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Abstract We propose, for the first time, a thermodynamically consistent formulation for open system
(continuum-kinematics-inspired) peridynamics. In contrast to closed system mechanics, in open system
mechanics mass can no longer be considered a conservative property. In this contribution, we enhance the
balance of mass by a (nonlocal) mass source. To elaborate a thermodynamically consistent formulation, the
balances of momentum, energy and entropy need to be reconsidered as they are influenced by the additional
mass source. Due to the nonlocal continuum formulation, we distinguish between local and nonlocal balance
equations. We obtain the dissipation inequality via a Legendre transformation and derive the structure and con-
straints of the constitutive expressions based on the Coleman–Noll procedure. For the sake of demonstration,
we present an example for a nonlocal mass source that can model the complex process of bone remodelling
in peridynamics. In addition, we provide a numerical example to highlight the influence of nonlocality on the
material density evolution.

Keywords Peridynamics · Nonlocal material · Open system · Mass change

1 Introduction

Peridynamics (PD), introducedbySilling [1], is a nonlocal continuum theory and thus an alternative formulation
for continuummechanics. According to dell’Isola et al. [2], the concept of nonlocal continuummechanics was
already conceived by Gabrio Piola. In contrast to classical continuum mechanics (CCM) and similar to the
fundamental idea of molecular dynamics, a continuum point in PD is in interaction with continuum points in
its finite-sized neighbourhood. However, in contrast to molecular dynamics, PD also satisfies the underlying
concept of continuum mechanics. Due to the nonlocal characteristics of PD, the divergence terms, present in
CCM, are replaced by integro-differential terms, which is why PD is appropriate to use for problems including
discontinuities. PD was initially introduced to overcome the limitation of modelling material damage and is
thus widely used in fracture mechanics and related fields, e.g. [3–8]. The peridynamics review of Javili et al.
[9] shows that the application of PD has extended significantly in recent years, even in fields unrelated to
fracture mechanics, e.g. [10–13].

The original PD framework of Silling [1], called bond-based PD, accounts for pairwise interactions and
shows to not reflect the Poisson effect correctly. To overcome the limitation of a fixed Poisson ratio of 1/3
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in two-dimensional and 1/4 in three-dimensional problems [14], Silling extended the original PD theory to
(ordinary and non-ordinary) state-based PD [15]. Alternatively, Javili et al. [9] recently introduced continuum-
kinematics-inspired peridynamics (CPD), where the interactions that govern the nonlocal material behaviour
are referred to as one-, two- and three-neighbour interactions dependent on the contributing number of neigh-
bours. Since the interactions in CPD are governed by the change of pair-length, triplet-area and tetrad-volume,
the CPD framework represents a kinematically exact formulation. Since one-neighbour interactions are equiv-
alent to bond-based interactions, the Poisson effect is captured by considering two- and three-neighbour
interactions [16].

Although the range of applications for PDhas grown tremendously in recent years, the number of theoretical
contributions is rather limited. To name a few, besides the alreadymentioned theoretical contributions of Silling
et. al [1,15] and Javili et al. [9], additional theoretical contributions involve the one of Silling and Lehoucq
[17], where the first and second law of thermodynamics are exploited based on peridynamic quantities. Ostoja-
Starzewski et al. [18] discuss the restrictions imposed by the second law of thermodynamics in bond-based and
state-based PD. Further theoretical contributions, e.g. the ones of Kilic et al. [19], Bobaru and Duangpanya
[20] and Oterkus et al. [21], address thermomechanical problems. Additionally, Javili et al. extended recently
the CPD formulation to account for thermomechanical coupling [22] and elasto-plastic material behaviour
[23].

However, to the author’s knowledge, only formulations for closed system peridynamics have been intro-
duced in recent years. Therefore, the aim of this contribution is to propose a formulation for open system
(continuum-kinematics-inspired) peridynamics for the first time. In contrast to closed systems, where the
system can exchange energy in terms of heat and work with its surrounding, open systems can additionally
exchangematter with its surrounding and generatemass locally. Thus, closed systems represent special cases of
an open system, where the conservation of mass has to be satisfied. In the literature, mainly closed systems are
considered in continuummechanics, although it is a simplification for most mechanical problems. Particularly
for chemomechanical and biomechanical processes, the concept of open systems holds. Since additional mass
sources influence not only the balance of mass, but also the balances of momentum, energy and entropy, all
balance equations have to be reconsidered. Thus, in terms of open system mechanics it is appropriate to start
with the balance of mass and continue with the balances of momentum, energy and entropy. For open system
CCM, Kuhl and Steinmann [24] showed that with the help of the balance of mass all other balance equations
can be reformulated to reduced balance equations, which are comparable to the ones valid in closed system
CCM.

To propose a formulation for open system (continuum-kinematics-inspired) peridynamics, the paper is
structured as follows. In Sect. 2, we revisit the kinematic description relevant for PD and state general forms
for the global, point-wise and neighbour-wise balance equations. In Sect. 3, the governing equations valid for
open system peridynamics are stated. First, the balance of mass is introduced. Subsequently, the balance of
linear and angular momentum are discussed, where the balance of mass is incorporated to obtain a reduced
form for both balance equations. Following this, the kinetic energy theorem is examined to identify the external
and internal power that are helpful to establish the balance of internal energy. Lastly, the balance of entropy
is stated that is required to obtain the dissipation inequality, discussed in Sect. 4. In Sect. 5, we obtain the
structure and constraints of the constitutive expressions by applying the Coleman–Noll procedure. For the sake
of demonstration, we present in Sect. 6 an example for a nonlocal mass source and constitutive expressions
for modelling the process of bone remodelling in a peridynamic sense. Section 7 concludes the main findings
of the paper and provides further outlook.

