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ABSTRACT

Development o f  a non-radioactive diagnostic test 
for the detection o f  microsatellite instability in human tumors

Korkut Vata

M.S. in Molecular Biology and Genetics 
Supervisor:Assoc. Prof. Dr.Tayfim Oz9 elik 

August 1997, 60 pages

Stepwise accumulation o f  mutations in the human genome is the initial step in 
carcinogenesis. Microsatellites are the regions which are first hit by the mutations 
resulting from mismatch repair deficiency. Until today microsatellite alterations have 
been shown mainly in hereditary non-polyposis colon cancer (HNPCC) and several 
other cancer types. Recent advances indicate that microsatellite alterations can also be 
detected in DNA samples (such as blood, urine, etc.), which are shed fiOm tumors. This 
is an important finding for the early diagnosis o f cancer since malignant cells can be 
detected in tissues other than the primary tumor. Therefore microsatellite analysis, when 
coupled with an easy, powerful screening technique could have a high diagnostic value 
for cancer types other than colorectal cancer. Despite its drawbacks the most common 
microsatellite screening method is based on the use o f radioisotopes and 
autoradiography. However in the clinical setting non-radioactive detection methods are 
preferred.

The aim o f  this thesis is development o f  a non-radioactive diagnostic test for the 
detection o f microsatellite instability in genomic DNA which can be used for the early 
detection o f some forms o f  cancer. Therefore we have optimized the PCR conditions for 
eight microsatellite markers which are: i. mononucleotide repeats BAT25 and intragenic 
repeat region o f  BAX gene, ii. dinucleotide repeats D5S105, D6S291, D11S904, 
D13S175, D17S855, and in. tetranucleotide repeat FGA. In addition, we have analyzed 
the mononucleotide repeat markers in blood, paraffin embedded and fi"esh tumor 
samples o f six colorectal cancer patients with polyacrylamide gel electrophoresis and 
silver staining
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ÖZET

İnsan tümörlerinde görülen mikrosatellit kararsızlığının incelenmesi için 
radyoaktif olmayan bir tanı testinin geliştirilmesi

Korkut Vata

Yüksek Lisans Tezi, Moleküler Biyoloji ve Genetik Bölümü 
Tez Danışmanı: Doç. Dr. Tayfiın Özçelik 

Ağustos 1997, 60 sayfa

İnsan genomunda çeşitli sebeplerle mutasyonlann oluşumu kanser gelişimi için atılan ilk 
adımdır. DNA tamir mekanizmasının bozulması veya eksik çalışmasına neden olan 
mutasyonlar ikincil olarak “mikrosatellit bölgeleri” olarak adlandmlan ve bir DNA dizi 
motifinin tekrarlandığı bölgelerde yeni mutasyonlann oluşmasına yol açarlar. Bu 
mikrosatellit bölgelerinde bulunan tekrar dizileri aym kişinin normal ve tümör gelişmiş 
dokusunda incelendiğinde farklılıklar gösterir. Bu durum “mikrosatellit kararsızlığı” 
olarak adlandınlmaktadır. Özellikle kolon kanserinin bir türü olan ailesel polipozsuz 
kolon kanseri başta olmak üzere bir çok kanser türünde tümör dokusunda “mikrosatellit 
kararsızlığının” varlığı gösterilmiştir.

Yapılan son araştırmalara göre mikrosatellit kararsızlığı tümör dokusundan vücut 
sıvılanna (kan, idrar ve bunun gibi) karışan DNA örneklerinin incelenmesi ile de tespit 
edilebilmektedir. Tümör dokusunun direkt olarak incelenmesini gerektirmeyen bu 
gelişme kanserin erken tanısında kullanılabilecek önemli bir DNA testi olma 
potansiyelini taşımaktadır. Henüz araştırma laboratuvarlannda yürütülen mikrosatellit 
analizi deneylerinde radyoaktiviteye dayanan teknikler kullanılmaktadır. Halbuki klinik 
tanı amaçlı DNA testlerinin radyoaktif olmayan metodlarla gerçekleştirilmesi tercih 
edilmektedir.

Bu tezin amacı insan tümörlerinde görülen mikrosatellit kararsızlığının 
incelenmesi için radyoaktif olmayan bir tam testinin geliştirilmesidir. Bu nedenle 
aşağıda belirtilen mikrosatellit işaretleyicileri seçilmiş ve polimeraz zincir reaksiyonu 
(PCR) ile çoğaltılması için gerekli koşullar optimize edilmiştir. Bu mikrosatellit 
işaretleyicileri şunlardır: i. tek nükleotid tekrarlan BAT25 ve ΒΑΧ geninin bir bölgesi, 
ii. ikili nükleotid tekrarlan D5S105, D6S291, D11S904, D13S175, D17S855, ve iii. 
dörtlü nükleotid tekran FGA. Buna ek olarak tek nükleotid tekrarlan altı kolorektal 
kanser hastasının parafine gömülü veya taze doku örnekleri ile kan örneklerinden elde 
edilen DNA üzerinde poliakrilamid jel elektroforezi ve gümüş boyama teknikleri 
kullanılarak incelenmiştir.
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l.INTRODUCTION

1.1. Cancer

In modem society cancer is the disease most feared by the majority o f the people 

throughout the world. Roughly one person in five, in the prosperous countries o f the 

world, will die of cancer. Actually, the term “cancer” refers to at least 100 different kinds 

o f diseases. Almost every cell in the body can produce malignancies; some even yield 

several types. Even though each cancer has unique features, the basic processes that 

produce these diverse tumors appear to be quite similar. Trillions o f cells o f the normal, 

healthy body live in a complex, interdependent harmony, regulating one another’s 

proliferation.(Prichopoulos et ah, 1996). Very occasionally, the exquisite controls that 

regulate cell multiplication break down and although the body has no need for further 

cells o f its type, a cell begins to grow and divide. Ultimately, a mass called a tumor may 

be formed by this clone o f unwanted cells. Mutation, competition, and natural selection 

operating within the population o f somatic cells are the basic ingredients o f cancer cells. 

Another characteristic o f cancer cells is their ability to migrate to other places in the body 

(metastasis) (Bmce e /a /., 1994). Tumors composed o f such malignant cells become more 

and more aggressive over time, and they become lethal when they disrupt the tissues and 

organs needed for the survival o f the organism as a whole (Lodish et ah, 1996).



Throughout the past 20 years, scientists have uncovered a set o f basic principles that 

govern the development o f cancer. It has been known for a long time that the cells in a 

tumor descend from a common ancestral cell that one point-usually decades before a 

tumor becomes palpable-initiated a program o f inappropriate reproduction. Three classes 

o f genes whose alterations lead to carcinogenesis have been defined (Bruce et a/., 1994.):

1.1.1. Genetic bases o f cancer

a) Oncogenes that positively regulate cell growth i.e. when mutated they become 

carcinogenic and drive excessive multiplication;

b) Tumor suppressor genes that negatively regulate cell growth i.e. they contribute 

to carcinogenesis when they are inactivated by mutations and,

c) DNA repair genes that indirectly control proliferation by limiting the rate o f 

mutations o f growth controlling genes.

The mutations o f these three kinds o f genes may be caused by, basically;

i) controllable factors, including lifestyle habits such as smoking

ii) uncontrollable factors, including heredity

iii) exposure to carcinogens (such as asbestos and ultraviolet radiation)

iv) unknown factors



Oncogenes are positive players o f cell division mechanism. Activation o f an oncogene is 

an important step towards tumorigenesis. The process o f activation of these genes is 

termed as proto-oncogene activation. At present several mechanisms for proto-oncogene 

activation are known including point mutations and expanded deletions both in coding 

and regulatory regions o f proto-oncogenes, translocations involving proto-oncogenes, 

and viral integration in the site o f the proto-oncogene location (insertional mutagenesis) 

are some o f them (Tabin ei al., 1982). DNA rearrangements caused by the above events 

may lead to misregulation o f gene transcription resulting in the expression o f the encoded 

protein in an inappropriate place or/and time. Mutations in the coding region may result 

in a protein with a transforming potential. Following translocation, the coding region o f a 

gene may appear immediately downstream of a quite different promoter. Another 

possible consequence o f translocation is the occurrence o f a novel fusion protein that is 

absent in normal cells.

