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ABSTRACT

GRAPH PROBLEMS IN CALL MODELS AND
SWITCHING NETWORKS

Abdullah Atmaca

Ph.D. in Computer Engineering

Advisor: Cevdet Aykanat

Co-Advisor: A. Yavuz Oruç

August 2018

In the first part of this dissertation, we focus on graph problems that arise in call

models. Such models are used to study the combinatorial properties of certain

types of calls that include unicast, multicast, and bicast interconnections. Here

we focus on bicast calls, and provide closed-form expressions for the number of

unlabeled bicast calls when either the number of callers or number of receivers

is fixed to 2 or 3. We then obtain lower and upper bounds on the number of

such calls by solving an open problem in graph theory, namely counting the

number of unlabeled bipartite graphs. Next, these results are extended to left

(right) set labeled and set labeled bipartite graphs. In the second part of the

dissertation, we focus on wiring and routing problems for one-sided, binary tree

switching networks. Specifically, we reduce the O(n) time complexity of the

routing algorithm for the one-sided, binary tree switching networks to O(lg n). We

also present a new wiring algorithm for one-sided, binary tree switching networks.

Finally, an algorithm is presented to locate the cluster in which the terminals of

the corresponding one-sided binary tree switching network are paired. The time

complexity of this algorithm is shown to be O(lg n).

Keywords: Bipartite graphs, Polya’s counting theorem, cycle index polynomial,

switching networks, call models.
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ÖZET

ÇAĞRI MODELLERİ VE ANAHTARLAMA
AĞLARINDA ÇİZGE PROBLEMLERİ

Abdullah Atmaca

Bilgisayar Mühendisliği, Doktora

Tez Danışmanı: Cevdet Aykanat

İkinci Tez Danışmanı: A. Yavuz Oruç

Ağustos 2018

Bu tezin ilk bölümünde, çağrı modellerinde ortaya çıkan çizge problemlerine

odaklanılmaktadır. Bu tür modeller, tekli çağrı, çoklu çağrı ve karşılıklı çoklu

çağrı bağlantılarını içeren bazı çağrı tiplerinin kombinatoryel özelliklerini incele-

mek için kullanılır. Burada, karşılıklı çoklu çağrılara odaklanıyoruz ve arayan-

ların sayısı veya alıcıların sayısı 2 veya 3’e sabitlendiğinde etiketsiz karşılıklı

çoklu çağrıların sayısı için kapalı form ifadeleri sağlıyoruz. Bu durumda, çizge

teorisinde açık bir problemi çözerek, yani etiketsiz iki parçalı çizgeleri sayarak

bu tür çağrıların sayısıyla ilgili alt ve üst sınırlar elde ediyoruz. Daha sonra,

bu sonuçlar, sol(sağ) tarafı küme olarak etiketli ve iki tarafı da küme olarak

etiketli iki parçalı çizgelere genişletilmektedir. Tezin ikinci bölümünde, tek taraflı,

ikili ağaç anahtarlama ağları için bağlama ve yönlendirme problemlerine odak-

lanıyoruz. Özellikle, tek taraflı, ikili ağaç anahtarlama ağları için yönlendirme

algoritmasının O(n) hesaplama zamanını O(lg n)’e düşürüyoruz. Tek taraflı, ikili

ağaç anahtarlama ağları için yeni bir bağlama algoritması da sunuyoruz. Son

olarak, bağlama tasarımı verilen tek taraflı, ikili ağaç anahtarlama ağının termi-

nallerinin eşleştirildiği kümenin yerini belirlemek için bir algoritma sunulmuştur.

Bu algoritmanın zaman karmaşıklığının O(lg n) olduğu gösterilmiştir.

Anahtar sözcükler : İki parçalı çizgeler, Polya sayma teoremi, döngü endeks poli-

nomu, anahtarlama ağları, çağrı modelleri.
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Chapter 1

Introduction

This dissertation is concerned with the solutions of certain graph problems in com-

binatorial call models and switching networks. Switching networks have beeen

extensively investigated in connection with communication systems, and multi-

processing and parallel computing [1–18]. Our work is motivated by the recent

renewed interest in such call models and networks due to the introduction of on-

chip systems, especially network-on-chip architectures. In particular, one-sided

switching networks were reported in [19] as a possible network architecture for

an on-chip network. Two problems were introduced in this connection to reduce

the area/volume complexity of the targeted on-chip network. One deals with

wiring replicates of terminals that represent cores, while the other is concerned

with routing connection requests. Even though some solutions were provided for

both of these problems in [19–21], these solutions place a restriction on the num-

ber of terminals in the case of wiring, and an exact excessive time complexity in

the case of routing. Both these issues have been addressed in this dissertation

and resolved. On the other hand, call models have been introduced in [19] to

classify switching networks. E↵ectively, they capture the multiplicities of calls

and ordering of callers and/or receivers under various call scenarios. Each of

these call models can be represented by a bipartite graph with certain conditions.

Broadly speaking, three call models distinguish between the multiplicity proper-

ties of calls, and three more conditions are added to each of these call models
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to characterize the ordering between the callers and receivers. A comprehensive

description of these di↵erent call models can be found in [19]. The enumeration

of calls leads to the crosspoint complexity of switching networks that can realize

the set of calls defined by such call models using a logarithmic transformation.

One problem that has been highlighted in [19] is the enumeration of the corre-

sponding bipartite graphs that represent the call models of interest. A number

of formulas have been provided in [19], but the enumerations of bipartite graphs

in some of the call models have not been concluded with asymptotic closed-form

formulas. One of the main contributions of this dissertation is to settle this prob-

lem. More specifically, we provide both exact and asymptotic formulas that count

the number of bipartite graphs in the aforementioned call models; in particular

for unlabeled bicast, left(right) set labeled and set labeled bicast calls.

The contributions of this dissertation are stated below:

1. An exact closed-form expression for the number of unlabeled bipartite

graphs one of whose parts consists of two vertices.

2. An exact closed-form expression for the number of unlabeled bipartite

graphs one of whose parts consists of three vertices.

3. The solution of the long-standing open problem that was stated in 1973 [22].

Specifically, a lower bound on the number of unlabeled bipartite graphs,

and an upper bound within a factor of two of the lower bound have been

established using Polya’s Counting Theorem.

4. The results in (1), (2), and (3) have been extended to left (right) set labeled

and set labeled bipartite graphs.

5. The O(n) time complexity of the routing algorithm given in [20] for the

one-sided, binary tree switching network has been reduced to O(lg n).

6. A new wiring algorithm has been given for one-sided, binary tree switching

networks.
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7. An algorithm has been presented to locate the cluster in which the terminals

of the corresponding one-sided, binary tree switching network are paired.

The time complexity of this algorithm is O(lg n).

The rest of this dissertation is organized as follows. In Chapters 2 and 3, enu-

merations of unlabeled bipartite graphs are considered. We give exact results for

the size of two families of unlabeled bipartite graphs in Chapter 2 and derive

lower and upper bounds on the number of unlabeled bipartite graphs in Chap-

ter 3. We extend these calculations to left set labeled and set labeled bipartite

graphs in Chapter 4. In Chapter 5, we reduce the time complexity of a routing

method in one-sided switching network. We also introduce a new wiring method

to cluster replicates of cores into clusters and provide a new routing algorithm

for this wiring architect. Finally, we conclude the dissertation in Chapter 6. The

appendix lists computer programs that implement the proposed algorithms and

provides some sample results.
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Chapter 2

Counting Two Families of

Unlabeled Bipartite Graphs 1

In this chapter, we present two results that provide the exact number of distinct

unlabeled bipartite graphs when the cardinality of one of the sets of vertices is

fixed to 2 or 3.

2.1 Preliminary Facts

This problem has been investigated in connection with the enumeration of unla-

beled bipartite graphs and binary matrices [22]. Our work has been motivated

in part by a counting problem that arises in the representation of calls in inter-

connection networks [19]. Let (I, O,E) denote a graph with two disjoint sets of

vertices, I, called left vertices and a set of vertices, O, called right vertices, where

each edge in E connects a left vertex with a right vertex. We let n = |I|, r = |O|,
and refer to such a graph as an (n, r)-bipartite graph. Let G1 = (I, O,E1) and

G2 = (I, O,E2) be two (n, r)-bipartite graphs, and ↵ : I ! I and � : O ! O be

both bijections. The pair (↵, �) is an isomorphism between G1 and G2 provided

1
This is joint work with Prof. A. Yavuz Oruç.
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that ((↵(v1), �(v2)) 2 E2 if and only if (v1, v2) 2 E1, 8v1 2 I, 8v2 2 O. It is easy

to establish that this mapping induces an equivalence relation, and partitions

the set of 2nr (n, r)-bipartite graphs into equivalence classes. This equivalence

relation captures the fact that the vertices in I and O are unlabeled, and so each

class of (n, r)-bipartite graphs can be represented by any one of the graphs in

that class without identifying the vertices in I and O. Let Bu(n, r) denote any

set of (n, r)-bipartite graphs that contains exactly one such graph from each of

the equivalence classes of (n, r)-bipartite graphs induced by the isomorphism we

defined. It is easy to see that determining |Bu(n, r)| amounts to an enumera-

tion of non-isomorphic (n, r)-bipartite graphs that will henceforth be referred to

as unlabeled (n, r)-bipartite graphs. Figure 2.1 depicts the unlabeled bipartite

graphs for n = 3 and r = 2.

Figure 2.1: Unlabeled bipartite graphs for n = 3 and r = 2

In [22], Harrison used Pólya’s counting theorem to obtain an expression to com-

pute the number of non-equivalent n⇥r binary matrices. This expression contains

a nested sum, in which one sum is carried over all partitions of n while the other

is carried over all partitions of r, where the argument of the nested sum involves

factorial, exponentiation and greatest common divisor (gcd) computations. He

further established that this formula also enumerates the number of unlabeled

(n, r)-bipartite graphs. A number of results indirectly related to Harrison’s work

5



appeared in the literature [23–26]. In particular, the set Bu(n, r) in our work

coincides with the set of bicolored graphs described in Section 2 in [23]. Whereas

Harary [23] provides a counting polynomial for the number of bicolored graphs, we

focus on the asymptotic behavior of |Bu(n, r)|. Counting polynomials for other

families of bipartite graphs were also reported in [24]. Likewise, Hanlon [25],

and Gainer-Dewar and Gessel [26] provide generating functions for related bi-

partite graph counting problems without an asymptotic analysis as provided in

our contributions. The species and category theory approach in [26] leads to a

summation formula for the number of unlabeled bipartite graphs with v vertices.

This formula is similar to the expression in (8) in [22] except that the latter for-

mula counts the number of unlabeled bipartite graphs whose vertices are divided

into two disjoint sets as in the model that we used in our research. As such, for

fixed n and r, the set Bu(n, r) forms a subset of the set of unlabeled bipartite

graphs with v vertices that are counted in [25,26], where v = n+ r. It should also

be mentioned that some results on asymptotic enumeration of certain families of

bipartite graphs (binary matrices) have been reported (see for example, [27–30]).

That |Bu(1, r)| = r+1 trivially holds. Exact closed form expressions for |Bu(n, r)|
for n = 2, n = 3, and any integer r > n will be given in the remaining of this

chapter.

Let Sn denote the symmetric group of permutations of degree n acting on set

N = {1, 2, · · · , n}. Suppose that the n! permutations in Sn are indexed by

1, 2, · · · , n! in some arbitrary, but fixed manner. The cycle index polynomial of

Sn is defined as follows([31], see p. 35, Eqn. 2.2.1):

ZSn(x1, x2, · · · , xn) =
1

n!

n!X

m=1

nY

k=1

x
pm,k

k (2.1)

where pm,k denotes the number of cycles of length k in the disjoint cycle repre-

sentation of the m
th permutation in Sn, and

Pn
k=1 kpm,k = n, 8m = 1, 2, · · · , n!.
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Let Sn ⇥ Sr denote the direct product of symmetric groups Sn and Sr acting on

N = {1, 2, · · · , n} and R = {1, 2, · · · , r}, respectively, where n and r are positive

integers such that n < r. It can be inferred from Harrison ([32], Lemma 4.1 and

Theorem 4.2) that the cycle index polynomial of Sn ⇥ Sr is given by

ZSn⇥Sr(x1, x2, · · · , xnr) = ZSn(x1, x2, · · · , xn)⇥ ZSr(x1, x2, · · · , xr), (2.2)

where ⇥ is a particular polynomial multiplication that distributes over ordinary

addition, and in which the multiplication Xm

J
Xt of two product terms, Xm =

x
pm,1

1 x
pm,2

2 · · · xpm,n
n and Xt = x

qt,1
1 x

qt,2
2 · · · xqt,r

r in ZSn and ZSr , respectively, is

defined as

Xm

K
Xt =

nY

k=1

rY

j=1

x
pm,kqt,jgcd(k,j)
lcm(k,j) . (2.3)

Note that we will not display the zero powers of x1, x2, · · · in a cycle index poly-

nomial. We will use the same convention for all other cycle index polynomials

throughout the thesis. The lcm(a,b) and gcd(a,b) denote least common multiple

and greatest common divisor of a and b.

Harrison further proved that [22]:

|Bu(n, r)| = ZSn⇥Sr(2, 2, .., 2| {z }
nr

) (2.4)

when n 6= r. As noted in [22], n = r case involves a di↵erent cycle index polyno-

mial and will be omitted here as well.

We need one more fact that can be found in Harary ([31], p. 36) in order to

compute |Bu(2, r)| and |Bu(3, r)|:

ZSr(x1, x2, . . . . . . , xr) =
1

r

rX

i=1

xiZSr�i(x1, x2, . . . . . . , xr�i) (2.5)

where ZS0() = 1.
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2.2 A Closed-Form Expression for |Bu(2, r)|

We use Polya’s counting theorem (See [33]), in particular Harrison’s cycle index

formulation in [22] to compute |Bu(2, r)|.

We calculate |Bu(2, r)| as follows:

|Bu (2, r) |=ZS2⇥Sr(2, 2, . . . , 2), (2.6)

= [ZS2(x1, x2)⇥ ZSr(x1, x2, . . . , xr)] (2, . . . , 2), (2.7)

=

✓
1

2

�
x
2
1 + x2

�◆
⇥ ZSr(x1, x2, . . . , xr)

�
(2, . . . , 2), (2.8)

=
1

2

⇥
x
2
1 ⇥ ZSr(x1, x2, . . . , xr) + x2 ⇥ ZSr(x1, x2, . . . , xr)

⇤
(2, . . . , 2), (2.9)

=
1

2

(h
x
2
1 ⇥

1

r!

r!X

t=1

rY

j=1

x
qt,j
j

i
(2, . . . , 2) +

h
x2 ⇥

1

r!

r!X

t=1

rY

j=1

x
qt,j
j

i
(2, . . .),

)
, (2.10)

=
1

2

(h 1
r!

r!X

t=1

x
2
1

K rY

j=1

x
qt,j
j

i
(2, . . . , 2) +

h 1
r!

r!X

t=1

x2

K rY

j=1

x
qt,j
j

i
(. . .)

)
, (2.11)

=
1

2

(h 1
r!

r!X

t=1

rY

j=1

x
2qt,jgcd(1,j)
lcm(1,j)

i
(2, . . . , 2) +

h 1
r!

r!X

t=1

rY

j=1

x
qt,jgcd(2,j)
lcm(2,j)

i
(. . .).

