channels,

joint user grouping and user assignment algorithms can be developed.

Furthermore, in video streaming servers, the quality of the bits of the files

can be separated as the bits which carry the coarse/essential information and

the ones which carry the fine information about the file. Hence, the users may
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define distortion constraints for the reconstruction of the files where the coarse

information is always required while the fine information is only partially required

resulting in a lossy reconstruction. In [60], a cut-set bound on the achievable rates

with heterogenous distortion factors is derived by considering outer bounds for

the capacity region of the system. Together with this cut-set bound, for K = 2,

the authors also derive a tight lower bound on the transmission rate for specific

scenarios. However, for the general case, it is shown that the gap between the

existing schemes and the cut-set bound is still significant when the number of users

is more than two. Hence, an exciting line of research is to study practical and

feasible coded caching schemes which are closer to the cut-set bound compared

to the existing schemes when the number of users is more than two.

For distributed learning, an interesting line of work is to consider the case

where there is mobility in the system due to relative motion between the workers

and the PS, which results in inter-carrier interference (ICI) for OFDM systems

by destroying the orthogonality of the subcarriers. Hence, the ICI in distributed

learning systems can be studied in terms of its effects on the learning accuracy

and convergence of the algorithms.

In addition, one can also study a federated learning system where the workers

employ low-resolution digital to analog converters (DACs) at their transmit an-

tennas to reduce the transmit power and hardware costs. Employing DAC at the

workers leads to nonlinear distortions in the transmitted gradients, which could

result in errors in the global model parameter update. Hence, the effects of this

additional source of impairments on the convergence of learning algorithms and

on the learning accuracy should be examined.

Finally, in our studies, we use a single layer network during the training process.

However, when the number of hidden layers is higher, the amount of computation

and communicational cost becomes higher. Also, the complexity of the computa-

tions could vary among different layers of the network. Hence, different network

architectures can be considered where the required computations are distributed

among the workers optimally by also taking the effects of the wireless channel.
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