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ABSTRACT
DEEP LEARNING FOR DIGITAL PATHOLOGY

Can Taylan Sari
Ph.D. in Computer Engineering
Advisor: Cigdem Gilindiiz Demir
November 2020

Histopathological examination is today’s gold standard for cancer diagnosis and
grading. However, this task is time consuming and prone to errors as it requires
detailed visual inspection and interpretation of a histopathological sample pro-
vided on a glass slide under a microscope by an expert pathologist. Low-cost and
high-technology whole slide digital scanners produced in recent years have elimi-
nated the disadvantages of physical glass slide samples by digitizing histopatho-
logical samples and relocating them to digital media. Digital pathology aims at
alleviating the problems of traditional examination approaches by providing aux-
iliary computerized tools that quantitatively analyze digitized histopathological
images.

Traditional machine learning methods have proposed to extract handcrafted
features from histopathological images and to use these features in the design of
a classification or a segmentation algorithm. The performance of these methods
mainly relies on the features that they use, and thus, their success strictly de-
pends on the ability of these features to successfully quantify the histopathology
domain. More recent studies have employed deep architectures to learn expres-
sive and robust features directly from images avoiding complex feature extraction
procedures of traditional approaches. Although deep learning methods perform
well in many classification and segmentation problems, convolutional neural net-
works that they frequently make use of require annotated data for training and
this makes it difficult to utilize unannotated data that cover the majority of the
available data in the histopathology domain.

This thesis addresses the challenges of traditional and deep learning ap-
proaches by incorporating unsupervised learning into classification and segmen-
tation algorithms for feature extraction and training regularization purposes in
the histopathology domain. As the first contribution of this thesis, the first
study presents a new unsupervised feature extractor for effective representation
and classification of histopathological tissue images. This study introduces a
deep belief network to quantize the salient subregions, which are identified with
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domain-specific prior knowledge, by extracting a set of features directly learned
on image data in an unsupervised way and uses the distribution of these quan-
tizations for image representation and classification. As its second contribution,
the second study proposes a new regularization method to train a fully convo-
lutional network for semantic tissue segmentation in histopathological images.
This study relies on the benefit of unsupervised learning, in the form of image
reconstruction, for network training. To this end, it puts forward an idea of defin-
ing a new embedding, which is generated by superimposing an input image on
its segmentation map, that allows uniting the main supervised task of semantic
segmentation and an auxiliary unsupervised task of image reconstruction into a
single one and proposes to learn this united task by a generative adversarial net-
work. We compare our classification and segmentation methods with traditional
machine learning methods and the state-of-the-art deep learning algorithms on
various histopathological image datasets. Visual and quantitative results of our
experiments demonstrate that the proposed methods are capable of learning ro-
bust features from histopathological images and provides more accurate results

than their counterparts.

Keywords: Deep learning, feature learning, training regularization, image embed-
ding, generative adversarial networks, semantic segmentation, digital pathology,
automated cancer diagnosis, histopathological image analysis.



OZET
DIJITAL PATOLOJI ICIN DERIN OGRENME

Can Taylan Sar1
Bilgisayar Miihendisligi, Doktora
Tez Danigmani: Cigdem Gilindiiz Demir
Kasim 2020

Histopatolojik degerlendirme, kanser teshisi ve derecelendirmesi i¢in giiniimiizde
kullanilan aractir. Ote yandan, bu degerlendirme, cam slayt {izerindeki histopa-
tolojik numunenin uzman bir patolog tarafindan mikroskop altinda ayrintili
olarak incelenmesini ve yorumlanmasini gerektirdiginden, zaman alici ve hatalara
acik bir iglemdir. Son yillarda iiretilen diigiik maliyetli ve yiiksek teknolojili tam
slayt dijital tarayicilar, histopatolojik ornekleri dijital ortama aktararak, fiziksel
cam slayt orneklerin dezavantajlarini ortadan kaldirmaktadir. Dijital patoloji, di-
jitallegtirilmis histopatolojik gortintiileri nicel olarak analiz eden yardime bilgisa-
yarli araglar saglayarak geleneksel inceleme yaklagimlarinin sorunlarini azaltmay
amaclamaktadir.

Geleneksel makine 6grenmesi yontemleri, histopatolojik goriintiilerden manuel
tanimlanmig Oznitelikler ¢ikarmayir ve bu Oznitelikleri bir simmiflandirma veya
boliitleme algoritmasi tasariminda kullanmay1 onermektedir. Bu yontemlerin per-
formansi esas olarak kullandiklar1 6zniteliklere dayanmaktadir ve bu nedenle, bu
yontemlerin basarilari, kullandiklar1 6zniteliklerin histopatoloji alanini bagaril
bir sekilde temsil etme yeteneklerine baghdir. Son yillarda onerilen ¢aligmalar,
geleneksel yaklagimlarin karmagik oznitelik ¢ikarma prosediirlerinden kacinarak,
aciklayic1 ve giirbiiz Oznitelikleri dogrudan goriintiilerden 6grenmek igin derin
mimariler kullanmaktadir. Derin 6grenme yontemleri birgok simiflandirma ve
boliitleme probleminde iyi performans gosterse de, siklikla kullandiklar: evrisimsel
sinir aglar1 egitim igin etiketlenmis verilere ihtiya¢ duymaktadir ve bu da, histopa-
toloji alanindaki mevcut verilerin ¢ogunu kapsayan etiketlenmemis verilerin kul-
lanilmasini zor hale getirmektedir.

Bu tez, geleneksel yontemlerin ve derin ogrenme yaklagimlarinin sorunlarini,
denetimsiz Ogrenmenin oOznitelik c¢ikarma ve egitim diizenleme amaglar1 icin
siniflandirma ve boliitleme algoritmalarina dahil edilmesiyle ele alinmaktadir.
Tezin birinci katkisi olarak sunulan ilk caligma, histopatolojik doku goriintiilerinin

etkili bir gekilde temsil edilmesi ve smiflandirilmasi igin yeni bir denetimsiz
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oznitelik gikarict sunmaktadir. Bu ¢aligmada, alana 0zgii on bilgilerle tanimlanan
onemli alt bolgelerden oznitelikler ¢ikarmak amaciyla, denetimsiz bir derin inang
ag1 egitilmis ve bu egitim sonucunda elde edilen 6zniteliklerin dagilimi, goriinti
gosterimi ve simiflandirmasi igin kullanilmigtir. Tezin ikinci katkisi olarak sunulan
diger caligmada, histopatolojik doku goriintiilerinde semantik doku boliitlemesi
icin, tam baglantili bir evrigsimsel ag egitmek amaciyla yeni bir diizenleme
yontemi onerilmektedir. Bu ¢aligma, denetimsiz 6grenmeyi, 6nerilen ag modelinin
egitimini diizenlemek icin, girdi gortintiilerinin yeniden yapilandirilmasi seklinde
kullanmaktadir. Bu amacla, boliitleme haritas: ile girdi goriintiisiiniin iist iiste
bindirilmesiyle olusturulan yeni bir yerlestirme tammlanmaktadir. Onerilen bu
yerlestirme yontemi sayesinde, semantik boliitlemeyi temsil eden ana denetimli
gorev ile goriintiiyli yeniden yapilandirmanin temsil ettigi yardimei denetimsiz
gorevin tek bir gorevde birlegtirilmesi ve olugturulan bu birlesik gorevin, bir
iiretken cekismeli ag ile 6grenilmesi amaclanmaktadir. Onerilen simflandirma
ve boliitleme yontemleri, geleneksel makine 6grenmesi yontemleri ve gilincel de-
rin 6grenme algoritmalariyla, farkli histopatolojik goriintii veri kiimeleri kul-
lanilarak karsilagtirilmistir.  Deneyler sonucunda elde edilen gorsel ve nicel
sonuglar, onerilen yontemlerin histopatolojik goriintiilerden giirbliz oznitelikler
ogrenebildigini ve kargilagtirilan yontemlerden daha dogru sonuclar iirettigini or-
taya koymaktadir.

Anahtar sézcikler: Derin 6grenme, 0znitelik 6grenme, egitim diizenleme, goriintii
yerlestirme, liretken ¢ekigmeli aglar, anlamsal boliitleme, dijital patoloji, otomatik
kanser teshisi, histopatolojik goriintii analizi.
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Chapter 1

Introduction

In the current practice of medicine, histopathological examination is the gold
standard for diagnosing and grading many neoplastic diseases including cancer.
This procedure requires a pathologist, who has extensive medical knowledge and
training, to visually inspect a histopathological sample provided on a glass slide
under a microscope (Figure [I.1|(a)). However, as it mainly relies on the visual
interpretation of the pathologist, this histopathological examination may become
a complex and error-prone process, also depending on the complexity of the case.
On the other hand, the augmentation of low-cost whole slide digital scanners
provides digitized histopathology slides at high resolutions and the examination
of these digitized images has begun to replace the traditional glass slide exam-
ination process (Figure [I.1[b)). Digital pathology targets at presenting various
computerized tools and methods to diagnose plenty of diseases by analyzing these

digitized histopathology slides in a fast and objective manner.

In the digital pathology literature, traditional approaches aim at alleviating
these problems by providing computerized methods that quantitatively introduce
handcrafted features. The performance of these methods mainly relies on the
features that they use, and thus, their success strictly depends on the ability
of these features by successfully quantifying the histopathology domain. Deep

architectures have been introduced to overcome the feature extraction problems



Figure 1.1: (a) Routinely used histopathological examination process. (b)
Histopathological examination in a digital pathology systemEl

of traditional methods and have provided accurate results for classification and
segmentation tasks. On the other hand, most of the existing deep learning based
methods do not employ unsupervised learning at all or use them in a limited
and inadequate way, thus they are unable to benefit from the unannotated data
that cover the majority of the data available. This thesis aims to obviate the
limitations of traditional and deep learning approaches and proposes two deep

learning methods for classification and segmentation of histopathological images.

Mlustrations are taken from the following links, respectively: https://www.
hopkinsmedicine.org/health/treatment-tests-and-therapies/surgical-pathology,
https://proscia.com/company/what-is-digital-pathology/\


https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/surgical-pathology
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/surgical-pathology
https://proscia.com/company/what-is-digital-pathology/

1.1 Motivation

Inspection and diagnosis of colorectal cancer are traditionally conducted by
pathologists’ manual examination of histopathological glass slide samples taken
from patients. Although this traditional method has been used successfully for
many years to make accurate diagnoses, it has several disadvantages [1I, 2 3].
Since glass slide samples are physical assets, they can be found in a single geo-
graphic location at a given time, which imposes the ability to view and inspect
samples only by a group of pathologists present at the given location. Addi-
tionally, these glass slide samples should be maintained under appropriate con-
ditions, thereby preventing them from deforming, deteriorating, and getting lost
over time. The precautions and procedures to be considered to meet these con-
ditions are not only costly but also very risky in terms of adversely affecting the
samples in time. Another limitation of working on physical samples is that it
is difficult to query a sample with certain filter parameters (e.g., patient name,
sample date, and sample type) and obtain it on demand. Lastly, only a single
glass slide sample can be examined at a time with microscopes used in traditional
methods, which makes it troublesome to examine different samples together and
also to swiftly examine other areas adjacent to the sample area by aligning them

accurately.

High technology whole slide digital scanners developed in recent years enable
to relocate the histopathological samples from glass slides to digital environment
rapidly and reliably with low costs. Digital pathology aims to find fast and
robust solutions for histopathological image analysis tasks with the algorithms
and methods designed and developed on the digitized images produced by these
scanners. There are many advantages of using and analyzing digital images pro-
duced with these scanners by digital pathology methods instead of storing and
examining traditional glass slide samples manually [T, 2, [3]. First of all, stor-
ing histopathological samples in digital media and cloud environments instead
of physical warehouses enables the samples to be examined by more than one
medical institution simultaneously so that multiple diagnostics on a case can be

obtained quickly. Secondly, with inexpensive storage and backup solutions, the



quality of the samples taken from a patient at the time of collection is ensured
to be protected without changing over time. Thirdly, digital images can be eas-
ily queried with the desired parameters thanks to the digital pathology software
provided. Fourthly, it is possible to examine the samples taken at different res-
olutions and magnification levels concomitantly with the software and hardware
tools proposed by digital pathology. Additionally, these tools align the adja-
cent samples accurately, enabling them to navigate through these samples and
establish a wider perspective for diagnosis. Last but not least, digital pathology
contributes to the accuracy of the diagnosis of pathologists with traditional and
new generation machine learning approaches and even starts to replace manual
diagnoses in easily distinguishable samples, which comprise the majority of the

cases [4].

Up to recent studies, the machine learning methods developed for digital
pathology typically rely on defining and extracting handcrafted quantitative fea-
tures from histopathological images and using these features in the design of a
classification or a segmentation algorithm. These traditional classification and
segmentation methods yield promising results in numerous digital pathology ap-
plications. On the other hand, the features that they use are handcrafted and
strictly dependent on medical expert knowledge. Quantitatively expressing med-
ical expert knowledge might be quite difficult for some applications, and thus,
learning features directly from image data has the potential to generate features
that represent the images better. In order to define more expressive and more
robust features, deep learning based studies have been proposed to learn the fea-
tures directly on image data without the need for handcrafted feature extraction
procedures. For that, the majority of these studies train a supervised convolu-
tional neural network (CNN) model [5] and exploit its output for classification or

segmentation purposes.

Although supervised deep architectures lead to promising results regardless of
the type of the computer vision task, they have a major limitation. Since the ma-
jority of deep approaches employing CNN architectures are trained in a supervised
manner, they require annotated images for both classification and segmentation

purposes. The augmentation in the number of pathology cases produces a vast
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amount of digitized images that need to be examined, and pathologists are inade-
quate for the annotation procedures that should be done to use these images in a
supervised learning method. Even if pathologists can perform annotation proce-
dures to some extent, this may not be sufficient for accurate classification or seg-
mentation method. Concretely speaking for insufficiency of annotated datasets,
many of the studies crop small patches out of the images, train a learner on
the patches, and then use the patch labels for entire image classification or seg-
mentation. For that, they label a patch with the type of the segmented region
covering this patch if the focus is segmentation. Otherwise, if it is classification,
they label a patch with the class of the entire image without paying attention to
the local characteristics of its subregions since the latter type of labeling is quite
difficult and extremely time-consuming. On the other hand, considering the local
characteristics of patches/subregions in a classifier may improve the performance
since a tissue contains subregions showing different local characteristics and the

distribution of these subregions determines the characteristics of the entire tissue.