Oncogenes are mainly elements o f cell-cycle machinery and signal transduction system 

The main known proto-oncogene products among others (Cantley. et al, 1991; Cross & 

Dexter, 1991) include:

1.1.2. Oncogenes

i) Growth factors, such as PDGF (platelet derived growth factor), FGF (fibroblast 

growth factor) family members;



ii) Membrane receptor proteins with tyrosine-kinase activity, such as CSF-1 

receptor;

iii) Membrane associated GTP-binding/ GTPases, such as H-Ras;

iv) Cytoplasmic protein-kinases, such as c-abl;

v) Cyclins that are regulatory subunits for nuclear cell-cycle dependent protein 

kinases - cyclin D l;

vi) A large number o f  transcription factors; such as М у с,, E2F-1, etc.;

vii) Proteins encoded by the genes o f the bcl family (bcl-2, bcl-x, bax, bad, etc). 

They are involved in the regulation o f apoptosis, however their biochemical 

function is not clear yet.

1.1.3. Tumor suppressor genes

As opposed to oncogenes tumor-suppressor genes are negative players o f cell-cycle 

machinery and signal transduction pathway. Thus, a functional tumor suppressor gene is 

a barrier on the way o f uncontrolled cell division (Cordon-Cardo & Reuter VE, 1997; 

Greene, 1997; Lairmore TC & Norton JA, 1997). The most important distinction 

between tumor suppressor-genes and oncogenes is that both copies (alleles) o f a tumor- 

suppressor gene should be inactivated for tumorigenesis to occure whereas activation of 

one copy (allele) o f an oncogene is enough. This distinction is very important in terms of 

explaining the difference between familial (hereditaiy) and sporadic cancers (Thomson et 

a/., 1995).



A possible classification o f  tumor-suppressor genes is according to their localization in 

the cell (Marshall, e ta l., 1991) is:

i) Membrane bound receptors such as TGF-P receptor. It binds to a growth 

inhibitory signal agent.

ii) Cytoplasmic proteins such as NF-1 which binds to ras oncogene and somehow 

inactivates the ras proto-oncogene.

iii) Nucleus bound suppressors such as p53, Rb, BRCA-1. Rb is the major 

negative player o f the cell-cycle at the G1 phase whereas p53 is at a point where 

cell-cycle, DNA repair and apoptosis meet. BRCA-1 is a tissue specific tumor- 

suppressor gene whose function is not clear yet.

1.1.4. Sporadic versus hereditary cancers

The hereditary predisposition o f a cancer type was first recognized by a French 

neurosurgeon and anthropologist Paul Broca in 1866 when he analyzed the pedigree o f 

his wife's family and recognized a hereditary predisposition to breast cancer. The other 

two malignancies recognized as hereditary were Xeroderma Pigmentosum (by James 

Cleaver) which is due to a defect in DNA repair genes and retinoblastoma, a malignancy 

resulting from a defective tumor-suppressor gene (for review see Bishop J. M. 1995). 

The pattern o f inheritance o f these familial tumors appeared to be autosomal dominant, 

but with exceptions. In 1971 Alfred Knudson published his first paper proposing two



paper the first mutation is carried in the germline, and the second mutation occurs later 

on during lifetime leading to the inactivation o f the second copy o f the Rb gene and 

resulting in tumorigenesis. This hypothesis also explains the rare sporadic cases. These 

cases must be due to two different mutations on the Rb alleles occurring during life-time. 

The two hit hypothesis also makes clear that mainly defects o f tumor-suppressor genes 

and DNA repair genes are responsible for the familial cancer cases. The number o f 

cancers which have a hereditary component is growing rapidly with the identification o f 

tumor suppressor genes and better delineation o f the phenotype. Some o f these familial 

cancers, their incidences and their genes is indicated in Table 1. Conversely since only 

one mutation (hit) is enough for an oncogene to be activated, it can be said that their 

alterations are observed in sporadic cancer cases.

IN€iDENCE

FAMILIAL BREAST /̂;OVARIÄN:eAN£ER-  ̂
NEÜROFIBROMÀfÔSIS f  
WILM’STUMOR . ■
FAMILIAL ADENOMATOUS POLYPOSIS 
RETINOBLASTOMA .. I "  ‘I j
MULTIPLE ENDOCRINE NEOPLAiA ^  
VON HIPPEL LINDAU " 
NEUROFIBROMÄTOSisMi^  ̂
BA^LCELL^NERVOüSSYNDÿÔMÉ^^^^^^^^
lF fràûmeî̂ i « ä f 
famîlIÀl melanoma

1:25000^ 
1:360b0j 
1:37000 
1:56000 
v e r y ra r e

Table 1. Some o f the important hereditary cancers, their incidences and their genes.



Once it was recognized that DNA is the main chemical component o f  all the genetic 

material, it was thought that this macromolecule must be extraordinarily stable in order 

to maintain the high degree o f fidelity required for the original copy. It was suprising to 

learn that DNA is subject to alteration in the chemistry or sequence o f individual bases. 

Many o f these changes arise as a consequence o f errors introduced during replication and 

recombination. Some changes are due to various environmental factors, such as chemical 

and physical factors (Friedberg et al., 1995). I f  these errors were left totally uncorrected, 

both growing and nongrowing somatic cells might accumulate so much genetic damage 

that they could no longer Sanction (Lodish et a t, 1995). The integrity o f  genome can 

only be explained by the presence o f a repair mechanism. Several repair systems protect 

the genome by repairing the modified bases, DNA adducts, cross-links, and double strand 

breaks. A possible classification o f these repair systems is as follows (Sancar A. 1995);

1.1.5. DMA repair

i) Direct repair:

Two known examples o f direct repair are photoreactivation, and alkyl transfer. 

Photoreactivation is the reversal to monomers o f pyrimidine cyclobutane dimers by 

a blue-light dependent enzyme. Alkyl transfer is the removal o f  the methyl group 

from 0^-M eGua in DNA to a cystein residue in the enzyme by an irreversible 

reaction.



ii) Base excision repair:

Base excision repair works mainly on non-bulky base adducts. In this repair system 

the modified, damaged base or base remnant is removed by an errzyme called DNA 

glycosylase. The resulting AP-deoxyribose is released by a pair of AP 

endonucleases that incise 3' and 5' to the AP site. The missing nucleotide is then 

replaced by a DNA Pol III and ligated.

iii) Nucleotide Excision Repair (NER):

The damaged base is removed by hydrolyzing phosphodiester bonds on both sides 

o f the lesion. Two excision mechanisms could accomplish this removal; 

Endonuclease-exonuclease and exinuclease mechanisms (Sancar A., 1996). The 

first repair genes implicated in tumor predisposition were those responsible for 

NER and associated with Xeroderma Pigmentosum and related autosomal 

recessive inherited syndromes.

iv) Mismatch repair: Mismatch repair will be discussed in the following section in 

detail.



Both prokaryotic and eukaryotic cells are capable o f repairing mismatched base pairs in 

their DNA. Mismatched base pairs in DNA can arise by several processes. One o f the 

most important is replication errors. Another mechanism is the formation o f a 

heteroduplex between two homologous DNA molecules as part o f a recombinational 

process. I f  the two DNAs differ slightly in their sequence, as a consequence either o f a 

mutation used as a genetic marker or of sequence changes acquired during evolutionary 

divergence, mismatches can be formed In this case, the DNA and proper correction o f 

the mismatch contributes to the maintenance o f the fidelity o f the genetic information 

(KolodnerR., 1996).

1.1.6. Mismatch repair in E. coli:

The basic enzymology o f the major mismatch repair process appears to be very similar 

between prokaryotic and eukaryotic organisms. The mechanism o f mismatch repair has 

been studied most thoroughly in E. coli. The research groups o f Mordrich, Kolodner 

(Kolodner R , 1996) and others have reconstituted the repair process from purified 

proteins. The proteins that have been identified as the initiators the repair process are 

MutS, MutL, and MutH (Figure 1.).



Figure 1. Illustration o f the action o f the E. coli Mut HLS mismatch repair system on a mispair at a 
replication fork.
Repair is initiated by binding of MutS protein to a mismatch. The subsequent binding of MutL to MutS 
is required to activate MutH, which then nicks the unmethylated strand of DNA at hemimethylated 
GATC sites. Nicking of the unmethylated strand is then followed by the excision from the nick to the 
mispair and resynthesis to fill in the resulting gap. These interactions result in the coupling of mismatch 
repair to DNA replication, so that mismatches form during DNA replication are repaired using the 
methylated parental strand as template, resulting in a reduction of misincorporation errors. (Adapted 
from Kolodner R., 1996)

The fact that the old strand, but not the new, is methylated near the replication fork 

allows E. coli cells to distinguish the old (presumably correct) strand from the newly- 

synthesized (presumably incorrect) strand. The MutS-MutL complex activates MutH, 

which locates a nearby methyl group and nicks the newly synthesized strand opposite the 

methyl group. Excision is accomplished by cooperation between the UvrD (Helicasell) 

protein, which unwinds from the nick in the direction o f the mismatch, and a single 

stranded exonuclease o f appropriate polarity (one of several in E. coli ), followed by 

resynthesis (polymerase III) and ligation (DNA ligase).

