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ABSTRACT

DEEP LEARNING FOR DIGITAL PATHOLOGY

Can Taylan Sarı

Ph.D. in Computer Engineering

Advisor: Çiğdem Gündüz Demir

November 2020

Histopathological examination is today’s gold standard for cancer diagnosis and

grading. However, this task is time consuming and prone to errors as it requires

detailed visual inspection and interpretation of a histopathological sample pro-

vided on a glass slide under a microscope by an expert pathologist. Low-cost and

high-technology whole slide digital scanners produced in recent years have elimi-

nated the disadvantages of physical glass slide samples by digitizing histopatho-

logical samples and relocating them to digital media. Digital pathology aims at

alleviating the problems of traditional examination approaches by providing aux-

iliary computerized tools that quantitatively analyze digitized histopathological

images.

Traditional machine learning methods have proposed to extract handcrafted

features from histopathological images and to use these features in the design of

a classification or a segmentation algorithm. The performance of these methods

mainly relies on the features that they use, and thus, their success strictly de-

pends on the ability of these features to successfully quantify the histopathology

domain. More recent studies have employed deep architectures to learn expres-

sive and robust features directly from images avoiding complex feature extraction

procedures of traditional approaches. Although deep learning methods perform

well in many classification and segmentation problems, convolutional neural net-

works that they frequently make use of require annotated data for training and

this makes it difficult to utilize unannotated data that cover the majority of the

available data in the histopathology domain.

This thesis addresses the challenges of traditional and deep learning ap-

proaches by incorporating unsupervised learning into classification and segmen-

tation algorithms for feature extraction and training regularization purposes in

the histopathology domain. As the first contribution of this thesis, the first

study presents a new unsupervised feature extractor for effective representation

and classification of histopathological tissue images. This study introduces a

deep belief network to quantize the salient subregions, which are identified with
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domain-specific prior knowledge, by extracting a set of features directly learned

on image data in an unsupervised way and uses the distribution of these quan-

tizations for image representation and classification. As its second contribution,

the second study proposes a new regularization method to train a fully convo-

lutional network for semantic tissue segmentation in histopathological images.

This study relies on the benefit of unsupervised learning, in the form of image

reconstruction, for network training. To this end, it puts forward an idea of defin-

ing a new embedding, which is generated by superimposing an input image on

its segmentation map, that allows uniting the main supervised task of semantic

segmentation and an auxiliary unsupervised task of image reconstruction into a

single one and proposes to learn this united task by a generative adversarial net-

work. We compare our classification and segmentation methods with traditional

machine learning methods and the state-of-the-art deep learning algorithms on

various histopathological image datasets. Visual and quantitative results of our

experiments demonstrate that the proposed methods are capable of learning ro-

bust features from histopathological images and provides more accurate results

than their counterparts.

Keywords: Deep learning, feature learning, training regularization, image embed-

ding, generative adversarial networks, semantic segmentation, digital pathology,

automated cancer diagnosis, histopathological image analysis.
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Histopatolojik değerlendirme, kanser teşhisi ve derecelendirmesi için günümüzde

kullanılan araçtır. Öte yandan, bu değerlendirme, cam slayt üzerindeki histopa-

tolojik numunenin uzman bir patolog tarafından mikroskop altında ayrıntılı

olarak incelenmesini ve yorumlanmasını gerektirdiğinden, zaman alıcı ve hatalara

açık bir işlemdir. Son yıllarda üretilen düşük maliyetli ve yüksek teknolojili tam

slayt dijital tarayıcılar, histopatolojik örnekleri dijital ortama aktararak, fiziksel

cam slayt örneklerin dezavantajlarını ortadan kaldırmaktadır. Dijital patoloji, di-

jitalleştirilmiş histopatolojik görüntüleri nicel olarak analiz eden yardımcı bilgisa-

yarlı araçlar sağlayarak geleneksel inceleme yaklaşımlarının sorunlarını azaltmayı

amaçlamaktadır.

Geleneksel makine öğrenmesi yöntemleri, histopatolojik görüntülerden manuel

tanımlanmış öznitelikler çıkarmayı ve bu öznitelikleri bir sınıflandırma veya

bölütleme algoritması tasarımında kullanmayı önermektedir. Bu yöntemlerin per-

formansı esas olarak kullandıkları özniteliklere dayanmaktadır ve bu nedenle, bu

yöntemlerin başarıları, kullandıkları özniteliklerin histopatoloji alanını başarılı

bir şekilde temsil etme yeteneklerine bağlıdır. Son yıllarda önerilen çalışmalar,

geleneksel yaklaşımların karmaşık öznitelik çıkarma prosedürlerinden kaçınarak,

açıklayıcı ve gürbüz öznitelikleri doğrudan görüntülerden öğrenmek için derin

mimariler kullanmaktadır. Derin öğrenme yöntemleri birçok sınıflandırma ve

bölütleme probleminde iyi performans gösterse de, sıklıkla kullandıkları evrişimsel

sinir ağları eğitim için etiketlenmiş verilere ihtiyaç duymaktadır ve bu da, histopa-

toloji alanındaki mevcut verilerin çoğunu kapsayan etiketlenmemiş verilerin kul-

lanılmasını zor hale getirmektedir.

Bu tez, geleneksel yöntemlerin ve derin öğrenme yaklaşımlarının sorunlarını,

denetimsiz öğrenmenin öznitelik çıkarma ve eğitim düzenleme amaçları için

sınıflandırma ve bölütleme algoritmalarına dahil edilmesiyle ele alınmaktadır.