The aforementioned inadequacy of annotated data leads researchers to de-
sign methods that incorporate unsupervised learning into supervised learning
to benefit from unannotated data for both classification and segmentation pur-
poses. Unsupervised learning aims to produce effective solutions using different
approaches for histopathological image analysis tasks. In the feature extraction
approach, which is one of the most frequently used approaches, the proposed
methods have aimed at reconstructing images that feed the input layer, in the
output layer, thus obtaining higher representations of the input images without
the need for any ground truth data. There are studies using unsupervised learn-
ing for feature extraction in the histopathological image analysis literature, but
they have some deficiencies in the context of this thesis. The models proposed in
some of these studies aim to either classify [6] or detect [7] cytological elements
(e.g., nucleus) within whole slide histopathological images by concentrating on
small patches and do not provide any solution for the classification or segmen-
tation of larger histopathological images. In [§], the proposed method obtains
features from local patches using unsupervised learning and exploits these fea-

tures to classify the whole image. However, the method is trained using all the



patches within the image, regardless of whether they are relevant or prominent,
and without including any prior information in the model. Although there are
methods to identify region proposals within the image and train their models on
these regions [0, [10], these methods also have limitations. Since these methods
are introduced to be used on natural images, the networks proposed in these
methods have also been pretrained on a general-purpose dataset. However, this
pretraining may not contribute to the fine-tuning step which would be held on
a histopathological dataset. In addition to this, although these methods identify
region proposals by using unsupervised learning, they train a supervised CNN to
obtain higher representations of these proposals and therefore need ground truth

data for the given input.

In addition to using it in the feature extraction step, there are other studies em-
ploying unsupervised learning as a regularization tool to improve the performance
of supervised learning. Earlier studies of this approach have used layer-wise unsu-
pervised pretraining to initialize weights, which are then finetuned by supervised
training using backpropagation. This pretraining may provide regularization on
backpropagation by enabling it to start with a better solution and may improve
the network’s generalization ability [11]. On the other hand, it has been ar-
gued that the weights learned by pretraining may be easily overwritten during
supervised training [12] or even they may not provide a better initial solution at
all [I3] since the network is pretrained independently and by being unaware of

the supervised task.

For more effective regularization, recent studies have trained a multi-task net-
work to simultaneously minimize supervised and unsupervised losses by backprop-
agation [12, 13], 14 [15]. They define the supervised loss on the main classification
task and the unsupervised loss on an auxiliary image reconstruction task. These
two tasks typically share an encoder path to extract feature maps, from which
a decoder path reconstructs an image and a classification path estimates a one-
hot class label. In [15], in addition to this, another autoencoder with its own
encoder and decoder is used and the outputs of the two decoders are combined
to reconstruct the image. These studies calculate the reconstruction loss between

original and decoded images as well as between the maps of the corresponding
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intermediate layers of the encoder and decoder. In [13], noisy original images are
used as inputs and the reconstruction loss is calculated between these images and

their denoised versions.

All these studies define losses on the classification and reconstruction tasks
separately and linearly combine them in a joint loss function, which they use to
simultaneously learn these two tasks. This may provide regularization since the
tasks compete during backpropagation. On the other hand, the effectiveness of
this regularization highly depends on to what extent the supervised and unsu-
pervised losses contribute to the joint loss function. When the unsupervised loss
contributes too much, the network may not sufficiently learn the main classifica-
tion task. When it contributes too small, the network may not learn the auxiliary
reconstruction task, which results in not getting the expected regularization effect
from unsupervised learning. Thus, these studies necessitate externally selecting
right contributions that yield balanced learning between the supervised and un-
supervised tasks. However, depending on the application, this external selection
may not be always straightforward. It may become even harder when the joint
loss includes more than one reconstruction loss (e.g., the one at the input level

and those at the intermediate layers).

1.2 Contribution

Unsupervised learning has been exploited in various types of deep architectures
for numerous medical image analysis tasks [16, [I7]. Many of these methods
mainly employ unsupervised learning for two purposes, either to extract features
from data without the need of having the ground truth or to regularize a su-
pervised learner to improve its classification/segmentation performance. 1) As
a feature extractor, an unsupervised learning task aims to obtain higher-level
representations learned directly from image data. To this end, it basically in-
troduces a deep network that consists of a set of consecutive architectures (e.g.,
autoencoders [I8, [19], restricted Boltzmann machines (RBMs) [20]) as hidden

layers and this deep network is trained to reconstruct the image data itself at the
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output layer. Since each hidden layer within the deep network presents a higher
representation, the output of one or more intermediate layers are obtained and
used as the feature set of the image in a supervised learner. 2) As a regularization
tool, the reconstruction of image data is considered as an auxiliary unsupervised
task and incorporated into the training procedure simultaneous to the supervised
task. The unsupervised image reconstruction task is considered to be strongly
related to the main supervised task since learning the input distribution simul-
taneously can contribute to the learning of the supervised task [IT]. Weights
shared by unsupervised and supervised networks are trained simultaneously by
employing a joint function of unsupervised and supervised losses and the auxil-
iary unsupervised task aims to improve the performance of the main supervised
task.

This thesis addresses the issues mentioned in the previous subsection by pro-
viding new solutions that incorporate unsupervised learning into classification
and segmentation methods for histopathological image analysis in terms of both
feature extraction and training regularization purposes. Thereby, it introduces
two deep learning methods for the purpose of classification and segmentation of

histopathological images.

The first study of this thesis proposes a novel semi-supervised method for
the classification of histopathological colon tissue images [2I]. In this context,
the study has two main contributions. As the first contribution, it proposes to
benefit from prior domain-knowledge provided by the pathologists’ insight and
expertise. A tissue is visually characterized by the traits of its cytological com-
ponents, which are determined by the appearance of the components themselves
and the subregions in their close proximities. In a typical examination procedure
of a histopathological tissue image, pathologists visually inspect a tissue sample
by focusing on salient regions located around the important sections of the tissue.
They diagnose and grade cancer via examining the close proximities of the cy-
tological components instead of focusing randomly selected subregions. Inspired
by this, this study proposes to characterize the tissue image by first identifying

its salient subregions and then using only these subregions for the training of the



deep architecture. There are existing deep learning approaches for histopatholog-
ical image analysis that crop small patches out of images, train a learner on the
patches, and then use the patch labels for the entire image classification [22], 23],
nucleus detection [6, 24, 25], or entire image segmentation [26]. As opposed to
our proposed method, these studies either pick random points in an image as the
patch centers, or divide the image into a grid, or use the sliding window approach.
None of them identify salient subregions/components and use them to determine

their patches.

As the second contribution, the study devises an unsupervised method for
the characterization of the salient subregions. With this proposed method, it
was aimed to benefit from the effectiveness of unsupervised learning in feature
extraction. The method pretrains a deep belief network, consisting of consecutive
RBMs, on these salient subregions, allowing the system to extract high-level
features directly from image data. To do so, this unsupervised feature extractor
proposes to use the activation values of the hidden unit nodes in the final RBM of
the pretrained deep belief network and to feed them into a clustering algorithm for
quantizing the salient subregions (their corresponding cytological components)
in an unsupervised way. The characterization of salient subregions using an
unsupervised feature extractor allows us to obtain features without the need for
expensive and impractical annotating of images. Although there exist annotated
histopathological image datasets, the annotations in these datasets are usually
at the entire image level. This causes all the patches extracted from the image
to be labeled with the entire image class and the models to be trained on these
patches are not able to encapsulate the local characteristics within the image.
The proposed unsupervised feature extractor prevents this problem and enables
a more robust and expressive training. To the best of our knowledge, this study
is the first example that successfully uses a deep belief network of RBMs for the

characterization of histopathological tissue images.

In order to benefit from the effectiveness of unsupervised learning in regu-
larization, the second study proposes an effective method to combine the su-
pervised and unsupervised tasks to train a fully convolutional network for the

task of semantic segmentation in histopathological images. This solution relies
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on defining a new embedding that unites the main task of segmentation and an
auxiliary task of image reconstruction into a single task and learning this united
task by a single generative model. To this end, it first introduces an embedding
that generates a multi-channel output image, on which segmentation is trivial,
by superimposing an input image on its segmentation map. Then, it proposes to
learn this newly generated output image from the input image using a conditional
generative adversarial network (¢cGAN), which is known to be effective for image-
to-image translations. This new embedding together with its learning by a cGAN
provide two main contributions. As the first contribution, the proposed embed-
ding unites segmentation and reconstruction tasks, which concomitantly results
in combining supervised and unsupervised objectives (losses) in a very natural
way. This presents an alternative to externally determining the contributions of
these tasks in a joint loss function. More importantly, since the output image
of the united task corresponds to a segmentation map that preserves a recon-
structive ability, uniting the segmentation and reconstruction tasks enforces the
network to jointly learn image features and context features. This joint learning
provides effective regularization. This training regularization is obtained since
reconstructing the input image, and hence, capturing the input image distribu-
tion P(X) contributes to the learning of the segmentation task P(Y'|X) [I1]. In
addition to this, learning these two tasks simultaneously prevents unsupervised
task from learning trivial representations that do not contribute to supervised
task [12]. As the second contribution, the proposed method learns the output
image of the united task by benefiting from the well-known synthesizing ability
of cGANs. Thanks to using a cGAN, the method produces more realistic outputs
that adhere to spatial contiguity without any post-processing (e.g., using condi-
tional random fields, CRFs [27]). To the best of our knowledge, this is the first
proposal of using a cGAN to produce such embedded output images that can be

directly used for semantic segmentation.
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1.3 Outline

The remainder of this thesis is organized as follows. The medical background for
histopathological images used in the proposed studies and the related literature
in the context of histopathological image analysis are presented in Chapter
A novel semi-supervised method for the classification of histopathological colon
tissue images is deeply discussed in Chapter[3] In Chapter[d], an effective semantic
segmentation method for various types of histopathological images is described
in detail. Finally, the summary of this thesis and the future research directions

are given in Chapter [f
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Chapter 2

Background

This thesis proposes deep learning approaches for the classification and segmenta-
tion of histopathological images of colon tissues. The medical background related
to this thesis work is briefly explained in Section [2.1] The related literature in
the context of traditional and recent deep learning methods for classification and

segmentation of histopathological images is provided in Section

2.1 Medical Background

One out of every six deaths in the world is caused by cancer, which places it in the
second leading rank among all diseases that cause death [28]. Colorectal cancer
is the third most common cancer type and is placed in the fourth rank among
all cancer-caused deaths [29]. Colon adenocarcinoma is the most common form
of colorectal cancer, accounting for about 90 percent of cancer cases in North

America and Western Europe.

The diagnosis and grading of colon adenocarcinoma are conducted with the
manual examination of histopathological tissues under a microscope. In a typical
colon tissue, a lumen is located in the center of a gland with epithelial cell nuclei

and cytoplasms lined up around it (Figure. These epithelial cells and luminal
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Figure 2.1: (a) Glands in a normal colon tissue sample. (b) A colon tissue consists
of cytological components including cellular, stromal, and luminal components.

components form glandular structures. Colon adenocarcinoma is originated from
epithelial cells and leads to distortions and disaggregations on these cells as well
as on the glands, which are formed by these epithelial cells. Glandular structures
in a normal colon tissue are illustrated in Figures [2.2) E and |2 - . When can-
cer occurs at the initial level, relatively low distortions begin to appear within
colon tissues and glandular structures and formation of these tissues are well to
moderately differentiated (Figures m ) and . . In such a sample of colon
tissue, glands can still be differentiated, but the boundaries of these structures
begin to lose their clarity. With the progression of cancer, the level of distortion
increases and glandular structures of these tissues are only poorly differentiated
or may not be differentiated at all (Figures [2.2fe) and 2.2[f))

The scope of this thesis covers the classification and segmentation of
histopathological images of colon tissues. To this end, the first study of the
thesis proposes a semi-supervised method for the classification of homogeneous
colon tissue images, in which each image sample covers a part of a tissue be-
longing to a single class. Since stroma is the supporting material of colon tissues,
normal, low-grade, and high-grade cancerous samples contain stroma among their
glandular structures, and stroma is not considered as a distinct separate class.
Examples of normal, low-grade, and high-grade adenocarcinomatous (cancerous)

colon tissue images are given in Figure and more details about this dataset
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Figure 2.2: Images of homogeneous colon tissues classified as (a)-(b) normal, (c)-
(d) low-grade cancerous (adenocarcinomatous), and (e)-(f) high-grade cancerous
(adenocarcinomatous).
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Figure 2.3: (a) A sample heterogeneous colon tissue image. Highlighted regions
are annotated as (b) normal, (c¢) tumorous, (d) connective tissue, (e) dense lym-
phoid tissue, and (f) empty.
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Figure 2.4: (a) A sample heterogeneous colon tissue image. Highlighted regions
are annotated as (b) normal, (c¢) tumorous, (d) connective tissue, (e) dense lym-
phoid tissue, and (f) empty.
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are to be given in Chapter [3]

The second study of the thesis proposes a semantic segmentation method for
relatively larger colon tissue images. Typically, larger colon tissue images are het-
erogeneous since each image contains non-overlapping regions of differently an-
notated classes. Figures[2.3(a) and [2.4](a) illustrate sample heterogeneous colon
tissue images and the regions of different classes within these images are anno-
tated with the corresponding classes by an expert pathologist. In Figures [2.3|(b)
and [2.4b), normal tissue regions are annotated. Although the regions in Fig-
ures [2.3(c) and [2.4)(c) contain different levels of distortions, and therefore, are of
different cancer grades, both regions are annotated as tumorous (cancerous) in
the context of this second study. The regions containing stroma, which is the con-
nective material between glands, are annotated as connective tissue and shown
in Figures 2.3(d) and 2.4(d). The lymphoid aggregates are annotated as dense
lymphoid tissue and shown in Figures [2.3(e) and 2.4|e). The empty glass and
debris regions are annotated as empty and shown in Figures 2.3(f) and [2.4[f).
More details about this dataset are to be given in Chapter

2.2 Related Work

Digital pathology has been introduced to provide auxiliary tools for manual exam-
inations of histopathological samples conducted by pathologists and to diagnose
patients more accurately and objectively using automated or semi-automated
methods. To this end, the proposed methods aim at finding solutions to the
classification and segmentation problems that pathologists study on histopatho-
logical samples. Earlier studies in the digital pathology literature have proposed
to extract handcrafted features from histopathological images for their represen-
tation. These studies mainly rely on two feature extraction approaches. The
textural approach quantifies the spatial arrangement of pixel intensities and de-

fines the textural features using intensity histograms [30), B, B2], co-occurrence
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matrices [33, 34], wavelets [35], fractal analysis [36, B7], and local binary pat-
terns [38, 39, 40]. In the structural approach, features are obtained by char-
acterizing the spatial distribution of cytological components within the image.
Most of the studies form graph representations by considering cytological com-
ponents as nodes and use these graph representations to calculate the feature
set of the given image [41) 42, [43]. Earlier studies of our research group have
employed nuclear, stromal, and luminal tissue components as nodes of a graph
representation and quantified their spatial representation using the graph repre-
sentation [44] [45] [46]. Although both textural and structural approaches perform
well in numerous histopathological image applications, defining expressive hand-
crafted features may require significant insight on the corresponding application.
However, this is not always that trivial and improper feature definitions may

greatly lower algorithms’ performance.