It is important to note that the use o f méthylation to distinguish the parental strand is 

probably peculiar to E. coli. Data from yeast and mammalian in vitro mismatch repair 

experiments suggest that single-strand nicks provide a signal for strand specificity in 

these organisms. Note that single-strand breaks are present in nascent DNA strands.

10



between Okazaki fragments in the lagging strand at the 3' end of the leading strand. 

Although lacking homologues o f MutH and uvrD, eukaryotic organisms possess 

numerous homologues o f MutS and MutL.

coli p r o te in .S’ cereviseci p ro te in H u m a n  p ro te in

M u lS .M SI 12 M S I  12

M S H 3 M S lL i

M S I 16 G T B P . p i  6 0

M u tl P M S I P M S 2

M L H I M l,111

M I.I1 2 P .M S l

Table 2. Repair g em  products in  E. coli and their homologues in S. cereviseae and in 
humans ^Adapted from Kolodner R.,1996)

The eukaryotic proteins listed in Table 2 appear to be homologues of the corresponding 

E. coli genes both in terms o f amino acid sequence and in terms of functional similarities. 

Current evidence suggest that, whereas MutS and MutL function as monomers, the 

eukaryotic proteins form homo- or hetero-dimers. It appears that dimers o f the MutS 

homologues, such as the dimer o f MSH2 and MSH6/GTBP, are responsible for initial 

recognition o f mismatches (or small insertions/deletions), and dimers o f the MutL 

homologs (MLHl and PMS1/PMS2) interact with the resultant complex, as in E. Coli. It

n



should be noted that human PMS2 is a better homologue of yeast PMSl than its human 

PMSl,

Single-base mispair recognition

MLHi/PMSI

~\r

ln$ortion-deletion mispair recognition

Figure IM o d e l for mismatch recognition in S. cereviseae. The various postulated complexes 
between MSH2 and cither MSH3 or MSH6 are illustrated interacting with either a single-base 
substitution mispair or an insertion/ deletion mispair, exactly which of the proteins in these complexcs- 
MSH2, MSH3 or MSH6-actually interacts with the mispaired base is not known. Also indicated is the 
previously described MLHl-PMSl complex that interacts with the mispair recognition complex. The S. 
cereviseae. protein names are given as primary names, the human protein names arc the same except for 
PMSl, which is called PMS2 in humans, and MSH6, which has been called GTBP or pl60 in humans 
(Adapted from Kolodner R., 1996)

1.1.7. M ismatch repair and cancer

Mutations of the mismatch repair genes and their consequence, non-functional mismatch 

repair system illustrates the relationship between mutations in cancer susceptibility genes 

and mutational alteration o f cancer genes (Jirieny J., 1994). A cancer gene can be defined 

as a gene; playing role in one o f the four processes; cell growth, differentiation, 

senescence and survival. “Cancer susceptibility genes”, on the other hand are defined as
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those genes involved in any o f the multiple types o f DNA alterations, mutations (pre- 

oncogenic mutations), which influence the probability o f occurrence o f mutations in 

cancer genes (oncogenic mutations) (Perucho M , 1996a). There is a chronological 

difference in the involvement o f two types o f genes on the way to carcinogenesis. 

“Cancer susceptibility” genes are involved in the early phases o f tumorigenesis whereas 

“cancer genes” are directly involved in later phases and most o f the time due to the 

mutations o f “cancer susceptibility genes”.

These two kinds o f genes are also referred as “caretakers” and “gatekeepers" (Kinzler 

K.W. & Vogelstein B., 1997). “Gatekeepers” are the early players, whereas “caretakers” 

play a pole in the later phases o f carcinogenesis. Since all the genes involved in the repair 

mechanism belong to the former group, mismatch repair genes are good examples of the 

so called “caretakers” .

The relationship between the genomic instability due to “caretaker” mutations and 

mutations in cancer genes such as tumor suppressor genes and oncogenes had been 

assumed for a long time (Loeb A. L., 1994). However no proof for a causal relationship 

between the deficiencies in mismatch repair and mutations in cancer genes had been 

found. Recently, it has been shown that the TGF-P receptor type-II gene is inactivated by 

a fi'ameshift mutation in a poly(A) tract present in its coding region (Markowitz et a l, 

1995). TGF-P receptor type-II gene codes for a membrane bound receptor which inhibits 

proliferation of the normal epithelial cells (Takenoshita et a l , 1996). This has been the 

first direct demonstration o f the link between the mutations o f the “caretakers” and the
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mutations of the “gatekeepers”, but also the most informative example of the relationship 

between the mutator and the suppressor pathways o f cancer. In February 1997, 

frameshift mutations in intragenic (G)8 tract of BAX gene have been shown to be present 

in more than 50 percent of HNPCC cases. (Rampino et a l, 1997). BAX gene is a Bcl-2 

related protein that promotes apoptosis (Yin et a l, 1997). Another intragenic repeat 

region alteration has been also reported in the insulin-like growth factor II receptor gene 

(Ouyang et a l, 1997). These three cases are good examples o f inactivation of 

“gatekeepers” due to mutations of “caretakers” .

1.2. H ereditary non-polyposis colorectal cancer (HNPCC)

Hereditary non-polyposis colorectal cancer (HNPCC), is one of several hereditary 

colorectal cancer syndromes. The clinical spectrum of colorectal cancers is given 

Figure 3.

in

4 5 6  7  8 ao

Figure 3. Description o f the extent o f clinical heterogeneity in hereditary colorectal 
cancers: 1. Hereditary discrete colonic polyps, 2. Sporadic (multifactorial polygenic), 3. HNPCC: 
Lynchl and II, 4. Familial IBC, 5. FAP, 6. HFAS, 7. Peutz -Jeghejis syndrome, 8. Familial juvenile 
polyposis,
9. Turcot's syndrome

(Adapted from Cancer control Journal, http;//www.ia0ffit.t)S.edu/providers/ccj/v3nl/articlel, 1997)
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From the clinical point o f view hereditary non-polyposis colorectal cancer can be 

examined in two groups; Lynch syndrome I and II. Lynch syndrome I is an autosomal 

dominantly inherited predisposition to colorectal cancer with right-sided predominance 

and an excess o f multiple primary colorectal cancer. Lynch syndrome II not only shows 

all o f  the features o f Lynch syndrome I, but also involves an enormous array o f extra

colonic cancers, particularly endometrial carcinoma, carcinoma o f the ovary, small 

bowel, stomach, pancreas, and transitional cell carcinoma o f the urether and renal pelvis 

(L o th ee /a /., 1993).

In August 1990 thirty leading experts on HNPCC from eight different countries met in 

Amsterdam to discuss various problems associated with the study o f HNPCC. 

Discussions in the meeting focused upon the need to develop minimum criteria for the 

identification of HNPCC based on familial information (Vasen et ah, 1991; Aaltonen, et 

ah, 1994). The so called Amsterdam Criteria has three conditions:

1) At least three relatives should have histologically verified colorectal cancer; 

one o f them should be a first degree relative to the other two.

2) At least two successive generations should be affected.

3) In one o f the relatives colorectal cancer should be diagnosed under 50 years 

o f age.

The lowest known estimate o f HNPCC occurrence is 1%, which translates into 1500 

new cases o f HNPCC annually in the United States. Estimates o f HNPCC incidence
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range as high as 5%, or 7500 new occurrences of HNPCC in the United States each year. 

Either estimate indicates that HNPCC poses a major public health problem, since each 

new case would signify a family prone not only to colorectal cancer, but also to a variety 

o f extra-colonic cancers. (Vasen et a l , 1991).

