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Abstract-In this paper, recursive and least squares methods 
for identification of nonminimum phase linear time-invariant 
(NMP-LTI) FIR systems are developed. The methods utilize the 
second- and third-order cumulants of the output of the FIR 
system whose input is an independent, identically distributed 
(i.i.d.) non-Gaussian process. Since knowledge of the system 
order is of utmost importance to many system identification al- 
gorithms, new procedures for determining the order of an FIR 
system using only the output cumulants are also presented. To 
illustrate the effectiveness of our methods, various simulation 
examples are presented. 

I. INTRODUCTION 
N this paper, we introduce new parametric approaches I to the identification of nonminimum phase linear time- 

invariant (NMP-LTI) systems. The parametric model that 
we consider is an MA model described by 

Y 

y (n )  = C h ( i ) x ( n  - i) (1) 

where y ( n )  is the output of an FIR system whose input 
is x ( n ) .  The system input x ( n )  is assumed to be non- 
Gaussian, i.i .d.,  random process with E { x ( n ) }  = 0, 
E { x ( n ) x ( n  + 7)) = &6(7) ,  and E { x ( n ) x ( n  + ~ ~ ) x ( n  + 
T ~ ) }  = & 6 ( ~ ~ ,  Q). This model is a special case of the 
general ARMA model; however, it has been widely stud- 
ied not only for its own interest but also due to the exis- 
tence of some methods which use MA estimation tech- 
niques to identify ARMA models [7]. 

Most of the standard system identification algorithms 
available in the literature estimate only a spectrally equiv- 
alent minimum phase system because these techniques ex- 
ploit only the second-order statistics which suppress all 
phase information of the underlying process; thus they are 
incapable of identifying the nonminimum phase structure 
of the system. A recent approach to the identification 
problem of NMP-LTI systems is the use of polyspectra or 
higher order spectra. This approach exploits the fact that 

i = O  

Manuscript received March 26. 1991; revised May 26, 1992. This work 
was supported by NSERC, Canada, and TUBITAK. Turkey. Parts of this 
paper were presented at the IEEE 1991 International Conference on ASSP. 
Toronto. Canada. and at the 1991 International Conference on DSP, Flor- 
ence, Italy. 
S. A .  Alshebeili is with the Department of Electrical Engineering. King 

Saud University, Riyadh I142 I ,  Saudi Arabia. 
A .  N.  Venetsanopoulos is with the Department of Electrical Engineer- 

ing, University of Toronto. Toronto. Canada M5S IA4. 
A .  E. Cetin is with the Department of Electrical and Electronics Engi- 

neering, Bilkent University, Bilkent 06533, Turkey. 
IEEE Log Number 9206889. 

the ( k  + l)st-order spectrum ( k  > 1) which is the spec- 
trum of the (k  + 1)st-order cumulant sequence contains 
information regarding both the phase and magnitude of 
the Fourier transform of the system; and thus it has an 
advantage over procedures relying solely on the power 
spectrum in that perfect reconstruction is possible even 
when the system is nonminimum phase [lo]. 

Several methods utilizing cumulant statistics for the 
identification of NMP-LTI systems have been proposed 
in the literature (see, for example, [9]). Recently, Gian- 
nakis and Mendel [ 5 ] ,  and Tugnait [ 121 developed recur- 
sive and least squares identification methods by using the 
second-order statistics and a 1-D slice of the output cu- 
mulants. In this paper, we present new cumulant based 
identification methods by exploiting a much larger data 
set of output statistics. First, we propose a method that 
uses all samples of the second- and third-order cumulants 
to reconstruct the unknown system impulse response h (n).  
Second, we develop cumulant based identification meth- 
ods using the power spectrum and a 1-D slice of the bi- 
spectrum. 

The methods presented in this paper require solution of 
a system of linear equations. Identification methods that 
exploit all the relevant statistics and use nonlinear opti- 
mization techniques are developed in the literature; see 
[ 3 ] ,  [9], and [ 141. Nonlinear solutions are computation- 
ally expensive and may converge to a local minimum. 
However, the estimates obtained via nonlinear solutions 
are generally better than the estimates obtained via linear 
solutions provided that the first are properly initialized. A 
good linear method can provide such an initialization that 
not only may lead to global convergence but may reduce 
the computational complexity as well. 

An important problem in system identification is the de- 
termination of the system order. In this paper, this prob- 
lem is also considered. New procedures for determining 
the order of an FIR system using only the output cumu- 
lants are proposed. In order to demonstrate the effective- 
ness of our methods, various simulation examples are pre- 
sented. 

11. A FUNDAMENTAL RELATIONSHIP 
In this section, we derive a relationship between the 

second- and third-order spectra. This relationship is of 
fundamental importance because it is the basis of our sys- 
tem identification algorithms. 
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Let us assume that we are given the second- and third- 
order cumulants of the output sequence (in practice they 
can be estimated), then we can reconstruct the following 
2-D sequence 

Let us define the sequence g ( 7 , ,  Q )  such that 

where * denotes convolution operation. Equation (3) is 
the key equation for reconstructing h (n )  from the second- 
and third-order statistics. In the frequency domain, (3) 
becomes 

(4) 

where C2(w) and C3(w1, w2)  are the power spectrum and 
bispectrum, respectively. It is well known that the bi- 
spectrum is related to the system transfer function H ( w )  

( 5 )  
and the power spectrum is related to the system transfer 
function by 

by 

C 3 ( W I ,  w2) = P 3 H ( w l ) H ( W 2 ) H ( - W I  - w2) 

C2(0)  = P * H ( w ) H ( - w ) .  (6) 
By substituting ( 5 )  and (6) into (4), G(wl,  w2) can be writ- 
ten in terms of the system transfer function as 

(7) 

where E = p 3 / p 2 .  Bearing in mind (4) and taking the in- 
verse Fourier transform of both sides of (7), we obtain the 
relationship 

U 

q 

= c Eh(i)h(T2 - T~ + i)c2(71 - i )  (8) 

which relates the system response coefficients to the sec- 
ond- and third-order cumulants. Equation (8) is not new. 
It has been first derived in [3] and [12]. In the next sec- 
tion, we develop a new approach that exploits all the rel- 
evant statistics in  the solution of (8); and in Section IV, 
we use (7) in the development of new approaches for the 
identification of NMP-LTI systems using slices of higher 
order spectra. 