Recently, deep learning methods have shown great promise for various com-
puter vision tasks, and this has led researchers to use deep learning methods in
histopathological image classification and segmentation. Besides, the fact that
deep learning methods learn features directly from data and do not need any
external support enables their use in histopathological image analysis. Similar
to many computer vision tasks, the most preferred methods in histopathological
image analysis are CNN models and their variations. In the histopathological do-
main, these models are generally trained in a supervised manner and the outputs
produced by these models are used for classification and segmentation. Most of
these methods use one of the two approaches. In the first one, methods train a
CNN on entire histopathological training images, feed an entire histopathological
test image to the trained CNN, and use the class label it outputs to directly
classify the test image [47, 48, 49]. In the second approach, methods divide each
histopathological image into a grid of patches, feed each test patch to the CNN,
which is trained on the same-sized training patches, and then exploit either the
class labels or the posteriors generated by the CNN. In [22], the labels are voted
to classify the image out of which the patches are cropped. In [26], the patch
labels are directly used to segment the tissue image into its epithelial and stro-

mal regions. These patch labels are also employed to extract structural features,
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which are then used for whole slide classification [50} 5I] and gland segmenta-
tion [52]. In [53], a CNN model, which is pretrained on a general-purpose dataset,
is employed to extract features from overlapping patches in histopathological tis-
sue images. These features are then classified by a linear SVM and each pixel is
classified by the majority voted class of the patches covering this pixel since the
pixel is classified within several patches. The method introduced in [54] inserts an
SE-ResNet [55] module between convolutional and fully connected layers of the
proposed deep CNN architecture to reduce the number of parameters and prevent
overfitting for the classification of breast cancer histology images. Although they
are not histopathological images, this patch-based CNN approach is used to dif-
ferentiate nuclear and background regions in fluorescence microscopy images [56]

and nuclear, cytoplasmic, and background regions in cervical images [57].

The posteriors generated by a supervised CNN are commonly used to segment
a tissue image into its regions of interest (ROI). To this end, for the class corre-
sponding to the ROI (e.g., nucleus or gland class), a probability map is formed
using the patch posteriors. Then, the ROI is segmented by either finding local
maxima on this posterior map [24] 25 58, 59| or thresholding [60]. This type of
approach has also been used to detect cell locations in different types of micro-
scopic images such as live cell [61], fluorescent [62], and zebrafish [63] images. As
an alternative, nuclei are located by post-processing the class labels with tech-
niques such as morphological operations [64] and region growing [65]. In [66], after
obtaining a nucleus label map, nuclei’s bounding boxes are estimated by training
another deep neural network. In a more recent study [67], authors propose a
multi-stage network in which a patch-level CNN is trained on a histopathologi-
cal multi-organ dataset to generate pixel-level activation maps for independent
patches within images and inter-patch adjacencies are incorporated by applying
mathematical operations, averaging, and post-processing (with a CRF) to obtain
final segmentation maps. Another multi-stage network [68] combines a patch-
based classification model with a whole slide-scale segmentation model for whole
slide image (WSI) segmentation. For that, patches cropped from WSIs are first
used to train the patch classifier and the output of an intermediate layer is used

as feature vectors of the patches. Then, the patch features are arranged based on
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their position on the WSI and the segmentation model is trained on whole slide
feature maps obtained by the local patch features to produce the final whole slide

prediction map.

Although CNN-based models considering local adjacencies are very successful
for histopathological image analysis tasks, particularly for classification problems,
they also have some disadvantages. Since histopathological images generally have
very large dimensions, CNN-based models applied to entire images suffer from
an excessive number of parameters. On the other hand, the patch-based CNN
models, which are proposed to overcome this drawback, are also exposed to diffi-
culties in determining the patch size and incorporating inter-patch neighborhood
information. To overcome these challenges, fully convolutional networks (FCNs)
have been proposed to provide efficient solutions for semantic segmentation [69)].
The UNet architecture [70] proposed for biomedical image segmentation has be-
come the state-of-the-art FCN model for semantic segmentation tasks in many
fields of computer vision and has been frequently preferred to predict pixel-level
class labels for histopathological image segmentation [71, [72]. It has been also
proposed to fuse the predictions of multiple FCNs. In [73], FCNs are trained
on images of different resolutions. In [74], they are constructed by starting the
upsampling operation from different layers of the same encoder. Other studies
perform segmentation at finer-levels; they usually segment nucleus and gland in-
stances. They typically use multi-task networks, in which auxiliary tasks are
defined as predicting boundary of instances [75] and their bounding boxes [76].
Application specific additional tasks, such as lumen prediction [77] and malig-
nancy classification [78], are also used for gland instance segmentation. Note
that the focus of this thesis is compartment segmentation at the tissue level but

not instance segmentation.

FCNs are typically trained to predict pixel labels independent of each other.
This may prevent to capture local and global spatial contiguity within an entire
image. To recover fine details, CRF's using pair-wise potentials have been em-
ployed as a post-processing step to refine the segmentation maps generated by
FCNs [27, [79]. Although CRFs lead to improvements, the integration of FCNs
and CRFs with higher orders is limited [80] and using such additional layers,
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which are externally added to the end of FCNs and are not trained with FCNs

simultaneously, breaks the end-to-end architecture of models.

Unsupervised learning is exploited in many different fields of medical image
analysis to improve supervised learning models that perform classification and
segmentation. There exist studies that make use of unsupervised learning in
their systems to extract features to be used in a classification or a segmentation
method [8I]. In [§], a set of autoencoders are first pretrained on small image
patches and the weights of each autoencoder are employed to define a filter for
the first convolution layer of a supervised CNN classifier, which is then to be
used to classify an entire tissue image. Similarly, in [7], a stacked autoencoder is
pretrained on image patches and the outputs of its final layer are fed to a super-
vised classifier for nucleus detection. As opposed to our first study, these previous
studies did not cluster the outputs of the autoencoders to label the patches in an
unsupervised way and did not use the label distribution for image classification.
The study in [23] is similar to our first study in the sense that it also clusters
the patches based on the outputs of a stacked autoencoder. However, this study
did select its patches randomly and did not consider any saliency in a tissue
image. On the contrary, our first study proposes to determine the salient sub-
regions by prior domain-knowledge, characterize them by an unsupervised deep
belief network consisting of consecutive RBMs, and use the characteristics of only
these salient subregions to classify the entire tissue image. Our experiments have
demonstrated that the use of saliency together with this unsupervised charac-
terization improve the accuracy. Additionally, as opposed to all these previous
studies, which employ either a CNN or a stacked autoencoder, our study uses a

deep belief network of restricted Boltzmann machines.

In addition to using unsupervised learning to extract features from image data,
many studies in the literature exploit it to regularize the supervised training of
classification or segmentation networks. To regularize the supervised training,
the earlier studies have used multi-task networks that consider complementary
tasks along with the main task of segmentation. These are the networks with a
shared encoder and parallel decoders, one for each task, and they are trained to

minimize the joint loss defined on all decoders [75].
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Another way of regularization is to use unsupervised learning in the form of
defining an additional image reconstruction task and learning it concurrently
with the main task. Most of the previous studies focus on non-dense prediction,
defining their main task as to predict one-hot class label for an entire image [12]
13, 14, 15]. Only a few consider the main task of image segmentation [82] [83].
However, all these studies use image reconstruction as an auxiliary task and
linearly combine its loss and the loss of classification/segmentation, which are
defined independently, in a joint loss function. This is different than our second
study, which unites the image reconstruction and segmentation tasks through its
proposed embedding and trains its network to minimize the loss on this united
task. Moreover as opposed to our second study, these previous studies do not use

a generative adversarial network for their network.

Aforementioned limitations of CNNs, single-task and multi-task FCNs lead
researchers to use or design new architectures for histopathological image clas-
sification and segmentation. Generative adversarial networks (GANs) are firstly
proposed for image synthesis by using two networks, generator and discriminator,
trained in an adversarial manner. The first applications of GANs in the field of
histopathological image analysis are also for data synthesis purposes [84], 85] [86]
since the amount and variety of data in histopathology domain is insufficient.
Meanwhile, GANs are also exploited to extract features from histopathological
images and train a classifier on these features. In [87], a unified GAN architecture
is employed to learn and extract cell-level features in histopathology images and
these features are used for image-level classification. Its application to semantic
segmentation typically provides an additional input to the generator (segmentor)
to control its output [88, [89]. Adversarial loss has also been used to regularize
network training. One work [90] uses it for an autoencoder to better learn its
feature maps. It considers the encoder as the generator and feeds its outputs to
the discriminator. Then, it updates encoder weights considering the adversarial
loss in addition to the reconstruction loss between encoder’s input and decoder’s
output. Another work [91] estimates a segmentation map from an image and then
reconstructs the image from the estimated map for regularization. It uses a cGAN

for image reconstruction, and hence, employs the adversarial loss in addition to
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the segmentation and image reconstruction losses. However, it also separately
defines these losses and linearly combines them in a joint loss function. None of
these previous studies exploit an embedding to combine supervised and unsuper-
vised losses for regularizing their network for semantic segmentation. Different
than our second study, none of these studies define an embedding to unite the
segmentation and image reconstruction tasks and use a cGAN to learn this united
task. Only a few use a cGAN for nucleus and gland segmentation [86, 02]. How-
ever, these studies define adversarial loss on the genuineness of their segmentation
maps but they do not consider image reconstruction loss in their segmentation

networks. Besides, they do not use any embedding to regularize training.
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Chapter 3

Unsupervised Feature Extraction
via Deep Learning for
Histopathological Classification

of Colon Tissue Images

3.1 Methodology

Our proposed method relies on representing and classifying a tissue image with
a set of features extracted by a newly proposed unsupervised feature extrac-
tor. This extractor defines the features by quantifying only the characteristics
of the salient subregions in the image instead of considering those of all image
locations. To this end, it first proposes to define the salient subregions around
cytological tissue components (Section . Afterwards, to characterize the
subregions/components in an unsupervised way, it learns their local features by
a deep belief network consisting of consecutive RBMs and quantizes them by
clustering the local features by the k-means algorithm (Section [3.1.2). At the
end, it represents and classifies the image with the distribution of its quantized
subregions/components (Section . A schematic overview of the proposed
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method is given in Figure and the details of its steps are explained in the
following subsections. The source codes of its implementation are available at

http://www.cs.bilkent.edu.tr /~gunduz/downloads/DeepFeature.

The motivation behind this proposed method is the following: A tissue con-
tains different types of cells that serve different functions in the tissue. The visual
appearance of a cell and its surrounding may look differently depending on the
cell’s type and function. Furthermore, some types of cells may form specialized
structures in the tissue. The tissue is visually characterized by the traits of all
these cytological components. Depending on its type, cancer causes changes in
the appearance and distribution of certain cytological tissue components. For
example, in colon, epithelial cells line up around a lumen to form a gland struc-
ture and different types of connective tissue cells in between the glands support
epithelia. In a normal tissue, the epithelial cells are arranged in a single layer
and since they are rich in mucin, their cytoplasms appear in light color. With the
development of colon adenocarcinoma, this single layer structure is getting disap-
peared, which causes the epithelial cells’ nuclei to be seen as nucleus clutters, and
their cytoplasms return to pink as they become poor in mucin. With the further
progression of this cancer, the epithelial cells are dispersed in the connective tis-
sue and the regular structure of a gland gets totally lost (see Figure . Some
of such visual observations are easy to express, but some others may lack of a
clear definition although they are in the eyes of a pathologist. Furthermore, when
there exists a clear definition for an observation, its expression and quantification
commonly require exact component localization, which emerges a very difficult
segmentation problem even for a human eye, and its use in a supervised classifier
requires very laborious annotation. Thus, our method approximately represents
the tissue components with a set of multi-typed circular objects, defines the local
windows cropped around these objects as the salient subregions, and characterizes
them in an unsupervised way. Note that this is just an approximate representa-
tion where one object can correspond to multiple components or vice versa. It
is also worth to noting that the salient subregions cropped around the objects
are defined with the aim of approximately representing the components, whose

characterizations will further be used in the entire image characterization.
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Figure 3.2: Example images of tissues labeled with different classes: (a) Normal,
(b) low grade cancerous--gradel, (c) low grade cancerous--at the boundary between
gradel and grade2, (d) low grade cancerous--grade2, and (e) high grade cancerous.
Note that the normal and high grade cancerous classes are the same for our first
and second datasets whereas the low grade cancerous class in the first dataset is
further categorized into three in the second one.

3.1.1 Salient Subregion Identification

Salient subregions are defined around tissue components whose locations are
approximated by the algorithm that we previously developed in our research
group [46]. This approximation and salient subregion identification are illustrated

on example images in Figure [3.3 and the details are explained below.