Tezin birinci katkısı olarak sunulan ilk çalışma, histopatolojik doku görüntülerinin

etkili bir şekilde temsil edilmesi ve sınıflandırılması için yeni bir denetimsiz
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öznitelik çıkarıcı sunmaktadır. Bu çalışmada, alana özgü ön bilgilerle tanımlanan

önemli alt bölgelerden öznitelikler çıkarmak amacıyla, denetimsiz bir derin inanç

ağı eğitilmiş ve bu eğitim sonucunda elde edilen özniteliklerin dağılımı, görüntü

gösterimi ve sınıflandırması için kullanılmıştır. Tezin ikinci katkısı olarak sunulan

diğer çalışmada, histopatolojik doku görüntülerinde semantik doku bölütlemesi

için, tam bağlantılı bir evrişimsel ağ eğitmek amacıyla yeni bir düzenleme

yöntemi önerilmektedir. Bu çalışma, denetimsiz öğrenmeyi, önerilen ağ modelinin

eğitimini düzenlemek için, girdi görüntülerinin yeniden yapılandırılması şeklinde

kullanmaktadır. Bu amaçla, bölütleme haritası ile girdi görüntüsünün üst üste

bindirilmesiyle oluşturulan yeni bir yerleştirme tanımlanmaktadır. Önerilen bu

yerleştirme yöntemi sayesinde, semantik bölütlemeyi temsil eden ana denetimli

görev ile görüntüyü yeniden yapılandırmanın temsil ettiği yardımcı denetimsiz

görevin tek bir görevde birleştirilmesi ve oluşturulan bu birleşik görevin, bir

üretken çekişmeli ağ ile öğrenilmesi amaçlanmaktadır. Önerilen sınıflandırma

ve bölütleme yöntemleri, geleneksel makine öğrenmesi yöntemleri ve güncel de-

rin öğrenme algoritmalarıyla, farklı histopatolojik görüntü veri kümeleri kul-

lanılarak karşılaştırılmıştır. Deneyler sonucunda elde edilen görsel ve nicel

sonuçlar, önerilen yöntemlerin histopatolojik görüntülerden gürbüz öznitelikler

öğrenebildiğini ve karşılaştırılan yöntemlerden daha doğru sonuçlar ürettiğini or-

taya koymaktadır.

Anahtar sözcükler : Derin öğrenme, öznitelik öğrenme, eğitim düzenleme, görüntü

yerleştirme, üretken çekişmeli ağlar, anlamsal bölütleme, dijital patoloji, otomatik

kanser teşhisi, histopatolojik görüntü analizi.
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Chapter 1

Introduction

In the current practice of medicine, histopathological examination is the gold

standard for diagnosing and grading many neoplastic diseases including cancer.

This procedure requires a pathologist, who has extensive medical knowledge and

training, to visually inspect a histopathological sample provided on a glass slide

under a microscope (Figure 1.1(a)). However, as it mainly relies on the visual

interpretation of the pathologist, this histopathological examination may become

a complex and error-prone process, also depending on the complexity of the case.

On the other hand, the augmentation of low-cost whole slide digital scanners

provides digitized histopathology slides at high resolutions and the examination

of these digitized images has begun to replace the traditional glass slide exam-

ination process (Figure 1.1(b)). Digital pathology targets at presenting various

computerized tools and methods to diagnose plenty of diseases by analyzing these

digitized histopathology slides in a fast and objective manner.

In the digital pathology literature, traditional approaches aim at alleviating

these problems by providing computerized methods that quantitatively introduce

handcrafted features. The performance of these methods mainly relies on the

features that they use, and thus, their success strictly depends on the ability

of these features by successfully quantifying the histopathology domain. Deep

architectures have been introduced to overcome the feature extraction problems

1



(a)

(b)

Figure 1.1: (a) Routinely used histopathological examination process. (b)
Histopathological examination in a digital pathology system.1

of traditional methods and have provided accurate results for classification and

segmentation tasks. On the other hand, most of the existing deep learning based

methods do not employ unsupervised learning at all or use them in a limited

and inadequate way, thus they are unable to benefit from the unannotated data

that cover the majority of the data available. This thesis aims to obviate the

limitations of traditional and deep learning approaches and proposes two deep

learning methods for classification and segmentation of histopathological images.

1Illustrations are taken from the following links, respectively: https://www.

hopkinsmedicine.org/health/treatment-tests-and-therapies/surgical-pathology,
https://proscia.com/company/what-is-digital-pathology/.
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1.1 Motivation

Inspection and diagnosis of colorectal cancer are traditionally conducted by

pathologists’ manual examination of histopathological glass slide samples taken

from patients. Although this traditional method has been used successfully for

many years to make accurate diagnoses, it has several disadvantages [1, 2, 3].

Since glass slide samples are physical assets, they can be found in a single geo-

graphic location at a given time, which imposes the ability to view and inspect

samples only by a group of pathologists present at the given location. Addi-

tionally, these glass slide samples should be maintained under appropriate con-

ditions, thereby preventing them from deforming, deteriorating, and getting lost

over time. The precautions and procedures to be considered to meet these con-

ditions are not only costly but also very risky in terms of adversely affecting the

samples in time. Another limitation of working on physical samples is that it

is difficult to query a sample with certain filter parameters (e.g., patient name,

sample date, and sample type) and obtain it on demand. Lastly, only a single

glass slide sample can be examined at a time with microscopes used in traditional

methods, which makes it troublesome to examine different samples together and

also to swiftly examine other areas adjacent to the sample area by aligning them

accurately.