The basic equations used in [5] and [12] can be ob- 
tained from (8).  Giannakis and Mendel’s method utilizes 
the second-order statistics and the diagonal slice c3(7 ,  7) 
of third-order cumulants. By setting 71 = r2 = 7 in (8), 
we get 

i = 0 

4 4 

i = 0 i = O  
C h ( i ) c , ( ~  - i, 7 - i >  = C 6h2(i)c2(7 - i). (9) 

If we multiply both sides of (9) by 1 / ~ ,  the resulting 
equation is called Giannakis and Mendel’s equation or 
simply GM-equation. 

Tugnait’s method, on the other hand, utilizes the sec- 
ond-order statistics and the 1-D slice c3(q ,  7) of third- 
order cumulants. By setting T~ = q and r2 = 71 + q in 
(8), we obtain Tugnait’s equation (also called T-equation), 
that is, 

4 

i = O  
C h(i)c,(q,  i - 7) = Eh(O)h(q)C2(7) (10) 

where we have used the fact that c3(i, i + q) = c3(-i ,  
q) = c3(q ,  -i). It is of interest to note that while both 
methods utilize a l -D slice of third-order cumulants, (9) 
makes use of more correlation information than (10) does. 
Methods based on simultaneous use of both (9) and (10) 
are considered in [ 131. 

111. RECONSTRUCTION FROM THE SECOND- AND THIRD- 
ORDER CUMULANTS 

A .  Least Squares (LS) Method 
In this section, we develop least squares method for 

reconstructing the system impulse response coefficients 
( h ( i ) }  from the second- and third-order statistics of the 
output sequence y ( n ) .  The method is based on using (8). 
Concatenating (8) for 71, r2 E S ,  where S is a region shown 
in Fig. 1 ,  we obtain the following system of linear equa- 
tions: 

where 

r =  

d =  
dl = 

d2 = 

d = Mr (1 1) 

(h(1) . * * h ( q )  E Eh(1) * * Eh(q) Eh2(1) 
&(l)h(q)  * * Eh2(qf - (q2 + 5q + 2)/2 col- 
umn vector, 
( d l d 2 ) T  - 5q2 + 4q + 1 column vector, 
(c3( -q ,  -SI . * - c 3 ( - q ,  0) c3(-q + 1 ,  -4) 
* * * c 3 ( - q  + 1 ,  1) * - * c3(0, -4) . - 
c3(0, q) ) ,  
(c3(l, -q  + 1) * * c3(1, q) . * * c3(q. 0) 
* . * c3(q, q)  0 . . * 0) 

* * 

and M is a matrix of size (5q2 + 4q + 1) X (q2 + 5q + 
2)/2 whose entries are determined according to (8). The 
least squares solution of this overdetermined system of 
equations is 

r = ( M T M ) - ’ M T d .  (12) 

In solving (1 l ) ,  we assume without loss of generality that 
the impulse response has been scaled so that h ( 0 )  = 1 .  
The unknown coefficients h (l), h (2), * * , h (q)  can then 
be determined as the first q elements of the vector r .  This 
would be the end of the matter when there are no mea- 
surement noise and estimation errors. If this is not the 
case, we propose an alternative approach which exploits 
all the available information provided by the vector r .  
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and 

h,(n) = k 2 z I ( n )  0 I n I q + 1 (17) 

where k ,  and k2 are constants. By scaling the singular vec- 
tors zI and uI  so that z I  (0) = u i  (0) = 1, the unknown 
parameters E ,  h ( l ) ,  . - , h ( q )  can be determined from 
(16) and (17) in a straightforward manner. Alternatively, 
we could use the following expressions (which follow 
from (14) and ( 1  5)) to avoid division by a small value: 

I 
I 

Fig. I .  The region of set S 

First, we form the matrix R from the vector r as follows: 

. . .  

. . .  

. . .  

. . .  

. . .  

(13) 

It is clear from the structure of R that its rank is one. R 
can be written in the following form: 

R = h,hT 

h (n)  = z I  (0) V(0 ,  O)u l  (n)  0 I n I q (18) 

h,(n) = ul (0)V(O,  O)z l (n )  0 5 n I q + 1 .  (19) 

It is relevant at this point to mention that theoretically 
only one singular value of R is nonzero. In practice, due 
to noise and estimation errors, there may be many non- 
zero singular values, but only a single dominant one. In 
fact, when the number of realizations approaches infinity, 
this dominance will be more pronounced. 

Extension of the above described method to the fourth- 
order cumulant is provided in the Appendix. 

B. Uniqueness of the LS Solution 
The least squares method described in the previous sec- 

tion yields a unique (least squares) solution if the matrix 
M has full rank. In this section, we show that the matrix 
M is of full rank. Towards this objective, we first show 
that the unknown parameters { h  (i )} and {eh ( i )  h (72  - 71 
+ i)}, elements of the vector r,  can be uniquely deter- 
mined from (8) using a recursive algorithm. By setting T~ 
- r2 = -q in (8),  we obtain - 

where we have used h ( 0 )  = 1 .  Similarly, by setting T~ = 
-4,  we obtain 

The unknown impulse response sequence h ( n )  can now 
7 2  = -9 + 1, * * * , 0 be identified from the matrix R using one of the elegant 

techniques in numerical algebra; the singular value de- 
Eh(72 + q) = c,(-q, 72)  

c2(-q) 

(21) composition (SVD). That is, 

R = ZVUT 
(15) and 

where V is a diagonal matrix, the diagonal elements of 
which are the singular values of R .  The columns of the 

singular vectors of R ,  and the columns of the second 
unitary matrix U ,  that is, u i ,  u2, , uI  + q ,  are the right 
singular vectors of R .  Since R is of rank one, it follows 
that there is only one nonzero singular value, whose cor- 
responding singular vectors determine the impulse re- 
sponse. From the properties of the SVD, it can be shown 

~ 3 ( - q ,  72) - - c3(-q7 72) 

ec2(-q) c3(-q, -4) 
h(72 + 4) = 

unitary matrix Z ,  that is, ZI, z2, - . , z2 + q ,  are the left 

72 = -4 + 1, ' * , 0. (22) * 

The unknown Parameters (Eh(iIh(72 - 7 2  + i ) >  can be 
obtained from (8) as follows. First, we compute Eh2 (q) by 

7~ = 72 = 2q, that is, 
. -  

that [ 81 

h(n )  = k l u l ( n )  0 I n I q 
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Then, we use the following recursive formulas: 