2 Kinematics in peridynamics

As illustrated in Fig. 1, we consider a continuum body in its material configuration B0 ⊂ R
3 at time t0 ⊂ R+

with its boundary ∂B0. The material coordinates X that identify points of B0 are mapped via the nonlinear
deformation map y to their spatial coordinates as x = y(X, t) : B0 × R+ → Bt , where Bt ⊂ R

3 at
t > t0 ⊂ R+ denotes the continuum body in its spatial configuration.

In contrast to local continuum mechanics, the peridynamic theory is based on the fundamental idea that
every continuum point is in interaction with continuum points in its finite neighbourhood, the so-called horizon
H0 ⊂ B0. The interaction region is typically a spherical neighbourhoodmeasured via its radius δ in thematerial
configuration. The horizonHt in the spatial configuration is obtained via the deformationmap byHt = y(H0).
The horizon size δ is considered a material parameter of PD as it influences the degree of nonlocality at X .



Open system peridynamics 1127

Fig. 1 A continuum point X of the continuum body in its material configuration B0 ⊂ R
3 interacts with continuum points in its

finite-sized neighbourhood, the horizonH0. B0 is mapped to its spatial configuration Bt via the deformation map y

Note that the local continuum theory can be recovered in the limit of δ → 0. The vector between a continuum
point X and any of its neighbours X

| ∈ H0 is expressed via the line vector �
| := X

| − X in the material

configuration and ξ
| := x

| − x in the spatial configuration with x
| = y(X

|
, t). Note that we mark quantities

of neighbours with a superscript line {•}|
to distinguish quantities of the continuum point and its neighbours

within H0.
In the following, we state the governing equations in the material configuration, where the material time

derivative of a quantity {•} at fixedmaterial placement X is denoted byDt {•}.We distinguish between densities
per unit volume {•}0 and per unit mass {•}. In PD, the conversion of both densities is dependent on the nature
of the quantity. For local quantities the conversion {•}0 = ρ0{•} holds in the material configuration, where ρ0
is the material density of the continuum point. In contrast, the conversion

{•}0 =
∫
H0

{•}|
0 dV

|
with {•}|

0 = ρ
|
0{•}|

,

applies for nonlocal quantities, where ρ
|
0 is the material density of the respective neighbour. Both material

densities, ρ0 and ρ
|
0, are local continuum quantities and considered homogenised versions of the underlying

heterogeneous material. Note that {•}|
0 is a neighbour-wise quantity per volume squared and {•}|

consequently
per volume and per mass.

Next, we establish general forms for balance equations in our peridynamic formulation and compare them
to their counterparts in local classical continuum theory. To proceed, we first address the difference between
the PD and CCM theory in terms of flux or flux-like quantities. Therefore, we consider a continuum body
B0 := B1∪B2 exposed to external loads on its boundary ∂B0. To analyse the current state of a continuum point
X , we fictitiously divide the body B0 into two sub-domains, B1 and B2, schematically illustrated in Fig. 2. The
resultant force measures acting on the continuum point Xα in CPD theory that result only from one-neighbour
interactions (left) are compared to the resultant force measures acting on X in CCM theory (right). In CCM,
the resultant force is measured via the Cauchy theorem by the traction vector t = P · N , as depicted in
Fig. 2 (right). Therein, P denotes the Piola stress and N the outward-pointing unit normal vector on the area
element dA. In PD, however, we cannot apply the Cauchy theorem due to the nonlocal characteristic of PD. As
depicted in Fig. 2 (left), the force densities p

|
iα with i = {β, γ } originate from interactions of the continuum

point Xα with the continuum points X
|
β and X

|
γ , which exemplarily represent the neighbourhood of Xα in the

sub-domain B2. The resultant force is consequently computed by an integral of the force density per volume
squared over the entire horizonH0. Note that Fig. 2 corresponds only to one-neighbour interactions in CPD or
bond-based PD, wherein the interactions are pairwise by nature, unlike two- and three-neighbour interactions
in CPD [9].

In continuum mechanics, the rate of a balanced quantity of a continuum body B0 is in general equal to the
sum of source terms and flux or flux-like terms [24]. Generalising the above example to “flux” densities {�}|

0
as nonlocal quantities, assuming sufficient smoothness regarding the balanced quantity {∗}0, the “flux” density
{�}|

0 and the source quantity {◦}0 and integrating over the continuum body B0, the general global balance
equation in PD is given by

Dt

∫
B0

{∗}0 dV =
∫
B0

∫
H0

{�}|
0 dV

|
dV +

∫
B0

{◦}0 dV , (1)
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Fig. 2 Resultant force measures acting on the continuum point Xα of the subdomain B1 in CPD (left) considering only one-
neighbour interactions and on the continuum point X in CCM (right) due to a fictitious division of the continuum body B0 :=
B1 ∪B2 into two subdomains, B1 and B2. The greek subindices distinguish the continuum point Xα from its neighbours X

|
β and

X
|
γ (left), which exemplarily represent the neighbourhood of Xα in the subdomain B2

where {�}|
0 is in particular a “flux” density per volume squared that additionally needs to be integrated over

the horizon H0.

Remark 1 In PD, the term flux has to be used very carefully, since a flux quantity is a local quantity that defines
the flux through a surface. Due to the nonlocal characteristic of the PD theory the term flux density is not the
physically correct description for the neighbour-wise density {�}|

0. However, we maintain the term flux and

put it in quotation marks to highlight that {�}|
0 is the nonlocal counterpart to the flux quantity {�} per area in

CCM. Consequently, we rather speak of a “flux” or flux-like quantity in PD.