The approximation algorithm uses nuclear and non-nuclear types for object
representation. For that, it first separates the hematoxylin channel of an image
7 by applying color deconvolution [94] and thresholds this channel to obtain the
binary image BW/. In this thresholding, an average is calculated on all pixel
values and a pixel is labeled as nucleus if its value is less than this threshold
and non-nucleus otherwise. Then, the circle-fit algorithm [93] is applied on the
pixels of each group in BW separately to locate a set of nuclear and non-nuclear

objects. The circle-fit algorithm iteratively locates non-overlapping circles on the
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given pixels, starting from the largest one as long as the radii of the circles are
greater than the threshold r,,;,,. At the end, around each object ¢;, a salient
region €); is defined by cropping a window out of the binary image BYY where the
object centroid determines the window center and the parameter wy;,. determines
its size. Note that although the located objects are labeled with a nuclear or a
non-nuclear type by the approximation algorithm, we just use the object centroids
to define the salient regions, without using their types. Instead, we will re-type
(re-characterize) these objects with the local features that will be learned by a
deep belief network (Section [3.1.2)).

The substeps of this salient subregion identification are herein referred to as
IMAGEBINARIZATION, CIRCLEDECOMPOSITION, and CROPWINDOW functions,
respectively. We will also use these functions in the implementation of the suc-
ceeding steps. To improve the readability of the thesis, we provide a list of these
functions and their uses in Table 3.1l Note that this table also includes other
auxiliary functions, which will be used in the implementation of the succeeding

steps.

3.1.2 Salient Subregion Characterization via Deep Learn-

ing

This step involves two learning systems: The first one, LEARNDBN, acts as
an unsupervised feature extractor for the salient subregions, and hence, for the
objects that they correspond to. It learns the weights of a deep belief network of
RBMs and uses the activation values of the hidden unit nodes in the final RBM
to define the local deep features of the salient subregions. The second system,
LEARNCLUSTERINGVECTORS, learns the clustering vectors on the local deep
features. This clustering will be used to quantize any salient subregion, which

corresponds to re-typing the object for which this salient subregion is defined.

The details of these learning systems are given in Section [3.1.2.1) and [3.1.2.2
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3.1.2.1 Deep Network Learning

The LEARNDBN algorithm pretrains a deep belief network, which consists of
consecutive RBMs. An RBM is an undirected graphical model consisting of a
visible and a hidden layer and the symmetric weights in between them. The
output of an RBM (the units in its hidden layer) can be considered as a higher
representation of its input (the units of its visible layer). To get the representa-
tions at different abstraction levels, a set of RBMs are stacked consecutively by
linking one RBM’s output to the next RBM’s input. In this work, the input of
the first RBM is fed by the pixels of a salient subregion €2;, which is cropped out
of the binary image BV, and the output of the last RBM is used as the local
feature set ¢; of this salient subregion; see Algorithm [1} In this algorithm, W
and B; are the weight matrix and the bias vector of the j-th RBM, respectively.

Algorithm 1 EXTRACTLOCALFEATURES

Input: salient subregion €);, number H of RBMs in the pretrained deep belief
network, weight matrices W and bias vectors B of the pretrained deep belief
network

Output: local feature set ¢; of the salient subregion 2;

Iy =
: for j =1to H do
II; = sigmoid(Il,_y W; + Bj;)
end for
2 ¢ =1y

The LEARNDBN function learns the weights and biases of the deep belief
network by pretraining it layer by layer using the contrastive divergence algo-
rithm [95]. For this purpose, it constructs a dataset Dgp, from randomly selected
salient subregions of randomly selected training images. Algorithm [2] gives its
pseudocode; see Table for explanations of the auxiliary functions. Note that
LEARNDBN should also input the parameters that specify the architecture of
the network, including the number of hidden layers (the number of RBMs) and

the number of hidden units in each hidden layer.
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Algorithm 2 LEARNDBN

Input: training set D of original images, size wg;,. of a salient subregion,
minimum circle radius r,,;,, architecture P of the deep belief network

Output: weight matrices W and bias vectors B of the pretrained deep belief
network

1: Dgpn =0
2: for each randomly selected Z € D do
3 BW <« IMAGEBINARIZATION(Z)
C < CIRCLEDECOMPOSITION(BW, Tpin)
for each randomly selected ¢; € C do
Q; + CROPWINDOW(BW, ¢;, Wsize)
Ddbn = Ddbn U Qi
end for
9: end for
10: [W, B] <~ CONTRASTIVEDIVERGENCE(Dgpn, P)

3.1.2.2 Cluster Learning

After learning the weights and biases of the deep belief network, the EXTRACT-
LOCALFEATURES function is used to define the local deep features of a given
salient subregion. This work proposes to quantify the entire tissue image with
the labels (characteristics) of its salient subregions. Thus, these continuous fea-
tures are quantized into discrete labels. As discussed before, annotating each
salient subregion is quite difficult, if not impossible, and hence, it is very hard
to learn these labels in a supervised manner. Therefore, this work proposes to
follow an unsupervised approach to learn this labeling process. To this end, it
uses k-means clustering on the local deep features of the salient subregions. Note
that the k-means algorithm learns the clustering vectors V' on the training set
Dimeans that is formed up of the local deep features of randomly selected salient
subregions of randomly selected training images. The pseudocode of LEARN-
CLUSTERINGVECTORS is given in Algorithm [3| This algorithm outputs a set V'
of K clustering vectors. In the next step, an arbitrary salient subregion is labeled

with the id of its closest clustering vector.
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Algorithm 3 LEARNCLUSTERINGVECTORS

Input: training set D of original images, size wg;,. of a salient subregion,
minimum circle radius 7,,;,, number H of RBMs, weight matrices W and bias
vectors B of the pretrained deep belief network, cluster number K

Output: clustering vectors V'

1: Dyneans = 0
2: for each randomly selected Z € D do
3 BW <« IMAGEBINARIZATION(Z)
C < CIRCLEDECOMPOSITION(BW, Tpin)
for each randomly selected ¢; € C do
Q; + CROPWINDOW(BW, ¢;, Wgize)
¢; <+ EXTRACTLOCALFEATURES(S);, H, W, B)
kaeans = kaeans U gbz
9: end for
10: end for
11: V <= KMEANSCLUSTERING (Dypeans, K )

3.1.3 Image Representation and Classification

In the last step, a set of global features are extracted to represent an arbitrary
image Z. To this end, all salient subregions are identified within this image
and their local deep features are extracted. Each salient subregion €2; is labeled
with the id [; of its closest clustering vector according to its deep features ¢;
by the AsSIGNTOCLOSESTCLUSTER auxiliary function (see Table. Then, to
represent the image Z, global features are extracted by calculating a histogram on
the labels of all salient subregions in Z (i.e., the characteristics of the components
that these subregions correspond to). At the end, the image Z is classified by a
support vector machine (SVM) with a linear kernel based on its global features.
Note that, this study uses the SVM implementation of [96], which employs the

one-against-one strategy for multiclass classifications.
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3.2 Experiments

3.2.1 Datasets

We test our proposed method on two datasets that contain microscopic images
of colon tissues stained with the routinely used hematoxylin-and-eosin technique.
The images of these tissues were taken using a Nikon Coolscope Digital Micro-
scope with a 20x objective lens and the image resolution was 480 x 640. The
first dataset is the one that we also used in our previous studies. In this dataset,
each image is labeled with one of the three classes: normal, low-grade cancerous,
and high-grade cancerous. It comprises 3236 images taken from 258 patients,
which were randomly divided into two to form the training and test sets. The
training set includes 1644 images (510 normal, 859 low-grade cancerous, and 275
high-grade cancerous) of 129 patients. The test set includes 1592 images (491
normal, 844 low-grade cancerous, and 257 high-grade cancerous) of the remain-
ing patients. Note that the training and test sets are independent at the patient
level; i.e., images taken from a slide(s) of a particular patient are used either in

the training or the test set.

The second dataset includes a subset of the first one with the low-grade cancer-
ous tissue images being further subcategorized. Here only a subset was selected
since subcategorization was difficult for some images. Note that we also excluded
some images from the normal and high-grade cancerous classes to obtain more
balanced datasets. As a result, in this second dataset, each image is labeled with
one of the five classes: normal, low-grade cancerous (gradel), low-grade cancer-
ous (grade2), low-grade cancerous (at the boundary between gradel and grade2),
and high-grade cancerous. The training set includes 182 normal, 188 gradel
cancerous, 121 gradel-2 cancerous, 123 grade2 cancerous, and 177 high-grade
cancerous tissue images. The test set includes 178 normal, 179 gradel cancer-
ous, 117 gradel-2 cancerous, 124 grade2 cancerous, and 185 high-grade cancerous

tissue images. Example images from these datasets are given in Figure [3.2]
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3.2.2 Parameter Setting

The proposed method has the following model parameters that should be ex-
ternally set: minimum circle radius 7,,;,, size of a salient subregion ws;.., and
cluster number K. The parameters r,,; and wg,. are in pixels. Addition-
ally, the support vector machine classifier has the parameter C'. In our ex-
periments, the values of these parameters are selected using cross-validation
on the training images of the first dataset without using any of its test sam-
ples. Moreover, this selection does not consider any performance metric ob-
tained on the second dataset. By considering any combinations of the follow-
ing values 7 = {3,4,5}, wsize = {19,29,39}, K = {500,1000, 1500}, and
C ={1,5,10, 25,50, 100, 250, 500, 1000, 2500, 5000, 10000}, the parameters are set
t0 Tmin = 4, Wsize = 29, K = 1500, and C' = 500. In Section [3.2.4] we will discuss

the effects of this parameter selection to the method’s performance in detail.

In addition to these parameters, one should select the architecture of the deep
belief network. In this work, we fix this architecture. In general, the number of
hidden layers determines the abstraction levels represented in the network. We
set this number to four. We then select the number of hidden units as 2000, 1000,
500, and 100 from bottom to top layers, having the following considerations. For
our work, the hidden unit number in the first layer should be selected large enough
to effectively represent the pixels in a local subregion. On the other hand, the
number in the last layer should be selected small enough to effectively quantize
the subregions. The hidden unit numbers in between should be selected consistent
to the selected hidden unit numbers in the first and last layers. The investigation

of using different network architectures is considered as future work.

3.2.3 Results

Tables |3.2[ and report the test set accuracies obtained by our proposed Deep-
Feature method for the first and second datasets, respectively. These tables pro-

vide the class-based accuracies in their first three/five columns and the average
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Table 3.2: Test set accuracies of the proposed DeepFeature method and the com-
parison algorithms for the first dataset.

Arith. | Harm.

Norm. | Low | High | mean | mean
DeepFeature 98.37 | 91.59 | 98.44 | 96.13 | 96.02
Handcrafted features
CooccurrenceMatrix 87.58 | 84.12 | 85.60 | 85.77 | 85.74
GaborFilter 91.24 | 82.23 | 78.60 | 84.02 | 83.70
LocalObjectPattern [44] | 95.32 | 92.54 | 90.27 | 92.71 | 92.66
TwoTier [97] 99.18 | 93.83 | 93.77 | 95.59 | 95.53
Deep learning for supervised classification
AlexNet 99.39 |97.39 | 75.88 | 90.89 | 89.53
GooglLeNet 99.59 | 97.04 | 80.16 | 92.26 | 91.40
Inception-v3 99.59 | 93.01 | 89.11 | 93.90 | 93.71
Deep learning for feature extraction (salient points)
SalientStacked AE 97.35 | 90.17 | 93.00 | 93.50 | 93.41
SalientConvolutional AE | 96.54 | 93.96 | 76.26 | 88.92 | 87.94
Deep learning for feature extraction (random points)
RandomRBM 95.93 | 87.91 | 96.89 | 93.58 | 93.40
RandomStackedAE [23] 97.96 | 90.05 | 90.27 | 92.76 | 92.62
RandomConvolutional AE | 95.32 | 88.63 | 79.38 | 87.77 | 87.28

class-based accuracies in the last two. These tables report the average class-based
accuracies instead of the overall test set accuracy since especially the first dataset
has an unbalanced class distribution. Here we provide the arithmetic mean of the
class-based accuracies as well as their harmonic mean since the arithmetic mean
can sometimes be misleading when values to be averaged differ greatly. These re-
sults show that the proposed method leads to high test set accuracies, especially
for the first dataset. The accuracy for the sub-low-grade cancerous classes de-
creases, as expected, since this subcategorization is a difficult task even for human
observers. The receiver operating characteristic (ROC) curves of these classifi-

cations together with their area under the curve (AUC) metrics are reported in

Section [3.2.9]

We also compare our method with four groups of other tissue classification al-
gorithms; the comparison results are also provided in Tables[3.2/and The first
group includes four methods, namely CooccurrenceMatriz, GaborFilter, LocalOb-

jectPattern, and TwoTier, that use handcrafted features for image representation.
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Table 3.3: Test set accuracies of the proposed DeepFeature method and the com-
parison algorithms for the second dataset.

Low Low Low Arith. | Harm.

Norm. | (gradel) | (gradel-2) | (grade2) | High | mean | mean
DeepFeature 96.63 88.83 67.52 62.90 80.54 | 79.28 | 77.24
Handcrafted features
CooccurrenceMatrix 87.64 71.51 50.43 39.52 78.38 | 65.50 | 60.03
GaborFilter 85.96 70.95 22.22 58.06 76.22 | 62.68 | 49.47
LocalObjectPattern [44] 92.70 89.39 48.72 58.87 77.30 | 73.40 | 69.04
TwoTier [97] 98.88 80.45 53.85 62.90 79.46 | 75.11 | 71.84
Deep learning for supervised classification
AlexNet 97.19 96.09 35.90 52.42 87.03 | 73.73 | 63.20
GoogLeNet 97.75 81.56 76.92 63.71 61.62 | 76.31 74.17
Inception-v3 98.88 89.94 38.46 66.94 86.49 | 76.14 | 67.81
Deep learning for feature extraction (salient points)
SalientStacked AE 98.31 87.71 55.56 58.87 83.24 | 76.74 | 72.92
SalientConvolutional AE 98.88 80.45 45.30 51.61 70.27 | 69.30 | 63.92
Deep learning for feature extraction (random points)
RandomRBM 87.08 82.12 56.41 58.87 82.16 | 73.33 | 70.88
RandomStackedAE [23] 97.19 82.12 47.01 57.26 82.70 | 73.26 | 68.22
RandomConvolutional AE | 96.07 72.63 45.30 44.35 59.46 | 63.56 | 58.40

We use them in our comparisons to investigate the effects of learning features di-
rectly on image data instead of manual feature definition. The CooccurrenceMa-
triz and GaborFilter methods employ pixel-level textures. The CooccurrenceMa-
triz method first calculates a gray-level co-occurrence matrix and then extracts
Haralick descriptors from this matrix. The GaborFilter method first convolves
an image with log-Gabor filters in six orientations and four scales. Then, for each
scale, it calculates average, standard deviation, minimum-to-maximum ratio, and
mode descriptors on the response map averaged over those of all orientations [34].
Both methods use an SVM with a linear kernel for the final image classification.
For both datasets, the proposed DeepFeature method leads to test set accura-
cies much better than these two methods, which employ pixel-level handcrafted

features.