High technology whole slide digital scanners developed in recent years enable

to relocate the histopathological samples from glass slides to digital environment

rapidly and reliably with low costs. Digital pathology aims to find fast and

robust solutions for histopathological image analysis tasks with the algorithms

and methods designed and developed on the digitized images produced by these

scanners. There are many advantages of using and analyzing digital images pro-

duced with these scanners by digital pathology methods instead of storing and

examining traditional glass slide samples manually [1, 2, 3]. First of all, stor-

ing histopathological samples in digital media and cloud environments instead

of physical warehouses enables the samples to be examined by more than one

medical institution simultaneously so that multiple diagnostics on a case can be

obtained quickly. Secondly, with inexpensive storage and backup solutions, the

3



quality of the samples taken from a patient at the time of collection is ensured

to be protected without changing over time. Thirdly, digital images can be eas-

ily queried with the desired parameters thanks to the digital pathology software

provided. Fourthly, it is possible to examine the samples taken at different res-

olutions and magnification levels concomitantly with the software and hardware

tools proposed by digital pathology. Additionally, these tools align the adja-

cent samples accurately, enabling them to navigate through these samples and

establish a wider perspective for diagnosis. Last but not least, digital pathology

contributes to the accuracy of the diagnosis of pathologists with traditional and

new generation machine learning approaches and even starts to replace manual

diagnoses in easily distinguishable samples, which comprise the majority of the

cases [4].

Up to recent studies, the machine learning methods developed for digital

pathology typically rely on defining and extracting handcrafted quantitative fea-

tures from histopathological images and using these features in the design of a

classification or a segmentation algorithm. These traditional classification and

segmentation methods yield promising results in numerous digital pathology ap-

plications. On the other hand, the features that they use are handcrafted and

strictly dependent on medical expert knowledge. Quantitatively expressing med-

ical expert knowledge might be quite difficult for some applications, and thus,

learning features directly from image data has the potential to generate features

that represent the images better. In order to define more expressive and more

robust features, deep learning based studies have been proposed to learn the fea-

tures directly on image data without the need for handcrafted feature extraction

procedures. For that, the majority of these studies train a supervised convolu-

tional neural network (CNN) model [5] and exploit its output for classification or

segmentation purposes.

Although supervised deep architectures lead to promising results regardless of

the type of the computer vision task, they have a major limitation. Since the ma-

jority of deep approaches employing CNN architectures are trained in a supervised

manner, they require annotated images for both classification and segmentation

purposes. The augmentation in the number of pathology cases produces a vast

4



amount of digitized images that need to be examined, and pathologists are inade-

quate for the annotation procedures that should be done to use these images in a

supervised learning method. Even if pathologists can perform annotation proce-

dures to some extent, this may not be sufficient for accurate classification or seg-

mentation method. Concretely speaking for insufficiency of annotated datasets,

many of the studies crop small patches out of the images, train a learner on

the patches, and then use the patch labels for entire image classification or seg-

mentation. For that, they label a patch with the type of the segmented region

covering this patch if the focus is segmentation. Otherwise, if it is classification,

they label a patch with the class of the entire image without paying attention to

the local characteristics of its subregions since the latter type of labeling is quite

difficult and extremely time-consuming. On the other hand, considering the local

characteristics of patches/subregions in a classifier may improve the performance

since a tissue contains subregions showing different local characteristics and the

distribution of these subregions determines the characteristics of the entire tissue.

The aforementioned inadequacy of annotated data leads researchers to de-

sign methods that incorporate unsupervised learning into supervised learning

to benefit from unannotated data for both classification and segmentation pur-

poses. Unsupervised learning aims to produce effective solutions using different

approaches for histopathological image analysis tasks. In the feature extraction

approach, which is one of the most frequently used approaches, the proposed

methods have aimed at reconstructing images that feed the input layer, in the

output layer, thus obtaining higher representations of the input images without

the need for any ground truth data. There are studies using unsupervised learn-

ing for feature extraction in the histopathological image analysis literature, but

they have some deficiencies in the context of this thesis. The models proposed in

some of these studies aim to either classify [6] or detect [7] cytological elements

(e.g., nucleus) within whole slide histopathological images by concentrating on

small patches and do not provide any solution for the classification or segmen-

tation of larger histopathological images. In [8], the proposed method obtains

features from local patches using unsupervised learning and exploits these fea-

tures to classify the whole image. However, the method is trained using all the
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patches within the image, regardless of whether they are relevant or prominent,

and without including any prior information in the model. Although there are

methods to identify region proposals within the image and train their models on

these regions [9, 10], these methods also have limitations. Since these methods

are introduced to be used on natural images, the networks proposed in these

methods have also been pretrained on a general-purpose dataset. However, this

pretraining may not contribute to the fine-tuning step which would be held on

a histopathological dataset. In addition to this, although these methods identify

region proposals by using unsupervised learning, they train a supervised CNN to

obtain higher representations of these proposals and therefore need ground truth

data for the given input.

In addition to using it in the feature extraction step, there are other studies em-

ploying unsupervised learning as a regularization tool to improve the performance

of supervised learning. Earlier studies of this approach have used layer-wise unsu-

pervised pretraining to initialize weights, which are then finetuned by supervised

training using backpropagation. This pretraining may provide regularization on

backpropagation by enabling it to start with a better solution and may improve

the network’s generalization ability [11]. On the other hand, it has been ar-

gued that the weights learned by pretraining may be easily overwritten during

supervised training [12] or even they may not provide a better initial solution at

all [13] since the network is pretrained independently and by being unaware of

the supervised task.