Forn  = 1 to Lq/2) 

fh(n)h(7* + 4) 

71 = -4 + n 

and r2 = -q + n,  - . , 0 

- 5 th(i)h(7* - 71 + i ) C 2 ( 7 1  - i)) 
; = y - , , +  I 

T~ = 2q - n 

end 

where Lq/2) = 4 /2  if q is even, and Lq/2) = ( q  - 
1)/2 is q is odd. The above recursive algorithm computes 
{ h ( i ) }  and { t h ( i ) h ( ~ ~  - T~ + i ) }  independently. It only 
uses (8) for certain values of T~ and r2. It follows then that 
there are (q2 + 5q + 2) /2  linearly independent rows of 
the coefficient matrix M .  Since the number of linearly in- 
dependent rows equals the number of linearly independent 
columns, therefore the rank of the matrix M is (q2 + 5q 
+ 2)/2.  Alternatively, if the rank of the matrix M is less 
than (q2 + 5q + 2)/2,  then we have more than one so- 
lution for r .  But, from (20)-(25), we have only one unique 
solution for r .  Thus, we have a contradiction since all 
solutions of (1 1) must satisfy (20)-(25); therefore, the 
rank of the matrix M is (q2 + 5q + 2) /2 .  

C.  Robustness to Additive Noise 

In practical applications, the received signal is usually 
a noise corrupted version of the original one. In this sec- 
tion, we consider the signal model 

where d ( n )  is the received signal, and w ( n )  is an additive 
Gaussian noise. 

For Gaussian processes only, cumulants of order greater 
than two are identically zero. This property can be ex- 
ploited in estimating the third-order cumulants of noisy 
observations. Under the assumption that w ( n )  is inde- 
pendent of y ( n ) ,  the third-order cumulants of d ( n )  are 
equal to the third-order cumulants of y (n ) .  Symbolically, 

1.579 

This indicates that c3, ( T ~ ,  7 2 )  are not affected by additive 
Gaussian noise. The second-order cumulants, on the other 
hand, appear to be affected by presence of noise, because 

If the second-order cumulants of the additive noise are 
nonzero only for lags in the range 171 < i j  where 

(q/2) - 1 if q is even 
( q  - 1)/2 if q is odd (29) 

the recursive method developed in the previous section 
for reconstructing the unknown parameters { h  (i)} and 
{ ~ h ( i ) h ( ~ ~  - 71 + i)} from the second- and third-order 
cumulants will not be affected by presence of noise since 
it uses samples of c2,,(7) for which 4 < 171 5 q. Conse- 
quently, uniqueness and consistency of the LS solution 
will remain unaffected if the rows of the matrix M which 
contain the samples of c2,, (7) are removed. 

IV. RECONSTRUCTION FROM THE POWER SPECTRUM 
AND A 1-D SLICE OF THE BISPECTRUM 

Another possible approach to reconstructing h (n) from 
the output data { y ( n ) }  is to use slices of higher order 
spectra [ l ] ,  [2]. In this section, we present recursive and 
least squares methods for reconstructing h ( n )  from the 
power spectrum and a 1-D slice of the bispectrum. The 
methods utilize the 1-D slice corresponding to wI = w2.  
By substituting wI = w2 = w in  (7), the following rela- 
tionship results: 

Multiplying both sides of (30) by C2(2w)H(2w), we ob- 
tain 

(3 1) H(2w) c, (U,  w )  = EH2 (a) c, (2w). 

In the time domain, (31) takes the form 

2u 20 
- I  

r C = o  h l ( i ) c ’ (7  - i )  = r = O  c th2(i)s’(7 - i )  (32) 

where 

Equation (32) is the basis for our recursive and least 
squares methods. 
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A .  Recursive (RC) Method 
Since h (n) is nonzero only over 0 < n < q, the length 

of the sequence c’(7) is 4q + 1 where -2q I 7 < 2q. 
Now, the parameter E can be computed from (32) by set- 
ting 7 = -2q. That is 

c2(7)  and the phase sensitive statistic c’(7) as follows: 

For n = 1 to q 
term 1 = C:=,h,( i )c’(-2q + n - i) 
term 2 = ~ ~ : ~ , , ‘ h , ( i ) s ’ ( - 2 q  + n - i )  
h,(n) = (term 1 - term 2) / c ’ ( -2q )  
h (n )  = (h2 (n )  - C : Z : h ( i ) h ( n  - i ) ) / 2  e‘ ( - 2 4  

(33) end 
E = -  

where we have used h ( 0 )  = 1 .  Once we obtain E ,  we can 
proceed to compute the first parameter h (1) by setting 7 
= -2q + 1 .  By doing so, we obtain 

The above algorithm is well conditioned in the sense 
that all divisions are done through c2 (-4) and c‘ ( -2q)  
which are nonzero for an MA (q) model. 

c’(-2q + 1 )  c ’ ( -2q + 1) 
. (34) B. Least Squares (LS) Method - - h,( l )  = 

ec,(-q) c’ ( - 2 4  
The recursive method presented in the previous section 

Since we know that introduces propagating errors when the initial estimates 
of h (n) are inaccurate; in addition, it does not smooth out 

lems, we develop in this section a least squares solution 
for (32). Generally, (32)  can be written in a matrix form 

4 

i = O  

the effects of measurement noise. To avoid such prob- 
h2(n) = h(n)  * h ( n )  = h ( i ) h ( n  - i ,  (35) 

therefore as follows: 

h(1) = i h 2 ( 1 ) .  (36) d = Db (37) 
where 

d = (c’(-2q) ~ ’ ( - 2 q  + 1) . . . c’(2q) 0 * - * O)T  - 6q + 1 

b = (h (1 )  * h(q) E ~ h 2 ( 1 )  ch2(2) . ch2(2q))T - 3q + 1 column vector 

column vector 

D - (6q + 1 )  x (3q + 1 )  matrix 

D =  

0 . . .  . . .  0 -st ( -2q)  0 P 
0 0 . . .  0 -s’(-2g + 1 )  -s’(-2q) . . .  

. . .  0 --s’(-2q + 2)  -s‘(-2q + 1) * * * c’(-2q) 

c’(-2q + 1) * 0 -s’(-2q + 3 )  -s’(-2q + 2)  * * . * 

c’(2q - 2)  * * * c’(0) -s’(2q) -s’(2q - 1) . . * -S’(O) 

-s f (  1) c’(2q - 1 )  * c’(1) 0 -s’(2q) 
-s’(2) c’(2q) . . .  c’(2) 0 0 

. . .  