The LocalObjectPattern [44] and TwoTier [97] methods, which we previously
developed in our research group, use component-level handcrafted features. The
first one defines a descriptor with the purpose of encoding spatial arrangements
of the components within the specified local neighborhoods. It is similar to this

currently proposed method in the sense that it also represents the components
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with circular objects, labels them in an unsupervised way, and uses the labels’
distribution for image classification. On the other hand, it uses handcrafted fea-
tures whereas the currently proposed method uses deep learning to learn the
features directly from image data. The comparison results show the effective-
ness of the latter approach. The TwoTier method decomposes an image into
irregular-shaped components, uses Schmid filters [98] to quantify their textures
and employs the dominant blob scale metric to quantify their shapes and sizes.
At the end, it uses the spatial distribution of these components to classify the
image. Although this method gives good results for the first dataset, it is not that
successful to further subcategorize low-grade cancerous tissue images (Table .
The proposed DeepFeature method also gives the best results for this subcate-
gorization. All these comparisons indicate the benefit of using deep learning for

feature extraction.

The second group contains the methods that use CNN classifiers for entire
image classification [99, 100} 10T}, 102]. These methods transfer their CNN ar-
chitectures (except the last softmax layer since the number of classes is differ-
ent) and their corresponding weights from the AlezNet [103], GoogLeNet [104],
and Inception-v3 [104] models, respectively, and fine-tune the model weights on
our training images. Since these network models are designed for images with
227 x 227, 224 x 224, and 299 x 299 resolutions, respectively, we first resize our
images before using the models. The experimental results given in Tables |3.2
and show that the proposed DeepFeature method, which relies on character-
izing the local salient subregions by deep learning, gives more accurate results
than all these CNN classifiers, which are constructed for entire images without

considering the saliency.

In the third group of methods (SalientStackedAE and SalientConvolution-
alAFE), we extract features from the salient subregions using two other deep
learning techniques. Recall that our proposed method trains a deep belief net-
work containing four layers of RBMs and uses the outputs of the RBM in the final
layer as the features. We implement these comparison methods to investigate the

effectiveness of using an RBM-based feature extractor for this application. The
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SalientStackedAE method trains a four-layer stacked autoencoder, whose archi-
tecture is the same with our network, and uses the outputs of the final autoen-
coder as its features. The SalientConvolutional AE method trains a convolutional
autoencoder and uses the encoded representation, which is the output of its en-
coding network, as the features. This convolutional autoencoder network has an
encoder with three convolution-pooling layers (with 128, 64, and 32 feature maps,
respectively) and a decoder with three deconvolution-upsampling layers (with 32,
64, and 128 feature maps, respectively). Its convolution/deconvolution layers use
3 x 3 filters and its pooling/upsampling layers use 2 x 2 filters. Both methods
take the RGB values of a subregion as their inputs. Except using a different
feature extractor for the salient subregions, the other steps of the methods re-
main the same. The test set accuracies obtained by these methods are reported
in Tables and [3.3] When it is compared with SalientConvolutionalAE, the
proposed DeepFeature method leads to more accurate results. The reason might
be the following: We use the feature extractor to characterize small local subre-
gions, whose characterizations will later be used to characterize the entire tissue
image. The RBM-based feature extractor, each layer of which provides a fully
connected network with a global weight matrix, may be sufficient to quantify a
small subregion and learning the weights for such a small-sized input may not be
that difficult for this application. On the other hand, a standard convolutional
autoencoder network, each convolution/deconvolution layer of which uses local
and shared connections, may not be that effective for such small local subregions
and it may be necessary to customize its layers. The design of customized archi-
tectures for this application is considered as future work. The SalientStackedAE
method, which also uses a fully connected network in each of its layers, improves
the results of SalientConvolutionalAE, but it still gives lower accuracies compared

to our proposed method.

The last group contains three methods that we implement to understand the
effectiveness of considering the saliency in learning the deep features. The Ran-
domRBM method is a variant of our algorithm. In this method, subregions are
randomly cropped out of each image (instead of using the locations of tissue com-

ponents) and everything else remains the same. Likewise, the RandomStackedAE
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and RandomConvolutionalAE methods are variants of SalientStackedAE and
SalientConvolutional AE, respectively. They also use randomly selected subre-
gions instead of considering only the salient ones. Note that RandomStackedAE
uses stacked auto-encoders to define and extract the features, as proposed in [23].
The experimental results are reported in Tables [3.2] and The results of all
these variants reveal that extracting features from the salient subregions, which
are determined by prior knowledge, improves the classification accuracies of their
counterparts, especially for the second dataset. All these comparisons indicate
the effectiveness of using the proposed RBM-based feature extractor together

with the salient points.

The quantitative evaluations provided in Table reveal that the DeepFeature
method leads to higher test set accuracies than all comparisons methods. On
the other hand, the test set accuracy of low-grade cancerous class is relatively
lower than the test set accuracies of normal and high-grade cancerous classes. In
order to improve this accuracy, we decided to classify the test images in the first
dataset with the DeepFeature method, which is trained with the second dataset,
where low-grade cancerous images are recategorized into three separate classes
and better represented. Since the second dataset consists of images of five classes,
the trained model classifies the test images in the first dataset into five classes. In
order to classify the images in the first dataset into three classes, the low-grade
(gradel, grade 1-2, and grade2) cancerous classes are annotated with a single
low-grade cancerous class. Table reports the test set accuracies obtained
by the proposed DeepFeature method trained on the first and second datasets,
respectively. These quantitative results reveal that the proposed DeepFeature
method trained on the second dataset improves the test set accuracy of the low-
grade cancerous class at the expense of decreasing those of the normal and high-
grade cancerous classes. The improvement of accuracy in low-grade cancerous

images is achieved by training the model with three low-grade cancerous classes.
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Table 3.4: Test set accuracies for the first dataset provided by the proposed
DeepFeature method trained on the first and the second datasets, respectively.
Arith. | Harm.
Norm. | Low | High | mean | mean
DeepFeature (trained on the first dataset) 98.37 | 91.59 | 98.44 |96.13 | 96.02
DeepFeature (trained on the second dataset) | 95.93 | 96.92 | 89.88 | 94.24 | 94.14

3.2.4 Parameter Analysis

The DeepFeature method has four external parameters: minimum circle radius
Tmin, Size of a salient subregion ws;.., cluster number K, and SVM parameter
C. This section analyzes the effects of the parameter selection on the method’s
performance. To this end, for each parameter, it fixes the values of the other three
parameters and measures the test set accuracies as a function of the parameter
of interest. These analyses are depicted in Figures and for the first and

the second datasets, respectively.

The minimum circle radius r,,;, determines the size of the smallest circular ob-
ject (tissue component) located by the CIRCLEDECOMPOSITION algorithm. Tts
larger values cause not to locate smaller objects, which may correspond to impor-
tant small tissue components such as nuclei, and not to define salient subregions
around them. This may cause an inadequate representation of the tissue, which
decreases the accuracy as shown in Figures [3.4[(a) and 3.5(a). On the other hand,
using smaller values leads to defining noisy objects and the use of the salient

subregions around them slightly decreases the accuracy.

The parameter wy;.. is the size of a salient subregion cropped for each compo-
nent by the CROPWINDOW algorithm. This parameter determines the locality
of the deep features. When wy;,. is too small, it is not sufficient to accurately
characterize the subregion, and thus, the component it corresponds to. This sig-
nificantly decreases the accuracy. After a certain point, it does not affect the

accuracy too much, but of course, increases the complexity of the required deep
neural network. This analysis is depicted in Figures [3.4(b) and [3.5(b).

The cluster number K determines the number of labels used for quantizing
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Figure 3.4: For the first dataset, test set accuracies as a function of the model
parameters: (a) minimum circle radius r,,;,, (b) size of a salient subregion wyg;..,
(c) cluster number K, and (d) SVM parameter C'.

the salient subregions (components). Its smaller values may result in defining
the same label for components of different types. This may lead to an ineffective

representation, decreasing the accuracy. Using larger values only slightly affects

the performance (Figures [3.4)c) and B.5{c)).

The SVM parameter C' controls the trade-off between the training error and the
margin width of the SVM model. Using values smaller and larger than necessary
may cause underfitting and overfitting, respectively. Unfortunately, similar to
many hyperparameters in machine learning, there is no foolproof method for its
selection and its value must be determined empirically. As shown in Figures[3.4{(d)
and [3.5(d), our application necessitates the use of C' in the range between 250
and 1000.
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Figure 3.5: For the second dataset, test set accuracies as a function of the model
parameters: (a) minimum circle radius r,,;,, (b) size of a salient subregion wyg;..,
(c) cluster number K, and (d) SVM parameter C'.

3.2.5 ROC Curves and AUC Analysis

This section presents the ROC curve and AUC analysis for the experiments of
our proposed method and the comparison algorithms. Although this analysis is
well defined for binary classifications, there is no consensus on how to obtain
the ROC curves for multi-class classification problems. In our experiments, we
follow the following procedure for both our proposed method and the comparison
algorithms. In this procedure, we generate a ROC curve for each class separately,
by considering only the posterior probabilities that the multi-class SVM classifier
outputs for this particular class (we do not consider the posteriors of the other
classes). We threshold these posteriors with the threshold values across the [0, 1]
interval and obtain the true positive rate (TPR) and the false positive rate (FPR)
for each threshold. We then use these rates to generate the ROC curve.
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Table 3.5: For the first dataset, the area under curve (AUC) metrics of the
proposed DeepFeature method and the comparison algorithms. These metrics
are calculated on the test samples of this dataset.

Arith. | Harm.

Norm.| Low | High | mean | mean
DeepFeature 0.9974 | 0.9895 | 0.9942 | 0.9937 | 0.9937
Handcrafted features
CooccurrenceMatrix 0.9618 1 0.9615 [ 0.9418 | 0.9550 | 0.9549
GaborFilter 0.9728 | 0.9584 | 0.9452 | 0.9588 | 0.9587
LocalObjectPattern [44] |0.9901 | 0.9756 | 0.9841 | 0.9833 | 0.9832
TwoTier [97] 0.9996 | 0.9907 | 0.9872 | 0.9925 | 0.9925
Deep learning for supervised classification
AlexNet 0.9990 | 0.9848 1 0.9750 | 0.9863 | 0.9862
GoogLeNet 1.0000 | 0.9913 | 0.9859 | 0.9924 | 0.9923
Inception-v3 1.0000 | 0.9882 | 0.9827 | 0.9903 | 0.9902
Deep learning for feature extraction (salient points)
SalientStacked AE 0.9982 | 0.9885 | 0.9888 | 0.9918 | 0.9918
SalientConvolutional AE | 0.9984 | 0.9651 | 0.9293 | 0.9643 | 0.9635
Deep learning for feature extraction (random points)
RandomRBM 0.9950 | 0.9837 | 0.9935 | 0.9907 | 0.9907
RandomStackedAE [23] |0.9976 | 0.9836 | 0.9811 | 0.9874 | 0.9874
RandomConvolutional AE | 0.9927 | 0.9528 | 0.9224 | 0.9560 | 0.9551

After obtaining the ROC curve for each class separately, we calculate the area
under this curve. Tables and report the class-specific AUC metrics ob-
tained on the test samples of the first and second datasets, respectively. Note that
the last two columns of these tables present the averages of these class-specific
AUC metrics. Here we provide the arithmetic mean of the class-specific AUC
metrics as well as their harmonic mean since the arithmetic mean can sometimes
be misleading when values to be averaged differ greatly. These tables indicate
the effectiveness of our proposed DeepFeature method for the representation and
classification of histopathological images. It yields better results than the other al-
gorithms, which is also consistent with our findings reported in Tables(3.2|and
The ROC curves used in the calculation of these AUC values are presented in

Figures [3.6] 3.7 and [3.8] for the first dataset, and in Figures [3.9 and for

the second one.
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Table 3.6: For the second dataset, the area under curve (AUC) metrics of the
proposed DeepFeature method and the comparison algorithms. These metrics are
calculated on the test samples of this dataset.

Low Low Low Arith. | Harm.

Norm. | (gradel) | (gradel-2) | (grade2) | High | mean | mean
DeepFeature 0.9991 | 0.9752 0.9284 0.9206 | 0.9727 | 0.9592 | 0.9582
Handcrafted features
CooccurrenceMatrix 0.9808 | 0.9083 0.8228 0.7971 | 0.9541 | 0.8926 | 0.8867
GaborFilter 0.9692 | 0.9100 0.8056 0.8234 | 0.9483 | 0.8913 | 0.8864
LocalObjectPattern [44] 0.9899 | 0.9622 0.9084 0.8946 | 0.9612 | 0.9433 | 0.9419
TwoTier [97] 0.9997 | 0.9651 0.8865 0.9001 | 0.9725 | 0.9448 | 0.9427
Deep learning for supervised classification
AlexNet 0.9974 | 0.9802 0.8939 0.9132 | 0.9766 | 0.9523 | 0.9505
GoogLeNet 1.0000 | 0.9893 0.9326 0.8764 | 0.9764 | 0.9549 | 0.9527
Inception-v3 0.9999 | 0.9773 0.9015 0.9234 | 0.9677 | 0.9540 | 0.9526
Deep learning for feature extraction (salient points)
SalientStacked AE 0.9998 | 0.9736 0.9259 0.9130 | 0.9590 | 0.9543 | 0.9532
SalientConvolutional AE | 0.9991 | 0.9337 0.8539 0.8397 | 0.9530 | 0.9159 | 0.9119
Deep learning for feature extraction (random points)
RandomRBM 0.9951 | 0.9588 0.8923 0.9167 | 0.9693 | 0.9465 | 0.9450
RandomStacked AE [23] 0.9993 | 0.9544 0.8750 0.8894 | 0.9560 | 0.9348 | 0.9325
RandomConvolutional AE | 0.9906 | 0.9185 0.8549 0.8244 | 0.9157 | 0.9008 | 0.8972

3.2.6 Discussion

This study introduces a new feature extractor for histopathological image repre-
sentation and presents a system that uses this representation for their classifica-
tion. This system classifies an image with one of the predefined classes, assuming
that it is homogeneous. This section discusses how this system can be used in a
digital pathology setup, in which typically lower magnifications are used to scan
a slide. Thus, the acquired images usually have a larger field of view and may be
homogeneous or heterogeneous. To this end, this section presents a simple algo-
rithm that detects the regions belonging to one of the predefined classes in such
a large image. Developing more sophisticated algorithms for the same purpose or

for different applications could be considered as future research work.