After localisation, the point-wise and yet nonlocal balance equation in PD reads

Dt {∗}0 =
∫
H0

{�}|
0 dV

| + {◦}0 . (2)

Note that the balanced and source quantity themselves can be local or nonlocal quantities. In case of the latter,
we define these quantities also in integral form over the horizon H0 as

{∗}0 =
∫
H0

{∗}|
0 dV

|
and {◦}0 =

∫
H0

{◦}|
0 dV

|
, (3)

respectively. For balance equations with only nonlocal quantities the point-wise form reads

Dt

∫
H0

{∗}|
0 dV

| =
∫
H0

{�}|
0 dV

| +
∫
H0

{◦}|
0 dV

|
, (4)

that can be further localised to a neighbour-wise and also local form

Dt {∗}|
0 = {�}|

0 + {◦}|
0 . (5)

This consequently provides a more restrictive balance equation than the point-wise form (4).
In contrast to Eq. (1), the general balance equation in global form in CCM is stated by integrating a flux

term {�} · N over the boundary ∂B0 of the continuum body and is given by

Dt

∫
B0

{∗}0 dV =
∫

∂B0

{�} · N dA +
∫
B0

{◦}0 dV , (6)

where N is the outward-pointing unit normal vector to ∂B0 and {�} is the flux quantity per area [24]. After
localisation and via the Gauss theorem, the point-wise balance equation in CCM reads

Dt {∗}0 = Div{�} + {◦}0 . (7)
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Remark 2 Balance equations can also be formulated in the spatial configuration. The conversion of thematerial
and spatial configuration can be accomplished in CCM via the deformation gradient F := Grad y, its Cofactor
K := CofF and its determinant J := DetF. Similar holds for CPD [9] as it provides a geometrically exact
framework.

3 Governing equations

Based on the general forms of the balance equation, we will elaborate in the following the mechanical and
thermodynamic governing equations that are valid for open system peridynamics. The respective governing
equations for closed systems can be found in [9,22] and are recovered in the present formulation by setting the
temporal rate of mass to zero. Table 1 provides a comparison of the governing equations in the peridynamic
and classic continuum formulation.

3.1 Balance of mass

In the case of open system mechanics, the mass contained in B0 can no longer be considered a conservative
property, since in- or out-“flux” of mass or creation of mass influence the temporal rate of mass. In this
contribution, we only consider a mass source R0 for the sake of simplicity. The balance of mass in its global
form is consequently given by

∫
B0

Dtρ0 dV =
∫
B0

R0 dV , (8)

Table 1 Comparison of governing equations in the peridynamic and classic continuum formulation

Linear momentum balance

PD ρ0Dtv =
∫
H0

p
|
0 dV

| + b̄
ext
0 subject to

∫
B0

∫
H0

p
|
0 dV

|
dV =

∫
∂B0

text0 dA

CCM ρ0Dtv = DivP + b̄
ext
0 subject to P · N = text0

Angular momentum balance

PD
∫
H0

ξ
| × p

|
0 dV

| = 0

CCM ε : [
F · P t

] = 0

Energy balance

PD
∫
H0

ρ
|
0Dt u

|
dV

| = −
∫
H0

q
|
0 dV

| + R̄ext
0 +

∫
H0

p
|
0 · Dt ξ

|
dV

|

subject to
∫
B0

∫
H0

q
|
0 dV

|
dV =

∫
∂B0

Qext
0 dA

CCM ρ0Dt u = −DivQ + R̄ext
0 + P : Dt F subject to Q · N = Qext

0

Entropy balance

PD T
∫
H0

ρ
|
0Dt s

|
dV

| = −
∫
H0

q
|
0 dV

| + R̄ext
0 + TS0 + D0

subject to
∫
B0

∫
H0

q
|
0 dV

|
dV =

∫
∂B0

Qext
0 dA

CCM Tρ0Dt s = −DivQ + R̄ext
0 + TS0 + D0 subject to Q · N = Qext

0

Dissipation inequality

PD D0 =
∫
H0

p
|
0 · Dt ξ

|
dV

| −
∫
H0

ρ
|
0Dtψ

|
dV

| − TS0 ≥ 0

CCM D0 = P : DtF − ρ0Dt	 − TS0 ≥ 0
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for the PD and CCM formulation, where thematerial density ρ0 at the continuum point is the balanced quantity.
For both formulations, the point-wise form of Eq. (8) reads

Dtρ0 = R0 . (9)

Although the balance of mass (9) is a point-wise balance equation without any nonlocal contribution due to
the omitted “flux” term, the mass sourceR0 of our peridynamic formulation can be a nonlocal quantity by its
constitutive expression, providing the balance of mass with a nonlocal characteristic.

Remark 3 In case of an in- or out-“flux” of mass, the balance of mass (9) needs to be enhanced by an additional
“flux” term. In PD, we would introduce a mass term

∫
H0

r
|
0 dV

|
with the mass “flux” density r

|
0 per volume

squared that governs the mass “flux” in a peridynamic sense. The balance of mass is established following the
general point-wise form (2) with ρ0 being the balanced quantity and R0 being the source quantity. In CCM,
on the other hand, we would introduce a mass flux R per area as flux quantity resulting in the mass flux term
DivR.

3.2 Balance of linear and angular momentum

We begin with the balance of linear and angular momentum in their global form. For both balance equations
the momentum density π0 = ρ0v, defined as the velocity v of the continuum point X weighted with the
continuum point density ρ0, is or contributes to the balanced quantity.