. . .  

. . .  c’(3) 0 0 . . .  c’(3) 0 0 . .  . 

-s’(2q - I )  

. * * c’(2q) 0 10 0 . .  - 

Similarly, by setting 7 = -2q + 2,  we can compute h2(2)  
from which we can get h(2 ) .  In general, the unknown 
parameters of the MA model described by (1) can be re- 

The least squares solution of this overdetermined system 
of equations is 

covered recursively from the magnitude sensitive statistic b = ( D ~ D ) - ] D % .  (39) 
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Once we obtain 6 ,  the sequence h(n )  can be recovered 
from the first q elements of 6 .  That is, h ( n  + 1) = b(n)  
for 0 5 n 5 q - 1; or it can be recovered from the laser 
2q + 1 elements of b using recursive and nonrecursive 
methods. If we define z to be as follows: 

and q = Eh(O)h(q). Combining (37) and (43) yields 

= ( 0 6 ? + I ) x l  D' 
0,2q + 1 )  x (2q + I )  ) (;) (45) 

where 

z = (1 b(q  + l)/b(q) * b(3q>/6(q))T (40) matrix whose entries are 
OM - A' identically zeros. then 

h (n)  = 5 - ' [5 [z (n)]  1; z (0) = 1 (41) The coefficient matrix of the above system of linear equa- 
tions is a full rank matrix, since the elements: q, { h  ( n ) } ,  
and {eh2(n)) of the unknown vector of (45) can be recur- 
sively determined from (10) and (32) as shown below. 

T = q in (lo), respectively: 

or recursively 

(46) 

First, we compute 7 and h(q )  by setting 7 = -4 and 

(47) 

c3(q, 4) 
c2 (4) 

vc2 (4) 
h(q)  = ~ 

c3(0, 4) '  

r = -  (42) 

may lead to numerically unstable solution (very high 
magnitude of the estimated coefficients) if Ib(q)l (=  It/) 

I1 - 1 

h(n)  = z(n> - .C h( i )h (n  - i )  2 1 5 n 5 q ( r = l  

where h(0)  = 1. Let us, however, note that using (40) 

is to be severely underestimated. 
Once q is determined, the unknown MA coefficients 
{ h ( n ) }  can be recovered from (10) as follows [12]: 

Forn  = 1 to Lq/2J n - ,  
C. Modijied LS Solution 

The uniqueness of the LS solution of (39) is guaranteed 
h(n )  = (qc2(q - n)  - C h( i )c , ( i  + q provided that the matrix D has full rank. However, it is , = n  

not straightforward to show that D is of full rank. First, 
the matrix D is not in one of the standard forms that can 
be easily analyzed. Second, the recursive method devel- 
oped in Section IV-A cannot be used in analyzing the rank 
of D, since it used (32) in addition to (35). 

In the following, we present a modified version of the 
above LS method. This modification, which is very much 
like the approach given in [ 131, will enable us to analyze 
the rank of the coefficient matrix provided that q is the 
true system order. Concatenating (10) for (71 5 q,  we 
obtain 

(43) 

. "  

- n ,  4))/c3(q7 9 )  

h ( q  - n)  = (qc2(q - n)  - C h( i ) c3  
i = q - - n +  I 

(i  - q + n,  q))lc3(q, q) 
end 

Similarly, the unknown coefficients {eh2 (n ) }  can be re- 
covered from (32) as follows. First, we compute E as in 
(33), and eh2(2q) by setting T = 4q in (32). That is 

where 

b' = (q h(1) h(2) . h(q))T - (q  + 1) column vector 

d' = ( -c3(q ,  q) - c,(q, q - 1) - * -c3(q, 1) 0 . * * O)T - (2q + 1) column vector 
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Then, we use the following recursion: 

For n = 1 to q 

term1 = Cr=oh,( i )c‘(-2q + n - i )  

term2 = C : ’ Z J E ~ ~ ( ~ ) S ’ ( - - ~ ~  + n - i )  

eh2@) = (term1 - term2)/c2(-q) 

term1 = ~ ~ , ~ ~ ~ h ~ ( i ) c ’ ( 4 q  - n - i )  

term2 = C ; Z 2 4 - n - I ~ h 2 ( i ) ~ ’ ( 4 q  - n - i )  

Eh2(2q - n)  = (term1 - term2)/c2(q) 

end 

From the above recursive algorithms, it follows that 
there are (3q + 2) linearly independent rows of the matrix 

which implies that there are (3q + 2) linearly independent 
columns. Therefore, the matrix B is of full rank. Alter- 
natively B can be rewritten as 

where D,., and 0, are matrices of size (6q + 1) X (q  + 
1) and (6q + 1) X (2q + l ) ,  respectively. The matrices 
0, and D ’  are full rank matrices. Therefore, the matrix B 
is of full rank. 

D. Robustness to Additive Noise 

tionships (32) and (10) take the forms 
In the presence of additive Gaussian noise, the rela- 

20 

+ s:,.(7 - i)} (51) 

where we have used (26)-(28). To obtain consistent pa- 
rameter estimation, (51) should not be used for 0 I 7 5 
2q if w ( n )  is a white Gaussian noise, and for -2q 5 7 5 
2q + 2q if w ( n )  is a colored Gaussian noise with 

Similarly, (52) should not be used for 7 = 0 if w ( n )  is a 
white Gaussian noise, and for 171 I Z j  if w ( n )  is a colored 
Gaussian noise whose second-order cumulant is given by 
(53). 

The recursive method developed in Section IV-A uti- 
lizes (32) for lags in the range -2q 5 7 I -9. And the 
recursive method developed in Section IV-C utilizes (10) 
for lags in the range 171 > q, and (32) for lags in the range 
-2q I 7 I -q and 3q 5 7 5 4q .  Therefore, they are 
not affected by presence of a Gaussian noise with a sec- 
ond-order cumulant as in (53). As a consequence, the LS 
solution of (45)  will also remain unaffected if the rows of 
B that contain the samples of ~ ~ ~ ( 7 )  are removed. In con- 
trary, the LS solution of (37) is affected by presence of a 
colored Gaussian noise. It can only handle a white 
Gaussian noise, and that is by removing 2q + 1 rows of 
the matrix D which contain the sample c2,,,(0). 