The genetic basis for HNPCC has been proven by genetic linkage between cancer 

occurrences and co-segregation o f chromosome 2p markers in some families (Leach F.S. 

et al., 1993), and chromosome 3p markers in others (Bronner et a l, 1994). Localization 

o f a DNA mismatch repair gene in the critical region o f chromosome 2p was documented 

with the discovery o f hMSH2 mutations in this gene in several HNPCC families 

(Papadopoulos et a /.,1993; Leach et a l, 1993). Subsequently, a second mismatch repair 

gene was found in the critical region o f 3p, and mutations o f that gene were found in 

HNPCC families previously linked to chromosome 3p (Papadopoulos et al; 1994, Liu et 

al, 1994). Inherited mutations o f genes involved in mismatch repair (MMR) have been 

shown to be responsible for hereditary non-polyposis colorectal carcinoma (HNPCC) 

(Modrich et a l, 1994). Mutations in these genes appear to account for 90% o f all known 

HNPCC families with a mutation within the mismatch repair genes. (Papadopoulos et a l 

1994, Liu et al, 1994, Moslem et a l , 1996; Boyer et a l , 1995) and the mutations o f 

hPM Sl, hPMS2 and GTBP proteins together contribute only to 10% o f the cases.
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It is known that all o f the protein-coding regions account for only about 3% o f the 

human genome. However, most polymorphisms are observed in the 97% o f the human 

genome, which does not code for proteins and called as “junk DNA”. Even though these 

regions seem to be non-functional they may play vital roles in normal genome function. 

Since these regions do not code for proteins, variations therein are functionally 

inconsequential and hence well-tolerated during evolution This has allowed to develop 

tremendous genetic diversity in these regions. Much of this non-coding DNA consist o f 

highly repetitive segments known as “DNA repeats” (Bruce et al., 1994). A classification 

o f DNA repeats is given in Table 3. Repeated sequences can occur as tandem arrays. 

Such sequences, called Variable Number o f Tandem Repeats (VNTRs), are unique to 

each person and are the basis for the precise DNA fingerprinting used in forensics. One 

such class o f sequences in humans consists o f Short Tandem Repeats (STRs), often a 

dinucleotide (sometimes mono-, tri-, or tetra-) repeat of CA (adenosine and cytosine) on 

one DNA strand and GT (guanine and thymidine) on the other. Such repeats o f 2-5 

nucleotide segments are known as microsatellite DNA. A single pair o f PCR 

oligonucleotide primers that flank such sequences produce variable-sized DNA fragments 

depending on the number o f repeats. Since mismatch repair is responsible for detecting 

and repairing short segments o f  mismatched base pairs, disorders of the mismatch repair 

pathway lead to errors in these polymorphic segments (Heale S.M. & Peters T.D, 1995., 

1995; Jiricny et al., 1994; Ionov et al., 1993; Wooster et al, 1994).

1.2.1. Microsatellite instability in HNPCC
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A t - R i s k  S c q i i c i i c f P o s s ib le  I n t e r m e d i a te

O c c i i r a n c c  in A m i c a le d

l i i i m a t i lo o p s lo o p  S h o r t

r> pt* (»’e i i o m e < 4 n t > 3 0 i ir  R e p e a t s

M ic r n s a l e l l i t c s  > 1 0 0 0 0 0

(1 -4 bp .tundcn i  rcpals»

.M in i s a i e l l i t c s  > 1 0 0 0 0

( ? 0 - l 0 0 h p  u in d c m  ivpc ii ls )  

S h o r t  ( 4 - 6 b p )

n o n - l a m l c i i i  repcat.s  > 1 0 0 0 0 0 0 0  

s e p a r a t e d  h> 3 0 - 1 0 0  b p

- “f· +

( Ad;tplc.'tl iViMii Koloilncr. 1996)

Table 3. Examples o f  at-risk sequences fo r  detecting the presence o f  human mutators

Based on the analysis o f  these polymorphic segments new microsatellite alleles are 

observed in tumor (‘T ”) DNA when compared to non-neoplastic (“N”) DNA. The 

addition o f  novel microsatellite alleles in the tumor is called microsatellite instability 

(M I). One o f  the mechanisms that explain microsatellite instability is slippage during 

DNA replication (Figure 4).
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DNA Rsplioalion Fork

GTGJGTGTQOAGAOS 
B) CAG^.CACACACACACACACACACACGTCTGC

Disassooiation of
polymerase complex

Slippage of synthesized suand 
GT

GTGTGTQCACACG 
C> CACACAGACACACACACACACACAOSTCTGC

O)
GT

GTCirai GTGTGTGTGTQI^AGAaS 
CACAbACACAC ACACACACACACAQ?,TCTGiC

Continual ion of synthe.sis 

DNA Repair

^ GTGTGTqiGTGTGTGTQCAGACG 
CACACACACACACACAOGTCTQC

GTGTGrarGTGTGTGTGTGCAG\ai
CACACACACACACACACAOGTCTGC

Figure 4. Slippage mechanism during DNA replication. A model explaining why repeated 
sequences are prone to accumulation of mutations in the case of mismatch repair deficiency. (Adapted 
from Wells R.D. 1996.)

The microsatellite instability is found to be a recessive trait by the studies on somatic cell- 

hybrids on MI (+) and on M I (-) cells (Casares et al., 1995). M utator cell lines lacking 

functional DNA mismatch repair have dinucleotide microsatellite mutation frequency
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among the highest yet observed in tumors, up to 0,01 mutations per cell division. 

Therefore, in setting o f  deficient mismatch repair, microsatellite mutations can be used as 

indicators o f tumorigenesis (Shibata et a l ,  1996). Once this genome-wide instability was 

recognized, the detection o f alterations in a few microsatellite loci could be explained by 

the existence o f a deep genomic instability underlying a mutator phenotype o f cancer. 

(Parsons et a l ,  1995) This led to a group o f papers describing “microsatellite instability” 

in a variety o f tumors.

1.2.2. Microsatellite instability in cancer types other than HNPCC

Microsatellite instability has been studied in other types o f cancer as well. Recent studies 

include; breast, bladder, lung, prostate, head and neck tissue, esophagus, kidney, ovary, 

stomach, uterus, brain, germline, mouth and skin tumors. A short summary o f the recent 

publications are as follows;

i. 4-13% o f the breast cancer cases studied were positive in terms o f MI (Shaw 

e ta l ,  1996).

ii. Tangir and his со workers studied 13 microsatellite markers on chromosome 

3; five o f the 18 ВОТ (Borderline Epithelial Tumors) and 2 o f the 31 lEOC 

(invasive epithelial ovarian cancer) cases displayed MI (Tangir et a l ,  1996).

iii. In 1995 the group led by Suzuki worked on 17 loci on 9 chromosomes and 

they find out that 7 o f the 48 cases (14.6%) displayed microsatellite instability 

in prostate cancer cases (Suzuki et a l ,  1995).
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iv. 15 microsatellite markers on a population composed o f 20 paired normal and 

primary non-metastatic prostatic-tumor samples have been studied by 

Lacombe and his coworkers in 1996. Overall, 65% (13/20) o f the cases 

analyzed were positive in terms o f microsatellite instability. 66 patients with 

prostatic adenocarcinoma were screened for somatic instability (Lacombe et 

a l ,  1996).

V. Microsatellite instability was examined at 36 loci, and found in 9 (43%) o f the 

21 prostatic cancers. (W atanabee/a/., 1995)

vi. In 1995 microsatellite markers D2S136, MSX2 (5q34), D5S82 (5ql4-21) and 

TP53 (17pl3.1) were studied by Shinmura and his coworkers. The prevalence 

o f microsatellite instability in patients with multiple gastric cancer was greater 

(65% versus 24%) than those with solitary gastric cancer. (Shinmura et a l ,  

1995).

vii. Matsuda and his coworkers studied three loci, D2S123, D3S1067, and TP53 

in 1996, genetic instability was found in 5 out o f 17 patients with renal 

carcinoma (29%) (Matsuda et a l ,  1996)

viii. 144 sporadic brain neoplasms are examined. These include 33 astrocytic 

tumors, 33 oligodendrogliomas, 6 gangliomas, 42 meningiomas, 10 vestibular 

schwanomas and 31 pitutary adenomas. Instability o f microsatellite markers 

was detected in four oligodendrogliomas (17.4%), one pitutary adenoma 

(3.2%), one meningioma (2.4%), one astrocytic tumor (3.0%) and not at all 

in gangliomas and schwannomas (Rowley et ah, 1996).
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ix. 91 oral tumors have been analysed for microsatellite instability, 6 (7%) o f the 

cases were positive. Instability was observed at multiple loci with a range o f 

50-74% o f loci affected (Ishwald et ah, 1995).

X. 26 microsatellite repeat sequences in the DNA o f normal and tumor pairs 

from 100 head and neck, bladder, and lung cancer patients are analysed. 26% 

o f the patients were positive in microsatellite instability. The most interesting 

point o f this study is that the identical microsatellite alterations are detected in 

the corresponding urine, sputum, and surgical margines from affected 

patients. (Mao et al., 1996a). This paper demonstrates that microsatellite 

analysis on DNA samples shaded from tumors into body fluids is promising 

for the detection o f several cancer types
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1.3. Detection methods for microsatellite instability

The analysis of microsatellites relies mostly on PCR amplification o f the sequences o f  

interest and polyacrylamide gel electrophoresis (PAGE analysis) followed by different 

methods aiming to visualize the bands on the gels.