The balance of linear momentum embodies Newton’s second law and states that the temporal rate in π0

integrated over the body B0 is in equilibrium with the internal body force density bint0 and the external body
force density bext0 integrated over B0 as∫

B0

Dtπ0 dV =
∫
B0

bint0 dV +
∫
B0

bext0 dV . (10)

Therein, the internal body force density bint0 of a continuum point in PD is an integral over the horizonH0

of the neighbour-wise force density p
|
0 between the continuum point X and its neighbours X

|
as

bint0 =
∫
H0

p
|
0 dV

|
, (11)

see [9]. In CPD, the neighbour-wise force density p
|
0 can be further subdivided into

p
|
0 = p0

|
1 + p0

|
2 + p0

|
3 , (12)

where p0
|
1, p0

|
2 and p0

|
3 denote the neighbour-wise force densities according to one-, two- and three-neighbour

interactions [9], respectively. The amount of force density invoked by the mass source R0 is included in the
external body force density by bext0 := b̄

ext
0 + vR0, whereby b̄

ext
0 is accordingly called the reduced external

body force density.
Localising Eq. (10) and incorporating the expressions for the internal and external body force densities

result in the point-wise balance of linear momentum

Dtπ0 =
∫
H0

p
|
0 dV

| + b̄
ext
0 + vR0 . (13)

In comparison, the balance of linear momentum in CCM reads

Dtπ0 = DivP + b̄
ext
0 + vR0 . (14)

Incorporating the balance ofmass (9) into Eqs. (13) and (14), results in the reduced balance of linearmomentum

ρ0Dtv =
∫
H0

p
|
0 dV

| + b̄
ext
0 , (15)

in PD and

ρ0Dtv = DivP + b̄
ext
0 , (16)

in CCM, respectively.
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The balance of angular momentum in PD is derived by starting with the global form of the momentum
balance ∫

B0

Dt [ y × π0] dV =
∫
B0

∫
H0

y
| × p

|
0 dV

|
dV +

∫
B0

y × bext0 dV . (17)

With Dt y×π0 = 0, y
| = ξ

| + y and the internal body force density (11) at hand, the global balance of angular
momentum can be rewritten to∫

B0

y × [Dtπ0] dV =
∫
B0

∫
H0

ξ
| × p

|
0 dV

|
dV +

∫
B0

y × [
bint0 + bext0

]
dV . (18)

The point-wise balance of angular momentum is obtained via localisation and reads

y × [Dtπ0] =
∫
H0

ξ
| × p

|
0 dV

| + y × [
bint0 + bext0

]
. (19)

Incorporating the balance ofmass (9) into Eq. (19) yields the reduced point-wise balance of angularmomentum

y × [ρ0Dtv] =
∫
H0

ξ
| × p

|
0 dV

| + y ×
[
bint0 + b̄

ext
0

]
. (20)

Given the balance of linear momentum (15), the point-wise balance of angular momentum (20) can be further
reduced to ∫

H0

ξ
| × p

|
0 dV

| = 0 . (21)

Javili et al. [9] discuss the required conditions for the interaction potentials of one-, two- and three-
neighbour interactions such that the balance of angular momentum is satisfied a priori. With the balance of
linear momentum (16) in CCM, the balance of angular momentum results in the following statement

ε : [
F · P t] = 0 ⇒ F · P t = P · Ft , (22)

with the third-order permutation tensor ε.

3.3 Kinetic energy theorem

Next, we consider the balance equations for internal energy and entropy and establish the dissipation inequality.
First, however, we examine the kinetic energy in order to identify the external and internal mechanical power.
Therefore, we introduce the global kinetic energy K in the material configuration as

K :=
∫
B0

k0 dV with k0 = 1

2
ρ0v · v , (23)

being the kinetic energy density per volume. The mass-specific counterpart of the global kinetic energy reads

K :=
∫
B
k dM with k = 1

2
v · v , (24)

where k is the kinetic energy density per mass. The temporal rate of the volume-specific kinetic energy is
consequently given by

K := Dt K =
∫
B0

Dt k0 dV (25)

with the identity

Dt k0 = kDtρ0 + ρ0Dt k = v · Dtπ0 − kDtρ0 . (26)
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Given the balance of linear momentum (10) and balance of mass (8), we obtain the kinetic energy theorem

K =
∫
B0

v · bint0 dV +
∫
B0

v · bext0 dV −
∫
B0

kR0 dV . (27)

The definition of the internal body force density (11), the external body force density bext0 := b̄
ext
0 + vR0 and

the relations v · v = 2k and v = v
| − Dtξ

|
yield the more detailed form of the kinetic energy theorem

K =
∫
B0

∫
H0

v
| · p|

0 dV
|
dV +

∫
B0

v · b̄ext0 dV +
∫
B0

kR0 dV

−
∫
B0

∫
H0

Dtξ
| · p|

0 dV
|
dV . (28)

Incorporating the virtual power equivalence∫
B0

∫
H0

δ y
| · p|

0 dV
|
dV =

∫
∂B0

δ y · text0 dA ∀δ y , (29)

proposed in [9], with particularising δ y = v results in

K =
∫

∂B0

v · text0 dA +
∫
B0

v · b̄ext0 dV +
∫
B0

kR0 dV

−
∫
B0

∫
H0

Dtξ
| · p|

0 dV
|
dV , (30)

where we can identify the external mechanical power

Pext =
∫

∂B0

v · text0 dA +
∫
B0

v · b̄ext0 dV +
∫
B0

kR0 dV , (31)

due to the mass source and externally prescribed body forces and tractions. In addition, we identify the internal
mechanical power due to interaction forces as