V. PROPERTIES OF THE NEW METHODS 
In this section, we present the properties of the NMP 

system reconstruction methods described in Sections I11 
and IV. 

1 )  There is a close relationship between the LS solution 
of Sections I11 and IV. Specifically the matrix R can be 
decomposed into two matrices as shown below: 

= (3 
where 

R I  = (1 h(1) h(2) . . . h(q) )  - q + I row vector 

R2 - (q  + 1) x (q  + 1) matrix 

Eh(2) * * . 

* . .  . . .  

(54)  

(55 )  
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By projecting the elements of the matrix R2 onto its di- 
agonal, we can form the following vector: 

U = ( E  2 ~ h ( l )  e (h2(1)  + 
. * * 2 ~ h ( q  - l ) h ( q )  

Examining (56) ,  it is clear that 
n 

v(n)  = C ~ ~ ( i ,  n - i) 

= E (h (n )  * h ( n ) )  = 

i = O  

where v(0 )  = R2(0, 0) = E ,  and u(2q)  = R 2 ( q ,  q) = 
Eh2 ( 4 ) .  

2) Instead of applying the SVD to the matrix R given 
by (13), we could have applied it to the matrix R2 given 
by (55) .  R2 has rank one and can always be written as 

R2 = h,ha 

In theory, n ) } ,  { k @ ) / h , ( O ) ) ,  and { h , ( n ) )  are 
identical. In practice, due to noise and estimation errors, 
they are different; and as such, we have three candidates 
to the unknown coefficients ( h  ( n ) } .  They are 

h'"(n) = R(0,  n )  

h'2'(n) = h,(n) 

h'3'(n) = h, (n ) /h , (O)  0 5 n 5 q. (59) 

To choose one candidate out of the others, we select h(')(i 
= 1, 2, 3 )  which minimizes the squared differences be- 
tween the observed cumulants and the cumulants of the 
proposed model. 

3) It is possible to remove the redundancy present in 
the unknown parameters of (1 1 )  and (37). Consider, for 
instance, the LS method of Section 111. Multiplying both 
sides of (7) by H ( w ,  + w2) and taking the inverse Fourier 
transform, we obtain 

9 

i = O  
h ( i ) g ( T I  - i, 7 2  - i) = ~ h ( ~ I ) h ( 7 2 )  (60) 

where g(71, 72) = 5-l[G(wl, w2) ] .  The right-hand side 
of (60) is nonzero only in the region 0 cc 71, 7 2  5 q. If 
71, T~ < 0 or 71, 7 2  > q, (60) reduces to 

4 

h ( i ) g ( 7 ,  - i ,  7 2  - i) = -g(71, T ~ )  (61) 

where we have used h ( 0 )  = 1. The above equation can 
be written in a matrix form and then be solved for the 
unknown parameters h ( l ) ,  h ( 2 ) ,  * * . , h ( q ) .  Let us, 
however, note that the solution so obtained is affected by 
presence of additive Gaussian noise since it uses all sam- 

i =  I 

1583 

ples of the second-order cumulants. In addition, H ( z )  
should not have zero(s) on the unit circle. 

4) The RC and LS methods in Section IV can be ex- 
tended in a straightforward manner to the fourth-order 
spectra. If C4(w, w ,  w) is the l-D slice of the fourth-order 
spectrum, G(w) will be related in this case to the system 
transfer function H ( w )  by 

where G(w) = C4(w, w, w)/C2(3w), and C2(3w) is the 
Fourier transform of the sequence 

c2 (7/3) if 7 = integer 

otherwise. 
(63) 3 

39 

L s'(7) = 

In the time domain, (62) takes the form 
3q 

i = O  C h , ( i ) c ' ( 7  - i) = i - 0  c e h 2 ( i ) s ' ( 7  - i) (64) 

where 

h l  (n)  = 5 - I  [H(3w)]  

h2 (n)  = 5 - I  [ H 3  (a)] 

c'(7) = 5 - '  [C4(0, 0,  a)]. 

Equation (64) resembles ( 3 2 ) .  Therefore, it can be solved 
in a procedure similar to that in Section IV using recursive 
and least squares methods. Extension of (IO) to the fourth- 
order cumulants is straightforward and is given by [ 121 

9 

h ( i ) c , ( q ,  q, i - 7 )  +'c2(7). (65) 
I = o  

VI. SYSTEM ORDER DETERMINATION 
In this section, we address the problem of system order 

determination using cumulant statistics. Knowledge of the 
system order is of utmost importance to many system 
identification algorithms. In [6], two methods were sug- 
gested for determining the order of an FIR system using 
the third-order cumulants. The methods are based on vis- 
ual inspection and statistical tests. In the former, one 
searches for the order q for which c3(q, 0) # 0 and c3(q  
+ 1 ,  0) = 0; and in the second, one tests the null hy- 
pothesis that the FIR order is q when ( c3 (q  + 1, 0) (  < t, 
by computing 

Pr { ( c 3 ( q  + 1, O)( 5 t,.] 

1 f< 

exp (-c2/2a2) dc = 1 - eo (66) 

for a given probability of error eo,  where a2 is the variance 
of the random variable c 3 ( q  + 1, 0) and t ,  is a threshold. 
Obviously, the first method is impractical, while the sec- 
ond is dependent on statistics of a single random variable 

- 
- 37 s-,. 

c3(q + 1, 0). 
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In the following, we propose a new procedure for de- 
termining the order of an FIR system using the second- 
and third-order cumulants of the output sequence. The 
method presented depends neither on visual inspection nor 
on statistical tests. In addition, it utilizes a much larger 
data set of output statistics than does (66). 

It is well known that the third-order cumulants of an 
FIR system are identically zero for lags outside the region 
defined by -q I T ~ ,  r2 I q (see Fig. 2 for an exact 
definition). From (lo), the unknown impulse response 
h(n )  of an FIR system is related to the second-order cu- 
mulants c2 (7) and the 1-D slice c3 (4, 72)  of the third-order 
cumulants ~ ~ ( 7 1 ,  72) by 

4 

h( i ) c3 ( i  - 7, q) = vc2(7).  (67) 
i = O  

Equation (67) can be rewritten in a matrix form as 

(68) d ‘  = D’b’  

where d ’ ,  D ‘ ,  and b‘ are defined as in (43). 

cumulants can be computed as follows [9]: 
If p3 = 1 and q is the true system order, the third-order 

4 

r = O  
C;(71, r2,  q) = ,E h( i )h ( i  + ~ ~ ) h ( i  + 72) (69) 

where C ; ( T ~ ,  r2; q) denotes the third-order cumulants 
computed by using the estimated impulse response coef- 
ficients h(1) * h(q )  obtained from solving (68). 