1.3.1. Autoradiography

Autoradiography is an efficient method for the visualization o f  the bands on the 

polyacrylamide gels, however its main drawback is the usage o f radioisotopes.

There are three major problems with the radioactivity:

a) Radioactivity is hazardous.

b) Radioactive material should be delivered immediately since it has a certain 

half-life. For developing countries like Turkey this is a big problem since 

nearly all o f the radioactive material is purchased from overseas. Most o f  the 

time the radioactive material is non-fimctional by the time it is received by the 

consumer.

c) Radioisotopes are expensive.

The selection o f the radioisotope for a particular experiment depends mainly on the level 

o f sensitivity and resolution required. Nucleotides with a specific activity o f  about 3000



Ci/mmol are most frequently chosen for the majority o f applications, e.g.(3*Pha- 

^^P)dCTP. Phosphorus-33 can also be used in filter hybridization. ^^P has the advantage 

o f lower emission energy compared to ^^P, allowing increased resolution. However, this 

leads to longer exposure times. It is particularly suitable for microsatellite analysis and 

other techniques where high resolution is required. labeled nucleotides can be used 

for filter hybridization experiments but are not recommended as the low specific activity 

necessitates very long exposure times. Despite its drawbacks autoradiography is the most 

common visualization method for microsatellite analysis.

1.3.2. Fluorescence

Autoradiograhy is the direct exposure o f film by beta particles or gamma rays, whereas 

fluorography is the exposure o f the film by secondary light which was generated by the 

excitation o f a fluor or a screen by beta particle, a gamma ray or a laser beam with a 

certain wavelenght. Fluorescence is the most suitable labeling method for automated 

analysis. One of the PCR primers is synthesized with a 5'-fluorescent label. The sample is 

loaded with an internal lane standard. As the DNA fi'agments with different lengths pass 

through a detector, a laser beam excites the fluorescence and the fluorescence is 

measured by a special camera (CCD camera most o f  the time). The sizes o f the internal 

standard is known and so the sizes o f the PCR products are calculated by a special 

software accordingly (Cawkwell et. a /.,1995; Toh et a l ,  1996). Multiplex analysis by 

using more than one fluorescence label is also possible with these kinds o f  systems.
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Microsatellite analysis is important for the differential diagnosis o f hereditary non

polyposis colorectal cancer patients since microsatellite instability is a strong determinant 

o f germline mismatch repair deficiency in the affected individuals. Although a careful 

family history may also reveal involvement o f germline mutations, it is rather difficult to 

obtain an accurate family history in the absence o f a genetic counselor. Therefore 

microsatellite instability analysis should become an integral part o f the post-operative 

laboratory workout in colorectal cancer patients to differentiate hereditary versus 

sporadic colorectal cancer cases. In addition recent advances indicate that microsatellite 

alterations can also be detected in DNA samples (such as in blood, and in urine), which 

are shed from tumors. This is an important finding for the early diagnosis o f cancer since 

malignant cells can be detected in tissues other than the primary tumor. These include 

small cell lung carcinoma, head and neck cancers (Nawroz et ah, 1996), and bladder 

cancer (Steiner et a l ,  1997, and Uchida et ah, 1996). Therefore microsatellite analysis, 

when coupled with an easy, powerful screening technique could have a high diagnostic 

value. However, like most o f the other DNA-based diagnostic techniques microsatellite 

instability analysis is at present performed only in the research laboratories due to the 

high cost o f the test, requirement o f expertise, difficulty in the interpretation o f the test 

results etc.

Autoadioactivity is the most commonly used method for microsatellite instability 

analysis. As stated above, autoradioactivity has two main drawbacks; it is hazardous and
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therefore requires special protection for working and since it has a certain half-life one 

has to work with it in a limited time interval. Autoradiography necessitates also 

radioactively labeled primers, which is an additional step in the oligonucleotide synthesis. 

M oreover one has to calculate the high price o f radioactivity. Eventhough fluorescence 

detection methods seem to be safe with respect to autoradiography, they also require an 

additional labeling step in the oligonucleotide synthesis and fluorescence labels are not 

cheap either.

Polyacrylamide-gel electrophoresis is the most useful method to separate DNA fragments 

with a resolution enough to conclude about microsatellite instability. A visualization 

method after PAGE analysis which is easy to perform, non-hazardous, and low-cost will 

definitely increase the applicability of microsatellite analysis in laboratories.

Based on these facts, I aimed to develop a non-radioactive diagnostic test for human 

tumors. Silver staining is chosen among the other non-radioactive methods due to its 

ease o f application, high sensitivity and low cost.
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2. MATERIALS and METHODS

2.1 Tissue samples

We have obtained eighty extracted DNA samples that belong to colorectal cancer 

patients from Dr. Tamer Yağcı, Yedigen-îstanbul. These samples have previosly been 

analyzed for genomic instability with several DNA markers (Yağcı et al., 1996). The 

samples are paired colorectal tumor and adjacent normal samples. They have been 

obtained from the Departments o f Pathology o f  Istanbul Faculty o f  Medicine and 

Cerrahpaşa Faculty o f  Medicine. During the collection o f  samples no pre-selected 

criteria was used such as “Amsterdam criteria” for HNPCC. O f the 12 samples analyzed 

in this study 2 were paraffin embedded and 10 were fresh tumor samples.

2.2 Primers used for microsatellite analysis

Eight pairs o f primers have been used for microstellite analysis. They have been 

synthesized in house using Beckman1000 M  oligosynthesizer. The sequences o f  these 

primer pairs are as follows:
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2.2.1. D17S855 (Gao et al., 1995)

F; GA97: GGA TGG CCT TXT AGA AAG TGG
R: GA98: АСА CAG ACT TGT CCT ACT GCC

2.2.2. D6S291

F:
R:

GA99:
GAIOO:

(Gyapay et a l, 1994)

CTC AGA GGA TGC CAT GTC TAA AAT A 
GGG GAT GAC GAA TTA TTC ACT AAC T

2.2.2. FGA

F:
R:

G A lO l:
GA102:

(Primer pairs designed in house)

ACT CAC AGA TTA AAC TGT AAC CAA AA 
GTG ATT TGT CTG TAA TTG CCA

2.2.4. D11S904 (Weissenbach et al., 1992)

F: GA103: ATG АСА AGC AAT CCT TGA GC
R: GA104: CTG TGT TAT АТС CCT AAA GTG GTG A

2.2.5. D13S175 (Weissenbach et al., 1992)

F: GA105; TAT TGG ATA CTT GAA TCT GCT G
R: GA106; TGC АТС ACC TCA CAT AGG TTA

2.2.6. D5S107 (Weissenbach et al., 1992)

F: GA107: GAT CCA CTT TAA CCC AAA TAC
R: GA108: GGC АТС AAC TTG AAC AGC AT

2.2.7. BAT25

F: GA190;
R: GA191:

. 2.2.8. B A X

R: GA272:
R: GA273A:

(Parsons et al., 1995)

TCG CCT CCA AGA ATG TAA GT 
TCT GCA TTT TAA СТА TGG CT

(Rampino et al., 1997)

АТС CAG GAT CGA GCA GGG CG 
ACT CGC TCA GCT TCT TGG TG
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Locus: D11S904 (Dinudeotide repeat) 
Primer Name: GA103-104 
Fragment Lenght: 185-210 bp

Locus: D13S175 (Dinudeolide repeat) 
Primer Name: GA 105-106 
Fragment Lenght: 101-113 bp.

Locus: D5SI07 (Dinudeotidc repeat) 
Prim er Name: GA 107-108 
Fragm ent l.,enght: 143-155 bp.

Tm: 55

Locus:BAT25 (Mononucleotide repeat) 
Primer Name: GA190-191 
Fragment Lenght: 105-112 bp.

Locus: BAX intragenic repeat (Mononucleotide repeat) 
Primer Name: GA 272-273A 
Fragment Lenght: 94 bp.

Locus: D17S855 (Dinucleotide repeat) 
Primer Name: GAS^-98 
Fragment Lenght: 133-155 bp.

■ 'I'/'.''.· . ·'

Locus- !>>'■: "0 ( l.>imidcv)tKir it'pi'ul) 
■ !NioiH·: (ί/.,υο- luo

Î'iS 'iO iH 'io { . ‘i ig it l .  Ι ' · * 8 10 1:)|).