)
, (2.12)

=
1

2

(h 1
r!

r!X

t=1

rY

j=1

x
2qt,j
j

i
(2, . . . , 2) +

h 1
r!

r!X

t=1

rY

j=1

x
qt,jgcd(2,j)
lcm(2,j)

i
(2, . . . , 2)

)
, (2.13)

=
1

2

(h 1
r!

r!X

t=1

rY

j=1

22qt,j
i
+
h 1
r!

r!X

t=1

rY

j=1

2qt,jgcd(2,j)
i)

, (2.14)

=
1

2

(h 1
r!

r!X

t=1

rY

j=1

(22)qt,j
i
+
h 1
r!

r!X

t=1

Y

odd j

2qt,j
Y

even j

(22)qt,j
i)

, (2.15)

=
1

2

(h
ZSr(2

2
, 22, . . . , 22)

i
+
h
ZSr(2, 2

2
, 2, 22, . . .)

i)
. (2.16)

Thus, we have reduced the computation of |Bu(2, r)| to computing the two terms

in Eqn. 2.16. These computations are carried out in the next two lemmas.

Lemma 1.

ZSr(2
2
, 22, . . . , 22) =

✓
r + 3

r

◆
. (2.17)
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Proof. Using Eqn. 2.5, we have

rZSr(2
2
, 22, . . . , 22) =

rX

i=1

22ZSr�i(2
2
, 22, . . . , 22), (2.18)

(r � 1)ZSr�1(2
2
, 22, . . . , 22) =

r�1X

i=1

22ZSr�1�i(2
2
, 22, . . . , 22). (2.19)

Subtracting the second equation from the first one and simplifying it gives

rZSr(2
2
, 22, . . . , 22)� (r � 1)ZSr�1(2

2
, 22, . . . , 22) = 4ZSr�1(2

2
, 22, . . . , 22),

(2.20)

ZSr(2
2
, 22, . . . , 22) = (

r + 3

r
)ZSr�1(2

2
, 22, . . . , 22).

(2.21)

Expanding the last equation recursively, we obtain

ZSr(2
2
, 22, . . . , 22) = (

r + 3

r
)(
r + 2

r � 1
)ZSr�2(2

2
, 22, . . . , 22), (2.22)

= (
r + 3

r
)(
r + 2

r � 1
)(
r + 1

r � 2
) . . . (

4

1
)ZS0(). (2.23)

Noting that ZS0() = 1 proves the statement, i.e.,

ZSr(2
2
, 22, . . . , 22) =

✓
r + 3

r

◆
. (2.24)

Lemma 2.

ZSr(2, 2
2
, 2, 22, . . .) =

2r2 + 8r + 7 + (�1)r

8
. (2.25)

Proof. By Eqn. 2.5,

rZSr(2, 2
2
, . . .) =

r��1X

odd i

2ZSr�i(2, 2
2
, . . .) +

r��2X

even i

22ZSr�i(2, 2
2
, . . .), (2.26)

where �1 = 1, �2 = 0 if r is even and �1 = 0, �2 = 1 if r is odd. Similarly, for

r � 2,

(r � 2)ZSr�2(2, 2
2
, . . .) =

r�2��1X

odd i

2ZSr�2�i(2, 2
2
, . . .) +

r�2��2X

even i

22ZSr�2�i(2, 2
2
, . . .).

(2.27)
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Subtracting the second equation from the first one and rearranging the terms

gives

rZSr(2, 2
2
, . . .) = 2ZSr�1(2, 2

2
, . . .) + (r + 2)ZSr�2(2, 2

2
, . . .). (2.28)

We now use induction and this recurrence to prove that Eqn. 2.25 holds.

Basis r = 0. Substituting r = 0 in Eqn. 2.25 gives 1 as it should since ZS0() = 1.

r = 1. Substituting r = 1 in Eqn. 2.25 gives

ZS1(2) =
2(1)2 + 8(1) + 7 + (�1)1

8
= 2, (2.29)

and this agrees with Eqn. 2.5, i.e., ZS1(2) =
1
1 (2ZS0()) = 2.

Induction Step:

Suppose that Eqn. 2.25 holds for r � 2 and r � 1. Then by Eqn. 2.28, we have

rZSr(2, 2
2
, . . .) = 2ZSr�1(2, 2

2
, . . .) + (r + 2)ZSr�2(2, 2

2
, . . .), (2.30)

= 2
2(r � 1)2 + 8(r � 1) + 7 + (�1)r�1

8

+ (r + 2)
2(r � 2)2 + 8(r � 2) + 7 + (�1)r�2

8
, (2.31)

= r
2r2 + 8r + 7 + (�1)r

8
, (2.32)

that agrees with Eqn. 2.25.

Finally, by combining Lemmas 1 and 2, we have

Theorem 1.

|Bu(2, r)|=
2r3 + 15r2 + 34r + 22.5 + 1.5 (�1)r

24
. (2.33)
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2.3 A Closed-Form Expression for |Bu(3, r)|

We proceed as in the computation of |Bu(2, r)|.

|Bu (3, r) | = ZS3⇥Sr(2, 2, . . . . . . , 2), (2.34)

= [ZS3(x1, x2, x3)⇥ ZSr(x1, x2, . . . . . . , xr)] (2, 2, ..., 2), (2.35)

=

✓
1

6

�
x
3
1 + 3x1x2 + 2x3

�◆
⇥ ZSr(x1, x2, . . . . . . , xr)

�
(2, 2, ..., 2), (2.36)

=
1

6

⇥
x
3
1 ⇥ ZSr(x1, x2, . . . . . . , xr)

⇤
(2, 2, ..., 2) +

1

6
[3x1x2 ⇥ ZSr(x1, x2, . . . . . . , xr)] (2, 2, ..., 2) +

1

6
[2x3 ⇥ ZSr(x1, x2, . . . . . . , xr)] (2, . . . , 2), (2.37)

=
1

6

(h
x
3
1 ⇥

1

r!

r!X

t=1

rY

j=1

x
qt,j
j

i
(2, . . . , 2) +

h
3x1x2 ⇥

1

r!

r!X

t=1

rY

j=1

x
qt,j
j

i
(2, . . . , 2) +

h
2x3 ⇥

1

r!

r!X

t=1

rY

j=1

x
qt,j
j

i
(2, . . . , 2)

)
, (2.38)

=
1

6

(h 1
r!

r!X

t=1

x
3
1

K rY

j=1

x
qt,j
j

i
(2, . . . , 2) +

h 3
r!

r!X

t=1

x1x2

K rY

j=1

x
qt,j
j

i
(2, . . . , 2) +

h 2
r!

r!X

t=1

x3

K rY

j=1

x
qt,j
j

i
(2, . . . , 2)

)
, (2.39)

=
1

6

(h 1
r!

r!X

t=1

rY

j=1

x
3qt,jgcd(1,j)
lcm(1,j)

i
(2, . . . , 2) +

h 3
r!

r!X

t=1

rY

j=1

x
qt,jgcd(1,j)
lcm(1,j) x

qt,jgcd(2,j)
lcm(2,j)

i
(. . .) +

h 2
r!

r!X

t=1

rY

j=1

x
qt,jgcd(3,j)
lcm(3,j)

i
(2, . . . , 2)

)
, (2.40)

=
1

6

(h 1
r!

r!X

t=1

rY

j=1

x
3qt,j
j

i
(2, . . . , 2) +

h 3
r!

r!X

t=1

rY

j=1

x
qt,j
j x

qt,jgcd(2,j)
lcm(2,j)

i
(2, 2, ..., 2) +

h 2
r!

r!X

t=1

rY

j=1

x
qt,jgcd(3,j)
lcm(3,j)

i
(2, . . . , 2)

)
, (2.41)

=
1

6

(h 1
r!

r!X

t=1

rY

j=1

23qt,j
i
+
h 3
r!

r!X

t=1

rY

j=1

2qt,j2qt,jgcd(2,j)
i
+
h 2
r!

r!X

t=1

rY

j=1

2qt,jgcd(3,j)
i)

,

(2.42)
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=
1

6

(h 1
r!

r!X

t=1

rY

j=1

(23)qt,j
i
+3
h 1
r!

r!X

t=1

Y

odd j

(22)qt,j
Y

even j

(23)qt,j
i
+2
h 1
r!

r!X

t=1

Y

j mod 3=0

(23)qt,j
Y

j mod 36=0

2qt,j

)
, (2.43)

=
1

6

(h
ZSr(2

3
, 23, . . . , 23)

i
+3
h
ZSr(2

2
, 23, 22, 23, . . .)

i
+2
h
ZSr(2, 2, 2

3
, 2, 2, 23, . . .)

i)
. (2.44)

Thus, we have reduced the computation of |Bu(3, r)| to computing the three terms

in Eqn. 2.44. These computations are carried out in the next three lemmas.

Lemma 3.

ZSr(2
3
, 23, . . . , 23) =

✓
r + 7

r

◆
. (2.45)

Proof. Using Eqn. 2.5, we have

rZSr(2
3
, 23, . . . , 23) =

rX

i=1

23ZSr�i(2
3
, 23, . . . , 23), (2.46)

(r � 1)ZSr�1(2
3
, 23, . . . , 23) =

r�1X

i=1

23ZSr�1�i(2
3
, 23, . . . , 23). (2.47)

Subtracting the second equation from the first one and simplifying it give

rZSr(2
3
, 23, . . . , 23)� (r � 1)ZSr�1(2

3
, 23, . . . , 23) = 8ZSr�1(2

3
, 23, . . . , 23),

(2.48)

ZSr(2
3
, 23, . . . , 23) = (

r + 7

r
)ZSr�1(2

3
, 23, . . . , 23).

(2.49)

Expanding the last equation recursively, we obtain

ZSr(2
3
, 23, . . . , 23) = (

r + 7

r
)(
r + 6

r � 1
)ZSr�2(2

3
, 23, . . . , 23), (2.50)

= (
r + 7

r
)(
r + 6

r � 1
)(
r + 5

r � 2
) . . . (

8

1
)ZS0(). (2.51)

Noting that ZS0() = 1 proves the statement, i.e.,

ZSr(2
3
, 23, . . . , 23) =

✓
r + 7

r

◆
. (2.52)
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Lemma 4.

ZSr(2
2
, 23, 22, 23, . . .) =

(r + 4) (2r4 + 32r3 + 172r2 + 352r + 15 (�1)r + 225)

960
.

(2.53)

Proof. We consider two cases:

Case 1: r mod 2 = 0.

By Eqn. 2.5,

rZSr(2
2
, 23, 22, 23, . . .) =

r�1X

odd i

22ZSr�i(2
2
, 23, 22, 23, . . .) +

rX

even i

23ZSr�i(2
2
, 23, 22, 23, . . .),

(2.54)

and

(r � 2)ZSr�2(2
2
, 23, 22, 23, . . .) =

r�3X

odd i

22ZSr�2�i(2
2
, 23, 22, 23, . . .)

+
r�2X

even i

23ZSr�2�i(2
2
, 23, 22, 23, . . .). (2.55)

Subtracting the second equation from the first one and rearranging the terms give

rZSr(2
2
, 23, 22, 23, . . .) = 4ZSr�1(2

2
, 23, 22, 23, . . .) + (r + 6)ZSr�2(2

2
, 23, 22, 23, . . .).

(2.56)

Case 2: r mod 2 = 1.

Again by Eqn. 2.5,

rZSr(2
2
, 23, 22, 23, . . .) =

rX

odd i

22ZSr�i(2
2
, 23, 22, 23, . . .) +

r�1X

even i

23ZSr�i(2
2
, 23, 22, 23, . . .),

(2.57)

(r � 2)ZSr�2(2
2
, 23, . . .) =

r�2X

odd i

22ZSr�2�i(2
2
, 23, 22, 23, . . .) +

r�3X

even i

23ZSr�2�i(2
2
, 23, 22, 23, . . .).

(2.58)
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Subtracting the second equation from the first one, and rearranging the terms

give

rZSr(2
2
, 23, 22, 23, . . .) = 4ZSr�1(2

2
, 23, 22, 23, . . .) + (r + 6)ZSr�2(2

2
, 23, . . .).

(2.59)

Hence, we obtain the same recurrence for both even and odd r. We now use

induction and this recurrence to prove that Eqn. 2.53 holds.

Basis r = 0. Substituting r = 0 in (2.53) gives 1 as it should since ZS0() = 1.

r = 1. Substituting r = 1 in (2.53) gives

ZS1(2
2) =

(1 + 4)
�
2(1)4 + 32(1)3 + 172(1)2 + 352(1) + 15 (�1)1 + 225

�

960
= 4,

(2.60)

and this agrees with Eqn. 2.5, i.e., ZS1(2
2) = 1

1 (2
2
ZS0()) = 22 = 4.

Induction Step:

Suppose that Eqn. 2.53 holds for r � 2 and r � 1.Then by Eqn. 2.59, we have

rZSr(2
2
, 23, 22, 23, . . .)

= 4ZSr�1(2
2
, 23, 22, 23, . . .) + (r + 6)ZSr�2(2

2
, 23, 22, 23, . . .), (2.61)

=
4(r + 3)

�
2(r � 1)4 + 32(r � 1)3 + 172(r � 1)2 + 352(r � 1) + 15(�1)(r�1) + 225

�

960

+
(r + 6)(r + 2)

�
2(r � 2)4 + 32(r � 2)3 + 172(r � 2)2 + 352(r � 2) + 15(�1)(r�2) + 225

�

960
,

(2.62)

=
8r5 + 120r4 + 640r3 + 1440r2 + [1212� 60(�1)r]r � 180(�1)r + 180

960
+

2r6 + 32r5 + 180r4 + 400r3 + [193 + 15(�1)r]r2 + [120(�1)r � 312]r + 180(�1)r � 180

960
,

(2.63)

=
2r6 + 40r5 + 300r4 + 1040r3 + [1633 + 15(�1)r]r2 + [900 + 60(�1)r]r

960
,

(2.64)

= r
(r + 4) (2r4 + 32r3 + 172r2 + 352r + 15 (�1)r + 225)

960
, (2.65)

that agrees with Eqn. 2.53.
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Lemma 5.

ZSr(2, 2, 2
3
, 2, 2, 23, . . .) =

8
>>>>>>><

>>>>>>>:

(r3+12r2+45r+54)
54 if rmod 3 = 0,

(r3+12r2+45r+50)
54 if rmod 3 = 1,

(r3+12r2+39r+28)
54 if rmod 3 = 2.

(2.66)

Proof. We consider three cases:

Case 1: r mod 3 = 0. Using Eqn. 2.5, we have

rZSr(2, 2, 2
3
, . . .) =

rX

i mod 3=0

23ZSr�i(2, 2, 2
3
, . . .) +

r�2X

i mod 3=1

2ZSr�i(2, 2, 2
3
, . . .)

+
r�1X

i mod 3=2

2ZSr�i(2, 2, 2
3
, . . .), (2.67)

(r � 3)ZSr�3(2, 2, 2
3
, . . .) =

r�3X

i mod 3=0

23ZSr�3�i(2, 2, 2
3
, . . .) +

r�5X

i mod 3=1

2ZSr�3�i(2, 2, 2
3
, . . .)