P int =
∫
B0

∫
H0

Dtξ
| · p|

0 dV
|
dV . (32)

The kinetic energy theorem can eventually be summarised in terms of the externally and internally generated
mechanical power as

K = Pext − P int . (33)

3.4 Balance of internal energy

Let U denote the global internal energy that is obtained by the integral of the internal energy density u0 over
B0 as

U :=
∫
B0

u0 dV , (34)

and its temporal rate

U := DtU ⇒ U =
∫
B0

Dt u0 dV . (35)

We consider that the internal energy density u0 per volume of a continuum point is a nonlocal quantity, which
is why it is given by an integral over H0 of the internal energy density u

|
0 per volume squared as

u0 =
∫
H0

u
|
0 dV

|
with u

|
0 = ρ

|
0u

|
. (36)



Open system peridynamics 1133

To proceed, we briefly address the balance of total energy E = K + U . In closed and open systems the
temporal rate of the total energy E = K+U is equal to the external power of the system that is composed of a
mechanical and non-mechanical contribution. Denoting the external thermal power asQext yields the balance
of total energy

E = Pext + Qext . (37)

Note that in contrast to closed systems, we have additional external power contributions in Pext and Qext due
to the mass source R0.

With the balance of kinetic energy (33) and the balance of total energy (37) at hand, it follows that the
temporal rate of internal energy is equal to the sum of the internal mechanical power P int and the external
thermal power Qext, that is

U = P int + Qext . (38)

The external thermal power Qext summarises the thermal power induced by externally prescribed heat within
the body B0 and heat “flux” on the boundary ∂B0 as

Qext = Qext
B + Qext

∂B , (39)

with

Qext
B :=

∫
B0

Rext
0 dV and Qext

∂B := −
∫

∂B0

Qext
0 dA . (40)

Therein, Rext
0 is the external heat source that is composed of the reduced external heat source R̄ext

0 and a

nonlocal source term caused by the mass source R|
0 and the internal energy density u

|
of the neighbour as

Rext
0 = R̄ext

0 +
∫
H0

u
|R|

0 dV
|
. (41)

The external heat “flux” density Qext
0 per area is equivalently expressed in the peridynamic formulation as a

nonlocal quantity by ∫
∂B0

Qext
0 dA =

∫
B0

∫
H0

q
|
0 dV

|
dV (42)

with the heat “flux” density q
|
0 per volume squared.

In CCM, the external heat source Rext
0 := R̄ext

0 + uR0 of Eq. (40) is a local quantity, dependent on the
internal energy u and mass source R0 of a continuum point [24]. Furthermore, the external heat flux density
Qext

0 is expressed by the heat flux vector Q per area as Qext
0 = Q · N that is comparable to text0 = P · N for

the mechanical problem and yields the counterpart to Eq. (42)∫
∂B0

Qext
0 dA =

∫
B0

DivQ dV . (43)

Equipped with the detailed expressions of the external thermal power, we obtain via localisation the point-
wise form in PD ∫

H0

Dt u
|
0 dV

| = −
∫
H0

q
|
0 dV

| + R̄ext
0 +

∫
H0

u
|R|

0 dV
|

+
∫
H0

Dtξ
| · p|

0 dV
|
, (44)

and its counterpart in CCM

Dt u0 = −DivQ + R̄ext
0 + uR0 + P : DtF . (45)

Next, we incorporate the balance of mass into both balance equations, (44) and (45). However, for the
peridynamic balance equation (44) we use the balance of mass of the neighbours instead of the continuum
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point as the internal energy u0 is considered a nonlocal quantity. Consequently, we obtain the reduced balance
of internal energy

∫
H0

ρ
|
0Dt u

|
dV

| = −
∫
H0

q
|
0 dV

| + R̄ext
0 +

∫
H0

Dtξ
| · p|

0 dV
|
, (46)

in PD and its local counterpart in CCM

ρ0Dt u = −DivQ + R̄ext
0 + P : DtF . (47)

3.5 Balance of entropy

Based on the second law of thermodynamics, we introduce a new extensive quantity, the entropy of the system,
which dictates the direction of a thermodynamical process. For this purpose, let S denote the global entropy
that is obtained by the integral of the entropy density s0 per volume over B0 as

S :=
∫
B0

s0 dV , (48)

and its temporal rate

S := Dt S ⇒ S =
∫
B0

Dt s0 dV . (49)

We consider that the entropy density s0 of a continuum point is a nonlocal quantity, which is obtained by an
integral over H0 of the entropy density s

|
0 per volume squared, that is

s0 =
∫
H0

s
|
0 dV

|
with s

|
0 = ρ

|
0s

|
. (50)

The entropy of an open system is balanced by the input of entropy as

S = Hext + Hprd , (51)

whereHext is the external entropy contribution andHprd ≥ 0 is the positive entropy production. Similar to the
external heat source Qext, the external entropy input Hext is composed of a source term Hext

B within the body
B0 and a flux term Hext

∂B on the boundary ∂B0 as

Hext = Hext
B + Hext

∂B . (52)

Next, we establish a relation between the external entropy source on the boundary Hext
∂B and the external

heat “flux” density q
|
0 in dependency on the absolute neighbour-wise temperature T

|
> 0, that reads

Hext
∂B = −

∫
B0

∫
H0

q
|
0

T | dV
|
dV . (53)

The external entropy source within the bodyHext
B is expressed in terms of an external entropy density Hext