For more effective regularization, recent studies have trained a multi-task net-

work to simultaneously minimize supervised and unsupervised losses by backprop-

agation [12, 13, 14, 15]. They define the supervised loss on the main classification

task and the unsupervised loss on an auxiliary image reconstruction task. These

two tasks typically share an encoder path to extract feature maps, from which

a decoder path reconstructs an image and a classification path estimates a one-

hot class label. In [15], in addition to this, another autoencoder with its own

encoder and decoder is used and the outputs of the two decoders are combined

to reconstruct the image. These studies calculate the reconstruction loss between

original and decoded images as well as between the maps of the corresponding
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intermediate layers of the encoder and decoder. In [13], noisy original images are

used as inputs and the reconstruction loss is calculated between these images and

their denoised versions.

All these studies define losses on the classification and reconstruction tasks

separately and linearly combine them in a joint loss function, which they use to

simultaneously learn these two tasks. This may provide regularization since the

tasks compete during backpropagation. On the other hand, the effectiveness of

this regularization highly depends on to what extent the supervised and unsu-

pervised losses contribute to the joint loss function. When the unsupervised loss

contributes too much, the network may not sufficiently learn the main classifica-

tion task. When it contributes too small, the network may not learn the auxiliary

reconstruction task, which results in not getting the expected regularization effect

from unsupervised learning. Thus, these studies necessitate externally selecting

right contributions that yield balanced learning between the supervised and un-

supervised tasks. However, depending on the application, this external selection

may not be always straightforward. It may become even harder when the joint

loss includes more than one reconstruction loss (e.g., the one at the input level

and those at the intermediate layers).

1.2 Contribution

Unsupervised learning has been exploited in various types of deep architectures

for numerous medical image analysis tasks [16, 17]. Many of these methods

mainly employ unsupervised learning for two purposes, either to extract features

from data without the need of having the ground truth or to regularize a su-

pervised learner to improve its classification/segmentation performance. 1) As

a feature extractor, an unsupervised learning task aims to obtain higher-level

representations learned directly from image data. To this end, it basically in-

troduces a deep network that consists of a set of consecutive architectures (e.g.,

autoencoders [18, 19], restricted Boltzmann machines (RBMs) [20]) as hidden

layers and this deep network is trained to reconstruct the image data itself at the
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output layer. Since each hidden layer within the deep network presents a higher

representation, the output of one or more intermediate layers are obtained and

used as the feature set of the image in a supervised learner. 2) As a regularization

tool, the reconstruction of image data is considered as an auxiliary unsupervised

task and incorporated into the training procedure simultaneous to the supervised

task. The unsupervised image reconstruction task is considered to be strongly

related to the main supervised task since learning the input distribution simul-

taneously can contribute to the learning of the supervised task [11]. Weights

shared by unsupervised and supervised networks are trained simultaneously by

employing a joint function of unsupervised and supervised losses and the auxil-

iary unsupervised task aims to improve the performance of the main supervised

task.

This thesis addresses the issues mentioned in the previous subsection by pro-

viding new solutions that incorporate unsupervised learning into classification

and segmentation methods for histopathological image analysis in terms of both

feature extraction and training regularization purposes. Thereby, it introduces

two deep learning methods for the purpose of classification and segmentation of

histopathological images.

The first study of this thesis proposes a novel semi-supervised method for

the classification of histopathological colon tissue images [21]. In this context,

the study has two main contributions. As the first contribution, it proposes to

benefit from prior domain-knowledge provided by the pathologists’ insight and

expertise. A tissue is visually characterized by the traits of its cytological com-

ponents, which are determined by the appearance of the components themselves

and the subregions in their close proximities. In a typical examination procedure

of a histopathological tissue image, pathologists visually inspect a tissue sample

by focusing on salient regions located around the important sections of the tissue.

They diagnose and grade cancer via examining the close proximities of the cy-

tological components instead of focusing randomly selected subregions. Inspired

by this, this study proposes to characterize the tissue image by first identifying

its salient subregions and then using only these subregions for the training of the
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deep architecture. There are existing deep learning approaches for histopatholog-

ical image analysis that crop small patches out of images, train a learner on the

patches, and then use the patch labels for the entire image classification [22, 23],

nucleus detection [6, 24, 25], or entire image segmentation [26]. As opposed to

our proposed method, these studies either pick random points in an image as the

patch centers, or divide the image into a grid, or use the sliding window approach.

None of them identify salient subregions/components and use them to determine

their patches.

As the second contribution, the study devises an unsupervised method for

the characterization of the salient subregions. With this proposed method, it

was aimed to benefit from the effectiveness of unsupervised learning in feature

extraction. The method pretrains a deep belief network, consisting of consecutive

RBMs, on these salient subregions, allowing the system to extract high-level

features directly from image data. To do so, this unsupervised feature extractor

proposes to use the activation values of the hidden unit nodes in the final RBM of

the pretrained deep belief network and to feed them into a clustering algorithm for

quantizing the salient subregions (their corresponding cytological components)

in an unsupervised way. The characterization of salient subregions using an

unsupervised feature extractor allows us to obtain features without the need for

expensive and impractical annotating of images. Although there exist annotated

histopathological image datasets, the annotations in these datasets are usually

at the entire image level. This causes all the patches extracted from the image

to be labeled with the entire image class and the models to be trained on these

patches are not able to encapsulate the local characteristics within the image.

The proposed unsupervised feature extractor prevents this problem and enables

a more robust and expressive training. To the best of our knowledge, this study

is the first example that successfully uses a deep belief network of RBMs for the

characterization of histopathological tissue images.