+
r�4X

i mod 3=2

2ZSr�3�i(2, 2, 2
3
, . . .). (2.68)

Subtracting Eqn. 2.68 from Eqn. 2.67 gives

rZSr(2, 2, 2
3
, . . .)� (r � 3)ZSr�3(2, 2, 2

3
, . . .) = 2ZSr�1(2, 2, 2

3
, . . .)

+ 2ZSr�2(2, 2, 2
3
, . . .) + 8ZSr�3(2, 2, 2

3
, . . .), (2.69)

rZSr(2, 2, 2
3
, . . .) = 2ZSr�1(2, 2, 2

3
, . . .) + 2ZSr�2(2, 2, 2

3
, . . .) + (r + 5)ZSr�3(2, 2, 2

3
, . . .).

(2.70)

Case 2, 3: r mod 3 = 1, r mod 3 = 2. We omit the derivations for these two

cases as it is not di�cult to show that these two cases also lead to the recurrence

in Eqn. 2.70.

Now we use the recurrences given in Eqns. 2.5 and 2.70 to prove Eqn. 2.66 by

induction on r.
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Basis (r = 0). Substituting r = 0 in Eqn. 2.66 gives 1 as it should since ZS0() = 1.

(r = 1). Substituting r = 1 in Eqn. 2.66 gives 2 as it should since ZS1(2)=
1
1 (2ZS0())= 2 by Eqn. 2.5.

(r=2). Substituting r = 2 in Eqn. 2.66 gives 3 as it should since

ZS2(2, 2) =
1
2 (2ZS1(2) + 2ZS0()) =

4+2
2 = 3 by Eqn. 2.5.

(r=3). Substituting r = 3 in Eqn. 2.66 gives 6 as it should since

ZS3(2, 2, 2
3) = 1

3 (2ZS2(2, 2) + 2ZS1(2) + 23ZS0()) =
6+4+8

3 = 6 by Eqn. 2.5.

Induction Step: Suppose that Eqn. 2.66 holds for r � 1, r � 2, and r � 3 and

r mod 3 = 0. Then by Eqn. 2.70,

rZSr(2, 2, 2
3
, . . .)

= 2ZSr�1(2, 2, 2
3
, . . .) + 2ZSr�2(2, 2, 2

3
, . . .) + (r + 5)ZSr�3(2, 2, 2

3
, . . .), (2.71)

=
2[(r � 1)3 + 12(r � 1)2 + 39(r � 1) + 28]

54
+

2[(r � 2)3 + 12(r � 2)2 + 45(r � 2) + 50]

54

+
(r + 5)[(r � 3)3 + 12(r � 3)2 + 45(r � 3) + 54]

54
, (2.72)

=
2r3 + 18r2 + 36r + 2r3 + 12r2 + 18r

54
+

r
4 + 8r3 + 15r2

54
, (2.73)

=
r
4 + 12r3 + 45r2 + 54r

54
, (2.74)

=
r(r3 + 12r2 + 45r + 54)

54
, (2.75)

as stated in Eqn. 2.66. The other two cases are shown to hold similarly and

omitted.

By combining Lemmas 3, 4, and 5 we have

Theorem 2.

|Bu (3, r) | =

8
>>>>>>>><

>>>>>>>>:

1
6

h
A(r) + 2(r3+12r2+45r+54)

54

i
if r mod 3 = 0,

1
6

h
A(r) + 2(r3+12r2+45r+50)

54

i
if r mod 3 = 1,

1
6

h
A(r) + 2(r3+12r2+39r+28)

54

i
if r mod 3 = 2,

(2.76)
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where A(r) =
�
r+7
r

�
+

3(r+4)(2r4+32r3+172r2+352r+15(�1)r+225)
960 .

This method of computation can be extended to |Bu(n, r)| for n � 4, but the

solutions of resulting recurrences become significantly more complex to obtain

closed form formulas.

2.4 An Elementary Counting for |Bu(2, r)|

In this section, we will provide an elementary proof for Theorem 1.

Theorem 3. For even r,

|Bu(2, r)| = 1 + r +
1

16
(r3 + 8r2 + 4r) +

1

48
(r3 + 6r2 + 8r). (2.77)

Proof. The first two terms in the formula count the number of unlabeled (2, r)-

bipartite graphs in which one of the left vertices has zero degree and the degree

of the other vertex varies between 0 and r. To count the remaining unlabeled

(2, r)-bipartite graphs, we note that each left vertex can be connected up to r

right vertices. Let ai denote the first left vertex2, where i indicates that ai is

connected to i right vertices, 1  i  r, and bj denote the second left vertex,

where j indicates that bj is connected to j right vertices, 1  j  r. Let (ai, bj)-

bipartite graph refer to any unlabeled bipartite graph in which the two left vertices

are connected to i and j right vertices, respectively. Since reordering the left

vertices in any (2, r)-bipartite graph results in an equivalent (2, r)-bipartite graph,

any two (ai, bj)-bipartite graph and (aj, bi)-graph, 1  i, j  r are equivalent,

and they should therefore be counted only once. This counting constraint will

be enforced by requiring that 1  j  i  r. Now, there exist exactly two

distinct unlabeled (ai, b1)-bipartite graphs for each i, 1  i  r � 1, and there

exists one (ar, b1)-bipartite graph (See Figure 2.2). Thus, there exist exactly

2(r � 1) + 1 unlabeled (ai, bj)-bipartite graphs, 1  i  r and j = 1. Extending

the construction to the next case, it is not di�cult to see that there exist 3(r �
2This labeling of vertices is used to keep track of their degrees during the counting process

and it does not mean that the resulting bipartite graphs are labeled.
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3) + 2 + 1 (ai, bj)-bipartite graphs, 2  i  r and j = 2, and in general, there

exist (j+1)(r� 2j+1)+
Pj

k=1 k = (j+1)(r� 3j/2+1) (ai, bj)-bipartite graphs,

1  j  r/2. Summing the last expression for 1  j  r/2 gives the third term

in the formula in Eqn. 2.77. What remains unaccounted for are (ai, bj)-bipartite

graphs, r/2+1  j  i  r. These are counted using a similar argument, i.e., by

creating new (ai, bj)-bipartite graphs by first fixing j to r/2 + 1, then to r/2 + 2,

and so on, while varying i between j and r in each case. It can be shown that the

first case leads to r/2 unlabeled (2, r)-bipartite graphs, i.e., (ai, br/2+1)-bipartite

graphs, r/2 + 1  i  r, the second case leads to r/2 � 1 new unlabeled (2, r)-

bipartite graphs, i.e., (ai, br/2+2)-bipartite graphs, r/2 + 2  i  r, and the last

case leads to just one new unlabeled (2, r)-bipartite graph, i.e., (ar, br)-bipartite

graph. Summing these up gives
Pr

j=r/2+1

Pr
i=j r� i+1 = 1

48(r
3+6r2+8r), i.e.,

the last term in Eqn. 2.77 and the statement follows.

a1
b1
a1
b1

a2
b1

a2
b1

ar-1
b1

ar
b1

r-1 r

ar-1
b1

r-1

2
2

2

1

Figure 2.2: Construction of unlabeled (2, r)-bipartite graphs with exactly two left
vertices, 1  i  r.

The odd r case is a direct corollary of the theorem.

Corollary 1. For odd r,

|Bu(2, r)| = 1 + r +
1

16
(r3 + 7r2 � r � 7) +

1

48
(r3 + 9r2 + 23r + 15). (2.78)

Proof. To obtain Eqn. 2.78, it is su�cient to replace each occurrence of r/2 in

the proof of theorem by (r � 1)/2.
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Remark 1. It is noted that the |Bu(2, r)| formulas in Eqns. 2.77 and 2.78 can

be combined to give Eqn. 2.33. Moreover, |Bu(2, 2i � 2)| coincides with the i
th

hexagonal pyramidal number (see the integer sequence, A002412 in [34]), when

i = 1, 2, 3, . . ..

Extension of the elementary proof of the formula |Bu(n, r)| when n = 3 case

remains open. Moreover an exact computation |Bu(n, r)| for n � 4 also remains

open. In the next chapter, we will establish a two sided inequality for |Bu(n, r)|
for any n 6= r.
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Chapter 3

Bounds for Unlabeled Bipartite

Graphs 1

In this chapter, we provide a two sided inequality for |Bu(n, r)| that then estab-

lishes an asympthotic formula for the same. More precisely, we prove

�
r+2n�1

r

�

n!
 |Bu(n, r)| 

2
�
r+2n�1

r

�

n!
, n < r. (3.1)

We begin with our lower bound.

3.1 A Lower Bound for |Bu(n, r)|

From Eqns. 2.2 and 2.4 we know that

|Bu(n, r)| = ZSn⇥Sr(2, 2, . . . , 2), (3.2)

= [ZSn(x1, x2, · · · , xn)⇥ ZSr(x1, x2, · · · , xr)](2, 2, . . . , 2). (3.3)

1
This is joint work with Prof. A. Yavuz Oruç.
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One of the terms in ZSn(x1, x2, · · · , xn) is 1
n!(x

n
1 ) and it is associated with the

identity permutation in Sn. Using this fact, we find

|Bu(n, r)| = ZSn⇥Sr(2, 2, . . . , 2), (3.4)

= [ZSn(x1, x2, · · · , xn)⇥ ZSr(x1, x2, · · · , xr)](2, 2, . . . , 2), (3.5)

=

✓
1

n!
(xn

1 + . . .)

◆
⇥ ZSr(x1, x2, · · · , xr)

�
(2, 2, . . . , 2), (3.6)

=

✓
1

n!
x
n
1

◆
⇥ ZSr(x1, x2, . . . , xr)

�
(2, 2, . . . , 2) + . . . , (3.7)

=
1

n!

(h
x
n
1 ⇥

1

r!

r!X

t=1

rY

j=1

x
qt,j
j

i
(2, 2, ..., 2)

)
+ . . . , (3.8)

=
1

n!

(h 1
r!

r!X

t=1

x
n
1

K rY

j=1

x
qt,j
j

i
(2, 2, ..., 2)

)
+ . . . , (3.9)

=
1

n!

(h 1
r!

r!X

t=1

rY

j=1

x
nqt,jgcd(1,j)
lcm(1,j)

i
(2, 2, ..., 2)

)
+ . . . , (3.10)

=
1

n!

(h 1
r!

r!X

t=1

rY

j=1

x
nqt,j
j

i
(2, 2, ..., 2)

)
+ . . . , (3.11)

=
1

n!

(
1

r!

r!X

t=1

rY

j=1

2nqt,j

)
+ . . . , (3.12)

=
1

n!

(
1

r!

r!X

t=1

rY

j=1

(2n)qt,j

)
+ . . . , (3.13)

=
1

n!

(
ZSr(2

n
, 2n, . . . , 2n)

)
+ . . . . (3.14)

This proves

|Bu(n, r)| �
1

n!
ZSr(2

n
, 2n, . . . , 2n). (3.15)

Proposition 1.

ZSr(2
n
, 2n, . . . , 2n) =

✓
r + 2n � 1

r

◆
(3.16)
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Proof. Using Eqn. 2.5, we have

rZSr(2
n
, 2n, . . . , 2n) =

rX

i=1

2nZSr�i(2
n
, 2n, . . . , 2n), (3.17)

and

(r � 1)ZSr�1(2
n
, 2n, . . . , 2n) =

r�1X

i=1

2nZSr�1�i(2
n
, 2n, . . . , 2n). (3.18)

Subtracting the second equation from the first one gives

rZSr(2
n
, 2n, . . . , 2n)� (r � 1)ZSr�1(2

n
, 2n, . . . , 2n) = 2nZSr�1(2

n
, 2n, . . . , 2n),

(3.19)

rZSr(2
n
, 2n, . . . , 2n) = (r + 2n � 1)ZSr�1(2

n
, 2n, . . . , 2n),

(3.20)

ZSr(2
n
, 2n, . . . , 2n) = (

r + 2n � 1

r
)ZSr�1(2

n
, 2n, . . . , 2n).

(3.21)

Expanding the last equation inductively, we obtain

ZSr(2
n
, 2n, . . . , 2n) = (

r + 2n � 1

r
)(
r + 2n � 2

r � 1
)ZSr�2(2

n
, 2n, . . . , 2n), (3.22)

ZSr(2
n
, 2n, . . . , 2n) = (

r + 2n � 1

r
)(
r + 2n � 2

r � 1
)(
r + 2n � 3

r � 2
)ZSr�3(2

n
, 2n, . . . , 2n),

(3.23)

ZSr(2
n
, 2n, . . . , 2n) = (

r + 2n � 1

r
)(
r + 2n � 2

r � 1
)(
r + 2n � 3

r � 2
) . . . (

2n

1
)ZS0().

(3.24)

Noting that ZS0() = 1, and combining the product terms together, we obtain

ZSr(2
n
, 2n, . . . , 2n) =

✓
r + 2n � 1

r

◆
. (3.25)
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Combining Proposition 1 with Eqn. 3.15 proves the lower bound.

Theorem 4.

|Bu(n, r)| �
�
r+2n�1

r

�

n!
. (3.26)

3.2 An Upper Bound for |Bu(n, r)|

We first note that |Bu(1, r)| = r + 1 =
�
r+21�1

r

�
/1!  2

�
r+21�1

r

�
/1!. Hence the

upper bound that is claimed in the beginning of this chapter holds for n = 1.

Proving that it also holds for n � 2 requires a more careful analysis of the terms

in

ZSn(x1, x2, · · · , xn)⇥ ZSr(x1, x2, · · · , xr). (3.27)

We first express ZSn(x1, x2, · · · , xn) as

ZSn(x1, x2, . . . , xn) = ZSn [1] + ZSn [2] + . . .+ ZSn [n!], (3.28)

where

ZSn [1] =
1

n!
x
n
1 , (3.29)

ZSn [2] =
1

n!
x
n�2
1 x2. (3.30)

The first term is associated with the identity permutation and the second term is

associated with any one of the permutations in which all but two of the elements in

N = 1, 2, · · · , n are fixed to themselves. The remaining ZSn [i] =
1
n!

Qn
k=1 x

pi,k
k , 3 

i  n! terms represent all the other product terms in the cycle index polynomial

of Sn with no particular association with the permutations in Sn. Similarly, we

set ZSr(x1, x2, . . . , xr) =
1
r!

Pr!
t=1

Qr
j=1 x

qt,j
j without identifying the actual product

terms with any particular permutation in Sr.

The following equations obviously hold as the sum of the lengths of all the cycles

in any cycle disjoint representation of a permutation in Sn and Sr must be n and

r, respectively.
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nX

k=1

kpi,k = n, 1  i  n!, (3.31)

rX

j=1

jqt,j = r, 1  t  r!. (3.32)

Now we can proceed with the computation of the upper bound for |Bu(n, r)|.
First, we note that

|Bu(n, r)| =ZSn⇥Sr(2, 2, 2, . . . , 2), (3.33)

= [ZSn(x1, x2, . . . , xn)⇥ ZSr(x1, x2, · · · , xr)] (2, 2, . . . , 2), (3.34)

= [(ZSn [1] + ZSn [2] + . . .+ ZSn [n!])⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2),

(3.35)

= [ZSn [1]⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2)

+ [ZSn [2]⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2)

+ . . .+ [ZSn [n!]⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2). (3.36)

The first term in Eqn. 3.36 is directly computed from Proposition 1.