Our detection algorithm first slides a window with a size that the classifica-
tion system uses (in our case, the size of 480 x 640) over the entire large image
and then extracts the features of each window and classifies it by the proposed

DeepFeature method. Since these windows may not be homogeneous, it does not
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Figure 3.6: ROC curves for the test samples of the first dataset. These curves
are obtained for the proposed DeepFeature method and the comparison algo-
rithms that use handcrafted features: (a) DeepFeature, (b) CooccurrenceMatrix,
(c) GaborFilter, (d) LocalObjectPattern [44], and (e) TwoTier [97] methods.
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Figure 3.7: ROC curves for the test samples of the first dataset. These curves are
obtained for the proposed DeepFeature method and the deep learning based com-
parison algorithms: (a) DeepFeature, (b) AlexNet, (¢) GoogLeNet, (d) Inception-
v3, and (e) SalientStackedAE methods.
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Figure 3.8: ROC curves for the test samples of the first dataset. These curves
are obtained for the proposed DeepFeature method and the deep learning based
comparison algorithms: (a) DeepFeature, (b) SalientConvolutionalAE, (c) Ran-
domRBM, (d) RandomStackedAE [23], and (e) RandomConvolutional AE meth-
ods.
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Figure 3.9: ROC curves for the test samples of the second dataset. These curves
are obtained for the proposed DeepFeature method and the comparison algo-
rithms that use handcrafted features: (a) DeepFeature, (b) CooccurrenceMatrix,
(c) GaborFilter, (d) LocalObjectPattern [44], and (e) TwoTier [97] methods.
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Figure 3.10: ROC curves for the test samples of the second dataset.
curves are obtained for the proposed DeepFeature method and the deep learning
based comparison algorithms: (a) DeepFeature, (b) AlexNet, (¢) GoogLeNet, (d)

Inception-v3, and (e) SalientStacked AE methods.
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directly output the estimated class labels, but instead, it uses the class labels
of all windows together with their posteriors in a seed-controlled region growing
algorithm. In particular, this detection algorithm has three main steps: posterior
estimation, seed identification, and seed growing. All these steps run on circular
objects, which we previously define to approximate the tissue components and to
represent the salient subregions, instead of image pixels, since the latter is much
more computationally expensive. Thus, before starting these steps, the circular
objects are located on the large image and the connectivity between them are

defined by constructing a Delaunay triangulation on their centroids.

The first step slides a window over the objects and estimates posteriors for
all sliding windows by DeepFeature. Then, for each object, it accumulates the
posteriors of all sliding windows that cover this object. Since our system classifies
a window with a predefined class and since these classes may not cover all tissue
formations (e.g., lymphoid or connective tissue), this step defines a reject action
and assigns it a probability. It uses a very simple probability assignment; the
reject probability is 1 if the maximum accumulated posterior is greater than
0.5, and 0 otherwise. The objects are then relabeled by also considering the
reject probabilities. As future work, one may define the reject probability as a
function of the class posteriors. As an alternative, one may also consider to define
classes for additional tissue formations and retrain the classifier. The second step
identifies the seeds using the object labels and posteriors. For that, it finds the
connected components of the objects that are assigned to the same class with
at least Ti..q probability. It identifies the components containing more than T,
objects as the seeds. In our experiments, we set Tyeeq = 0.90 and T},, = 500. The
last step grows the seeds on the objects with respect to their posteriors. At the
end, the seeds of objects are mapped to image pixels by assigning each pixel the
class of its closest seed object, and the seed boundaries are smoothed by majority

filtering.

We test this detection algorithm on a preliminary dataset of 30 large images.
These images were taken with a 5x objective lens and the image resolution is
1920 x 2560. Most of the images are heterogeneous; only five of them are homo-

geneous to test the algorithm also on large homogeneous images. In our tests,
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we will directly use the classifier trained for our first dataset without any mod-
ification or additional training. Hence, the aim will be to detect low-grade and
high-grade colon adenocarcinomatous regions on these large images as well as
those containing normal colon glands. Thus, we only annotate those regions on
the large images. Example images together with their annotations are given in
Figures [3.12] [3.13] and [3.14] The visual results of the algorithm are also given

for these examples. For quantitative evaluation, the recall, precision, and F-score

metrics are calculated for each class separately. For class C, the standard defi-
nitions are as follows: Precision is the percentage of correctly classified C' pixels
that actually belong to C'. Recall is the percentage of actual C' pixels that are
correctly classified as C' by the algorithm. F-score is the harmonic mean of these
two metrics. The results for these metrics are reported in Table (3.7 This table
also reports the results obtained by relaxing the precision and recall definitions
with respect to our application, in which the aim is colon adenocarcinoma detec-
tion. Since this cancer type mainly affects epithelial cells, non-epithelial regions
are left as unannotated in our datasets. Indeed, one may include these regions to
any class without changing the application’s aim. Thus, for class C', we relax the
definitions as follows: Precision is the percentage of correctly classified C' pixels
that actually belong to C' or a non-epithelial region. Recall is the percentage of
actual C' pixels that are correctly classified as C' or with the reject class by the

algorithm.

The visual and quantitative evaluations reveal that the detection algorithm,
which uses the proposed classification system, leads to promising results. Thus,
it has the potential to be used with a whole slide scanner. To do that, a whole
slide should be scanned with a low magnification of the scanner, and the acquired
image, which has a larger field of view, can be analyzed by this detection algo-
rithm. Although it yields successful results for many large images, it may also
give misclassifications for some of them, especially for those containing relatively
large non-epithelial regions; an illustrative example is given in Figure [3.14 When
non-epithelial regions are small, incorrect classifications can be compensated by

correct classifications of nearby regions and the reject action. However, when
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Table 3.7: Results of the colon adenocarcinoma detection algorithm on a prelim-
inary dataset of large images.

Standard Definitions Relaxed Definitions
Precis. | Recall | F-score | Precis. | Recall | F-score
Normal 92.96 | 79.71 | 85.83 | 99.48 | 88.37 | 93.60
Low-grade | 83.01 | 91.30 86.96 91.03 | 93.32 | 92.16
High-grade | 70.82 | 98.61 82.44 87.00 | 99.93 | 93.02

they are large, such compensation may not be possible and the system gives in-
correct results since there is no separate class for such regions. Defining an extra
class(es) will definitely improve the accuracy on these regions. This is left as

future research work.
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Chapter 4

Image Embedded Segmentation:
Uniting Supervised and
Unsupervised Objectives for
Segmenting Histopathological

Images

4.1 Methodology

The proposed method, which we call the tMage EMbedded Segmentation
(iMEMS) method, defines a new embedding to transform semantic segmentation
to the problem of image-to-image translation and solves it using a conditional
generative adversarial network (cGAN). Its motivation is as follows: The pro-
posed transformation facilitates an easy and effective way of uniting a supervised
task of semantic segmentation and an unsupervised task of image reconstruction
into a single task. By its definition, learning this united task inherently requires
meeting the supervised and unsupervised objectives simultaneously. Thus, the

network should jointly learn image features to segment an image and context
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features to reconstruct it. This joint learning stands as an effective means of

regularizing the network training.

The training phase starts with generating a multi-channel output image for
each training instance. Then, original input images together with their generated
outputs are fed to the cGAN for its training (Figure . Afterwards, the output
of an unsegmented image is estimated by the generator of the trained cGAN.
The details are given in the following sections. The iMEMS method is imple-
mented in Python using the Keras framework. The source codes are available at
http://www.cs.bilkent.edu.tr/~gunduz/downloads/iMEMS.

4.1.1 Proposed Embedding

Let I be an RGB image in the training set, G; be its grayscale, and Sy be its
ground truth segmentation map that may contain K possible labels. This embed-
ding generates a K-channel output image O; by superimposing the grayscale G,
on the segmentation map S;. For that, for each segmentation label k € {1, ..., K'},
it generates an output channel O[Ik]. For a pixel p, this output channel is defined
as follows:

|92 | + 128 it S(p) = k

O (p) = (4.1)

127 — LG’T@)J it S;(p) # k

This definition maps grayscale intensities of all pixels belonging to the k-th label
to the interval of [128, 255] in the k-th output channel ng] and to the interval of
[0, 127] in all other channels. However, in mapping these intensities to [0, 127],
it inverts their values to make the characteristics of pixels in foreground and
background regions of the k-th channel more distinguishable. In other words, a
grayscale intensity interval [0, 255] is mapped to [128, 255] in the k-th output
channel if a pixel belongs to the k-th label, and to [127, 0] otherwise. Note
that this definition equally divides the grayscale interval to represent pixels in
foreground and background regions in the k-th channel. This is an appropriate

choice for our application since each channel needs to represent two types of
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(d) (e) (f)

Figure 4.2: (a) An original input image I. (b) Its ground truth segmentation
map S7. (c¢) The first, (d) second, (e) third, and (f) fourth channels in its output
image, which are generated for the segmentation label shown as green, red, yellow,
and blue in Sy, respectively. Note that this semantic segmentation problem is a
task of predicting one of the five labels for each pixel; this particular image does
not contain any pixel belonging to the fifth label. Thus, the generated output
image Oy has five channels (i.e., OEI], O?], OE’], O?], and 055] are generated for
the input image). This figure shows only four of these channels.

regions (i.e., background and foreground regions). However, this definition can
easily be modified such that it uses unequal divisions of the interval, if this is

necessary for other applications.

This definition is illustrated in Figure As seen here, foreground regions in
each channel seem brighter, as they are mapped to [128, 255], whereas background
regions seem darker, as they are mapped to [0, 127]. Thus, it is trivial to segment
foreground regions in each channel of this output image. Besides, both foreground
and background regions in this output preserve the original image content, which

helps regularize a network in learning how to distinguish these two regions.
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4.1.2 cGAN Architecture and Training

The definition in Equation requires the ground truth map S; for an input
image I. Thus, the iMEMS method only employs this definition to generate the
output images for segmented training instances, which are used to train a cGAN.
Then, for an unsegmented (test) image, iMEMS estimates this output from an
original input image using the trained cGAN. In other words, it translates one

image to another using a cGAN.

The generator of this cGAN inputs a normalized RGB image I and outputs a
K-channel image 61. It uses a UNet architecture with an encoder and a decoder
connected by symmetric connections (Figure . The convolution layers, except
the last one, use 3 x 3 filters and the ReLU activation function. The last layer
uses a linear function since it estimates continuous intensity values of the output
image. The pooling/upsampling layers use 2 x 2 filters. Extra dropout layers are

added to reduce overfitting; the dropout factor is set to 0.2.

The discriminator inputs a normalized RGB image and the K-channel output
image corresponding to this input. Its output is a class label to indicate whether
the output image is real or fake; i.e., it estimates if this output is calculated by
Equation using the ground truth or produced by the generator. Its archi-
tecture is given in Figure [4.4] It has the same operations with the generator’s
encoder except that its last layer uses the sigmoid function. This network uses
a convolutional PatchGAN classifier [89], which uses local patches to determine

whether the output image is real or fake rather than the entire image.

The generator and discriminator networks are trained from scratch. The batch
size is 1. The network weights are learned on the training images for 300 epochs.
At each epoch, the loss is calculated on the validation images and the network

that gives the minimum validation loss is selected at the end.

The loss settings of this cGAN are the same with [89]. The objective function
is argmingmaxp L4, (G, D) + A L11(G), where L,4,(G, D) is the adversarial

loss on the discriminator’s outputs and L£r;(G) is the L1 loss on the generator’s
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Figure 4.3: Architecture of the generator network in the cGAN. Different layers and operations are indicated with different
colors. The resolution of the feature maps in each layer together with the number of these feature maps are also indicated.
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Figure 4.4: Architecture of the discriminator network in the cGAN.

output. Similar to [89], the weight A of the L1 loss is selected as 100. It is worth
to noting that although this objective linearly combines two losses, its purpose
is different than the proposed iIMEMS method. As opposed to iMEMS, this
objective does not directly aim to combine the losses of the supervised task of
semantic segmentation and the unsupervised task of image reconstruction. The
iMEMS method defines an embedding to unite these two tasks into a single one
and uses a cGAN for better learning this united task. Indeed, both the generator
and the discriminator of the cGAN define their tasks on the united task of the

iMEMS method, which means the adversarial and L1 losses are also defined on

this united task.

4.1.3 Tissue Segmentation

For an unsegmented image U, the iMEMS method estimates the output 6U
using the generator of the trained cGAN and segments it based on this es-
timated output. In particular, it classifies each pixel p with a segmentation
label k£ whose corresponding output has the highest estimated value; that is,
§U(p) = argmaxkégg] (p). For the image shown in Figure , the estimated out-

put images are illustrated in Figure [4.5
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Figure 4.5: Output maps 65“1 estimated by the generator of the cGAN for the
image shown in Figure 4.2,

4.2 Experiments

4.2.1 Datasets

We test the IMEMS method on three datasets that contain microscopic images of
hematoxylin-and-eosin stained tissues. The first one is an in-house colon dataset
and the other two are publicly available epithelium and tubule datasets, which

are prepared by another research group [22].

The in-house dataset contains 365 images of colon tissues collected from the
Pathology Department Archives of Hacettepe University. Images are scanned at
5x, using a Nikon Coolscope Digital Microscope. Image resolution is 960 x 1280.
In each image, regions are annotated considering five labels. The details of this
annotation are given in Section [4.2.1.1] In this dataset, 100 images are randomly
selected as training instances. The remaining ones are used as test instances, on

which we measure the performance of our method and comparison algorithms.
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The epithelium dataset consists of 42 estrogen receptor positive breast can-
cer images scanned at 20x. Image resolution is 1000 x 1000. In each image,
non-overlapping regions are annotated as either epithelium or background [22].
Since the size of this dataset is relatively small, we randomly split it into five
folds and measure the performance using five-fold cross-validation. Furthermore,
we divide an image of each fold into four equal non-overlapping parts in order
to make images optimal for the proposed architecture and also to increase the
number of training instances. Note that all four parts belonging to the same

image are used in the same fold.