In order to benefit from the effectiveness of unsupervised learning in regu-

larization, the second study proposes an effective method to combine the su-

pervised and unsupervised tasks to train a fully convolutional network for the

task of semantic segmentation in histopathological images. This solution relies
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on defining a new embedding that unites the main task of segmentation and an

auxiliary task of image reconstruction into a single task and learning this united

task by a single generative model. To this end, it first introduces an embedding

that generates a multi-channel output image, on which segmentation is trivial,

by superimposing an input image on its segmentation map. Then, it proposes to

learn this newly generated output image from the input image using a conditional

generative adversarial network (cGAN), which is known to be effective for image-

to-image translations. This new embedding together with its learning by a cGAN

provide two main contributions. As the first contribution, the proposed embed-

ding unites segmentation and reconstruction tasks, which concomitantly results

in combining supervised and unsupervised objectives (losses) in a very natural

way. This presents an alternative to externally determining the contributions of

these tasks in a joint loss function. More importantly, since the output image

of the united task corresponds to a segmentation map that preserves a recon-

structive ability, uniting the segmentation and reconstruction tasks enforces the

network to jointly learn image features and context features. This joint learning

provides effective regularization. This training regularization is obtained since

reconstructing the input image, and hence, capturing the input image distribu-

tion P (X) contributes to the learning of the segmentation task P (Y |X) [11]. In

addition to this, learning these two tasks simultaneously prevents unsupervised

task from learning trivial representations that do not contribute to supervised

task [12]. As the second contribution, the proposed method learns the output

image of the united task by benefiting from the well-known synthesizing ability

of cGANs. Thanks to using a cGAN, the method produces more realistic outputs

that adhere to spatial contiguity without any post-processing (e.g., using condi-

tional random fields, CRFs [27]). To the best of our knowledge, this is the first

proposal of using a cGAN to produce such embedded output images that can be

directly used for semantic segmentation.
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1.3 Outline

The remainder of this thesis is organized as follows. The medical background for

histopathological images used in the proposed studies and the related literature

in the context of histopathological image analysis are presented in Chapter 2.

A novel semi-supervised method for the classification of histopathological colon

tissue images is deeply discussed in Chapter 3. In Chapter 4, an effective semantic

segmentation method for various types of histopathological images is described

in detail. Finally, the summary of this thesis and the future research directions

are given in Chapter 5.
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Chapter 2

Background

This thesis proposes deep learning approaches for the classification and segmenta-

tion of histopathological images of colon tissues. The medical background related

to this thesis work is briefly explained in Section 2.1. The related literature in

the context of traditional and recent deep learning methods for classification and

segmentation of histopathological images is provided in Section 2.2.

2.1 Medical Background

One out of every six deaths in the world is caused by cancer, which places it in the

second leading rank among all diseases that cause death [28]. Colorectal cancer

is the third most common cancer type and is placed in the fourth rank among

all cancer-caused deaths [29]. Colon adenocarcinoma is the most common form

of colorectal cancer, accounting for about 90 percent of cancer cases in North

America and Western Europe.

The diagnosis and grading of colon adenocarcinoma are conducted with the

manual examination of histopathological tissues under a microscope. In a typical

colon tissue, a lumen is located in the center of a gland with epithelial cell nuclei

and cytoplasms lined up around it (Figure 2.1). These epithelial cells and luminal
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(a) (b)

Figure 2.1: (a) Glands in a normal colon tissue sample. (b) A colon tissue consists
of cytological components including cellular, stromal, and luminal components.

components form glandular structures. Colon adenocarcinoma is originated from

epithelial cells and leads to distortions and disaggregations on these cells as well

as on the glands, which are formed by these epithelial cells. Glandular structures

in a normal colon tissue are illustrated in Figures 2.2(a) and 2.2(b). When can-

cer occurs at the initial level, relatively low distortions begin to appear within

colon tissues and glandular structures and formation of these tissues are well to

moderately differentiated (Figures 2.2(c) and 2.2(d)). In such a sample of colon

tissue, glands can still be differentiated, but the boundaries of these structures

begin to lose their clarity. With the progression of cancer, the level of distortion

increases and glandular structures of these tissues are only poorly differentiated

or may not be differentiated at all (Figures 2.2(e) and 2.2(f)).

The scope of this thesis covers the classification and segmentation of

histopathological images of colon tissues. To this end, the first study of the

thesis proposes a semi-supervised method for the classification of homogeneous

colon tissue images, in which each image sample covers a part of a tissue be-

longing to a single class. Since stroma is the supporting material of colon tissues,

normal, low-grade, and high-grade cancerous samples contain stroma among their

glandular structures, and stroma is not considered as a distinct separate class.

Examples of normal, low-grade, and high-grade adenocarcinomatous (cancerous)

colon tissue images are given in Figure 2.2 and more details about this dataset
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Images of homogeneous colon tissues classified as (a)-(b) normal, (c)-
(d) low-grade cancerous (adenocarcinomatous), and (e)-(f) high-grade cancerous
(adenocarcinomatous).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: (a) A sample heterogeneous colon tissue image. Highlighted regions
are annotated as (b) normal, (c) tumorous, (d) connective tissue, (e) dense lym-
phoid tissue, and (f) empty.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.4: (a) A sample heterogeneous colon tissue image. Highlighted regions
are annotated as (b) normal, (c) tumorous, (d) connective tissue, (e) dense lym-
phoid tissue, and (f) empty.
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are to be given in Chapter 3.

The second study of the thesis proposes a semantic segmentation method for

relatively larger colon tissue images. Typically, larger colon tissue images are het-

erogeneous since each image contains non-overlapping regions of differently an-

notated classes. Figures 2.3(a) and 2.4(a) illustrate sample heterogeneous colon

tissue images and the regions of different classes within these images are anno-

tated with the corresponding classes by an expert pathologist. In Figures 2.3(b)

and 2.4(b), normal tissue regions are annotated. Although the regions in Fig-

ures 2.3(c) and 2.4(c) contain different levels of distortions, and therefore, are of

different cancer grades, both regions are annotated as tumorous (cancerous) in

the context of this second study. The regions containing stroma, which is the con-

nective material between glands, are annotated as connective tissue and shown

in Figures 2.3(d) and 2.4(d). The lymphoid aggregates are annotated as dense

lymphoid tissue and shown in Figures 2.3(e) and 2.4(e). The empty glass and

debris regions are annotated as empty and shown in Figures 2.3(f) and 2.4(f).