Thus, it su�ces to upper bound each of the remaining terms in

Eqn. 3.36 to upper bound |Bu(n, r)|. This will be established by proving

[ZSn [2]⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) � [ZSn [i]⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2),

8i, 3  i  n!. We first need some preliminary facts.

Lemma 6. For all i, 1  i  n!,

[ZSn [i]⇥ ZSr(x1, x2, . . . , xr)](2, . . . , 2) =
1

n!
ZSr(2

Pn
k=1 pi,kgcd(k,1), . . . , 2

Pn
k=1 pi,kgcd(k,r)).

(3.37)
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Proof.

[ZSn [i]⇥ ZSr(x1, . . . , xr)](2, . . . , 2) =

"
1

n!

nY

k=1

x
pi,k
k ⇥

 
1

r!

r!X

t=1

rY

j=1

x
qt,j
j

!#
(2, . . . , 2),

(3.38)

=

"
1

n!r!

r!X

t=1

nY

k=1

x
pi,k
k

K rY

j=1

x
qt,j
j

#
(2, . . . , 2),

(3.39)

=

"
1

n!r!

r!X

t=1

rY

j=1

nY

k=1

x
pi,kqt,jgcd(k,j)
lcm(k,j)

#
(2, . . . , 2),

(3.40)

=
1

n!r!

r!X

t=1

rY

j=1

nY

k=1

2pi,kqt,jgcd(k,j), (3.41)

=
1

n!

"
1

r!

r!X

t=1

rY

j=1

(2
Pn

k=1 pi,kgcd(k,j))qt,j

#
, (3.42)

=
1

n!
ZSr(2

Pn
k=1 pi,kgcd(k,1), . . . , 2

Pn
k=1 pi,kgcd(k,r)).

(3.43)

Corollary 2.

[ZSn [2]⇥ ZSr(x1, x2, . . . , xr)](2, . . . , 2) = 1
n!ZSr(2

n�1
, 2n, 2n�1

, 2n, . . .). (3.44)

Proof. By definition, p2,1 = n � 2, p2,2 = 1, p2,k = 0, 3  k  n. Substituting

these into the last equation in Lemma 6 proves the statement.

Lemma 7.

Pn
k=1 pi,k  n� 1, 8i, 2  i  n!. (3.45)

Proof. Recall from Eqn. 3.31 that
Pn

k=1 kpi,k = n, 8i, 1  i  n!. Hence
Pn

k=1 pi,k = n�
Pn

k=1(k � 1)pi,k, and so the maximum value of
Pn

k=1 pi,k occurs

when
Pn

k=1(k�1)pi,k is minimized. Furthermore, at least one of pi,k, 8i, 2  i  n!

must be � 1 for some k � 2 since none of the permutations we consider is the

identity. Thus,
Pn

k=1(k � 1)pi,k � 1 and the statement follows.
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Lemma 8. If
Pn

k=1 pi,kgcd(k,↵ + 1) = n, then
Pn

k=1 pi,kgcd(k,↵)  n � 1,

8i, 2  i  n! and for any integer ↵ � 2.

Proof. If
Pn

k=1 pi,kgcd(k,↵+ 1) = n as stated in the lemma, then we must have

gcd(k,↵ + 1) = k where pi,k � 1, 8i, 2  i  n!. Therefore k  ↵ + 1. Now if

k = ↵ + 1, then trivially gcd(k,↵) < k. On the other hand if k < ↵ + 1, then

↵ + 1 must be a multiple of k. Therefore, ↵ can not be a multiple of k for any

k � 2. At this point we find that gcd(k,↵) < k, 8k, 2  k  n. Since as in the

previous lemma, none of the permutations we consider is the identity, at least

one of pi,k, 8i, 2  i  n! must be � 1 for some k � 2 and so we conclude that
Pn

k=1 pi,kgcd(k,↵)  n� 1.

Lemma 9.

ZSr(2
n�1

, 2n, . . .) � ZSr�1(2
n�1

, 2n, . . .), (3.46)

for 2  n.

Proof. Using Eqn. 2.5, we get

rZSr(2
n�1

, 2n, . . .) =
r��1X

odd i

2n�1
ZSr�i(2

n�1
, 2n, . . .) +

r��2X

even i

2nZSr�i(2
n�1

, 2n, . . .),

(3.47)

where �1 = 1, �2 = 0 if r is even and �1 = 0, �2 = 1 if r is odd.

Similarly, for r � 1,

(r � 1)ZSr�1(2
n�1

, 2n, . . .) =
r�1��2X

odd i

2n�1
ZSr�1�i(2

n�1
, 2n, . . .)+

r�1��1X

even i

2nZSr�1�i(2
n�1

, 2n, . . .).

(3.48)
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Subtracting Eqn. 3.48 from Eqn. 3.47 gives

rZSr(2
n�1

, 2n, . . .)� (r � 1)ZSr�1(2
n�1

, 2n, . . .)

=
r��2X

even i

2nZSr�i(2
n�1

, 2n, . . .)�
r�1��2X

odd i

2n�1
ZSr�1�i(2

n�1
, 2n . . .)

+
r��1X

odd i

2n�1
ZSr�i(2

n�1
, 2n, . . .)�

r�1��1X

even i

2nZSr�1�i(2
n�1

, 2n, . . .), (3.49)

rZSr(2
n�1

, 2n, . . .)� (r � 1)ZSr�1(2
n�1

, 2n, . . .)

=
r��2X

even i

2n�1
ZSr�i(2

n�1
, 2n, . . .) + 2n�1

ZSr�1(2
n�1

, 2n, . . .)�
r�1��1X

even i

2n�1
ZSr�1�i(2

n�1
, 2n, . . .),

(3.50)

rZSr(2
n�1

, 2n, . . .) = (r � 1 + 2n�1)ZSr�1(2
n�1

, 2n . . .)

+ 2n�1

 
r��2X

even i

ZSr�i(2
n�1

, 2n, . . .)�
r�1��1X

even i

ZSr�1�i(2
n�1

, 2n, . . .)

!
. (3.51)

We now prove the lemma by induction on r.

Basis r = 1. By Eqn. 2.5, ZS1(2
n�1) = 2n�1

ZS0() = 2n�1
. So we have ZS1(2

n�1) =

2n�1 � ZS0() = 1 for 2  n.

Induction Step. Suppose that the lemma holds from 1 to r � 1. That is,

ZSr�i �ZSr�i�1 � 0, 1  i  r� 1. Now if r is even then the di↵erence of the two

sums in Eqn. 3.51 becomes (ZSr�2�ZSr�3)+(ZSr�4�ZSr�5) . . .+(ZS2�ZS1)+ZS0 ,

which is clearly � 0 by the induction hypothesis. Therefore,

rZSr(2
n�1

, 2n, . . .) � (r � 1 + 2n�1)ZSr�1(2
n�1

, 2n, . . .), (3.52)

ZSr(2
n�1

, 2n, . . .) � ZSr�1(2
n�1

, 2n, . . .), n � 2. (3.53)

On the other hand, if r is odd then the di↵erence of the two sums in the same

equation becomes (ZSr�2 �ZSr�3)+(ZSr�4 �ZSr�5) . . .+(ZS2 �ZS1)+(ZS1 �ZS0),

which is again � 0, and the statement follows in this case as well.
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We now are ready to prove that

[ZSn[2]⇥ ZSr(x1, x2, . . . , xr)](2,. . . ,2)� [ZSn [i]⇥ ZSr(x1, x2, . . . , xr)](2,. . . ,2),

(3.54)

8i, 2  i  n! and 8n, n < r.

Theorem 5.

[ZSn [2]⇥ ZSr(x1, x2, . . . , xr)](2, 2, . . . , 2) � [ZSn [i]⇥ ZSr(x1, x2, . . . , xr)](2, 2, . . . , 2)

(3.55)

8i, 2  i  n! and 8n, n < r.

Proof. Using Lemma 6 and Corollary 2 it su�ces to show that

ZSr(2
n�1

, 2n, . . .) � ZSr(2
Pn

k=1 pi,kgcd(k,1), . . . , 2
Pn

k=1 pi,kgcd(k,r)). (3.56)

We prove the statement by induction on r.

Basis: (r = 1). By Eqn. 2.5, ZS1(2
n�1) = 2n�1

ZS0() = 2n�1
. Similarly, by

Eqn. 2.5, ZS1(2
Pn

k=1 pi,kgcd(k,1)) = 2
Pn

k=1 pi,kgcd(k,1)ZS0() = 2
Pn

k=1 pi,k . Given that
Pn

k=1 pi,k  n�1 by Lemma 7, we have 2
Pn

k=1 pi,k  2n�1
, and hence the statement

holds in this case.

Induction Step: First, by Eqn. 2.5,

ZSr(2
n�1

, 2n, . . .) =
1

r

2

66666664

2n�1
ZSr�1(2

n�1
, 2n, . . .)

+2nZSr�2(2
n�1

, 2n, . . .)

+2n�1
ZSr�3(2

n�1
, 2n, . . .)

...

+2�ZS0()

3

77777775

, (3.57)

where � = n if r is even and � = n� 1 if r is odd. Similarly,

ZSr(2
Pn

k=1 pi,kgcd(k,1), . . . , 2
Pn

k=1 pi,kgcd(k,r)) =
1

r

2

66666664

2
Pn

k=1 pi,kgcd(k,1)ZSr�1(2
Pn

k=1 pi,kgcd(k,1), . . .)

+2
Pn

k=1 pi,kgcd(k,2)ZSr�2(2
Pn

k=1 pi,kgcd(k,1), . . .)

+2
Pn

k=1 pi,kgcd(k,3)ZSr�3(2
Pn

k=1 pi,kgcd(k,1), . . .)
...

+2
Pn

k=1 pi,kgcd(k,r)ZS0()

3

77777775

.

(3.58)

28



Subtracting Eqn. 3.58 from Eqn. 3.57, we have

ZSr(2
n�1

, 2n, . . .)� ZSr(2
Pn

k=1 pi,kgcd(k,1), . . . , 2
Pn

k=1 pi,kgcd(k,r))

=
1

r

2

66666664

2n�1
ZSr�1(2

n�1
, 2n, . . .)

+2nZSr�2(2
n�1

, 2n, . . .)

+2n�1
ZSr�3(2

n�1
, 2n, . . .)

...

+2�ZS0()

3

77777775

� 1

r

2

66666664

2
Pn

k=1 pi,kgcd(k,1)ZSr�1(2
Pn

k=1 pi,kgcd(k,1), 2
Pn

k=1 pi,kgcd(k,2), . . .)

+2
Pn

k=1 pi,kgcd(k,2)ZSr�2(2
Pn

k=1 pi,kgcd(k,1), 2
Pn

k=1 pi,kgcd(k,2), . . .)

+2
Pn

k=1 pi,kgcd(k,3)ZSr�3(2
Pn

k=1 pi,kgcd(k,1), 2
Pn

k=1 pi,kgcd(k,2), . . .)
...

+2
Pn

k=1 pi,kgcd(k,r)ZS0()

3

77777775

.

(3.59)

Thus, it su�ces to show that the right hand side of the above equation is � 0, or

2n�1
ZSr�1(2

n�1
, 2n, . . .)� 2

Pn
k=1 pi,kgcd(k,1)ZSr�1(2

Pn
k=1 pi,kgcd(k,1), 2

Pn
k=1 pi,kgcd(k,2), . . .)

+2nZSr�2(2
n�1

, 2n, . . .)� 2
Pn

k=1 pi,kgcd(k,2)ZSr�2(2
Pn

k=1 pi,kgcd(k,1), 2
Pn

k=1 pi,kgcd(k,2), . . .

+2n�1
ZSr�3(2

n�1
, 2n, . . .)� 2

Pn
k=1 pi,kgcd(k,3)ZSr�3(2

Pn
k=1 pi,kgcd(k,1), 2

Pn
k=1 pi,kgcd(k,2), . . .)

...

+2�ZS0()� 2
Pn

k=1 pi,kgcd(k,r)ZS0() � 0.

(3.60)

Now by induction hypothesis, Eqn. 3.56 holds for 1, 2, · · · , r� 1. Thus, Eqn. 3.60

can be replaced by

2n�1
ZSr�1(2

n�1
, 2n, . . .)� 2

Pn
k=1 pi,kgcd(k,1)ZSr�1(2

n�1
, 2n, . . .)

+2nZSr�2(2
n�1

, 2n, . . .)� 2
Pn

k=1 pi,kgcd(k,2)ZSr�2(2
n�1

, 2n, . . .)

+2n�1
ZSr�3(2

n�1
, 2n, . . .)� 2

Pn
k=1 pi,kgcd(k,3)ZSr�3(2

n�1
, 2n, . . .)

...

+2�ZS0()� 2
Pn

k=1 pi,kgcd(k,r)ZS0() � 0.

(3.61)

Moreover, invoking Lemma 7 gives

2n�1
ZSr�1(2

n�1
, 2n, . . .)� 2

Pn
k=1 pi,kgcd(k,1)ZSr�1(2

n�1
, 2n . . .)

� 2n�1
ZSr�1(2

n�1
, 2n, . . .)� 2n�1

ZSr�1(2
n�1

, 2n, . . .) = 0.

(3.62)
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Hence the di↵erence in the first line in Eqn. 3.61 � 0, and therefore it is su�cient

to show that

2nZSr�2(2
n�1

, 2n, . . .)� 2
Pn

k=1 pi,kgcd(k,2)ZSr�2(2
n�1

, 2n, . . .)

+2n�1
ZSr�3(2

n�1
, 2n, . . .)� 2

Pn
k=1 pi,kgcd(k,3)ZSr�3(2

n�1
, 2n, . . .)

...

+2�ZS0()� 2
Pn

k=1 pi,kgcd(k,r)ZS0() � 0.

(3.63)

To prove this inequality, we will combine four terms in pairs of consecutive lines

for the remaining r� 1 lines by considering two cases. If r is odd then � = n� 1

and no extra line remains in this pairing. Thus, for all even ↵, 2  ↵  r � 1, it

su�ces to prove

2nZSr�↵(2
n�1

, 2n, . . .)� 2
Pn

k=1 pi,kgcd(k,↵)ZSr�↵(2
n�1

, 2n . . .),

+2n�1
ZSr�↵�1(2

n�1
, 2n, . . .)� 2

Pn
k=1 pi,kgcd(k,↵+1)

ZSr�↵�1(2
n�1

, 2n . . .) � 0.
(3.64)

or,

2nZSr�↵(2
n�1

, 2n, . . .)� 2
Pn

k=1 pi,kkZSr�↵(2
n�1

, 2n . . .)

+2n�1
ZSr�↵�1(2

n�1
, 2n, . . .)� 2

Pn
k=1 pi,kgcd(k,↵+1)

ZSr�↵�1(2
n�1

, 2n . . .) � 0.
(3.65)

Now if
Pn

k=1 pi,kgcd(k,↵ + 1)  n� 1, then

2nZSr�↵(2
n�1

, 2n, . . .)� 2
Pn

k=1 pi,kkZSr�↵(2
n�1

, 2n, . . .)

+ 2n�1
ZSr�↵�1(2

n�1
, 2n, . . .)� 2n�1

ZSr�↵�1(2
n�1

, 2n, . . .)