0 as

Hext
B =

∫
B0

Hext
0 dV with Hext

0 = R̄ext
0

T
+

∫
H0

s
|R|

0 dV
| + S0 . (54)

Therein, the external entropy density Hext
0 is composed of the reduced external heat source R̄ext

0 divided by

the absolute temperature T , a nonlocal source term resulting from the mass sourceR|
0 and the entropy density

s
|
and an extra entropy source S0 as a characteristic of open systems.
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Introducing the dissipation density D0 ≥ 0 of a continuum point, we can express the positive entropy
production as

Hprd =
∫
B0

D0

T
dV ≥ 0 . (55)

Thus, we obtain the point-wise balance of entropy

∫
H0

Dt s
|
0 dV

| = −
∫
H0

q
|
0

T | dV
| + R̄ext

0

T
+

∫
H0

s
|R|

0 dV
| + S0 + D0

T
. (56)

Since the entropy density s0 is a nonlocal quantity, we further reduce the balance of entropy with the help
of the balance of mass of the neighbours, resulting in

∫
H0

ρ
|
0Dt s

|
dV

| = −
∫
H0

q
|
0

T | dV
| + R̄ext

0

T
+ S0 + D0

T
. (57)

Under isothermal conditions with T = T
|
, we eventually obtain

T
∫
H0

ρ
|
0Dt s

|
dV

| = −
∫
H0

q
|
0 dV

| + R̄ext
0 + TS0 + D0, (58)

that should be compared to its local counterpart in CCM

Tρ0Dt s = −DivQ + R̄ext
0 + TS0 + D0 . (59)

4 Dissipation inequality

Wefirst introduce the Helmholtz energy density in thematerial configuration that can be expressed by the inter-
nal energy u0 and the entropy s0 multiplied with the absolute temperature T , i.e. via a Legendre transformation
as

	0 := u0 − T s0 (60)

with its time derivative

Dt	0 = Dt u0 − Dt T s0 − TDt s0 . (61)

Under isothermal conditions Eq. (61) reduces to

Dt	0 = Dt u0 − TDt s0 , (62)

since Dt T = 0. Note that we only state the quantities per unit volume for the sake of brevity.
To continue, we first need to express nonlocal quantities in integral form. In PD, we consider the Helmholtz

energy density 	0 per volume as a nonlocal quantity that is given by

	0 =
∫
H0

ψ
|
0 dV

|
with ψ

|
0 = ρ

|
0 ψ

|
, (63)

where ψ
|
0 denotes the Helmholtz energy density per volume squared and ψ

|
the Helmholtz energy density per

mass and per volume.
Since 	0, u0 and s0 are considered nonlocal quantities, Eq. (60) of our peridynamic formulation can

accordingly be rewritten in integral form
∫
H0

ψ
|
0 dV

| :=
∫
H0

u
|
0 dV

| − T
∫
H0

s
|
0 dV

|
, (64)
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for isothermal conditions with T = T
|
. The respective time derivative reads

∫
H0

Dtψ
|
0 dV

| =
∫
H0

Dt u
|
0 dV

| − T
∫
H0

Dt s
|
0 dV

|
. (65)

Expressing Eq. (65) in terms of the density ρ
|
0 of the neighbour and the quantities per unit mass and volume

yields

∫
H0

Dt (ρ
|
0 ψ

|
) dV

| =
∫
H0

Dt (ρ
|
0 u

|
) dV

| − T
∫
H0

Dt (ρ
|
0 s

|
) dV

|
. (66)

Next, incorporating the neighbour-wise counterpart per volume and per mass of Eq. (64), that is

ψ
| := u

| − T s
|
, (67)

multiplied with the temporal rate of the density ρ
|
0 of the neighbour into Eq. (66) results in

∫
H0

ρ
|
0 Dtψ

|
dV

| =
∫
H0

ρ
|
0 Dt u

|
dV

| − T
∫
H0

ρ
|
0 Dt s

|
dV

|
. (68)

In a last step, inserting the balances of internal energy (46) and entropy (58) inEq. (68), yields the dissipation
inequality in PD

D0 =
∫
H0

p
|
0 · Dtξ

|
dV

| −
∫
H0

ρ
|
0Dtψ

|
dV

| − TS0 ≥ 0 . (69)

Under the same conditions, the counterpart in CCM reads

D0 = P : DtF − ρ0Dt	 − TS0 ≥ 0 . (70)

Additionally to the point-wise dissipation inequality, we can formulate a neighbour-wise form for our
peridynamic formulation. Therefore, we introduce the extra entropy source S0 and the dissipation D0 in
integral form as

S0 =
∫
H0

s
|
0 dV

|
and D0 =

∫
H0

d
|
0 dV

|
, (71)

respectively. Therein, s
|
0 denotes the extra entropy source density per volume squared and d

|
0 the dissipation

density per volume squared. The resulting point-wise dissipation inequality reads

∫
H0

d
|
0 dV

| =
∫
H0

p
|
0 · Dtξ

|
dV

| −
∫
H0

ρ
|
0Dtψ

|
dV

| − T
∫
H0

s
|
0 dV

| ≥ 0 . (72)

Via localisation we obtain the more restrictive neighbour-wise dissipation inequality

d
|
0 = p

|
0 · Dtξ

| − ρ
|
0Dtψ

| − T s
|
0 ≥ 0 . (73)

The condition d
|
0 ≥ 0 for all neighbours yields D0 ≥ 0, but conversely D0 ≥ 0 does not imply the condition

d
|
0 ≥ 0.
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5 Coleman–Noll procedure

Based on the Coleman–Noll procedure, we gain the structure and constraints of the constitutive equations that
define the material behaviour. Recall the neighbour-wise energy density per mass and per volume