T m :6 0

I

Locus: FGA (Tetranucleotide repeat) 
Primer Name: GA 101 -102 
Fragment Lenght: 177 bp.

'Fable 4. L.ist οΓ the microsatellite kx;i and their relative fragment lengths
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The polymerase chain reaction (PCR), the repetitive bi-directional DNA synthesis based 

on primer extension o f a region o f nucleic acid, is a simple design and can be used for 

many purposes. There are three distinct events during a PCR cycle:

1) dénaturation o f the template: DNA dénaturation occurs when the reaction is heated

to 92-96°C.

2) primer annealing: After dénaturation, the oligonucleotide primers hybridize to their 

complementary single-stranded target sequences. The temperature o f this step varies

from 37°C to 65°C, depending on the homology o f the primers for the target 

sequence as well as the base composition o f the oligonucleotides.

3) DNA synthesis by the thermostable polymerase: The last step is the extension o f the 

oligonucleotide primer by the thermostable polymerase. Traditionally this portion o f

the reaction is carried out at 72°C. Ussually the larger is the template the longer is the 

time required for a proper extension.

2.3.1. PCR Conditions

-10 X Buffer 2.5 pi

lOOmMTris-HCl (pH:8), 01% Gelatin, 1% TritonX, 2.0mM MgCk, 250mM KCl 

-Taq Polymerase (MBI Cat No: EP0282) 0.8 unit (0.2pl)

-dNTP mix (Sigma A4916) 1 OmM 1 pi

2.3. Polymerase chain reaction (PCR)

-Primers(5 Opmol/pl)

-Template DNA 

-Final Volume

1 pi (0.5 F+0.5 R)

100-400 ng

25 pi (MQ ddHiO upto 25 pi)



Initial dénaturation; 94°C forTmin

Cycles X 35: 94 °C for 30” - (55 or 60°C)* for 30” -72°C for 30”

Final Extension 72°C for 7min

Perkin Elmer thermal cycler model 9600 was used during the experiments.

* The Tm values o f primers are indicated in Table 4.

2.4. Agarose gel electrophoresis

The progress o f the first experiments on cutting and joining o f DNA molecules was 

monitored by velocity sedimentation in sucrose gradients. However, this has been entirely 

superseded by gel electrophoresis. Gel electrophoresis is not only used as an analytical 

method, it is also used routinely for the purification o f specific DNA fragments. The gel 

is composed o f polyacrylamide or agarose. Agarose is convenient for separating DNA 

fragments ranging in size from a few hundred to about 20kb. Polyacrylamide is preferred 

for smaller DNA fragments (Primrose S.B. & Old.R.W.S., 1989.)

A gel is a complex network of polymeric molecules. DNA molecules are negatively 

charged, and under electric field DNA molecules migrate through the gel at rates 

dependent upon their sizes; a small DNA molecule can thread its way through gel easily 

and hence migrates faster then a larger molecule.

2.3.2. Thermal cycler conditions
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In any event, gel electrophoresis frequently performed with marker DNA fragments of 

known size which allow accurate size determination o f an unknown DNA molecule by 

interpolation. The bands o f DNA in the gel are stained with the intercalating dye 

ethidium-bromide, and as little as 0.0 Ipg o f DNA in one band can be detected as visible 

fluorescence when the gel is illuminated under ultraviolet light.

2.4.1. Procedure

In order to prepare a 2% agarose gel, 1.6 gr agarose is weight and put into 500ml 

erlenmeyer flask. 80ml o f IX  TBE is poured on to the agarose. This erlenmeyer flask is 

placed in to the microwave-oven and heated in the half power for five minutes, until all of 

the agarose is melted. Ipl o f EtBr is added on to the melted agarose and the gel solution 

is left to cool on a magnetic stirrer, while mixing the solution with the lowest possible 

speed to prevent formation o f bubbles. The gel is poured into the pre-casted gel tray and 

left to polymerize.

2.5. Polyacrylamide gel electrophoresis

Polyacrylamide gel electrophoresis is a method used to differentiate between DNA 

fragments with a very high resolution. When coupled with a detergent, like SDS, 

polyaciylamide gel electrophoresis can also be used for the analysis o f proteins. However 

there are two main drawbacks o f acrylamide gels; in comparison with agarose gels they 

are more difficult to polymerize and they are potentially more toxic.
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There are two main types o f polyacrylamide gels. These are denaturing and non

denaturing polyacrylamide gels.

2.5.1. Denaturing polyacrylamide gels

This types o f gels contain urea or formamide to keep two strands o f the DNA molecules 

apart. Denaturing gels allow us to differentiate between fragment lengths of single 

stranded DNA with a very high resolution. The resolution obtained is only depended on 

the molecular weight and not on the conformation. This is the main distinction between 

the denaturing and non-denaturing poly-acrylamide gels. Microsatellite analysis is not 

possible on non-denaturing gels.

2.5.2. Non-denaturing polyacrylamide gels

Buffers, similar to those used for agarose are used for the preparation of these gels 

(TBE, TAE). Non-denaturing gels are especially useful for detection of the 

conformational changes in DNA molecules (e.g. due to bends or DNA binding)

2.5.3. Solutions

♦ Sticky Solution

Bind Silane............................. 50pl

Glacial Acetic Acid.............. 50pl

99% Ethanol..................... 9900pl
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♦ 40% 19:1 Acrvlamide-bisacrvlamide stock solution

38 gr Acrylamide

2 gr Bisacrylamide

Add ddHjO to 100ml

Solutes are dissolved on a magnetic stirrer

♦ 10% Ammonium persulfate solution

0.1 g o f APS is weight and put into 1.5ml Eppendorf tube 

1 ml o f ddHjO (MQ) is added onto the 0.1 gr APS just prior usage.

It is recommended that APS should not be kept in Eppendorf tubes longer than

15 days.

♦ 8% Denaturing polyacrylamide eel

33.3 gr Urea 

8 ml lOXTBE

16 ml o f 40% 19:1 Acrylamide-Bisacrylamide stock solution 

400 pi APS

20 pl + 150 pi TEMED

33.3 g o f urea is dissolved in 50ml ddH20(MQ) on a hot magnetic stirrer 

16 ml o f 40% 19:1 Acrylamide-Bisacrylamide stock solution and 8ml 

o f lOX TBE is added,

400 pi o f 10% fresh APS is added,

ddH2 0 (MQ) is added upto 80ml

The solution is filtered through a 22 pm filter

The solution is divided into two volumes; 20 ml and 60 m l,

On to 20 ml, 150 pi TEMED is added and used immediately for 

sealing the bottom part o f the gel cassette.
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2.5.4. Casting the PAGE apparatus

Apparatus:

Sequi-Gen Nucleic Acid Sequencing Cell (21X50) (Bio-Rad, Cat.no; 165-3601) 

Reagents:

Sigmacote (Sigma Cat.no: Sl-2)

Bind Silane (Promega Cat no; 2530-84-0)

99% Ethanol

2.5.5. Procedure

The glass plates are laid down on a smooth surface. One side of the glass plates is swept 

with ethanol (99%) for three times. One has to be careful at this step because the glass 

plates have to be ultra clean for the proper assembly. 1 ml o f silicone solution 

(sigmacote) is dropped on to the glass plate connected to the buffer chamber and 

dispersed on to the entire surface o f the plate by using a paper towel. 1 ml o f sticky 

solution (silane) is dropped on to the notched plate and thoroughly dispersed on to the 

entire surface o f the gel. It must be noted that the paper towel used for the silicone 

should not be used for the sticky solution. After 7-8 minutes the plates are cleaned with 

ethanol three times. All the time new paper towels are used. The spacers which have 

been cleaned with ethanol before are placed on to the plate with buffer chamber and the 

nothced plate is placed on to the spacers facing its sticky side inwards. Before putting on 

the clamps the superposition o f the glass plates are controlled and they should exactly fit 

onto each other to prevent leakage o f unpolymerized acrylamide. The clamps are put on
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and tightened. The bottom part o f the plates are sealed with agarose. Three 1.75 X 

15 cm, 3 mm Whatman papers are cut and placed on to the bottom part o f the PAGE 

apparatus. 20 ml o f the prepared polyacrylamide solution is poured on to the Whatman 

papers and 150 pi TEMED is added. The cassette is immediately (before polymerization 

o f the polyacrylamide) placed onto the bottom tray and the clamps are fastened so that 

the glass plates are forced against the tray. The polyacryamide gel is left to polymerize 

for 7-8 minutes. On to the bottom tray agarose is poured by using a Pasteur pipette to 

prevent any possible leakage of the polyacrylamide solution after pouring the gel in- 

between the plates. After the agarose used for sealing is polymerized the remaining 60 ml 

polyacrylamide solution is put into a pisette with a curtailed tip and 20 pi o f TEMED is 

added and mixed throughly. The Page cassette is hold in a nearly vertical position (70-80

° )  and the polyacrylamide solution is poured in-between the plates. One has to be careful 

at that step, over pressurizing of the solution may cause bubbles which definitely will 

interfere with the migration of the DNA fragments. The casting apparatus is slanted step 

by step as the level o f the gel-solution between the plates increases. Finally the gel is laid

down in a nearly horizontal position (10-20®) and the back side o f the comb is placed so 

that the top o f the gel is smooth. The gel is left to polymerize at least for two hours.