� 2nZSr�↵(2
n�1

, 2n, . . .)� 2nZSr�↵(2
n�1

, 2n, . . .) + 2n�1
ZSr�↵�1(2

n�1
, 2n, . . .)

� 2n�1
ZSr�↵�1(2

n�1
, 2n, . . .) = 0. (3.66)

On the other hand, if
Pn

k=1 pi,kgcd(k,↵ + 1) = n, then we prove Eqn. 3.64 by

noting that
Pn

k=1 pi,kgcd(k,↵)  n� 1 by Lemma 8. Thus,

2nZSr�↵(2
n�1

, 2n, . . .)� 2n�1
ZSr�↵(2

n�1
, 2n, . . .)

+ 2n�1
ZSr�↵�1(2

n�1
, 2n, . . .)� 2nZSr�↵�1(2

n�1
, 2n, . . .)

= 2n�1
ZSr�↵(2

n�1
, 2n, . . .)� 2n�1

ZSr�↵�1(2
n�1

, 2n, . . .)

2n�1
⇥
ZSr�↵(2

n�1
, 2n, . . .)� ZSr�↵�1(2

n�1
, 2n, . . .)

⇤
. (3.67)
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Now by Lemma 9, ZSr�↵(2
n�1

, 2n, . . .) � ZSr�↵�1(2
n�1

, 2n, . . .) and the statement

is proved for odd r, n < r. For even r, the last line in Eqn. 3.63 is left out in

the pairing of consecutive lines and � = n. In this case we have 2nZS0() �
2
Pn

k=1 pi,kgcd(k,r)ZS0() � 2nZS0() � 2
Pn

k=1 pi,kkZS0() = 2nZS0() � 2nZS0() = 0 and

the statement follows.

Theorem 6.

[ZSn [2]⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) 
�
r+2n�1

r

�

n!(n!� 1)
(3.68)

where 2  n < r.

Proof. By Corollary 2

[ZSn [2]⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2) =
1

n!
ZSr(2

n�1
, 2n, . . .). (3.69)

Thus, to prove the theorem, it is su�cient to show

1

n!
ZSr(2

n�1
, 2n, 2n�1

, 2n, . . .) 
�
r+2n�1

r

�

n!(n!� 1)
(3.70)

where 2  n < r.

Now, using Eqn. 2.5, we get

rZSr(2
n�1

, 2n, . . .) =
r��1X

odd i

2n�1
ZSr�i(2

n�1
, 2n, . . .) +

r��2X

even i

2nZSr�i(2
n�1

, 2n, . . .)

(3.71)

where �1 = 1, �2 = 0 if r is even and �1 = 0, �2 = 1 if r is odd. Similarly, for

r � 2,

(r � 2)ZSr�2(2
n�1

, 2n, . . .) =
r�2��1X

odd i

2n�1
ZSr�2�i(2

n�1
, 2n, . . .) +

r�2��2X

even i

2nZSr�2�i(2
n�1

, 2n, . . .).

(3.72)
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Subtracting Eqn. 3.72 from Eqn. 3.71 gives

rZSr(2
n�1

, 2n, . . .)� (r � 2)ZSr�2(2
n�1

, 2n, . . .)

= 2n�1
ZSr�1(2

n�1
, 2n, . . .) + 2nZSr�2(2

n�1
, 2n, . . .), (3.73)

rZSr(2
n�1

, 2n, . . .) = 2n�1
ZSr�1(2

n�1
, 2n, . . .) + (r � 2 + 2n)ZSr�2(2

n�1
, 2n, . . .),

(3.74)

ZSr(2
n�1

, 2n, . . .) =
1

r

⇥
2n�1

ZSr�1(2
n�1

, 2n, . . .) + (r � 2 + 2n)ZSr�2(2
n�1

, 2n, . . .)
⇤
.

(3.75)

We will use induction on r and the recurrence given in Eqn. 3.75 to prove this

inequality.

Basis

Case 1: r = 3. Recall that

ZSn [2] =
1

n!
x
n�2
1 x2, (3.76)

ZS3(x1, x2, x3) =
1

3!
(x3

1 + 3x1x2 + 2x3). (3.77)

Thus,

[ZSn [2]⇥ ZS3(x1, x2, x3)] (2, 2, . . . , 2)

=


1

n!
(xn�2

1 x2)⇥
1

3!
(x3

1 + 3x1x2 + 2x3)

�
(2, 2, . . . , 2), (3.78)

=
1

3!n!

h
(xn�2

1 x2)
K

x
3
1 + (xn�2

1 x2)
K

(3x1x2) + (xn�2
1 x2)

K
2x3

i
(2, 2, . . . , 2),

(3.79)

=
1

3!n!

h
x
3(n�2)
1 x

3
2 + 3xn�2

1 x2x
n�2
2 x

2
2 + 2xn�2

3 x6

i
(2, 2, . . . , 2), (3.80)

=
1

3!n!

⇥
23n�3 + 3⇥ 22n�1 + 2n

⇤

�
r+2n�1

r

�

n!(n!� 1)
. (3.81)

for n = 2 and r = 3.
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Case 2: r = 4. In this case we have

[ZSn [2]⇥ ZS4(x1, x2, x3, x4)] (2, . . . , 2)

=


1

n!
(xn�2

1 x2)⇥
1

4!
(x4

1 + 6x2
1x2 + 3x2

2 + 8x1x3 + 6x4)

�
(2, . . . , 2), (3.82)

=
1

4!n!


(xn�2

1 x2)
K

x
4
1 + (xn�2

1 x2)
K

(6x2
1x2) + (xn�2

1 x2)
K

3x2
2

+ (xn�2
1 x2)

K
(8x1x3) + (xn�2

1 x2)
K

6x4

�
(2, . . . , 2), (3.83)

=
1

4!n!

h
x
4(n�2)
1 x

4
2 + 6x2(n�2)

1 x
n�2
2 x

2
2x

2
2 + 3x2(n�2)

1 x
4
2 + 8xn�2

1 x
n�2
3 x2x6 + 6xn�2

4 x
2
4

i
(2, . . . , 2),

(3.84)

=
1

4!n!

⇥
24n�4 + 6⇥ 23n�2 + 3⇥ 22n + 8⇥ 22n�2 + 6⇥ 2n

⇤
, (3.85)

=
1

4!n!

⇥
24n�4 + 6⇥ 23n�2 + 5⇥ 22n + 6⇥ 2n

⇤
. (3.86)

Now, given that r = 4, the only possible values of n are 2 and 3. If n = 2 then:

[ZSn [2]⇥ ZS4(x1, x2, x3, x4)] (2, 2, . . . , 2) =
1

4!n!

⇥
24n�4 + 6⇥ 23n�2 + 5⇥ 22n + 6⇥ 2n

⇤
,

(3.87)

=
1

4!2!

⇥
24 + 6⇥ 24 + 5⇥ 24 + 6⇥ 22

⇤
,

(3.88)

=
16 + 96 + 80 + 24

4!2!
= 4.5, (3.89)


�
r+2n�1

r

�

n!(n!� 1)
=

�
7
4

�

2!(2!� 1)
=

35

2
= 17.5.

(3.90)

On the other hand, if n = 3 then:

[ZSn [2]⇥ ZS4(x1, x2, x3, x4)] (2, . . . , 2) =
1

4!n!

⇥
24n�4 + 6⇥ 23n�2 + 5⇥ 22n + 6⇥ 2n

⇤
,

(3.91)

=
1

4!3!

⇥
28 + 6⇥ 27 + 5⇥ 26 + 6⇥ 23

⇤
,

(3.92)
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[ZSn [2]⇥ ZS4(x1, x2, x3, x4)] (2, . . . , 2) =
256 + 768 + 320 + 48

4!3!
=

29

3
, (3.93)


�
r+2n�1

r

�

n!(n!� 1)
=

�
11
4

�

3!(3!� 1)
=

330

30
= 11.

(3.94)

Induction Step: Suppose that Eqn. 3.70 holds for all values from 3 to r � 1.

Using the recurrence given in Eqn. 3.75 and the induction hypothesis for r � 1

and r � 2 we get

1

n!
ZSr(2

n�1
, 2n, . . .) =

1

n!r

⇥
2n�1

ZSr�1(2
n�1

, 2n, . . .) + (r � 2 + 2n)ZSr�2(2
n�1

, 2n, . . .)
⇤
,

(3.95)

=
2n�1

n!r
ZSr�1(2

n�1
, 2n, . . .) +

r � 2 + 2n

n!r
ZSr�2(2

n�1
, 2n, . . .),

(3.96)

 2n�1

r

�
r+2n�2
r�1

�

n!(n!� 1)
+

r � 2 + 2n

r

�
r+2n�3
r�2

�

n!(n!� 1)
, (3.97)

 2n�1

n!(n!� 1)r

(r + 2n � 2)!

(r � 1)!(2n � 1)!
+

r � 2 + 2n

n!(n!� 1)r

(r + 2n � 3)!

(r � 2)!(2n � 1)!
,

(3.98)

 2n�1

n!(n!� 1)r

(r + 2n � 2)!

(r � 1)!(2n � 1)!
+

(r � 1)(r + 2n � 2)!

n!(n!� 1)r!(2n � 1)!
,

(3.99)

 (r + 2n � 2)!(r + 2n�1 � 1)

n!(n!� 1)r!(2n � 1)!
 (r + 2n � 2)!(r + 2n � 1)

n!(n!� 1)r!(2n � 1)!
,

(3.100)

 (r + 2n � 1)!

n!(n!� 1)r!(2n � 1)!
=

1

n!(n!� 1)

✓
r + 2n � 1

r

◆
, (3.101)

 1

n!(n!� 1)

✓
r + 2n � 1

r

◆
, (3.102)

and this completes the proof.

Combining Theorems 5 and 6 concludes the upper bound calculation.
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Theorem 7.

|Bu(n, r)| 
2
�
r+2n�1

r

�

n!
. (3.103)

Proof.

|Bu(n, r)| = ZSn⇥Sr(2, 2, . . . , 2), (3.104)

= [ZSn(x1, x2, . . . , xn)⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2), (3.105)

= [(ZSn [1] + ZSn [2] + . . .+ ZSn [n!])⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2), (3.106)

= [(ZSn [1])⇥ ZSr(x1, . . . , xr)] (2, . . . , 2) + [(ZSn [2])⇥ ZSr(x1, . . . , xr)] (2, . . . , 2)

+ . . .+ [(ZSn [n!])⇥ ZSr(x1, . . . , xr)] (2, . . . , 2), (3.107)

 [(ZSn [1])⇥ ZSr(x1, . . . , xr)] (2, . . . , 2) + [(ZSn [2])⇥ ZSr(x1, . . . , xr)] (2, . . . , 2)

+ . . .+ [(ZSn [2])⇥ ZSr(x1, x2, . . . , xr)] (2, 2, . . . , 2), (3.108)


�
r+2n�1

r

�

n!
+ (n!� 1)

�
r+2n�1

r

�

n!(n!� 1)
=

2
�
r+2n�1

r

�

n!
. (3.109)

Table 3.1 lists ln |Bu(n, r)| along with the natural logarithms of lower and upper

bounds for 1  n < r  15.

Remark 2. It should be mentioned that, if r < n, using the relation |Bu(n, r)| =
|Bu(r, n)| gives

|Bu(n, r)|  2

�
n+2r�1

n

�

r!
. (3.110)

Likewise, if r < n, Theorem 4 and |Bu(n, r)| = |Bu(r, n)| together imply

|Bu(n, r)| �
�
n+2r�1

n

�

r!
. (3.111)

Furthermore, if r = n, using the cycle index representation of bi-colored graphs

provided in Section 3 in [23] and Theorem 4 gives

|Bu(n, n)| �
�
n+2n�1

n

�

2n!
. (3.112)

The Z 0 term in the cycle index representation of bi-colored graphs in [23] prevents

us from deriving an upper bound for |Bu(n, n)| that is a constant multiple of

the lower bound in this case. On the other hand, an obvious upper bound for

|Bu(n, n)| can be derived by setting r = n+ 1 in the inequality in Theorem 7.
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      n      r 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1
1.09861
1.09861
1.79176

1.38629
1.38629
2.07944

1.60944
1.60944
2.30259

1.79176
1.79176
2.48491

1.94591
1.94591
2.63906

2.07944
2.07944
2.77259

2.19722
2.19722
2.89037

2.30259
2.30259
2.99573

2.3979
2.3979
3.09104

2.48491
2.48491
3.17805

2.56495
2.56495
3.2581

2.63906
2.63906
3.3322

2.70805
2.70805
3.4012

2.77259
2.77259
3.46574

2
2.30259
2.56495
2.99573

2.83321
3.09104
3.55535

3.3322
3.52636
4.02535

3.73767
3.91202
4.43082

4.09434
4.2485
4.78749

4.40672
4.55388
5.10595

4.70048
4.82831
5.39363

4.96284
5.0814
5.65599

5.20401
5.31321
5.89715

5.42495
5.52943
6.1203

5.63479
5.7301
6.32794

5.82895
5.91889
6.52209

6.01127
6.09582
6.70441

3
4.00733
4.46591
4.70048

4.8828
5.24702
5.57595

5.65599
5.95584
6.34914

6.34914
6.59851
7.04229

6.97728
7.18841
7.67089

7.55276
7.73368
8.24617

8.08364
8.24012
8.77678

8.57622
8.71276
9.26936

9.03575
9.1562
9.7289

9.46653
9.57345
10.1597

9.872
9.96754
10.5651

10.255
10.3409
10.9481

4
6.4708
6.9594
7.16395

7.72356
8.08641
8.41671

8.86869
9.14238
9.56184

9.92471
10.1349
10.6179

10.9056
11.0692
11.5987

11.8219
11.9512
12.515

12.6821
12.7855
13.3752

13.493
13.5767
14.1861

14.2603
14.3287
14.9534

14.9885
15.045
15.6816

15.6816
15.7287
16.3748

5
9.87164
10.2603
10.5648

11.5633
11.826
12.2565

13.1474
13.3276
13.8406

14.6391
14.7645
15.3322

16.0501
16.1388
16.7432

17.3899
17.4535
18.083

18.6662
18.7124
19.3593

19.8854
19.9195
20.5785

21.053
21.0784
21.7461

22.1736
22.1927
22.8667

6
14.3253
14.5771
15.0185

16.5086
16.6637
17.2017

18.588
18.6849
19.2811

20.5759
20.6372
21.269

22.482
22.5215
23.1752

24.3146
24.3403
25.0078

26.0804
26.0974
26.7736

27.7852
27.7965
28.4783

29.4338
29.4415
30.127

7
19.9011
20.0463
20.5942

22.6165
22.6996
23.3097

25.2339
25.282
25.927

27.7633
27.7915
28.4564

30.2128
30.2295
30.906

32.5895
32.5995
33.2827

34.8992
34.9053
35.5924

37.147
37.1507
37.8401

8
26.6393
26.7201
27.3324

29.9164
29.9604
30.6096

33.102
33.1261
33.7952

36.2043
36.2177
36.8975

39.2304
39.2378
39.9235

42.186
42.1902
42.8792

45.0764
45.0788
45.7696

9
34.5644
34.6096
35.2575

38.4241
38.4479
39.1173

42.1988
42.2114
42.892

45.8953
45.902
46.5885

49.5197
49.5233
50.2128

53.0769
53.0789
53.7701

10
43.693
43.7187
44.3861

48.1502
48.1635
48.8434

52.5284
52.5353
53.2216

56.8335
56.837
57.5266

61.0705
61.0723
61.7636

11
54.0381
54.0528
54.7312

59.1036
59.1111
59.7967

64.0955
64.0993
64.7886

69.0189
69.0208
69.712

12
65.6106
65.6191
66.3038

71.2925
71.2968
71.9856

76.9056
76.9078
77.5988

13
78.4205
78.4254
79.1137

84.7251
84.7275
85.4182

14
92.4768
92.4797
93.17

Table 3.1: Exact values of ln |Bu(n, r)|, 1  n < r  15, and natural logarithms
of lower and upper bounds.