More details about this dataset are to be given in Chapter 4.

2.2 Related Work

Digital pathology has been introduced to provide auxiliary tools for manual exam-

inations of histopathological samples conducted by pathologists and to diagnose

patients more accurately and objectively using automated or semi-automated

methods. To this end, the proposed methods aim at finding solutions to the

classification and segmentation problems that pathologists study on histopatho-

logical samples. Earlier studies in the digital pathology literature have proposed

to extract handcrafted features from histopathological images for their represen-

tation. These studies mainly rely on two feature extraction approaches. The

textural approach quantifies the spatial arrangement of pixel intensities and de-

fines the textural features using intensity histograms [30, 31, 32], co-occurrence
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matrices [33, 34], wavelets [35], fractal analysis [36, 37], and local binary pat-

terns [38, 39, 40]. In the structural approach, features are obtained by char-

acterizing the spatial distribution of cytological components within the image.

Most of the studies form graph representations by considering cytological com-

ponents as nodes and use these graph representations to calculate the feature

set of the given image [41, 42, 43]. Earlier studies of our research group have

employed nuclear, stromal, and luminal tissue components as nodes of a graph

representation and quantified their spatial representation using the graph repre-

sentation [44, 45, 46]. Although both textural and structural approaches perform

well in numerous histopathological image applications, defining expressive hand-

crafted features may require significant insight on the corresponding application.

However, this is not always that trivial and improper feature definitions may

greatly lower algorithms’ performance.

Recently, deep learning methods have shown great promise for various com-

puter vision tasks, and this has led researchers to use deep learning methods in

histopathological image classification and segmentation. Besides, the fact that

deep learning methods learn features directly from data and do not need any

external support enables their use in histopathological image analysis. Similar

to many computer vision tasks, the most preferred methods in histopathological

image analysis are CNN models and their variations. In the histopathological do-

main, these models are generally trained in a supervised manner and the outputs

produced by these models are used for classification and segmentation. Most of

these methods use one of the two approaches. In the first one, methods train a

CNN on entire histopathological training images, feed an entire histopathological

test image to the trained CNN, and use the class label it outputs to directly

classify the test image [47, 48, 49]. In the second approach, methods divide each

histopathological image into a grid of patches, feed each test patch to the CNN,

which is trained on the same-sized training patches, and then exploit either the

class labels or the posteriors generated by the CNN. In [22], the labels are voted

to classify the image out of which the patches are cropped. In [26], the patch

labels are directly used to segment the tissue image into its epithelial and stro-

mal regions. These patch labels are also employed to extract structural features,
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which are then used for whole slide classification [50, 51] and gland segmenta-

tion [52]. In [53], a CNN model, which is pretrained on a general-purpose dataset,

is employed to extract features from overlapping patches in histopathological tis-

sue images. These features are then classified by a linear SVM and each pixel is

classified by the majority voted class of the patches covering this pixel since the

pixel is classified within several patches. The method introduced in [54] inserts an

SE-ResNet [55] module between convolutional and fully connected layers of the

proposed deep CNN architecture to reduce the number of parameters and prevent

overfitting for the classification of breast cancer histology images. Although they

are not histopathological images, this patch-based CNN approach is used to dif-

ferentiate nuclear and background regions in fluorescence microscopy images [56]

and nuclear, cytoplasmic, and background regions in cervical images [57].

The posteriors generated by a supervised CNN are commonly used to segment

a tissue image into its regions of interest (ROI). To this end, for the class corre-

sponding to the ROI (e.g., nucleus or gland class), a probability map is formed

using the patch posteriors. Then, the ROI is segmented by either finding local

maxima on this posterior map [24, 25, 58, 59] or thresholding [60]. This type of

approach has also been used to detect cell locations in different types of micro-

scopic images such as live cell [61], fluorescent [62], and zebrafish [63] images. As

an alternative, nuclei are located by post-processing the class labels with tech-

niques such as morphological operations [64] and region growing [65]. In [66], after

obtaining a nucleus label map, nuclei’s bounding boxes are estimated by training

another deep neural network. In a more recent study [67], authors propose a

multi-stage network in which a patch-level CNN is trained on a histopathologi-

cal multi-organ dataset to generate pixel-level activation maps for independent

patches within images and inter-patch adjacencies are incorporated by applying

mathematical operations, averaging, and post-processing (with a CRF) to obtain

final segmentation maps. Another multi-stage network [68] combines a patch-

based classification model with a whole slide-scale segmentation model for whole

slide image (WSI) segmentation. For that, patches cropped from WSIs are first

used to train the patch classifier and the output of an intermediate layer is used

as feature vectors of the patches. Then, the patch features are arranged based on
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their position on the WSI and the segmentation model is trained on whole slide

feature maps obtained by the local patch features to produce the final whole slide

prediction map.

Although CNN-based models considering local adjacencies are very successful

for histopathological image analysis tasks, particularly for classification problems,

they also have some disadvantages. Since histopathological images generally have

very large dimensions, CNN-based models applied to entire images suffer from

an excessive number of parameters. On the other hand, the patch-based CNN

models, which are proposed to overcome this drawback, are also exposed to diffi-

culties in determining the patch size and incorporating inter-patch neighborhood

information. To overcome these challenges, fully convolutional networks (FCNs)

have been proposed to provide efficient solutions for semantic segmentation [69].