The tubule dataset consists of 85 colorectal images scanned at 40x. As these
images have different resolutions, we rescale them to 522 x 775 pixels, which is
the resolution of more than 90 percent of all images. In each image, tubule and
background regions are annotated [22]. Likewise, the size of this dataset is also
relatively small. Thus, we also use five-fold cross-validation to assess the methods’

performance.

4.2.1.1 Annotation Procedure for In-House Colon Dataset

In each image, non-overlapping regions are annotated with one of the five labels:
normal, tumorous (colon adenocarcinomatous), connective tissue, dense lymphoid
tissue, and non-tissue (empty glass and debris). This annotation is not perfect and
may contain inevitable inconsistencies since small subregions of different labels
may be found together, due to the nature of colon tissues, and their separate
annotation may become quite difficult at the selected magnification. Considering
the following three factors that mainly contribute to this difficulty, images are

annotated as consistently as possible.

First, normal/tumorous regions consist of small connective tissue and non-
tissue subregions. This is inevitable since a normal/tumorous region contains
colon glands, which have a luminal area (empty looking subregion) inside, and
connective tissue as the supporting material between the glands. In annotations,

such luminal areas and connective tissues are included into the corresponding
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Figure 4.6: Example images of our in-house colon dataset together with their
annotations. In annotations, each label is shown with a different color: normal
(green), tumorous (red), connective tissue (yellow), dense lymphoid tissue (blue),
and non-tissue (pink).
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normal /tumorous region. However, if there exists a “wide” enough connective
tissue region between the glands, it is separately annotated with the connective
tissue label. In Figures [4.6(a) and [£.6b), two such small connective tissue sub-
regions are indicated with red arrows. They are included in their corresponding
normal and tumorous regions since they are relatively small. On the other hand,
wider connective tissues are annotated as separate regions (yellow regions shown
in the second row). Here we make every effort to be as consistent as possible
to identify wide regions. Likewise, in Figure (c)7 the normal region contains
small empty (non-tissue) parts, some of which are shown with blue arrows. These
small parts are included into the normal region. However, the left-bottom corner
of the image is annotated as a separate region since it belongs to the empty glass

but not the tissue.

Second, due to the density heterogeneity in a colon tissue, sectioning paraffin-
embedded tissue blocks may result in white artifacts. Examples are shown with
black arrows in Figures[4.6|(d) and[4.6[e). When these artifacts are found next to a
gland, they are included into the normal/cancerous region that the gland belongs
to. Otherwise, they are included into the corresponding connective tissue region.
Third, lymph cells are found almost everywhere in the tissue. The group of these
cells is only annotated as a separate region when they form a dense lymphoid
tissue, see Figure [1.6(e). Likewise, we make every effort to be consistent to

identify the dense regions.

4.2.2 Results

Two metrics are used for quantitative evaluation. The first one is the pixel-level
accuracy, which gives the percentage of correctly predicted pixels in all images.
The second one is the pixel-level F-score that is calculated for each segmentation
label separately. That is, for each label, the F-score is calculated considering the
pixels of this label as positive and those of the other label(s) as negative. The
average of these class-wise F-scores is also calculated. The quantitative results
are reported in Table [4.1] In this table, the metrics are calculated on the test set
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images for the in-house colon dataset. For the other two datasets, these are the
average test fold metrics calculated over five runs (using five-fold cross-validation).
Note that, for each run, the method of interest is trained on the images of four
out of five folds and the remaining one is considered as the test fold. These results
show that the proposed iMEMS method gives high F-scores for all segmentation

labels, leading to the best accuracy and the best average F-score, for all datasets.

Visual results on example test set/fold images are shown in Figures
They reveal that the iMEMS method does not only give higher performance met-
rics but also produces more realistic segmentations that adhere to spatial conti-
guity in pixel predictions, especially for the in-house colon dataset (Figures
. This is attributed to the effectiveness of using the proposed embedding as
the output and learning it with a cGAN. Since this output also includes the origi-
nal image content, it provides regularization on the segmentation task. Moreover,
since the discriminator performs real/fake classification on the entire output, it
enforces the generator to produce embeddings that better preserve the shapes of

the segmented regions.

To better explore these two factors (namely, using the proposed embedding
and learning it with a ¢cGAN), we compare iIMEMS with five comparison algo-
rithms summarized in Table These algorithms either estimate the original
segmentation map or the proposed embedding using either a UNet or a cGAN.
For fair comparisons, the algorithms that use a cGAN have the same architecture
with our method and those that use a UNet have the architecture of our method’s
generator. The last layer of a network uses a linear function if it estimates the
proposed embedding, and a softmax function if it estimates the segmentation
map. Two comparison algorithms use a multi-task network that concurrently
learns the segmentation and image reconstruction tasks. These networks contain
a shared encoder and two parallel decoders, whose architectures are the same

with those of the generator.

First, we compare iMEMS with three algorithms that consider none or only

one of the two factors. UNet-C-single is the baseline that considers none; it
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Figure 4.7: For the in-house colon dataset, visual results on an example test

Segmentation labels are shown with green (normal), red (tumorous),

yellow (connective tissue), blue (dense lymphoid tissue), and pink (non-tissue).
Results are embedded on original images for better visualization.
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Figure 4.8: For the in-house colon dataset, visual results on an example test

Segmentation labels are shown with green (normal), red (tumorous),

yellow (connective tissue), blue (dense lymphoid tissue), and pink (non-tissue).

Results are embedded on original images for better visualization.
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Figure 4.9: For the in-house colon dataset, visual results on an example test
image. Segmentation labels are shown with green (normal), red (tumorous),
yellow (connective tissue), blue (dense lymphoid tissue), and pink (non-tissue).
Results are embedded on original images for better visualization.
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Figure 4.10: For the in-house colon dataset, visual results on an example test
image. Segmentation labels are shown with green (normal), red (tumorous),
yellow (connective tissue), blue (dense lymphoid tissue), and pink (non-tissue).
Results are embedded on original images for better visualization.
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Figure 4.11: For the in-house colon dataset, visual results on an example test
image. Segmentation labels are shown with green (normal), red (tumorous),
yellow (connective tissue), blue (dense lymphoid tissue), and pink (non-tissue).
Results are embedded on original images for better visualization.
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Figure 4.12: For the epithelium dataset, visual results on an example test image.
Segmentation labels are shown with red (epithelium) and green (background).
Results are embedded on original images for better visualization.

77



Annotation

UNet-C-multi UNet-C-multi-int

Figure 4.13: For the epithelium dataset, visual results on an example test image.
Segmentation labels are shown with red (epithelium) and green (background).
Results are embedded on original images for better visualization.
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Figure 4.14: For the epithelium dataset, visual results on an example test image.
Segmentation labels are shown with red (epithelium) and green (background).

Results are embedded on original images for better visualization.
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Figure 4.15: For the tubule dataset, visual results on an example test image.
Segmentation labels are shown with red (tubule) and green (background). Results
are embedded on original images for better visualization.
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Figure 4.16: For the tubule dataset, visual results on an example test image.
Segmentation labels are shown with red (tubule) and green (background). Results
are embedded on original images for better visualization.
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Figure 4.17: For the tubule dataset, visual results on an example test image.
Segmentation labels are shown with red (tubule) and green (background). Results
are embedded on original images for better visualization.

82



estimates the original segmentation map using a UNet. cGAN-C-single esti-
mates the segmentation map but this time with the cGAN also used by iMEMS.
UNet-R-single also estimates the proposed embedding but not using a cGAN.
The results in Table [£.1] show that the contribution of both factors is critical to
obtain the best results. Furthermore, they show that the proposed embedding
provides effective regularization for network training regardless of the network
type. UNet-R-single improves the results of UNet-C-single and iMEMS im-
proves those of cGAN-C-single. Nevertheless, the proposed embedding together
with the cGAN yields better improvement.

Next, we compare iMEMS with another regularization technique that simul-
taneously minimizes supervised and unsupervised losses defined on the segmen-
tation and image reconstruction tasks, respectively. This technique relies on con-
structing a multi-task network whose weights are learned by minimizing a joint
loss function [12] [14]. For the supervised loss, L4, the average cross-entropy is
used. For the unsupervised loss, two definitions are used. First is the reconstruc-
tion loss, L,.., defined at the input level; it is the mean square error between the
input and reconstructed images. Second is the sum of the reconstruction losses,
Lin:, at the intermediate layers; they are the mean square errors between the
maps of the corresponding encoders and decoders. Here two more comparison
algorithms are implemented. UNet-C-multi linearly combines the supervised loss
with the reconstruction loss at the input level without considering those defined
at the intermediate layers whereas UNet-C-multi-int also considers the latter
losses. Here two variants are implemented since it becomes harder to select the
right contribution of each loss in the joint loss function as the number of losses

increases. These variants are to better understand this phenomenon.

UNet-C-multi defines its joint loss function as
Emodel = /\seg £seg + )\rec Erec (42)

where A;y, and A, are the coefficients of the supervised and unsupervised
losses, respectively. Here to find a good combination of these coefficients, we

set A\rec = (1 — Agey) and perform the grid search on the test set/fold images. In
Figures [4.18(a), [4.18(c), and £.1§](e), the metrics are plotted as a function of Ay
&3



for the in-house colon, epithelium, and tubule datasets, respectively. When A,
is too small, the performance of the segmentation task decreases dramatically.
On the contrary, when it is close to 1, the image reconstruction task cannot help
improve the results. This grid search selects A\y.q = 0.6, which gives the best aver-
age F-score for the in-house colon dataset. Using the same approach, Ay, = 0.4
is selected for the other two datasets. Table and Figures [4.7] present
the results for these s, values. These results show that a multi-task network,
which regularizes its training by simultaneously minimizing the supervised and
unsupervised losses, improves the results of the single-stage networks. On the
other hand, iMEMS leads to better results. The reason might be the following:
First, IMEMS unites the supervised and unsupervised tasks into a single one and
trains its network by minimizing the loss defined on the united task. This united
task provides a very natural way of loss definition, eliminating the necessity of
defining a joint loss function with right contributions of the supervised and un-
supervised losses. This may provide more effective regularization for employing
unsupervised learning in network training. Second, iMEMS learns this united
task by benefiting from the well-known synthesizing ability of cGANs. Thanks to
using a cGAN, iMEMS produces realistic outputs that better comply with spatial

contiguity.

UNet-C-multi-int defines a similar loss function, but this time, also consider-
ing the sum of the reconstruction losses, L;,;, at the intermediate layers. It defines
the following joint loss function, which is also used in [12] [14] to regularize their

network training.
£model = >\seg Eseg + )\rec ‘Crec + )\int ‘Cint (43)

As aforementioned, as their number increases, it becomes harder to adjust the
coefficients relative to each other. In our experiments, we use the best configu-
ration of Ay = 0.6 and A, = 0.4 selected by UNet-C-multi for the in-house
colon dataset and Asy = 0.4 and A,.. = 0.6 for the other datasets, and deter-
mine the coefficient \;,; also by the grid search. This grid search gives the best
average F-score when \;,; is 0.8, 0.7, and 0.3, for the in-house colon, epithelium,
and tubule datasets, respectively. For the in-house colon, epithelium, and tubule
datasets, the metrics are plotted as a function of Ay in Figures [4.18(b), [4.18(d),
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Figure 4.18: Accuracy and average F-scores of UNet-C-multi as a function of A,
(a) for the in-house colon, (c) epithelium, and (e) tubule datasets, respectively.
Accuracy and average F-scores of UNet-C-multi-int as a function of A, (b) for
the in-house colon, (d) epithelium, and (f) tubule datasets, respectively.
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and [1.1§[(f), respectively. The test set/fold results for these A, values are pro-
vided in Table .1l Here it is observed that the inclusion of the intermediate
layer losses does not help further improve the results. The reason might be the
following: The linear function, which is used by UNet-C-multi-int as well as by
the previous studies [12, [14], may not be the best way to combine these losses
and/or it may require a more thorough coefficient search. On the contrary, the
iMEMS method requires neither such an explicit joint loss function definition
nor such a coefficient search since its proposed united task intrinsically combines

these losses.

The comparison methods presented in quantitative and visual results are de-
signed and implemented in order to evaluate the effectiveness of the proposed
contributions. On the other hand, comparing the proposed iMEMS method with
recent studies using these publicly available datasets can reveal the holistic contri-
bution of the method to the digital pathology literature. To this end, we compare
iMEMS with two deep learning studies using the publicly available epithelium and
tubule datasets. The first study [105] employs a fully convolutional residual net-
work (FCRN) followed by a pyramid dilated convolution (PDC) module to obtain
multi-level and multi-scale contextual information. The second study [106] pro-
poses to use a recurrent residual convolutional neural network based on UNet
architecture (R2U-Net) for semantic segmentation. While the first study reports
only the average F-score, the second study reports the pixel-level accuracy in

addition to the average F-score.

The FCRN method firstly reports the F-score for their baseline model which
does not include the PDC module and the F-score is 0.8831 4+ 0.02 for the ep-
ithelium dataset and 0.8242 4 0.03 for the tubule dataset. Our proposed iMEMS
method leads to better results for both datasets than the baseline version of the
FCRN method. Next, the FCRN method augments the training data in both
datasets by applying transformations including rescaling and horizontal and ver-
tical flipping. In this data augmented version, the reported F-score is 0.898140.02
for the epithelium dataset and 0.864640.03 for the tubule dataset. In this setting,
while the iMEMS method obtains better results in the tubule dataset, the FCRN
method produces a higher F-score metric. At this point, it should be noted that
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this comparison may not be fair, as the iMEMS method has been trained with
a more deficient dataset than the comparison method. Lastly, the first study
reports the F-scores of the FCRN model including the PDC module trained with
the augmented datasets. The reported F-score is 0.9066 4+ 0.01 for the epithe-
lium dataset and 0.8950 4+ 0.02 for the tubule dataset. For both datasets, the
FCRN method including the PDC module gives higher F-scores than the iMEMS
method. By comparing the F-scores presented for the first method consecutively,
it is revealed that the performance of the FCRN method is increased essentially
by augmenting the dataset rather than the additional PDC module. A fairer com-
parison can be achieved by training the iMEMS method with a similar augmented

dataset.