We conclude this chapter by stating that the constant factor of 2 in the upper

bound can potentially be reduced further. However this will require a further

reduction in Inequality 3.68, but reducing 1/(n! � 1) in this inequality further

seems di�cult. Another alternative for reducing the constant in the upper bound

would be to bound the remaining terms by a di↵erent technique, and this remains

to be settled with further research.
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Chapter 4

Labeled Bipartite Graphs 1

In this chapter, we will extend the bounds given in previous chapter to labeled bi-

partite graphs. In particular, we introduce left(right)-set-labeled and set-labeled

bipartite graphs and provide asymptotic bounds for their sizes.

4.1 Preliminary Facts

We begin with some definitions. An (n, r)-bipartite graph is called left(right)-set-

labeled if its left(right) vertices are distinguishable up to subsets of all left(right)

vertices. An (n, r)-bipartite graph is called set-labeled if left vertices are distin-

guishable up to subsets of all left vertices and right vertices are distinguishable

up to subsets of all right vertices.
1
This is joint work with Prof. A. Yavuz Oruç.
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4.2 Left-Set-Labeled Bipartite Graphs

In this section, we start with counting four families of left-set-labeled bipartite

graphs and then provide a lower and an upper bound on the number of left-set-

labeled bipartite graphs. Right-set-labeled bipartite graphs are counted similarly

and their counting is omitted.

Let Bx(n, r) be the set of all (n, r)-left-set-labeled bipartite graphs. Let Bx(n, r, i)

be the set of (n, r)-left-set-labeled bipartite graphs in each of which the degrees

of exactly i left vertices are greater than 0. Let Bx(i, r) be the set of all (i, r)-

unlabeled bipartite graphs in each of which the degrees of all left vertices are

greater than 0. It follows that

|Bx(n, r, i)| =
✓
n

i

◆
|Bx(i, r)|. (4.1)

|Bx(n, r)| = 1 +
nX

i=1

|Bx(n, r, i)|. (4.2)

|Bx(n, r)| = 1 +
nX

i=1

✓
n

i

◆
|Bx(i, r)|. (4.3)

4.2.1 Counting Left-Set-Labeled Bipartite Graphs

Recall that Bu(n, r) denote the set of all unlabeled (n, r)-bipartite graphs. In

chapter 2, it was stated that |Bu(1, r)| = r+1. Dropping the empty graph yields

|Bx(1, r)| = r, and hence |Bx(1, r)| = r + 1. To compute |Bx(n, r)|, n � 2 we

note the following identities.

|Bu(n, r)| = 1 +
nX

i=1

|Bx(i, r)|, (4.4)

|Bu(n� 1, r)| = 1 +
n�1X

i=1

|Bx(i, r)|. (4.5)
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Hence

|Bx(n, r)| = |Bu(n, r)|� |Bu(n� 1, r)|. (4.6)

Now we can calculate |Bx(2, r)| using Eqn. 4.6 and Theorem 1,

|Bx(2, r)| = |Bu(2, r)|� |Bu(1, r)|, (4.7)

=
2r3 + 15r2 + 34r + 22.5 + 1.5 (�1)r

24
� (r + 1), (4.8)

and similarly |Bx(3, r)| using Eqn. 4.6 and Theorem 2,

|Bx(3, r)| = |Bu(3, r)|� |Bu(2, r)|, (4.9)

=

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

1
6

"
�
r+7
7

�
+

3(r+4)(2r4+32r3+172r2+352r+15(�1)r+225)
960 + 2(r3+12r2+45r+54)

54

#

�2r3+15r2+34r+22.5+1.5(�1)r

24 if r mod 3 = 0,

1
6

"
�
r+7
7

�
+

3(r+4)(2r4+32r3+172r2+352r+15(�1)r+225)
960 + 2(r3+12r2+45r+50)

54

#

�2r3+15r2+34r+22.5+1.5(�1)r

24 if r mod 3 = 1,

1
6

"
�
r+7
7

�
+

3(r+4)(2r4+32r3+172r2+352r+15(�1)r+225)
960 + 2(r3+12r2+39r+28)

54

#

�2r3+15r2+34r+22.5+1.5(�1)r

24 if r mod 3 = 2.

(4.10)

Using Eqns. 4.3 and 4.8, we can easily calculate |Bx(2, r)|.

|Bx(2, r)| = 1 +
2X

i=1

✓
2

i

◆
|Bx(i, r)| = 1 + 2|Bx(1, r)|+ |Bx(2, r)|, (4.11)

= 1 + 2r +
2r3 + 15r2 + 34r + 22.5 + 1.5 (�1)r

24
� (r + 1), (4.12)

=
2r3 + 15r2 + 58r + 22.5 + 1.5 (�1)r

24
. (4.13)

Similarly, using Eqns. 4.3 and 4.10 we can calculate |Bx(3, r)| as follows.

|Bx(3, r)|=1 +
3X

i=1

✓
3

i

◆
|Bx(i, r)|, (4.14)

=1 + 3|Bx(1, r)|+ 3|Bx(2, r)|+ |Bx(3, r)|, (4.15)

=1 + 3r + 3
⇣2r3 + 15r2 + 34r + 22.5 + 1.5 (�1)r

24
� (r + 1)

⌘
+ |Bx(3, r)|, (4.16)
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and replacing |Bx(3, r)| by the formula in Eqn. 4.10 gives us

|Bx(3, r)| =

8
>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>:

1
6

"
�
r+7
7

�
+

3(r+4)(2r4+32r3+172r2+352r+15(�1)r+225)
960 + 2(r3+12r2+45r+54)

54

#

+4r3+30r2+68r�3+3(�1)r

24 if r mod 3 = 0,

1
6

"
�
r+7
7

�
+

3(r+4)(2r4+32r3+172r2+352r+15(�1)r+225)
960 + 2(r3+12r2+45r+50)

54

#

+4r3+30r2+68r�3+3(�1)r

24 if r mod 3 = 1,

1
6

"
�
r+7
7

�
+

3(r+4)(2r4+32r3+172r2+352r+15(�1)r+225)
960 + 2(r3+12r2+39r+28)

54

#

+4r3+30r2+68r�3+3(�1)r

24 if r mod 3 = 2.

(4.17)

These results can be extended so that the number of left vertices becomes n while

the number of right vertices is reduced to 2 or 3 as follows.

|Bx(i, 1)| = |Bu(i, 1)|� |Bu(i� 1, 1)|, (4.18)

= (i+ 1)� i = 1. (4.19)

This leads to

|Bx(n, 1)| = 1 +
nX

i=1

✓
n

i

◆
|Bx(i, 1)| = 2n. (4.20)

Similarly, |Bx(i, 2)| can be calculated using (4.6).

|Bx(i, 2)| = |Bu(i, 2)|� |Bu(i� 1, 2)|, (4.21)

= |Bu(2, i)|� |Bu(2, i� 1)|, (4.22)

=
2i3 + 15i2 + 34i+ 22.5 + 1.5(�1)i

24

�2(i� 1)3 + 15(i� 1)2 + 34(i� 1) + 22.5 + 1.5(�1)i�1

24
,(4.23)

=
6i2 + 24i+ 21 + 3(�1)i

24
. (4.24)
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This leads to

|Bx(n, 2)| = 1 +
nX

i=1

✓
n

i

◆
|Bx(i, 2)|, (4.25)

= 1 +
nX

i=1

✓
n

i

◆
6i2 + 24i+ 21 + 3(�1)i

24
, (4.26)

= n(n+ 1)2n�4 + n2n�1 + 7(2n�3). (4.27)

|Bx(i, 3)| can similarly be computed as follows.

|Bx(i, 3)| = |Bu(i, 3)|� |Bu(i� 1, 3)|, (4.28)

= |Bu(3, i)|� |Bu(3, i� 1)|, (4.29)

=

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

1
6

"
�
i+7
7

�
�
�
i+6
7

�
+ 3(i+4)(2i4+32i3+172i2+352i+15(�1)i+225)

960

�3(i+3)(2(i�1)4+32(i�1)3+172(i�1)2+352(i�1)�15(�1)i+225)
960

+2(i3+12i2+45i+54)
54 � 2((i�1)3+12(i�1)2+39(i�1)+28)

54

#
if i mod 3 = 0,

1
6

"
�
i+7
7

�
�
�
i+6
7

�
+

3(i+4)(2i4+32i3+172i2+352i+15(�1)i+225)
960

�3(i+3)(2(i�1)4+32(i�1)3+172(i�1)2+352(i�1)�15(�1)i+225)
960

+2(i3+12i2+45i+50)
54 � 2((i�1)3+12(i�1)2+45(i�1)+54)

54

#
if i mod 3 = 1,

1
6

"
�
i+7
7

�
�
�
i+6
7

�
+ 3(i+4)(2i4+32i3+172i2+352i+15(�1)i+225)

960

�3(i+3)(2(i�1)4+32(i�1)3+172(i�1)2+352(i�1)�15(�1)i+225)
960

+2(i3+12i2+39i+28)
54 � 2((i�1)3+12(i�1)2+45(i�1)+50)

54

#
if i mod 3 = 2,

(4.30)
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=

8
>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>:

1
6

"
�
i+6
6

�
+ 10i4+140i3+680i2+1330i+30i(�1)i+105(�1)i+855

320

+6i2+54i+108
54

#
if i mod 3 = 0,

1
6

"
�
i+6
6

�
+ 10i4+140i3+680i2+1330i+30i(�1)i+105(�1)i+855

320

+6i2+42i+60
54

#
if i mod 3 = 1,

1
6

"
�
i+6
6

�
+ 10i4+140i3+680i2+1330i+30i(�1)i+105(�1)i+855

320

+6i2+30i+24
54

#
if i mod 3 = 2.

(4.31)

This leads to

|Bx(n, 3)| = 1 +
nX

i=1

✓
n

i

◆
|Bx(i, 3)|, (4.32)

=

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

3 2nn6+171 2nn5+3765 2nn4+41265 2nn3+14787 2n+4n2

829440

+
12(2560(�1)n/3+55077 2n)n+880(128(�1)n/3+763 2n)

829440 if n mod 3 = 0,

3 2nn6+171 2nn5+3765 2nn4+41265 2nn3+14787 2n+4n2

829440

+
165231 2n+2n�80

✓
1280(�1)

n+2
3 �8393 2n

◆

829440 if n mod 3 = 1,

3 2nn6+171 2nn5+3765 2nn4+41265 2nn3+14787 2n+4n2

829440

+
12

✓
2560(�1)

n+1
3 +55077 2n

◆
n+80

✓
128(�1)

n+1
3 +8393 2n

◆

829440 if n mod 3 = 2,

(4.33)

where n � 2.

4.2.2 A Lower Bound for |Bx(n, r)|

Proposition 2.

|Bx(n, r)| � 1 +
nX

i=1

✓
n

i

◆✓
i+ 2r � 2

i

◆
/r!. (4.34)
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Proof. The first term 1 given in lower bound formula counts for the left-set-

labeled bipartite graph where there are no edges between vertices. Consider

2r � 1 subsets of r right vertices excluding empty set. Let Xi be an arbitrary

but fixed subset of left n vertices of size i, 1  i  n. Each one-to-one pairing of

Xi with any i of the 2r � 1 subsets of right vertices constitute a left-set-labeled

bipartite graphs. The number of such pairings is given by
�
i+2r�2

i

�
. This formula

counts the number of i-selections from a set of 2r � 1 distinct elements. Since

right vertices are indistinguishable up to r! of these may be equivalent under a

permutation of r vertices. Therefore, there exist at least
�
i+2r�2

i

�
/r! distinct left-

set-label bipartite graphs associated with Xi. Since there exist
�
n
i

�
i-subset of left

vertices, we must have at least
�
n
i

��
i+2r�2

i

�
/r! distinct left-set-labeled bipartite

graphs between subsets of size i left vertices and r right vertices. Summing this

for i from 1 to n establishes the lower bound in the statement.

It is di�cult to obtain a closed form formula for the sum in Proposition 2, but it

can be approximated by computing the maximum value of the argument of the

sum with respect to i as shown in the following proposition.

Proposition 3.

|Bx(n, r)| �
✓

n

imax

◆✓
imax + 2r � 2

imax

◆
/r!, (4.35)

where imax = 1
4

h
(a2 + 6an+ n

2)1/2 � a� n

i
and a = 2r � 2.

Proof. The inequality

|Bx(n, r)| �
✓

n

imax

◆✓
imax + 2r � 2

imax

◆
/r! (4.36)

holds, where imax is the value of i, 1  imax  n that maximizes the expression
�
n
i

��
i+2r�2

i

�
/r!.

Di↵erentiating the argument of the sum and setting equal to 0 gives imax =
1
4

h
(a2 + 6an+ n

2)1/2 � a� n

i
+ n/2 where a = 2r � 2.
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4.2.3 Upper Bounds for |Bx(n, r)|

Proposition 4.

|Bx(n, r)|  1 +
nX

i=1

✓
n

i

◆"
2

✓
r + 2i � 1

r

◆
/i!�

✓
r + 2i�1 � 1

r

◆
/(i� 1)!

#
, (4.37)

where n < r.

Proof. The first term 1 given in the upper bound formula counts for left-set-

labeled bipartite graph in which there are no edges between vertices. For the

remaining sum, we use Theorem 7, Eqns. 4.3 and 4.6 to obtain

|Bx(n, r)|=1 +
nX

i=1

✓
n

i

◆
|Bx(i, r)|, (4.38)

= 1 +
nX

i=1

✓
n

i

◆h
|Bu(i, r)|� |Bu(i� 1, r)|

i
, (4.39)

 1 +
nX

i=1

✓
n

i

◆"
2

✓
r + 2i � 1

r

◆
/i!�

✓
r + 2i�1 � 1

r

◆
/(i� 1)!

#
, (4.40)

and this establishes the upper bound in the statement.

Proposition 5. For all n, r � 2,

|Bx(n, r)|  1 + 2
r�1X

i=1

✓
n

i

◆✓
r + 2i � 1

r

◆
/i! + 2

✓
n

r

◆✓
r + 2r

r + 1

◆
/r!