The UNet architecture [70] proposed for biomedical image segmentation has be-

come the state-of-the-art FCN model for semantic segmentation tasks in many

fields of computer vision and has been frequently preferred to predict pixel-level

class labels for histopathological image segmentation [71, 72]. It has been also

proposed to fuse the predictions of multiple FCNs. In [73], FCNs are trained

on images of different resolutions. In [74], they are constructed by starting the

upsampling operation from different layers of the same encoder. Other studies

perform segmentation at finer-levels; they usually segment nucleus and gland in-

stances. They typically use multi-task networks, in which auxiliary tasks are

defined as predicting boundary of instances [75] and their bounding boxes [76].

Application specific additional tasks, such as lumen prediction [77] and malig-

nancy classification [78], are also used for gland instance segmentation. Note

that the focus of this thesis is compartment segmentation at the tissue level but

not instance segmentation.

FCNs are typically trained to predict pixel labels independent of each other.

This may prevent to capture local and global spatial contiguity within an entire

image. To recover fine details, CRFs using pair-wise potentials have been em-

ployed as a post-processing step to refine the segmentation maps generated by

FCNs [27, 79]. Although CRFs lead to improvements, the integration of FCNs

and CRFs with higher orders is limited [80] and using such additional layers,
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which are externally added to the end of FCNs and are not trained with FCNs

simultaneously, breaks the end-to-end architecture of models.

Unsupervised learning is exploited in many different fields of medical image

analysis to improve supervised learning models that perform classification and

segmentation. There exist studies that make use of unsupervised learning in

their systems to extract features to be used in a classification or a segmentation

method [81]. In [8], a set of autoencoders are first pretrained on small image

patches and the weights of each autoencoder are employed to define a filter for

the first convolution layer of a supervised CNN classifier, which is then to be

used to classify an entire tissue image. Similarly, in [7], a stacked autoencoder is

pretrained on image patches and the outputs of its final layer are fed to a super-

vised classifier for nucleus detection. As opposed to our first study, these previous

studies did not cluster the outputs of the autoencoders to label the patches in an

unsupervised way and did not use the label distribution for image classification.

The study in [23] is similar to our first study in the sense that it also clusters

the patches based on the outputs of a stacked autoencoder. However, this study

did select its patches randomly and did not consider any saliency in a tissue

image. On the contrary, our first study proposes to determine the salient sub-

regions by prior domain-knowledge, characterize them by an unsupervised deep

belief network consisting of consecutive RBMs, and use the characteristics of only

these salient subregions to classify the entire tissue image. Our experiments have

demonstrated that the use of saliency together with this unsupervised charac-

terization improve the accuracy. Additionally, as opposed to all these previous

studies, which employ either a CNN or a stacked autoencoder, our study uses a

deep belief network of restricted Boltzmann machines.

In addition to using unsupervised learning to extract features from image data,

many studies in the literature exploit it to regularize the supervised training of

classification or segmentation networks. To regularize the supervised training,

the earlier studies have used multi-task networks that consider complementary

tasks along with the main task of segmentation. These are the networks with a

shared encoder and parallel decoders, one for each task, and they are trained to

minimize the joint loss defined on all decoders [75].
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Another way of regularization is to use unsupervised learning in the form of

defining an additional image reconstruction task and learning it concurrently

with the main task. Most of the previous studies focus on non-dense prediction,

defining their main task as to predict one-hot class label for an entire image [12,

13, 14, 15]. Only a few consider the main task of image segmentation [82, 83].

However, all these studies use image reconstruction as an auxiliary task and

linearly combine its loss and the loss of classification/segmentation, which are

defined independently, in a joint loss function. This is different than our second

study, which unites the image reconstruction and segmentation tasks through its

proposed embedding and trains its network to minimize the loss on this united

task. Moreover as opposed to our second study, these previous studies do not use

a generative adversarial network for their network.

Aforementioned limitations of CNNs, single-task and multi-task FCNs lead

researchers to use or design new architectures for histopathological image clas-

sification and segmentation. Generative adversarial networks (GANs) are firstly

proposed for image synthesis by using two networks, generator and discriminator,

trained in an adversarial manner. The first applications of GANs in the field of

histopathological image analysis are also for data synthesis purposes [84, 85, 86]

since the amount and variety of data in histopathology domain is insufficient.

Meanwhile, GANs are also exploited to extract features from histopathological

images and train a classifier on these features. In [87], a unified GAN architecture

is employed to learn and extract cell-level features in histopathology images and

these features are used for image-level classification. Its application to semantic

segmentation typically provides an additional input to the generator (segmentor)

to control its output [88, 89]. Adversarial loss has also been used to regularize

network training. One work [90] uses it for an autoencoder to better learn its

feature maps. It considers the encoder as the generator and feeds its outputs to

the discriminator. Then, it updates encoder weights considering the adversarial

loss in addition to the reconstruction loss between encoder’s input and decoder’s

output. Another work [91] estimates a segmentation map from an image and then

reconstructs the image from the estimated map for regularization. It uses a cGAN

for image reconstruction, and hence, employs the adversarial loss in addition to
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the segmentation and image reconstruction losses. However, it also separately

defines these losses and linearly combines them in a joint loss function. None of

these previous studies exploit an embedding to combine supervised and unsuper-

vised losses for regularizing their network for semantic segmentation. Different

than our second study, none of these studies define an embedding to unite the

segmentation and image reconstruction tasks and use a cGAN to learn this united

task. Only a few use a cGAN for nucleus and gland segmentation [86, 92]. How-

ever, these studies define adversarial loss on the genuineness of their segmentation

maps but they do not consider image reconstruction loss in their segmentation

networks. Besides, they do not use any embedding to regularize training.
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Chapter 3