Let us now define the function e ( T ~ ,  r2; q’) as follows: 

e(71, 72;  4’) = c3(71, 7 2 )  - c;(71, 7 2 ;  4’). (70) 

Theoretically, e(T1,  72;  q’) should be zero when q’ = q. 
The system order determination algorithm that we pro- 
pose is based on the following steps: 

1) From the given data, compute the second-order cu- 
mulants c2 (7; p )  in the region defined by 0 I 7 I p where 
P > 4. 

2) From the given data, compute the third-order cu- 
mulants c3(71, 72;  p )  in the region bounded by the lines 
7l = 0, and 71 = T ~ ;  0 I T ~ ,  r2 I p .  

3) From (68), compute the unknown coefficients h(1) 
h(q’)  assuming the order of the system is 4’; 1 I q’ 

4) Find the value of q’ which minimizes the following 
I p .  

performance measure: 
D 71 

a’ 7 1  

r, 71 

1 I q’ I p .  (71) 

Note that C ; ( T ~ ,  r2; q’) = 0 for T~ > q’. Theoretically, 

t T 2  a /  

Fig .  2 .  The region of support of third-order cumulant of an MA(y)  
system.  

E(q’ ,  p )  = 0 when q‘ = q. In practice, due to noise and 
estimation errors, E ( q ,  p )  # 0 but of minimum value. In 
deriving the above algorithm, we have used p3 = h(0 )  = 
1. If h(0)  # 1 (or p2 # l ) ,  the sequences c3(71, 72) and 
C ; ( T ~ ,  72)  should be properly scaled to ensure that e(71,  
r2; q) = 0 when C ~ ( T ~ ,  T ~ )  is the true cumulant sequence. 
One possible approach to doing this is to normalize c3 ( T ~ ,  
T ~ )  and c; ( T ~ ,  72) by their zero samples at the origin. The 
samples c3(0, 0) and ci(0, 0) should not in this case be 
equal to zero. 

The above described algorithm is affected by presence 
of additive Gaussian noise since it utilizes the second- 
order cumulants. However, if the second-order cumulants 
of the additive noise are nonzero only for lags in the range 
(71 5 Zj, the effect of the noise can be eliminated by de- 
leting the rows of the matrix D corresponding to 171 I 9. 
The matrix D so modified remains of full rank [ 121. 

Instead of computing c; ( T ~ ,  r2; q) using the second- and 
third cumulants, we could have computed it using the 
third-order cumulants only. In [4], a relationship between 
the system impulse response h(n )  and the 1-D slice c3(q ,  
72) has been derived. This relationship is given by 

By substituting (72) into (69), we obtain 

(73) 

Equation (73) is useful when the output data is contami- 
nated by additive, colored Gaussian noise with unknown 
statistics. 

It is relevant at this point to mention that the system 
order determination algorithm described above can be ap- 
plied to AR(q)-type processes, as well. If { y ( n ) )  corre- 
sponds to an AR(q) model of order q,  then its inverse 
statistics correspond to an MA (q )  process. To see this, let 
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B(w,, w2)  denote the bispectrum of an AR(q) process de- 
scribed by 

Then 

where H ( w l ,  w2) is the bispectrum of h(n) .  The inverse 
bispectrum of y ( n )  is the bispectrum of h (n )  scaled by y 
= 1/&. That is, 

By computing the finite extent third-order cumulants of 
h (n)  which is the inverse Fourier transform of H(wl,  w z ) ,  
the algorithm of this section can be applied to determining 
the unknown order q. It is relevant at this point to notice 
that the third-order cumulants of h ( n )  can also be com- 
puted from the third-order cumulants of y ( n )  using a set 
of linear equations [ 1 1 ] : 

(77) 

where (77) is derived by computing the inverse Fourier 
transform of both sides of the equation B(wl,  w 2 ) H ( a I ,  
w2) = &. Equation (77) can be written in a matrix form 
and then solved for the unknown cumulant samples of h (n)  
for lags in the region 0 I r l ,  r2 5 q and r ,  5 r2. 

VII. SIMULATION EXAMPLES 

A .  System IdentiJcation 

generated by the signal model [ 121 : 
In this simulation example, the available data { d ( n ) }  is 

+ 3.02x(n - 3) 

- 1 . 4 3 5 . ~ ( ~  - 4) + 0 . 4 9 ~ ( n  - 5 )  + ~ ( n )  

where the input signal x (n )  is zero-mean exponentially 
distributed i.i.d. noise generated by the GGEXN subrou- 
tine of the IMSL library with f13 = 1 .  The zeros of the 
unknown system transfer function H ( z )  are located at -2 ,  
0.7 j0.7, and 0.25 +_ j0.433. The signal w ( n )  is an 
additive noise which is zero-mean white Gaussian process 
generated by the GGNML subroutine of the IMSL li- 
brary. 

Three different lengths of output data was used in this 
study: N = 1024, 2048, and 4096. The impulse response 
coefficients of the unknown system were computed for 100 
output realizations at signal-to-noise ratio (SNR) = 03 
(noise-free case) where SNR = E{ y * (n)  ] / E  { w ( n )  1. 
Besides the noise-free case, the impulse response coeffi- 
cients were also computed for N = 4096 at SNR = 100 
and I O .  The second- and third-order cumulant sequences 
were computed using the indirect estimation method de- 
scribed in [ 101. For each run, we also calculated the mean 
squared error (MSE) defined as 

where h ( n )  and h,(n) are the true and reconstructed im- 
pulse responses, respectively. Tables 1-111 show the mean 
values and standard deviations of the various parameters 
when the LS solutions of Section 111-A (LS-I), Section 
IV-C (LS-U), and Tugnait’s method [I31 (LS-T) are em- 
ployed. For the noisy cases, rows of the coefficient matrix 
that contain the sample cZd(0) are removed. Based on the 
results obtained, we observe that: i) LS-I1 has lower MSE 
than LS-T, and ii) the estimates obtained via LS-I are gen- 
erally better (in terms of variance and MSE) than the es- 
timates obtained via LS-I1 and LS-T. This is, however, 
expected since the data set of output statistics exploited 
by LS-I is much larger than the data set of output statistics 
exploited by LS-I1 or LS-T; for example, LS-I utilizes all 
slices of third-order cumulant whereas LS-T utilizes only 
two slices of it. 