+2
nX

i=r+1

✓
n

i

◆✓
i+ 2r � 1

i

◆
/r!. (4.41)

Proof. Again the first term 1 given in the upper bound formula counts for the

left-set-labeled bipartite graph where there are no edges between vertices. For the

remaining sum, we note |Bx(i, r)| can not exceed |Bu(i, r)|, since every bipartite

44



graph in Bx(i, r) is also in Bu(i, r), 1  i  n.

|Bx(n, r)| = 1 +
nX

i=1

✓
n

i

◆
|Bx(i, r)|, (4.42)

 1 +
nX

i=1

✓
n

i

◆
|Bu(i, r)|, (4.43)

 1 + 2
r�1X

i=1

✓
n

i

◆✓
r + 2i � 1

r

◆
/i! +

rX

i=r

✓
n

i

◆
|Bu(i, r)|

+2
nX

i=r+1

✓
n

i

◆✓
i+ 2r � 1

i

◆
/r!. (4.44)

Since we do not have any upper bound formula for |Bu(i, r)| when i = r, we will

use |Bu(r, r)|  |Bu(r + 1, r)|.

|Bx(n, r)|  1 + 2
r�1X

i=1

✓
n

i

◆✓
r + 2i � 1

r

◆
/i! + 2

✓
n

r

◆✓
r + 2r

r + 1

◆
/r!

+2
nX

i=r+1

✓
n

i

◆✓
i+ 2r � 1

i

◆
/r!, (4.45)

and this establishes the upper bound in the statement.

4.3 Set-Labeled Bipartite Graphs

In this section, we start with counting two families of set-labeled bipartite graphs

and then provide a lower and an upper bound on the number of set-labeled

bipartite graphs.

First of all we start with some definitions. Let Bxy(n, r) be the set of all (n, r)-set-

labeled bipartite graphs. Also Bxy(i, j) be the set of all (i, j)-unlabeled bipartite

graphs such that there is no vertex in the graph that has degree of 0. We have

|Bxy(n, r)| = 1 +
nX

i=1

rX

j=1

✓
n

i

◆✓
r

j

◆
|Bxy(i, j)|. (4.46)
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We could use a notation that is similar to the notation Bx(n, r, i) of the prior sec-

tion for completeness. However, the relation between Bxy(i, j) and Bxy(n, r, i, j)

is obvious and omitted here.

4.3.1 Counting Set-Labeled Bipartite Graphs

Clearly, |Bxy(1, 1)| = |Bxy(1, j)| = |Bxy(i, 1)| = 1. |Bx(i, j) and |Bx(i, j� 1)| can
be witten as follows.

|Bx(i, j)| =
jX

k=1

|Bxy(i, k)|, (4.47)

|Bx(i, j � 1)| =
j�1X

k=1

|Bxy(i, k)|. (4.48)

Hence

|Bxy(i, j)| = |Bx(i, j)|� |Bx(i, j � 1)|. (4.49)

Now we can calculate |Bxy(i, 2)| using Eqn. 4.49.

|Bxy(i, 2)| = |Bx(i, 2)|� |Bx(i, 1)|, (4.50)

=
6i2 + 24i+ 21 + 3(�1)i

24
� 1, (4.51)

=
6i2 + 24i� 3 + 3(�1)i

24
. (4.52)

Using Eqns. 4.46 and 4.52, we can calculate |Bxy(n, 2)| as follows.

|Bxy(n, 2)| = 1 +
nX

i=1

✓
n

i

◆ 2X

j=1

✓
2

j

◆
|Bxy(i, j)|, (4.53)

= 1 +
nX

i=1

✓
n

i

◆"✓
2

1

◆
|Bxy(i, 1)|+

✓
2

2

◆
|Bxy(i, 2)|

#
, (4.54)

= 1 +
nX

i=1

✓
n

i

◆
6i2 + 24i+ 45 + 3(�1)i

24
, (4.55)

=
15

8
(2n) + 2n�1

n+ 2n�4
n(n+ 1)� 1. (4.56)
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Similarly, we can calculate |Bxy(i, 3)| using Eqn. 4.49 as follows.

|Bxy(i, 3)| = |Bx(i, 3)|� |Bx(i, 2)|. (4.57)

Now we will use Eqns. 4.24 and 4.57 to compute |Bxy(n, 3)|.

|Bxy(n, 3)| = 1 +
nX

i=1

✓
n

i

◆ 3X

j=1

✓
3

j

◆
|Bxy(i, j)|, (4.58)

= 1 +
nX

i=1

✓
n

i

◆"✓
3

1

◆
|Bxy(i, 1)|+

✓
3

2

◆
|Bxy(i, 2)|+

✓
3

3

◆
|Bxy(i, 3)|

#
, (4.59)

= 1 +
nX

i=1

✓
n

i

◆"
3 + 3|Bxy(i, 2)|+ |Bx(i, 3)|� |Bx(i, 2)|

#
, (4.60)

= 1 +
nX

i=1

✓
n

i

◆"
3 +

3(6i2 + 24i� 3 + 3(�1)i)

24
� 6i2 + 24i+ 21 + 3(�1)i

24

#

+
nX

i=1

✓
n

i

◆
|Bx(i, 3)|, (4.61)

= 1 +
nX

i=1

✓
n

i

◆"
i
2

2
+ 2i+

(�1)i

4
+

7

4

#
+

nX

i=1

✓
n

i

◆
|Bx(i, 3)|, (4.62)

= 1 + 2n�3
n
2 + 9⇥ 2n�3

n+ 7⇥ 2n�2 � 2 +
nX

i=1

✓
n

i

◆
|Bx(i, 3)|. (4.63)

Rearranging terms using Eqn. 4.33 gives us

|Bxy(n, 3)| = 2n�3
n
2 + 9⇥ 2n�3

n+ 7⇥ 2n�2 � 2 + |Bx(n, 3)| (4.64)

=

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

3⇥2nn6+171⇥2nn5+3765⇥2nn4+41265⇥2nn3+21267⇥2n+4n2

829440

+
12(2560(�1)n/3+132837⇥2n)n+80(1408(�1)n/3+26537⇥2n�20736)

829440 if n mod 3 = 0,

3⇥2nn6+171⇥2nn5+3765⇥2nn4+41265⇥2nn3+21267⇥2n+4n2+398511⇥2n+2n
829440

�
80

✓
1280(�1)

n+2
3 �26537⇥2n+20736

◆

829440 if n mod 3 = 1,

3⇥2nn6+171⇥2nn5+3765⇥2nn4+41265⇥2nn3+21267⇥2n+4n2

829440

+
12

✓
2560(�1)

n+1
3 +132837⇥2n

◆
n+80

✓
128(�1)

n+1
3 +26537⇥2n�20736

◆

829440 if n mod 3 = 2.

(4.65)
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4.3.2 Bounds for Set-Labeled Bipartite Graphs

In this section, we provide both a lower and upper bound on the number of set-

labeled bipartite graphs. But before we need some preliminary facts to give our

bounds.

Using Theorems 4 and 7, and Eqn. 3.112 we can write following inequalities for

|Bu(i, j)| and |Bu(i� 1, j)| as follows.
�
j+2i�1

j

�

i!
 |Bu(i, j)| 

2
�
j+2i�1

j

�

i!
, (4.66)

�
j+2i�1�1

j

�

(i� 1)!
 |Bu(i� 1, j)| 

2
�
j+2i�1�1

j

�

(i� 1)!
, (4.67)

where i < j,

�
i+2j�1

i

�

j!
 |Bu(i, j)| 

2
�
i+2j�1

i

�

j!
, (4.68)

�
i+2j�2
i�1

�

j!
 |Bu(i� 1, j)| 

2
�
i+2j�2
i�1

�

j!
, (4.69)

where j < i� 1,

�
i+2i�1�1

i

�

(i� 1)!
 |Bu(i, j)| 

2
�
i+2i�1�1

i

�

(i� 1)!
, (4.70)

�
i+2i�1�2

i�1

�

2(i� 1)!
 |Bu(i� 1, j)| 

2
�
i+2i�1�1

i

�

(i� 1)!
, (4.71)

where j = i� 1 and

�
i+2i�1

i

�

2(i!)
 |Bu(i, j)| 

2
�
i+2i

i+1

�

i!
, (4.72)

�
i+2i�1�1

i

�

(i� 1)!
 |Bu(i� 1, j)| 

2
�
i+2i�1�1

i

�

(i� 1)!
, (4.73)

where j = i.
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Using these inequalities with Eqn. 4.6, we can bound |Bx(i, j)| as follows.
�
j+2i�1

j

�

i!
�

2
�
j+2i�1�1

j

�

(i� 1)!
 |Bx(i, j)| 

2
�
j+2i�1

j

�

i!
�
�
j+2i�1�1

j

�

(i� 1)!
, i < j, (4.74)

�
i+2j�1

i

�

j!
�

2
�
i+2j�2
i�1

�

j!
 |Bx(i, j)| 

2
�
i+2j�1

i

�

j!
�
�
i+2j�2
i�1

�

j!
, j < i� 1, (4.75)

�
i+2i�2�1

i

�

(i� 2)!
�

2
�
i+2i�2�2

i�1

�

(i� 2)!
 |Bx(i, i� 2)|  |Bx(i, j)|

2
�
i+2i�1�1

i

�

(i� 1)!
�
�
i+2i�1�2

i�1

�

2(i� 1)!
, j = i� 1, (4.76)

�
i+2i�2
i�1

�

i!
�

2
�
i+2i�1�2

i�1

�

(i� 1)!
 |Bx(i, i� 1)|  |Bx(i, j)| 

2
�
i+2i

i+1

�

i!
�
�
i+2i�1�1

i

�

(i� 1)!
, j = i. (4.77)

Proposition 6. Let Bxy(n, r) be the set of all (n, r)-set-labeled bipartite graphs.

|Bxy(n, r)| � 1 +
nX

i=1

✓
n

i

◆ i�2X

j=1

✓
r

j

◆"�i+2j�1
i

�

j!
�

2
�
i+2j�2
i�1

�

j!
�

2
�
i+2j�1�1

i

�

(j � 1)!
+

�
i+2j�1�2

i�1

�

(j � 1)!

#

+
rX

j=i+2

✓
r

j

◆"�j+2i�1
j

�

i!
�

2
�
j+2i�1�1

j

�

(i� 1)!
�

2
�
j+2i�2
j�1

�

i!
+

�
j+2i�1�2

j�1

�

(i� 1)!

#!
. (4.78)

Proof. Substituting |Bxy(i, j)| in Eqn. 4.46 using Eqn. 4.49 gives

|Bxy(n, r)| = 1 +
nX

i=1

rX

j=1

✓
n

i

◆✓
r

j

◆
|Bxy(i, j)|, (4.79)

= 1 +
nX

i=1

rX

j=1

✓
n

i

◆✓
r

j

◆"
|Bx(i, j)|� |Bx(i, j � 1)|

#
. (4.80)

Now replacing |Bx(i, j)| with its lower bound, |Bx(i, j� 1)| with its upper bound

and ignoring the cases where i� 1  j  i+ 1 lead to

|Bxy(n, r)| � 1 +
nX

i=1

✓
n

i

◆ i�2X

j=1

✓
r

j

◆"�i+2j�1
i

�

j!
�

2
�
i+2j�2
i�1

�

j!
�

2
�
i+2j�1�1

i

�

(j � 1)!
+

�
i+2j�1�2

i�1

�

(j � 1)!

#

+
rX

j=i+2

✓
r

j

◆"�j+2i�1
j

�

i!
�

2
�
j+2i�1�1

j

�

(i� 1)!
�

2
�
j+2i�2
j�1

�

i!
+

�
j+2i�1�2

j�1

�

(i� 1)!

#!
. (4.81)

Remark 3. It is noted that using the cases where i � 1  j  i + 1 will likely

give negative terms. Therefore, they are not included in the computation of the

lower bound.
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Proposition 7. Let Bxy(n, r) be the set of all (n, r)-set-labeled bipartite graphs.

|Bxy(n, r)|  1 + 2
nX
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n
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◆" i�1X
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r
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. (4.82)

Proof. For the upper bound, we note |Bxy(i, j)| can not exceed |Bu(i, j)|, since
every bipartite graph in Bxy(i, j) is also in Bu(i, j), 1  i  n, 1  j  r.

|Bxy(n, r)| = 1 +
nX
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r

j
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gives the expression in the statement. Note that the second term in the last

inequality has been obtained by replacing j = i by j = i+ 1.
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Chapter 5

Two Problems in Network

Wiring and Switching

5.1 Motivation

The results we presented up until now have been concerned with enumeration

problems in combinatorial call models [19]. In this chapter, our focus will shift to

problems which arise in one-sided switching network wiring and routing [19]. The

next section describes a routing algorithm that improves the time complexity of

the routing algorithm [20]. Our new wiring algorithm is presented in Section 5.3.

The reader is referred to [21] for the description of one-sided switching networks.

5.2 Routing in One-Sided, Binary Tree Switches

Oruç [20] described a self-routing algorithm for one-sided, binary tree switches

whose terminals are paired using the cyclic permutation group wiring method.

The following three assumptions were made by this algorithm:
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1. The number of terminals n is a power of 2.

2. The clusters are labeled from top to bottom by lg n-bit numbers.

3. Terminal i requests terminal j using a lg n-bit cluster address, Ai =

ai,lgn�1 . . . ai,1ai,0, where 0  i  n� 1.

The steps of the algorithm in [20] are as follows:

• Compute the index hi of i in p
(j�i) mod n.

• If hi is even then Ai = (j � i) modn; else Ai = (i� j) mod n.

• Route i to cluster Ai by decoding Ai over the binary tree that connects i

to the n� 1 clusters in the one-sided, binary tree switch.

This algorithm has O(n) time complexity and this time complexity is contributed

by the first step. In what follows we reduce this time complexity to order O(lg n).

Let

• n be a power of 2,

• T = {0, 1, 2, . . . , n� 1} be set of positive integers,

• p = (0 1 2 . . . n � 1) denote the permutation that maps i to i + 1 mod n,

i 2 T ,

• G be the cyclic group of permutations generated by p.

It is assumed that the first cycle of each permutation starts with 0. Also index

of first element in each permutation starts with 0.

Lemma 10.

Let x be an odd integer where 1  x  n� 1. The index of element i 2 T in p
x

is even if element i is even and index of element i 2 T in p
x is odd if element i is

odd.
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Proof. As stated by Oruç [20], px maps i to i+ x mod n where 1  x  n� 1.

Since x is odd if i is even then i + x is odd. Similarly, if element i is odd then

i + x is even. Thus odd numbers follow even numbers and even numbers follow

odd numbers in p
x. Moreover, px is a cycle of length n because n is a power of

2, x is an odd number implying that lcm(n, x) = nx. Since each permutation

begins with 0, i.e., an even number and its index value is even we conclude that

the index of i in p
x is even if i is even and index of i in p

x is odd if i is odd.

Lemma 11.

Let n = 2a and x be an even integer, 1  x  n� 1 such that x = 2b ⇥B, where

B is an odd positive integer and b is a nonnegative integer. If 2b+1 divides i� (i

mod 2b) then index of i in p
x is even otherwise index of i in p

x is odd.

Proof.

We first prove the statement for the first cycle of px. Let hi denote the index of

i and suppose i is in the first cycle of px.

x⇥ hi mod n = i, (5.1)

x⇥ hi = i+ n⇥ A, (5.2)

where A is a natural number. Now replacing x by 2b ⇥ B and n by 2a gives

2b ⇥ B ⇥ hi = i+ 2a ⇥ A. (5.3)

Dividing both sides of the equation by 2b gives

B ⇥ hi =
i

2b
+ 2a�b ⇥ A. (5.4)

Note that i is divisible by 2b by Eqn. 5.4. Therefore i � (i mod 2b) = i. Since

x < n, then b < a, a� b > 0 and 2a�b ⇥A is even. Thus, if 2b+1 divides i then hi

is even otherwise hi is odd.