2.5.6. Prerun o f the gel

1000 ml IX  TBE is prepared from the lOX stock solution. 450 ml o f the IX  TBE is 

poured into the buffer chamber in the base o f the apparatus. The gel cassette is placed on
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to the base unit and fixed by fastening the screws on the base. The remaining 550 ml IX 

TBE is poured into the buffer chamber in the gel cassette. The comb is removed very 

carefully without damaging the gel. 25 ml syringe is used to remove the urea from the 

top o f  the gel. The electrodes o f the apparatus are connected and the temperature probe 

is placed in the middle o f the notched glass plate. The temperature is set at 48 °C and the 

power at 45W. The prerun is carried out under these conditions for 2 hours. At the 

beginning the voltage o f the set up is 1850 V and it decreases gradually as the 

temperature increases (1650V after 90 minutes when the temperature reaches 45 °C).

2.5.7. Sample preparation and  loading

Denaturing Loading Buffer

Formamide.......... 1350|il

EDTA 0.5M...............3pl

Bromophenol -Blue..5pi

Xylene-Cyanol........... 5 pi

ddH 20..................+.137ul

..... 1500pl

5 pi o f the 25 pi PCR reactions is used for agarose gel electrophoresis. 7 pi denaturing 

loading buffer is added on to the remaining 20pl o f the PCR product. lOpl from the

sample-buffer mixture is taken and denatured at 95°C for 2 min. The comb is gently 

placed on to the top o f the gel so that the teeth are dipped into the gel to eliminate well 

to well leakage. Each well under the comb is cleaned by using a 25 ml syringe and the
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samples are loaded with a lOp pipette. Well to well leakage is monitored continuously 

and noted immediately if observed.

2.5.8. Running the Gel

After the samples have been loaded the power supply is set to 48°C and 45W. The gel is 

run for 2 hours. At the end o f 2 hours the dye Bromophenol-Blue should have come out 

o f the gel.

2.6. Silver Staining

There are a variety o f techniques available for staining nucleic acids in TBE 

polyacrylamide gels, each with their own advantages and disadvantages, depending on 

the desired end-result.

Ethidium-bromide staining is by far the most common method of staining nucleic acids. It 

is a fast technique to visualize nucleic acids. However, ethidium-bromide is a toxic 

mutagen and should be handled carefully.

Silver staining is a highly sensitive method for staining single and double stranded DNA 

and one can expect 4 times higher sensitivity of the standard ethidium-bromide technique.
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2.6.1. Reagents

Silver Nitrate (Sigma Cat No;S-81-57)

Glacial Acetic acid ( Carlo Erba Cat. No. 64-19-7)

Formaldehyde 37% (Sigma Cat. N0:F-8775)

Sodium Carbonate ( Sigma Cat No:S-2127)

2.6.2. Solutions

Solution I: 10 % Acetic Acid solution

Solution II: Silver nitrate solution(contains 2 mg Sodium thiosulfate 

and 1.5ml 37 % formaldehyde )

Solution III: 3% Sodium carbonate solution (contains 1.5ml 

Formaldehyde/liter)

2.6.3. Procedure

Since the gel to be stained is very thin (0.4 mm), it is sticked on the notched glass plate 

throughout the staining propedure. After the poly-acrylamide gel electrophoresis was 

completed the electrophoresis apparatus is disassembled. The cassette containing the 

glass plates and the gel is left for cooling in the cold-room (+4°C) for 20 minutes. 

Afterwards the cassette is disassembled and the glass-plates are taken carefiilly apart. 

The gel remained on the notched glass-plate which has been treated with the sticky 

solution before. The notched plate is placed in the cuvette containing 10% glacial acetic 

acid (solution I) and is shaken for 30 minutes. At the end o f 30 minutes the 10% acetic 

acid solution (solution I) is collected for further use. The cuvette and the glass plate is 

washed for 5 minutes with excess deionized water (MQ) to remove all o f the urea 

remained. Water is poured off
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1.5ml formaldehyde is added for each o f thel liter o f freshly prepared 0.1% silver nitrate 

solution (solution II) and the solution is poured in to the cuvette. The cuvette containing 

the glass plate is shaken vigorously for 35 minutes to make sure that the gel is stained 

homogeneously.

At the end o f 35 minutes silver nitrate solution (solution II) is poured off and the cuvette 

is rinsed with deionized water. The back side o f the glass plate is swiped with a paper 

towel to remove the remaining o f the silver nitrate solution.

The sodium carbonate solution (solution III) was prepared while the glass plate was 

being shaked in the solution I and kept at +4°C, but 1.5 ml formaldehyde and 2 mg o f 

sodium thiosulfate is added just before pouring the solution into the cuvette. The third 

solution is shaken very vigorously to make sure that all the parts o f the gel develop with 

the same quality.

The staining reaction is stopped as soon as the expected bands are seen by pouring off 

the third solution and immersing the glass plate in the first solution for 15 minutes. (It 

must be noted that over-development o f the gel in the third solution will result in an 

excessive background). Afterwards the glass-plate is incubated in deionized water for 

one hour to remove all o f the acetic acid. The glass plate with the gel is left to diy out 

over night. The bands become sharper after the gel has been dried out
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3. RESULTS:

1 2 3 4 8 9 10 11 12 13 14

200 bp.
_  151 bp. 
118bp.

lOObp

Figure 5. Visualisation o f  the PCR amplification products o f  six microsatellite loci on 
2% Agarose-gel

1. Hilol/15- DNA + GA97-98 (Locus; D17S855)
2. Hilol/15-DNA + GA99-100 (Locus; D6S291)) 
S.Marker; (|)X174 + Hinf dill
4. Hilol/15-DNA + GAIOl-102 (Locus; FGA)
5. Hilol/15-DNA + GA103-104 (Locus;DllS904)
6. Hilol/15-DNA + GA105-106 (Locus; D13S175)
7. Hilol/15-DNA + GA107-108 (Locus; D5S107)
8. Hilol/15-DNA + GA23-24 (control primer)
9. Urine-3DNA + GA97-98 ( Locus;D17S855)
10. Urine-3DNA + GA99-100 (Locus; D6S291)
11. Urine-3DNA + GA23-24
12. NoDNA + GA23-24
13. Marker; ())X174 + Hinf dill 
H.Marker; (|)X174 + Hinf dill

3.1 Agarose gel analysis of the microsatellite loci: D17S855, D6S291, D11S904, 

D13S175, D5S107, and FGA

Amplification of the microsatellite loci; D17S855 (133-155bp), D6S291 (198-210 bp.), 

FGA (177 bp.), D 11S904 (185-21 Obp.), D 13S 175 (101 -113 bp.), D 5S107 (143-155 bp.) 

have been performed by using PCR conditions described above. The bands 

corresponding to the loci are in the expected size region with respect to the marker 

(Figure 5).
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3 4

118 bp
100 bp.

Figure 6. Efficient amplification o f  the Bat25 locus and B A X  intragenic repeat region 

/.M arker: φΧ174 Hinf IIL, 2.BAX intragenic repeat region (94 bp.), 3. and 4.BAT 25 (105-112 bp.).