B. Order Determinution 
In this section, we present an example demonstrating 

the use of the order determination algorithm described in 
Section VI.  Seven independent realizations were gener- 
ated using the signal model [6]: 

d ( n )  = X ( H )  + 0 . 9 , ~ ( ~  - 1 )  + 0 . 3 8 5 ~ ( n  - 2) 

where x ( n )  and w ( n )  are defined as in (78). Table IV 
shows the value of E(q’ ,  p )  computed at q’ = 1, 2, . . . , 
5 ;  with p = 5 ,  SNR = 10, and N = 1024. Based on the 
results obtained, it is clear that E ( @ ,  p )  attains its mini- 
mum when q’ = q = 3. 

In order to illustrate the effectiveness of our algorithm, 
100 Monte Carlo runs for determining the order of the 
system described in (80) were performed at SNR = 10 
and N = 512, 1024, 2048, and 4096. Table V shows the 
number of successful selections of the MA order when the 
algorithm of Section VI was implemented using (69) and 
(73). For comparison, the Giannakis-Mendel’s algorithm 
[6] was also tested using the same data. The parameter E” 

was fixed to 0.05 and the variance o2 was computed as 
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TABLE I 
THE RECONSTRUCI-ED IMPULSE RESPONSE OF THE SIMULATION EXAMPLE USING LS-I A N D  100 MON.I t, CARLO RLss ( p = MEAN. U = STANDARD 

DEVIA.TION, A N D  MSE = MEAN SQIJARBI)  ERROR) 

SNR = m N = 4096 

N = 1024 N = 2048 
True 
Value P U P U 

0.100 -0.0196 0.2407 -0.1294 0.2284 
- 1.870 -0.7005 0.4349 -0.9627 0.4099 

3.020 1.3730 0.6648 1.8499 0.5575 

0.490 0.2182 0.1137 0.2950 0. I043 
- 1.435 -0.7510 0.3224 -0.9748 0.2430 

N = 4096 

P U 

-0.1251 0.2259 
- 1.2402 0.3934 

2.2705 0.4670 

0.3455 0.0820 
-1.1461 0.1641 

SNR = 100 SNR = 10 

P U P U 

-0.1025 0.1688 -0.0873 0.1973 
-0.8926 0.4207 -0.8150 0.4255 

1.2265 0.5742 1.0992 0.5530 

0.1137 0.0994 0.0943 0.0930 
0.4930 0.3096 -0.4281 0.2741 

MSE 0.3431 0.2246 0. I940 0. I677 0.0984 0.1004 0.3690 0.2159 0.4151 0.2168 

TABLE I1 
THF RECONSrRLlCrED IMPULSE RFSPONSF OF T H F  SIMULATION EXAMPLE U T I N G  LS-11 A N D  100 MOhTF CAR1 0 R U N T  ( p  = MFAN. U = S I  4 h D A R D  

DEVIATlOh, A N D  MSE 1 MFAN S Q l J A R F D  ERROR) 

SNR = m N = 4096 

N = 1024 
True 
Value P U 

0.100 0.2839 0.7190 

3.020 1.7987 0.6245 

0.490 0.0031 0.4167 

-1.870 -1.3817 0.7001 

- 1.435 -0.4836 0.5523 

N = 2048 N = 4096 SNR = 100 SNR = 10 

P U 

0.2453 0.6807 

2.1656 0.5477 

0.0999 0.3813 

- I 3 7 7  0.5620 

-0.7231 0.5478 

P U 

0.2578 0.621 1 

2.5424 0.3890 

0.2215 0.3487 

- 1.7870 0.4328 

-0.9542 0 4992 

P U 

1.2010 0.7356 

1.3117 0.0395 

0.1908 0.2047 

-0.5068 0.9958 

-0.5989 0.5070 

P U 

I .  I615 0.7285 

1.2876 0.9961 

0.1780 0.2238 

-0.5222 0.9731 

-0.5564 0.5083 

MSE 0.2991 0.2143 0.1883 0.1682 0.1034 0.1163 0.6066 0.4086 0.6005 0.3785 

TABLE I11 
THE RECONSTRUCTED IMPULSE RESPONSE OF T H ~  SIMULATION E X A M P L ~  USING LS-T A N D  100 M O N I I  CARLO RUNS ( p  = M E A N ,  U = STANDARL) 

D E V I A ~ - I O N ,  AND MSE = MEAN S Q U A R ~ D  ERROR) 
_ _ _ _ _ _ _ _ _ _ _ ~  

SNR = CO N = 4096 

N = 1024 N = 2048 N = 4096 SNR = 100 SNR = 10 
True 
Value P U I* U P U P U P U 

0.100 -0.2909 0.5064 -0.1873 0.5773 0.0027 0.5502 0.6468 0.6362 0.5328 0.5381 

3.020 0.8711 0.6721 1.2669 0.7381 1.7313 0.6618 0.8240 1.0982 0.7267 1.3145 

0.490 0.0342 0.2639 0.1012 0.3018 0.1437 0.2724 0.2223 0.2169 0.2127 0.1845 

MSE 0.6095 0.3519 0.4681 0.3351 0.2956 0.2823 0.7107 0.4646 0.7569 0.4912 

-1.870 -0.5784 0.6101 -0.8704 0.6552 -1.2176 0.6145 -0.3376 0.9576 -0.3988 1.0141 

-1.435 -0.1518 0.5276 -0.2877 0.6739 -0.4393 0.5687 -0.491 I 0.5839 -0.431 I 0.5603 

TABLE IV 
SYSTEM ORDER DETERhllNATlON USING SEVEN INDEPENDENT 

REALIZATIONS WITH p = 5. SNR = 10. A N D  N = 1024 

E ( 4 ' .  p )  