Before applying the R2U-Net to the epithelium and tubule datasets, the au-
thors have cropped non-overlapping patches from original images in order to
obtain more samples and employ networks with less number of parameters. The
F-score and pixel-level accuracy are 0.9050 and 0.9254 for the epithelium dataset
and 0.9013 and 0.9031 for the tubule dataset, respectively. According to these re-
sults, the R2U-Net model produces higher F-scores and accuracy values than the
proposed iMEMS method for both datasets. It should be noted that the R2U-Net
applied semantic segmentation on the cropped patches and the presented metrics

were obtained on these cropped patches but not the entire images.

Lastly, in order to evaluate the effectivenes of the iMEMS method for cross-
organ segmentation, we segmented images in the epithelium and tubule datasets
with the iMEMS models trained on the tubule and epithelium datasets, respec-
tively. To this end, all images in the epithelium (tubule) dataset are first rescaled
to be in appropriate dimensions with the networks trained on the tubule (epithe-
lium) dataset. Then, the rescaled images in the epithelium dataset are segmented
using each of the five iIMEMS models that was trained on each fold in the tubule
(epithelium) dataset. The quantitative results in Table [f.3]reveal that the IMEMS
method does not produce accurate segmentation maps in this new setting. The
reason might be the following: Since the epithelium dataset includes images of
breast tissues and the tubule dataset includes images of colon tissues, whose tis-

sue formations are different, the representation learned for one dataset cannot
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Table 4.3: F-scores and accuracies of the proposed iMEMS method for cross-
organ segmentation. (a) For the epithelium dataset, these are the average metrics
obtained on the five test folds trained on the tubule dataset. (c¢) For the tubule
dataset, these are also the average metrics obtained on the five test folds trained
on the epithelium dataset.

F-scores
Epithelium | Backgr. | Average | Accuracy
iMEMS (trained on the epithelium dataset) 85.51 92.40 | 88.96 90.17
iMEMS (trained on the tubule dataset) 52.19 79.92 | 66.05 71.87
(a)
F-scores
Tubule | Backgr. | Average | Accuracy
iMEMS (trained on the tubule dataset) 87.08 87.00 | 87.04 87.09
iMEMS (trained on the epithelium dataset) 60.64 65.39 | 63.01 63.80

(b)

sufficiently contribute to the segmentation of images in the other dataset.

4.2.3 Discussion

In Figures 4.7H4.17|, it is observed that especially the comparison algorithms yield
many small segmented regions, which can be easily corrected by post-processing.
To understand how this affects the results, two different post-processing ap-
proaches are employed for the in-house colon dataset. The analysis is similar
for the other two datasets. First, the following simple post-processing algorithm
is applied to the segmentation maps obtained from the iMEMS method and com-
parison algorithms: Starting from the smallest one, each segmented region smaller
than an area threshold 7 is merged with its smallest adjacent region. This merge
continues until there remains no region smaller than 7. The results reported in
Table (a) indicate that this post-processing is effective to increase the perfor-
mance. However, this increase is similar for all algorithms and does not change
the conclusion drawn from the comparative study. Note that this table reports the
average F-scores and the accuracies; both metrics show the same trend. The vi-
sual results presented in Figures {4.19 reveal that this simple post-processing
is effective in correcting small incorrect regions, but determining the 7 threshold

inaccurately may cause the small regions that are already correctly segmented to
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be assigned to incorrect classes.

Conditional random fields (CRF's) have been frequently employed as a post-
processing step to refine the segmentation maps generated by FCNs [27, [79] since
they incorporate pair-wise potentials between adjacent image pixels. Thus, a fully
connected CRF [107], which considers pair-wise potentials on all pairs of pixels in
the image in a tractable algorithm, is used as the second post-processing method
for all competing methods. The quantitative results presented in Table [1.4|(b)
show that using the CRF method as a post-processing step increases average
F-scores and accuracies almost evenly for all competing methods. On the other
hand, although the use of CRF improves the performance of all competing meth-
ods, it has some disadvantages in the context of the histopathological data used.
In Figures [4.19(h) and [£.2I[(h), the CRF method corrects small connective tis-
sue regions that are segmented incorrectly within normal and tumorous regions
and annotates them with the correct class label. However, in Figures [£.20(h)
and (h), connective tissue regions between normal and tumorous regions are
incorrectly annotated with normal or tumorous classes by the CRF method since
connective tissues occupy small regions between the two adjacent normal and tu-
morous class regions. Therefore, it is possible to say that, for datasets containing
small regions between two adjacent large regions annotated with different classes
or small regions annotated with a different class than their surrounding regions,

CRFs may incorrectly edit the segmentation maps provided by FCN methods.

4.2.4 Refining the iMEMS method with the DeepFeature
method

The iMEMS method is proposed to segment homogeneous regions in hetero-
geneous colon tissue images. Small segmented regions yielded by the iMEMS
method can be easily corrected with the simple and CRF post-processing meth-
ods presented in the previous section. On the other hand, these post-processing
methods may be insufficient for medium-sized and relatively large regions. In

order to correct such regions with a more robust method, one may consider to
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Figure 4.19: For the in-house colon dataset, visual results on an example test
image after applying post-processing. (a) An original input image. (b) Its ground
truth segmentation map. (c¢) Segmentation map generated by iMEMS method.
Segmentation maps after applying the simple post-processing with different area
thresholds 7; (d) 7 = 5000, (e) 7 = 10000, (f) 7 = 25000, and (g) 7 = 50000
pixels. (h) Segmentation map after applying the CRF post-processing.
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Figure 4.20: For the in-house colon dataset, visual results on an example test
image after applying post-processing. (a) An original input image. (b) Its ground
truth segmentation map. (c¢) Segmentation map generated by iMEMS method.
Segmentation maps after applying the simple post-processing with different area
thresholds 7; (d) 7 = 5000, (e) 7 = 10000, (f) 7 = 25000, and (g) 7 = 50000
pixels. (h) Segmentation map after applying the CRF post-processing.
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Figure 4.21: For the in-house colon dataset, visual results on an example test
image after applying post-processing. (a) An original input image. (b) Its ground
truth segmentation map. (c¢) Segmentation map generated by iMEMS method.
Segmentation maps after applying the simple post-processing with different area
thresholds 7; (d) 7 = 5000, (e) 7 = 10000, (f) 7 = 25000, and (g) 7 = 50000
pixels. (h) Segmentation map after applying the CRF post-processing.
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incorporate the DeepFeature method into the iMEMS method. To explore this
possibility, we have designed the following postprocessing method and applied it
to the results obtained on the in-house colon dataset. For that, first, salient sub-
regions are defined around cytological tissue components within the training and
test images of this dataset. Then, these subregions are characterized by learning
their local features using a DBN in an unsupervised way. These local features
are clustered by the k-means algorithm and each subregion is represented with
a cluster label with respect to its local feature vector. Unlike the homogeneous
dataset used in the DeepFeature study, the training and test images in the in-
house colon dataset contain regions belonging to different classes. Therefore, to
train the SVM classifier, a histogram of the subregion labels is calculated for each

region in the ground truth maps of the training images.

With the aforementioned approach, 266 regions of five classes are obtained
from 80 tissue images in the training set of the in-house colon dataset. Then, for
each test image, the segmentation map is estimated by the iMEMS method and
each segmented region R in this map is refined by this trained SVM classifier.
To this end, the salient subregions in each segmented region R are located, their
deep local features are calculated by the DBN and their cluster labels are found
based on these local features. Then, the histogram for region R is calculated on
these cluster labels and inputted to the SVM classifier. The output of the SVM

classifier is used as the new semantic label of this region R.

The visual results obtained by the proposed approach are presented in Fig-
ure 4.22, First of all, it should be noted that not only medium-sized regions
but also large regions within the test images are reclassified by the DeepFeature
method. According to the visual results, the DeepFeature method has also re-
classified large regions that were correctly classified by the iIMEMS method in the
same way as successful. This reveals that the DeepFeature method gives accurate
results in relatively large regions containing sufficiently large number of salient
subregions, and hence, cluster labels. In the meantime, it is observed that in-
correctly segmented medium-sized regions, which represent the main purpose of
the proposed approach, are refined with the proposed approach. Medium-sized
regions that were incorrectly segmented by the iMEMS method within the large
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regions in Figures [1.22|a-d) are refined with the DeepFeature method and classi-
fied with the correct class label. In Figure [£.22](e), the region annotated as empty
by the iMEMS method is incorrectly classified as connective tissue by the Deep-
Feature method. The reason might be the following: Regions identified as empty
are frequently occurred within regions belonging to different classes, and in these
cases, they are annotated with the class label surrounding them. Since the Deep-
Feature method is trained on homogeneous regions independent of each other,
it does not take into account the context and neighborhood information of the
image and can make such erroneous classifications. Finally, it should be noted
that the small-sized regions do not contain sufficiently large number of salient
subregions, and hence, cluster labels, so the classification of these regions by the
DeepFeature method cannot produce reliable results. In these cases, it would be

more appropriate to use the annotations estimated by the iMEMS method.
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Chapter 5

Conclusion

Digital pathology aims to provide auxiliary tools for pathology in addition to
manual examination of histopathological images by expert pathologists in or-
der to prevent the error-prone human factor and overlong examination periods.
Advances in artificial intelligence and machine learning lead fast and accurate
methods to be used in digital pathology systems. Traditional machine learning
methods aim to perform histopathological image analysis with the handcrafted
features they define, but the performance of these methods is also directly depen-
dent on the quality of these handcrafted features, and hence, how these features
are defined. Deep learning methods, which are frequently employed in many fields
recently, extract these features from data directly. However, many deep learning
models proposed in the field of histopathological image analysis require annotated
data that are limited and difficult to obtain. To address these shortcomings, this
thesis introduces deep learning approaches for histopathological image analysis
to learn features directly from data instead of using handcrafted features and
incorporates unsupervised learning into the supervised objectives to avoid the
inadequacy of annotated data. In this regard, it introduces two deep learning
methods for the classification and segmentation of histopathological images by
exploiting unsupervised learning for feature extraction and training regularization

purposes.
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The first study presents a semi-supervised classification method for histopatho-
logical tissue images. As its first contribution, this method proposes to determine
salient subregions in an image and to use only the quantizations (characteriza-
tions) of these salient subregions for image representation and classification. As
the second contribution, it introduces a new unsupervised technique to learn the
subregion quantizations. For that, it proposes to construct a deep belief net-
work of consecutive RBMs whose first layer takes the pixels of a salient subregion
and to define the activation values of the hidden unit nodes in the final RBM
as its deep features. It then feeds these deep features to a clustering algorithm
for learning the quantizations of the salient subregions in an unsupervised way.
As its last contribution, this study is a successful demonstration of using re-
stricted Boltzmann machines in the domain of histopathological image analysis.
We tested our method on two datasets of microscopic histopathological images
of colon tissues. Our experiments revealed that characterizing the salient sub-
regions by the proposed local deep features and using the distribution of these
characterized subregions for tissue image representation lead to more accurate

classification results compared to the existing algorithms.

The second study proposed the iMEMS method that employs unsupervised
learning to regularize the training of a fully convolutional network for a super-
vised task. This method proposes to define a new embedding to unite the main
supervised task of semantic segmentation and an auxiliary unsupervised task of
image reconstruction into a single task and to learn this united task by a condi-
tional generative adversarial network. Since the proposed embedding corresponds
to a segmentation map that preserves a reconstructive ability, the united task of
its learning enforces the network to jointly learn image features and context fea-
tures. This joint learning lends itself to more effective regularization, leading to
better segmentation results. Additionally, this united task provides an intrinsic
way of combining the segmentation and image reconstruction losses. Thus, it
attends to the difficulty of defining an effective joint loss function to combine the
separately defined segmentation and image reconstruction losses in a balanced

way. We tested this method for semantic tissue segmentation on three datasets
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of histopathological images. Our experiments revealed that it leads to more ac-

curate results compared to its counterparts.

5.1 Future Work

The DeepFeature method uses the histogram of quantized salient subregions for
defining a global feature set for the entire image. One future research direction is
to investigate the other ways of defining this global feature set, such as defining
texture measures on the quantized subregions. Another research direction is to
explore the use of different network architectures. For example, one may consider
combining the activation values in different hidden layers to define a new set of
deep features. On an example application, we have discussed how the proposed
system can be used in a digital pathology setup. The design of sophisticated

algorithms for this purpose is another future research direction of this study.

The iMEMS method is proposed to segment a heterogeneous tissue image into
its homogeneous regions. Thus, it can be easily applied to segmenting tissue com-
partments in whole slide images (WSIs), as in the case of many previous studies.
To do so, a WSI can be divided into image tiles, on which the method predicts
the output. Alternatively, an image window can be slid on the WSI and the esti-
mated outputs can be averaged to obtain the final segmentation. This application
can be considered as one future research direction. The focus of this study is to
segment a histopathological image into its tissue compartments. It is possible
to extend this idea for the instance segmentation problem in histopathological
images. This extension may require modifying the embedding such that it also
covers additional supervised tasks (such as the task of predicting instance bound-
aries) that might be important for instance segmentation. The investigation of

this possibility is considered as another future research direction.

We also discuss how to incorporate both methods into a single one. For this
purpose, the DeepFeature method is used to refine the regions in the segmenta-

tion maps obtained by the iMEMS method since DeepFeature method is quite
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accurate in classifying homogeneous regions. On the other hand, as mentioned in
the previous subsection, the success of the DeepFeature method is directly pro-
portional to the size of the regions segmented by the iIMEMS method and it may
not produce accurate classifications for small-sized regions. Therefore, in a future
work, the class label of one of the two methods can be chosen according to the
size of the segmented regions and the amount of salient subregions it contains.
In addition to this, in order to obtain a sufficiently large number of cluster la-
bels, the DeepFeature method can classify fixed-size windows in a sliding window
scheme instead of regions segmented by the iMEMS method. Then, final class
labels of pixels can be obtained by combining these classifications with a method

similar to majority voting.
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