ψ
| = ψ

|
(ρ0, ρ

|
0, ξ

|
, a

|,||
, v

|,||,|||
) , (74)

that is dependent on the material densities, ρ0 and ρ
|
0, and the line vector ξ

|
, the vectorial area element a

|,||
and

the finite volume element v
|,||,|||

in the spatial configuration. The vectorial area element and the finite volume

element are defined in terms of the line elements ξ
|
, ξ

||
and ξ

|||
, respectively, as

a
|,|| := ξ

| × ξ
||

and v
|,||,||| :=

[
ξ

| × ξ
||] · ξ |||

,

see [9]. The temporal rate of the neighbour-wise energy density consequently reads

Dtψ
|
(ρ0, ρ

|
0, ξ

|
, a

|,||
, v

|,||,|||
) = ∂ψ

|

∂ρ0
Dtρ0 + ∂ψ

|

∂ρ
|
0

Dtρ
|
0 + δψ

|

δξ
| · Dtξ

|
. (75)

Therein, δψ
|
/δξ

|
denotes the variational derivative due to one-, two- and three-neighbour interactions that is

defined in [9].
Given the detailed form of Dtψ

|
(ρ0, ρ

|
0, ξ

|
, a

|,||
, v

|,||,|||
) and Eq. (72), we obtain the extensive point-wise

dissipation inequality

D0 =
∫
H0

d
|
0 dV

| =
∫
H0

p
|
0 · Dtξ

|
dV

|

−
∫
H0

ρ
|
0

[
∂ψ

|

∂ρ0
Dtρ0 + ∂ψ

|

∂ρ
|
0

Dtρ
|
0 + δψ

|

δξ
| · Dtξ

|
]
dV

|

− T
∫
H0

s
|
0 dV

| ≥ 0 (76)

that can be rewritten as

D0 =
∫
H0

d
|
0 dV

| =
∫
H0

[
p

|
0 − ρ

|
0
δψ

|

δξ
|

]
· Dtξ

|
dV

|

−
∫
H0

ρ
|
0

[
∂ψ

|

∂ρ0
Dtρ0 + ∂ψ

|

∂ρ
|
0

Dtρ
|
0

]
dV

| − T
∫
H0

s
|
0 dV

| ≥ 0 . (77)

In case of an isothermal elastic problem, solely contributions from the open systemcause energy dissipation.
Thus, the mechanical contribution of Eq. (77) should vanish, yielding the constitutive expression for the
pairwise force density

p
|
0 = ρ

|
0
δψ

|

δξ
| . (78)

The more restrictive neighbour-wise dissipation inequality

d
|
0 =

[
p

|
0 − ρ

|
0
δψ

|

δξ
|

]
· Dtξ

| − ρ
|
0

[
∂ψ

|

∂ρ0
Dtρ0 + ∂ψ

|

∂ρ
|
0

Dtρ
|
0

]
− T s

|
0 ≥ 0 , (79)

is obtained by further localising the point-wise dissipation inequality (77).
In a last step, we can formulate a reduced point-wise dissipation inequality

D0red = −
∫
H0

ρ
|
0

[
∂ψ

|

∂ρ0
Dtρ0 + ∂ψ

|

∂ρ
|
0

Dtρ
|
0

]
dV

| − T
∫
H0

s
|
0 dV

| ≥ 0 , (80)
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and further reduced neighbour-wise dissipation inequality

d
|
0red

= −ρ
|
0

[
∂ψ

|

∂ρ0
Dtρ0 + ∂ψ

|

∂ρ
|
0

Dtρ
|
0

]
− T s

|
0 ≥ 0 , (81)

in addition to the constitutive expression (78). Note that the extra entropy source is here needed to assure
positive dissipation.

6 Example for the nonlocal mass source

As an example for a nonlocal mass source, we present in the following constitutive expressions to model the
complex process of bone remodelling in a peridynamic way. Therefore, we maintain the mass source function

R0 = c

[[
ρ0

ρ∗
0

]−m

	0 − 	∗
0

]
, (82)

that is commonly used in local continuum models [25–29] to govern the temporal change in bone density. In
Eq. (82), the energy density	0 is weighted with a power of the nominal relative density of the material density
ρ0 at the continuum point with respect to the initial material density ρ∗

0 homogenised at the macroscale. The
attractor stimulus	∗

0 indicates the energy state to reach homeostasis. The parameter c is introduced in Eq. (82)
to govern the velocity of the bone remodelling process. The stability of the mass source function is determined
by the dimensionless exponent m.

Up to this point, the balance of mass (9) and the expression of the mass source (82) is equivalent in the
PD and CCM formulation. However, in our peridynamic formulation the nonlocal energy density 	0, given in
Eq. (63), imparts the mass source R0 its nonlocal characteristic.

As we only consider one-neighbour interactions for the sake of demonstration, the Helmholtz energy
density per volume squared is specified by

ψ
|
0 = ψ

|
0(ρ0, ρ

|
0, ξ

|
) = 1

2
ψ

|
01(ρ0, ρ

|
0, ξ

|
) , (83)

where the subindex 1 indicates the one-neighbour interaction property. Considering the global form of the
balance equations and only one-neighbour interactions, we are visiting every continuum point twice, which is
why we introduced the factor one half in Eq. (83) to avoid double counting of energy [9].