TABLE V 
P E R b O R M A N C t  EVALUA rlON Ob SYSThM O R D E R  DETFRMINATION 

ALGORITHMS W I T H P  = 5 ,  SNR = 10. A N D  100 MONTE CARLO RUNS 

4' Run-I Run-2 Run-3 Run-4 Run-5 Run-6 Run-7 Number of Successful Selections 

1 1.4200 1.0365 1.5786 1.6723 1.6873 2.7133 1.9147 
2 2.7602 1.6311 2.7367 3.9544 3.0917 4.3189 3.2453 
3 0.3767 0.3671 0.1238 0.3711 0.1375 0.5422 0.3347 
4 2.2084 1.5434 2.8321 1.0652 2.8356 2.3786 3.1369 
5 2.3805 2.8165 1.5221 1.9823 0.3146 3.8384 5.2588 

Approach N = 512 N = 1024 N = 2048 N = 4096 

Eq. (69) 83 85 96 100 
Eq. (73) 84 91 93 99 

161 I I  30 52 74 
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follows: 

* [ d ( i ) d ( i  + T1)d( i  + T ~ )  - ~ ~ ( 7 ~ .  T ~ ) ]  

[d( i  + j ) d ( i  + j  + T 1 ) d ( i  + j  + 
- c3(71, 72)l 

T~ = q + 1 and 72 = O  (81) 

where c3 ( T ~ ,  72) is the observed third-order cumulant. The 
results of this simulation example are shown in Table V. 

From Table V, we observe that the Giannakis-Men- 
del’s algorithm deteriorates when N is small. For N = 
512, the algorithm picked the correct order only 11 times, 
as opposed to the algorithm of Section VI (69), which was 
successful 83 times. For N = 1024, 2048, and 4096, we 
also observe that the new methods outperform the Gian- 
nakis-Mendel’s approach. Performance of the two new 
methods described in Section VI are comparable to each 
other. 

VIII. CONCLUSION 
In this paper, new methods for the identification of non- 

Gaussian white-noise-driven NMP-LTI FIR systems are 
proposed. Recent developments on NMP-LTI FIR system 
identification include works by Giannakis and Mendel [5], 
and Tugnait [12], [I31 who considered FIR parameter es- 
timation using the second- and one-dimensional (1-D) 
slices of output cumulants. In this paper, we show how to 
solve this problem using the second-order and all samples 
of third-order cumulants in an appropriate domain of sup- 
port. Identification methods using the second-order cu- 
mulants and the diagonal slice of bispectrum are also de- 
veloped. It is shown that the methods presented yield 
consistent parameter estimation in a class of colored 

APPENDIX 
The least squares method presented in Section 111-A can 

be extended to the fourth-order cumulant. The function 
G(wl, 02, w3)  can be expressed in terms of the system 
transfer function as follows: 

c4(w1, w 2 ?  w 3 )  
G(wi, ~ 2 ,  ~ 3 )  = 

C 2 ( W I  + U2 + w3) 

H(w1 + U2 + w3) 
E H ( W 1 )  H(a2) H ( W 3 )  (82) - - 

where E = p4/& and C 4 ( ~ 1 ,  w2,  w 3 )  is the trispectrum of 
the system output. Multiplying (82) by C2(wl + w2 + 
w 3 ) H ( w l  + w2 + w 3 )  and taking the inverse Fourier trans- 
form, we find 

4 

C h ( i ) ~ 4 ( 7 1  - i ,  72 - i ,  T3 - i )  
i = O  

4 

i = O  
= C eh(i)h(T2 - 71 + i )h (T3 - 71)c2(71 - i). 

(83) 

From (83), we can form an overdetermined system of lin- 
ear equations whose unknown vector r is given by 

r = (h, WO h( l ) r l  . * * h(q)rJT (84) 

where 

ho = h(2)  * h(q)) ,  

r, = (Eh2(i) Eh(i)h(i  + I )  Eh(i)h(q)  

eh2(i + 1) ch(i  + l)h(q) - * Eh2(q)), 

h(0) = 1 and i = 0, 1, 2, - * , 4. 

Once the vector r is determined, the matrix R is formed 
as follows: 

1 Eh(1) E h ( l ) h ( l )  . . . & ( l ) h ( q )  Eh(1)h2(1) dZ2(1)h(q) * * &(l)h2(q)  
R =  . .  

\ :  . .  . .  

The matrix R has rank one, and can be written as Gaussian noise. Both recursive closed form and batch least 
squares versions of the parameter estimators are pre- 
sented. Extension of these methods to the fourth-order cu- 
mulants is also addressed. 

A relevant problem in parametric modeling of higher 
order statistics is the determination of system order. In 
this paper, two new methods for determining the order of 
an FIR system using only output cumulants are also pre- 
sented. The first method utilizes the second- and third- * * h ( l ) h ( q )  . * * h2(q)).  (86) 
order cumulants, whereas the second method utilizes the 
third-order cumulants only. It is shown by computer sim- The vectors hl and i can be determined from R using the 
ulation that our system order determination algorithms SVD. 
outperform the existing cumulant based algorithms [6]. A matrix R can also be formed from the elements of the 

(1 h(1) . . * h(q) h2(1) R = h 1 3  = 

eh (9) 
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vector i as follows: 

h2 (4) 

(87) 

hr  1. 1 h ( l )  h ( 2 )  . * * 

R = (  h ( 1 )  : h2(1) h ( l ) h ( 2 )  . * * h ( l ) h ( q )  

h ( q )  h ( q ) h ( l )  h ( q ) h ( 2 )  * * * 

By applying the SVD to the matrix R,  we find 

( 1  h(1) * * h(q)). (88) Saleh A. Alshebeili (S’89-M’91) received the Ph D. degree from the Uni- 
He is currently with King Saud University, versity of Toronto in  1991 

Saudi Arabia 

R = h2h3 = ( + )  
h (4) 

Therefore, by using the fourth-order cumulant, four can- 
didates to the unknown system impulse response { h ( n ) }  
are obtained. They are: {ho(n ) } ,  { h ,  ( n ) / h l  (O)}, { h 2 ( n ) } ,  
and { h , ( n ) } .  With the exact knowledge of second- and 
fourth-order cumulant samples, all the candidates are 
identical. The uniqueness of the (least squares) solution 
is guaranteed, since the coefficient matrix of (83) is of full 
rank. This follows from the fact that the unknown param- 
eters { h ( n ) }  and ( ~ h ( i ) h ( 7 ~  - T~ + i ) h ( T 2  - 71 + i)} 
can be uniquely determined from (83) using procedures 
analogous to those of the third-order cumulant described 
in Section 111-C. 
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