3.2 Agarose Gel Analysis of Bat25 and BAX intragenic repeat region

The bands corresponding to BAT25 and BAX intragenic repeat region are observed 

within the expected size range, (105-112) and 94 bp, repectively.
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Figure 7. A nalysis o f  eigh t m icrosatellite  
loci on 8%  PA G E  g e l 
1.DNA49 + GA272-273A (BAX intragenic 
repeat, 2. DNA49+ GA105-106 (D13S175)), 3., 
DNA49 + GA-97-98 (D17S855), 4. DNA49 + 
GA190-191(Bat25), 5. DNA49+GA103-104
(D11S291), 6. DNA49 + GAlOl-102 (FGA 7. 
DNA49 + GA-99-100 (D6S291), 8. DNA49 + 
GA107-108 (D5S108), 9.DNA50 + GA272- 
273A (BAX intragenic repeat, 10. DNA50 + 
GA105-106 (D13S175)), 11., DNA50 + GA-97- 
98 (D17S855), 12 DNA50 + GA190-
191(Bat25), 13. DNA50+GA103-104
(D11S291), 14 DNA50 + GAlOl-102 (FGA 15. 
DNA50 + GA-99-100 (D6S291), 16 DNA50 + 
GA107-108 (D5S108),
(DNA50: Tumor DNA sample from a sporadic 
colorectal cancer patient, DNAA9: normal DNA 
sample from the same sporadic colorectal 
cancer patient)

3.3 Polyacrylamide gel analysis of the microsatellite loci, D17S855, D6S291, FGA, 

D11S904, D13S175, D5S107, Bat25, Bax intragenic repeat region

The microsatellite loci; D17S855 (133-155bp), D6S291 (198-210bp.), FGA (177bp), 

D11S904 (185-210bp.), D13S107 (101-113bp.), D5S107 (143-155bp.), BAT25 (105- 

112bp.), BAX intragenic repeat region (94bp.) are all found to be within the expected 

size range.
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Figure 8. Analysis o f  the intragenic repeat o f  the B A X  gene in colorectal cancer patient 
samples on 8% PAGE gel.

1.ΜαΓΐ£6Γ;φΧ174+ hinflll, 2. Marker; φΧ174 +EcoRl+ Hindlll, 3. Sample#55F 

(normal), 4. SampIe#56F (tumor), 5. Sample#7IP (normal), 6. Sample#72P (tumor),

7. Sample#61P (normal), 8.Samlpe#62P (tumor), 9.Sample#71P (normal), 10.Sample#72P(tumor), 11. 

Marker; φΧ174, 12.Sample#49F(normal), 13.Sample#50F (tumor), 14.Sample#51F(normal), 

15.Sample#52F(tumor), 16.Sample#75F(normal), 17.Sample#76F(tumor), 18.Sample#77F(nomial), 

19.Sample#78F(tumor), 20. Sample#79F(normal), 21. Saniple#61P (normal), 22. Samlpe#62P (tumor), 

23. Marker; φΧ174 +EcoRl+ Hindlll, 24. Marker;φX174+ hinflll
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All o f  the bands are observed in the expected size range (94bp.) with respect to the 

marker (Figure 8). No alteration o f the BAX locus in the normal and tumor samples o f 

the individuals is observed. BAX gene is one o f the key elements o f the apoptotic 

pathway, the locus we have studied is an intragenic repeat on this gene. Mutations o f this 

locus, in terms o f single base additions or deletions have been observed in 21 o f the 41 

MMP+ colorectal cancer cases (51%) (Rampino et al, 1997).

Here we analysed 5 normal and tumor pairs of fresh tumor samples and two pairs o f 

paraffin embedded tumor samples. Fresh tissue samples are from patients with a distal 

localization o f the tumor. These samples have a very low chance of being M M P+, hence, 

an alteration in this locus is not expected. However the samples from paraffin embedded 

tissue have been previously shown to be MMR+ by Yagci, et al. in 1996. These two 

samples are definitely not enough to exclude the BAX intragenic repeat alteration on 

MMR+ cases. Since the aim o f this study is to set up the technique rather than the 

screening o f the patiens further samples are not studied.

3.4. Analysis of the BAX intragenic repeat region in colorectal cancer patients
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Alterations

Figure9 A n alysis o f  the BAT25 locus on the denaturing 10%  polyacrylam ide gel. 

Sam ples are fro m  norm al an d  tum or tissue DMAs o f  co lorecta l cancer patien ts. These 

are in lanes:

/Smpl80F(tumor), 2., Smpl79F(normal), 3., Smpl78F(tumor), 4.Smpl77F(nomial), 5.,Smpl52F(tumor), 

6.SmpI51F(normal), 7.Smpl50F(tumor), 8.Smpl49F(nonnal), 9. Smpl72P(tumor), 10.Smpl71P(normal), 

11. Smpl62P(tiimor), 12. Smpl61P(normal)., Marker pBR3332 Digest. The arrows indicate shifted 

bands, which are taken as evidence of microsatellite instability

3.5 Analysis of the BAT25 locus in colorectal cancer patients

All o f the bands are observed within the expected size range (105-112bp). Eventhough 

the individual bands can not be distinguished due to the high amount of DNA loaded 

onto the gel, alteration o f the BAT25 locus on paraffin-embedded tissue is observed in 

lanes 9(tumor), 10 (normal), 11 (tumor), 12(normal).
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In this thesis we aimed to implement a non-isotopic diagnostic test for the analysis of 

microsatellite instability in human tumors. We have carried out PCR amplification of the 

loci o f interest and PAGE analysis which is followed by silver staining. The main point of 

this study was to develop a non-radioactive visualisation method o f DNA fragments on 

polyacrylamide gels. The best candidate among different visulisation methods was silver 

staining. Silver staining is a non-expensive, easy, and a reproducible method. The results 

o f silver staining can be obtained in 3 hours as opposed to autoradiography which 

requires an over night incubation for the exposure o f the film to radioactivity. In addition 

the time necessary to develop the film should also be calculated.

The non-isotopic detection system we have developed can be used for other purposes 

also. This system is especially suitable for LOH studies, in which there are very minute 

differences between two allels in terms o f fragment length. With the high resolution we 

obtained it is easy to differentiate between these two alleles.

12 pairs (normal and tumor) o f  an allele can be studied in 9 hours by employing this 

system with a 21 X 50 Bio-Rad sequencing apparatus. Therefore this technique is 

suitable for routine diagnostic applications.

There were two important problems that we faced in the laboratory. These are: i) the 

proper amount o f the PCR product to be loaded onto the PAGE gel, and ii) developing 

the gel after silver staining.

4. DISCUSSION:
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\)The am ount o f  the PCR produ cts to  be lo a d ed  to  the PA G E  gel·. This is mainly 

determined based on the appearance o f the fragments under UV light in agarose 

gels. However this criteria alone is sometimes not sufficient. Therefore it is 

recommended that in the case o f sufficient number o f lanes on the PAGE gel, one 

has to load different volumes o f PCR product to optimize the resolution, 

ii) D eveloping the g e l a fter silver staining: The most important stage o f staining is 

the development of the gel since this stage will determine the final quality o f the gel. 

There were two cases in which we obtained an excessive background. The gel was 

either kept too long in the developing solution or all o f the developing solution is 

used in one go to stain the gel. One should avoid carrying out these mistakes. The 

development reaction should be stopped as soon as the bands are seen on a light 

background. And the developing solution should be used in two portions. The first 

portion of the solution should be poured off as soon as it darkens and the second 

portion of the solution should be used until the bands are seen.

When coupled with good quality o f chemicals these two precautions will ensure strong 

bands on a very faint background.

The world of molecular biology is a world o f gels. Today manual techniques based on 

gels are widely used. However, recent advances show that in the very near future 

automated systems will replace manual techniques. Even today automated systems are 

widely used for sequencing and fragment length analysis. A group o f automated systems 

are based on capillary electrophoresis.

An important technique for studying microsatellite instability is automated capillary 

electrophoresis. In capillary electrophoresis the DNA samples are run trough a polymer 

filled capillary and the fragments are detected as they pass trough a window on the
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capillary. Different methods are used for the detection o f the fragments as they pass by 

the window on the capillary. DNA fragments can be visualized by either by fluorescence 

or by simple UV absorption. These systems are promising for the near future.

For setting up an automated system one requires a well developed, reliable method which 

could be used as a control. As a simple, reproducible method, PAGE analysis followed 

by silver staining is a good candidate for a control method.

There are two capillary electrophoresis apparatus in our department with different 

detection systems. One requires fluorescent labels and the other detects naked DNA just 

by reading UV absorption. Based on the experience I gained working on my master 

project, I want to develop an automated system which is not demanding radioactivity. 

Manual non-radioactive method will be a good control o f the newly developing system.

Since the detection o f frameshift mutations in the coding regions o f BAX gene (John C. 

Reed & Manual Perucho et al., 1997) and the TGF-Beta gene (Markowitz et al., 1995), a 

new era in cancer genetics is opened. Most probably these two genes are not the only 

genes on the way o f carcinogenesis which are altered due to mismatch repair deficiency. 

A fast, reliable, non-radioactive detection system for fragment length alterations is a 

good technique to study the coding sequence alterations o f candidate genes that 

contribute to cancer. Both manual and automated systems are suitable for this purpose.

This system is applicable to both for routine diagnosis and for intensive research.
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