Since bone tissue is classified as open-pored hard tissue, the energy density in local models is typically
weighted with the nth-power of the nominal relative density, see [25,30]. Extending this approach to the peri-
dynamic case, the pairwise energy density per volume squared is weighted by the nth-power of the (nonlocal)
nominal relative density as

ψ
|
01(ρ0, ρ

|
0, ξ

|
) =

[
ρ̂

|
0

ρ∗
0

]n

ψ
|
0

PD

1 (ξ
|
) with ρ̂

|
0 = 1

2 [ρ0 + ρ
|
0] , (84)

where the superscript PD is introduced to distinguish between the density-dependent pairwise energy density
ψ

|
01 and the density-independent pairwise energy density ψ

|
0

PD

1 that determines the purely mechanical material
behaviour.With Eqs. (63)2, (83) and (84)1 at hand, the neighbour-wise energy density per mass and per volume
reads

ψ
| = 1

2

1

ρ
|
0

[
ρ̂

|
0

ρ∗
0

]n

ψ
|
0

PD

1 (ξ
|
) . (85)

In contrast to Eq. (82), the nominal relative density in Eq. (84) and (85), respectively, is nonlocal as it is
determined by the arithmetic mean density ρ̂

|
0 that can be interpreted as a pairwise density. With this approach,

we model a material behaviour, wherein two continuum points exert forces with same magnitude on each
other, which corresponds to the fundamental idea of bond-based PD [15]. The dimensionless exponent n in
Eq. (84) that governs the porosity of bone tissue is determined empirically in CMM [31] and varies between
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1 ≤ n ≤ 3.5. In CCM, numerical stability and uniqueness of solutions is ensured for n < m, see [25] and
[32], respectively.

Accordingly, the Helmholtz energy density per volume that enters the mass source function R0 reads

	0 = 1

2

∫
H0

[
ρ̂

|
0

ρ∗
0

]n

ψ
|
0

PD

1 (ξ
|
) dV

|
. (86)

For the underlying purely mechanical material behaviour, we utilise the harmonic pairwise energy density
function

ψ
|
0

PD

1 = 1

2
CL

[
l

L
− 1

]2
, (87)

that is typically used in PD literature [9,15], since an elastic energy density is typically employed to model

open-pored hard tissue [33]. In Eq. (87), L = |�| | and l = |ξ | | are the bond lengths in the material and spatial
configuration, respectively. The peridynamic material parameter C indicates the resistance against the change
of bond length.

The more detailed expression of the mass source function in our peridynamic model for bone remodelling,

R0 = c

[[
ρ0

ρ∗
0

]−m 1

2

∫
H0

[
ρ̂

|
0

ρ∗
0

]n
1

2
CL

[
l

L
− 1

]2
dV

| − 	∗
0

]
, (88)

clearly emphasises the nonlocal characteristic of the mass source R0. From the neighbour-wise dissipation
inequality (81) the entropy source s

|
0 follows as

s
|
0 ≤ − 1

T
ψ

|
[
1

2
n
ρ

|
0

ρ̂
|
0

[
Dtρ0 + Dtρ

|
0

]
− Dtρ

|
0

]
. (89)

7 Conclusion

This contribution proposes a framework for the thermodynamics of open system (continuum-kinematics-
inspired) peridynamics. We introduced the balance of mass as a local balance equation that allows the system
to gain or lose mass dependent on the (nonlocal) mass source. Equivalent to classical continuum open system
mechanics, we assume that the change in mass affects the balances of linear momentum, internal energy and
entropy. For the peridynamic formulation we distinguish between local and nonlocal balance equations. By
incorporating the balance of mass into the volume-specific balance equations, we obtained the corresponding
reduced balance equations, whose structures are comparable to the ones valid in closed system peridynamics.

We have presented an example for a nonlocal mass source, where we exploit the constitutive equations of
bone remodelling processes. In order to demonstrate the influence of nonlocality on the governing equations, a
numerical example of a biaxial deformation test is shown in Fig. 3. The relative density evolution for different
horizon sizes δ that results from a stepwise applied deformation function highlights the influence of nonlocality
on the temporal change in relative density. Further numerical examples and information on the computational
implementation can be found in [12].

In summary, this contribution proposes a thermodynamically consistent framework for open system
(continuum-kinematics-inspired) peridynamics for the first time. We believe that this framework can be used
to study and better understand nonlocal material behaviour in biomechanical and chemomechanical processes
where the material density changes in time due to a (nonlocal) mass source.

In future research, our open system (continuum-kinematics-inspired) peridynamic framework will be
exploited to model and study nonlocal material behaviour occurring in implant-bone-interfaces between non-
living and living material. Furthermore, we will use this framework to account for material density changes
during bone healing processes, revisiting the initial scope of PD in fracture mechanics. Regarding the example
of a nonlocal mass source, this contribution has focused, for the sake of demonstration, on one-neighbour
interactions of the CPD framework of Javili et al. [9]. In future, we will also study the influence of two- and
three-neighbour interactions on the density evolution. In a next step, the balance of mass can be enhanced by
a mass “flux” density, allowing in- or out-“flux” of mass.
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Fig. 3 In peridynamics, a continuum body B0 (top left) is discretised into a finite number of collocation points Pa (top right).
The relative density evolution (bottom) for different horizon sizes δ, resulting from a stepwise biaxial deformation u = ū with a
stepwise incremental strain of 
ε = 0.015 in horizontal and vertical direction applied on a unit square, shows the influence of
nonlocality. For all simulations, we uniformly set δ/
 = 3.01, ρ∗

0 = 1.0, c = 1000, m = 3, n = 2, 	∗
0 = 0.001 and E = 1.0.

The peridynamic parameter C in Eq. (87) for one-neighbour interactions is computed by the relation C = 9E/δ3π with the
Young’s modulus E [34]
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