Now suppose i appears in a cycle other than the first cycle of px.
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We first note that p
x moves 0 to itself by shifting it ↵x places such that ↵x

mod n = 0. Hence ↵x = lcm(x, n) so that the length of the first cycle, ↵ =

lcm(x, n)/x. Furthermore lcm(x, n)/x = n/2b since

lcm(x, n)/x = lcm(2b ⇥ B, 2a)/x, (5.5)

= (2a ⇥ B)/x, (5.6)

= n/2b. (5.7)

Since x is divisible by 2b, none of the elements in the first cycle can be 1 through

2b� 1. Using the wiring mechanism of Oruç [20], we fixed the first element of the

second cycle to 1. This second cycle has the same structure as the first cycle such

that all values in the first cycle are incremented by one. For the remaining cycles

we use the same construction. At the end, we get 2b cycles of length n/2b in p
x

and first value of each cycle starts with numbers from 0 to 2b � 1, respectively.

Without loss of generality, pick an element i in the cycle that begins with j,

0  j  2b � 1. Using Eqn. 5.3 we have

2b ⇥ B ⇥ hi�j = i� j + 2a ⇥ A (5.8)

where i� j is an element of the first cycle and the parity of hi is equal to parity

of hi�j by the construction described above and by the fact that all cycles are

even length ([20], Appendix B). Since j < 2b and by Eqn. 5.8, i � j is divisible

by 2b. Thus, we have

j = i mod 2b. (5.9)

By combining Eqn. 5.8 with Eqn. 5.9 we get

2b ⇥ B ⇥ hi�j = i� (i mod 2b) + 2a ⇥ A. (5.10)

Applying the same rules given for the first cycle to Eqn. 5.10 concludes the

proof.

Remark 4. The time complexity of the calculation of b in x is O(lg n).

Proof. Recall that x = 2b ⇥ B < n and B is an odd number. We divide x by 2

and continue until the remainder is 1. This establishes the proof.
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Combining Lemmas 10 and 11 with Remark 4 shows that our proposed method

reduces the time complexity of computing the parity of hi from O(n) to O(lg n).

5.3 A New Wiring Method

The routing method described in preceding section applies to the wiring scheme

in [20]. In this section, we present a new wiring method that relaxes the as-

sumption that n be a power of 2. Our construction amounts to designing a

(n� 1)⇥ bn/2c-matrix in which each row consists of pairs of numbers 0 through

n�1. If n is a power of 2, the number of rows is given by n�1, otherwise is fixed

to at most to the smallest power of 2 that is greater than n. The construction

proceeds by initializing a list of numbers from 0 through n� 1 in order. We then

proceed to partition the numbers into two groups and pair the ith element of the

first group with the i
th element of the second group. If the number of elements

in the original list is not even, we place dn/2e of the elements in the first group

and the remaining bn/2c of the elements in the second group. In this case the

last element of the first group is not paired with any element in the second group.

After this operation, the generated pairs are placed in the first row of our matrix.

Next, we fixed the places of elements of the second group as before and rotate the

elements of the first group by one place to the right in a cyclic manner. Then we

pair the two groups as before and place the generated pairs into the second row

of our matrix. We continue this process until the rotation step brings the first

group back into its original order. At the end of the process the first dn/2e rows

of our matrix will be determined. This entire process is repeated recursively on

each half of the list of elements, generating remaining n/4, n/8, . . . rows of our

matrix, and the process is terminated when the pairs of the last row is generated.

That this algorithm generates all n(n�1)/2 pairs of the replicates of n terminals

can be argued as follows. The pairs are generated in such a way that each element

in the first half is combined with all elements of the second half by the rotation

steps. Since the algorithm works recursively, this observation applies throughout

the entire process and thus all the pairs are generated.
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Remark 5. Time complexity of this algorithm is given by the following recur-

rence.

T (n) = 2T (n/2) +O(n2). (5.11)

The solution of this recurrence is

T (n) = O(n2). (5.12)

This algorithm is implemented in C++ and listed in the Appendix with some

examples.

5.4 The Routing Algorithm

The wiring method described in preceding section results in a one-sided switching

network where n(n � 1)/2 pairs of replicates of n terminals are partitioned into

clusters of pairs. These clusters correspond to the rows of our matrix constructed

during the wiring process. This is illustrated in Figure 5.1 for n = 8. We

now provide an algorithm to determine the cluster in which the acquired pair is

located.

Let (i, j), where 0  i < j  n � 1, be such a pair and the index of first cluster

be 0. If i < n/2  j, then pair (i, j) belongs to cluster

(i� j) mod dn
2
e. (5.13)

We note that the formula works simply by the fact that (i�j) mod dn
2 e increases

by one as we traverse from cluster 0 towards dn/2e � 1.

Now suppose i < j < n/2 or n/2  i < j. In the first case, if i < n/4  j, then

pair (i, j) belongs to cluster

dn/2e+
⇣
(i� j) mod

l
n

4

m⌘
. (5.14)

In the latter case, if i < 3n/4  j, then pair (i, j) belongs to cluster

dn/2e+
✓
(i� j) mod

lbn/2c
2

m◆
. (5.15)
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Figure 5.1: An 8 terminal, one-sided switch wiring.

In both cases, if the auxiliary condition fails, then the same process is recursively

applied until the cluster is found.

An implementation of this algorithm in C++ along with some examples is given

in the Appendix.

Remark 6. Time complexity of this routing algorithm is given by the following

recurrence.

T (n) = T (n/2) +O(1). (5.16)

The solution of this recurrence is

T (n) = O(lg n). (5.17)
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Chapter 6

Concluding Remarks

In the first part of this dissertation, we used Polya’s Counting Theorem to settle

an open question that was posed by Harrison in [22] in 1973. We proved an

asymptotic formula for the number of distinct unlabeled bipartite graphs with n

left and r right vertices, where n 6= r. We also obtained exact formulas for the

same when one of n or r is fixed to 2 or 3. These results have also been extended

to bipartite graphs in which left and/or right vertices are partially labeled.

In the second part of the dissertation, we dealt with wiring and routing prob-

lems that arise in the design of one-sided switching networks. We reduced the

time complexity of the routing algorithm for a one-sided switching network with

a particular clustering scheme. We also introduced a new wiring method and

described a routing algorithm for it as well.

6.1 Future Work

The results presented in this dissertation suggest several problems of interest. In

particular, the following counting problems, regarding unlabeled bipartite graphs

remain open:

58



1. give a closed-form formula for |Bu(n, r)| for n � 4,

2. give a closed-form formula for |Bu(n, r)| for n = r, and

3. provide tighter lower and upper bounds for |Bu(n, r)|.

As for wiring and routing in one-sided switching networks, one possible future

direction of research is to extend the cluster model so as to allow multiple connec-

tions between the replicates. This will likely lead to smaller number of columns

of wiring. At the same time, it will also likely increase the time complexity of

the routing algorithm. It will be worthwhile to investigate this trade-o↵ between

the two key parameters to optimize the design of one-sided, binary tree switching

networks.
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[20] A. Y. Oruç, “One-sided binary tree-crossbar switching for on-chip networks,”

in Proceedings of the 49th Annual Conference on Information Sciences and

Systems (CISS), pp. 1–5, IEEE, 2015.
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Appendix A

Implementation of Proposed

Wiring Method

The following C++ code implements the wiring method proposed in Section 5.3.

// Wiring stage: fillMatrix function recursively fills up the matrix

which will be used for routing stage.

void fillMatrix(int start, int end,int rowIndex, vector<vector<Pair> >

&matrix) {

int size = end - start + 1;

int half = size / 2;

if (size % 2 == 1)

half++;

// Initialize subgroup of numbers

int startIndexOfSecondGroup = start + half;

int sizeOfSecondGroup = size - half;

int columnIndexPadding = start / 2;

int shift = 0;

for (int row = 0; row < half; row++) {

for (int i = 0; i < half; i++) {
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if (i == sizeOfSecondGroup) {

break;

}

int pairIndex1 = start + ((i + shift) % half);

int pairIndex2 = startIndexOfSecondGroup + i;

matrix[rowIndex + row][columnIndexPadding + i] =

Pair(pairIndex1, pairIndex2);

}

shift++;

}

if (size <= 2)

return;

// Recursion for first half.

fillMatrix(start, startIndexOfSecondGroup-1, rowIndex+half, matrix);

// Recursion for second half.

if (size - half > 1)

fillMatrix(startIndexOfSecondGroup, end, rowIndex + half, matrix);

}
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Appendix B

Implementation of Proposed

Routing Method

The following C++ code implements the routing method proposed in Section 5.4.

// Routing stage: getClusterId function queries the row id of the

given pair of terminals recursively.

int getClusterId(Pair pair, int start, int end, int rowIndex) {

int size = end - start + 1;

int half = size / 2;

if (size % 2 == 1)

half++;

int startIndexOfSecondGroup = start + half;

int firstElementOfSecondGroup = startIndexOfSecondGroup;

if(pair.x<firstElementOfSecondGroup&&pair.y>=firstElementOfSecondGroup){

return modFunction(pair.x - pair.y, half) + rowIndex;

} else if (pair.y < firstElementOfSecondGroup) {

return getClusterId(pair, start, startIndexOfSecondGroup - 1,

rowIndex + half);

} else {

return getClusterId(pair, startIndexOfSecondGroup, end, rowIndex

+ half);

}

}
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Appendix C

Complete Implementation of

Proposed Wiring and Routing

Method

// Sample test for wiring and routing stages.

#include <iostream>

#include <string>

#include <sstream>

#include <vector>

using namespace std;

// Pair class holds the pair of terminals.

class Pair {

public:

int x, y;

public:

Pair(int x0 = -1, int y0 = -1) {

if (x0 < y0) {

x = x0;

y = y0;
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} else {

x = y0;

y = x0;

}

}

string toString() {

return "(" + std::to_string(x) + "," + std::to_string(y) + ")";

}

bool isNull() {

if (x == -1 || y == -1) {

return true;

} else {

return false;

}

}

};

// Function declarations

void fillMatrix(int start, int end, int rowIndex, vector<vector<Pair>

> &matrix);

int getClusterId(Pair pair, int start, int end, int rowIndex);

int modFunction(int val, int mod);

void printMatrix(vector<vector<Pair> > &matrix);

int smallestPowerOfTwoAtLeastGivenNumber(int n);

int main() {

cout << "Please enter the number of terminals:" << endl;

int n;

try {

cin >> n;

} catch (std::exception& e) {

cout << "Invalid input." << endl;

return -1;

}
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if (n < 2) {

cout << "Invalid input." << endl;

return -1;

}

int rows = smallestPowerOfTwoAtLeastGivenNumber(n) - 1;

vector<vector<Pair> > matrix(rows, vector<Pair>(n / 2));

int start = 0;

int end = n - 1;

int rowIndex = 0;

fillMatrix(start, end, rowIndex, matrix);

printMatrix(matrix);

cout << "Matrix has been filled up. Enter pair of terminals as x,y

to retrieve cluster id. Enter -1 to exit." << endl;

while (true) {

std::string pairStr;

cin >> pairStr;

if (pairStr.compare("-1") == 0)

break;

// Read inputs from console.

std::replace(pairStr.begin(), pairStr.end(), ’,’, ’ ’);

std::vector<int> pairArray;

std::stringstream ss(pairStr);

int temp;

while (ss >> temp)

pairArray.push_back(temp);

int e1 = pairArray[0];

int e2 = pairArray[1];

Pair pair(e1, e2);

if (pair.y >= n || pair.x < 0 || e1 == e2) {

cout << "Invalid input." << endl;

continue;
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}

cout << "Cluster Id: " << getClusterId(pair, start, end,

rowIndex) << endl;

}

return 0;

}

// modFunction supports negative mod calculations.

int modFunction(int val, int mod) {

while (val < 0) {

val += mod;

}

return val % mod;

}

void printMatrix(vector<vector<Pair> > &matrix) {

for (int i = 0; i < matrix.size(); ++i) {

bool textWritten = false;

for (int j = 0; j < matrix[i].size(); ++j) {

if (matrix[i][j].isNull() == false) {

if (textWritten == false) {

cout << "Cluster " << i << ": ";

textWritten = true;

}

cout << matrix[i][j].toString();

}

}

if (textWritten)

cout << endl;

}

cout << endl;

}

// smallestPowerOfTwoAtLeastGivenNumber returns the smallest number

which is a power of 2 and greater than or equal to the given number.
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int smallestPowerOfTwoAtLeastGivenNumber(int n) {

int x = 2;

while (x < n) {

x = x * 2;

}

return x;

}
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Appendix D

Sample Runs and Examples

Please enter the number of terminals: 6

Wiring Output:

Cluster 0: (0,3)(1,4)(2,5)

Cluster 1: (1,3)(2,4)(0,5)

Cluster 2: (2,3)(0,4)(1,5)

Cluster 3: (0,2)(3,5)

Cluster 4: (1,2)(4,5)

Cluster 5: (0,1)(3,4)

Routing Queries:

5,3

Cluster Id: 3

1,2

Cluster Id: 4

2,4

Cluster Id: 1

0,3

Cluster Id: 0
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Please enter the number of terminals: 8

Wiring Output:

Cluster 0: (0,4)(1,5)(2,6)(3,7)

Cluster 1: (1,4)(2,5)(3,6)(0,7)

Cluster 2: (2,4)(3,5)(0,6)(1,7)

Cluster 3: (3,4)(0,5)(1,6)(2,7)

Cluster 4: (0,2)(1,3)(4,6)(5,7)

Cluster 5: (1,2)(0,3)(5,6)(4,7)

Cluster 6: (0,1)(2,3)(4,5)(6,7)

Routing Queries:

2,5

Cluster Id: 1

4,6

Cluster Id: 4

4,7

Cluster Id: 5

Please enter the number of terminals: 13

Wiring Output:

Cluster 0: (0,7)(1,8)(2,9)(3,10)(4,11)(5,12)

Cluster 1: (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)

Cluster 2: (2,7)(3,8)(4,9)(5,10)(6,11)(0,12)

Cluster 3: (3,7)(4,8)(5,9)(6,10)(0,11)(1,12)

Cluster 4: (4,7)(5,8)(6,9)(0,10)(1,11)(2,12)

Cluster 5: (5,7)(6,8)(0,9)(1,10)(2,11)(3,12)

Cluster 6: (6,7)(0,8)(1,9)(2,10)(3,11)(4,12)

Cluster 7: (0,4)(1,5)(2,6)(7,10)(8,11)(9,12)

Cluster 8: (1,4)(2,5)(3,6)(8,10)(9,11)(7,12)

Cluster 9: (2,4)(3,5)(0,6)(9,10)(7,11)(8,12)

Cluster 10: (3,4)(0,5)(1,6)(7,9)(10,12)

Cluster 11: (0,2)(1,3)(4,6)(8,9)(11,12)

Cluster 12: (1,2)(0,3)(5,6)(7,8)(10,11)

Cluster 13: (0,1)(2,3)(4,5)
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Routing Queries:

7,12

Cluster Id: 8

1,9

Cluster Id: 6

10,11

Cluster Id: 12
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