Unsupervised Feature Extraction

via Deep Learning for

Histopathological Classification

of Colon Tissue Images

3.1 Methodology

Our proposed method relies on representing and classifying a tissue image with

a set of features extracted by a newly proposed unsupervised feature extrac-

tor. This extractor defines the features by quantifying only the characteristics

of the salient subregions in the image instead of considering those of all image

locations. To this end, it first proposes to define the salient subregions around

cytological tissue components (Section 3.1.1). Afterwards, to characterize the

subregions/components in an unsupervised way, it learns their local features by

a deep belief network consisting of consecutive RBMs and quantizes them by

clustering the local features by the k-means algorithm (Section 3.1.2). At the

end, it represents and classifies the image with the distribution of its quantized

subregions/components (Section 3.1.3). A schematic overview of the proposed
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method is given in Figure 3.1 and the details of its steps are explained in the

following subsections. The source codes of its implementation are available at

http://www.cs.bilkent.edu.tr/∼gunduz/downloads/DeepFeature.

The motivation behind this proposed method is the following: A tissue con-

tains different types of cells that serve different functions in the tissue. The visual

appearance of a cell and its surrounding may look differently depending on the

cell’s type and function. Furthermore, some types of cells may form specialized

structures in the tissue. The tissue is visually characterized by the traits of all

these cytological components. Depending on its type, cancer causes changes in

the appearance and distribution of certain cytological tissue components. For

example, in colon, epithelial cells line up around a lumen to form a gland struc-

ture and different types of connective tissue cells in between the glands support

epithelia. In a normal tissue, the epithelial cells are arranged in a single layer

and since they are rich in mucin, their cytoplasms appear in light color. With the

development of colon adenocarcinoma, this single layer structure is getting disap-

peared, which causes the epithelial cells’ nuclei to be seen as nucleus clutters, and

their cytoplasms return to pink as they become poor in mucin. With the further

progression of this cancer, the epithelial cells are dispersed in the connective tis-

sue and the regular structure of a gland gets totally lost (see Figure 3.2). Some

of such visual observations are easy to express, but some others may lack of a

clear definition although they are in the eyes of a pathologist. Furthermore, when

there exists a clear definition for an observation, its expression and quantification

commonly require exact component localization, which emerges a very difficult

segmentation problem even for a human eye, and its use in a supervised classifier

requires very laborious annotation. Thus, our method approximately represents

the tissue components with a set of multi-typed circular objects, defines the local

windows cropped around these objects as the salient subregions, and characterizes

them in an unsupervised way. Note that this is just an approximate representa-

tion where one object can correspond to multiple components or vice versa. It

is also worth to noting that the salient subregions cropped around the objects

are defined with the aim of approximately representing the components, whose

characterizations will further be used in the entire image characterization.
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(a) (b) (c)

(d) (e)

Figure 3.2: Example images of tissues labeled with different classes: (a) Normal,
(b) low grade cancerous--grade1, (c) low grade cancerous--at the boundary between
grade1 and grade2, (d) low grade cancerous--grade2, and (e) high grade cancerous.
Note that the normal and high grade cancerous classes are the same for our first
and second datasets whereas the low grade cancerous class in the first dataset is
further categorized into three in the second one.

3.1.1 Salient Subregion Identification

Salient subregions are defined around tissue components whose locations are

approximated by the algorithm that we previously developed in our research

group [46]. This approximation and salient subregion identification are illustrated

on example images in Figure 3.3 and the details are explained below.

The approximation algorithm uses nuclear and non-nuclear types for object

representation. For that, it first separates the hematoxylin channel of an image

I by applying color deconvolution [94] and thresholds this channel to obtain the

binary image BW . In this thresholding, an average is calculated on all pixel

values and a pixel is labeled as nucleus if its value is less than this threshold

and non-nucleus otherwise. Then, the circle-fit algorithm [93] is applied on the

pixels of each group in BW separately to locate a set of nuclear and non-nuclear

objects. The circle-fit algorithm iteratively locates non-overlapping circles on the
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given pixels, starting from the largest one as long as the radii of the circles are

greater than the threshold rmin. At the end, around each object ci, a salient

region Ωi is defined by cropping a window out of the binary image BW where the

object centroid determines the window center and the parameter ωsize determines

its size. Note that although the located objects are labeled with a nuclear or a

non-nuclear type by the approximation algorithm, we just use the object centroids

to define the salient regions, without using their types. Instead, we will re-type

(re-characterize) these objects with the local features that will be learned by a

deep belief network (Section 3.1.2).

The substeps of this salient subregion identification are herein referred to as

ImageBinarization, CircleDecomposition, and CropWindow functions,

respectively. We will also use these functions in the implementation of the suc-

ceeding steps. To improve the readability of the thesis, we provide a list of these

functions and their uses in Table 3.1. Note that this table also includes other

auxiliary functions, which will be used in the implementation of the succeeding

steps.

3.1.2 Salient Subregion Characterization via Deep Learn-

ing

This step involves two learning systems: The first one, LearnDBN, acts as

an unsupervised feature extractor for the salient subregions, and hence, for the

objects that they correspond to. It learns the weights of a deep belief network of

RBMs and uses the activation values of the hidden unit nodes in the final RBM

to define the local deep features of the salient subregions. The second system,

LearnClusteringVectors, learns the clustering vectors on the local deep

features. This clustering will be used to quantize any salient subregion, which

corresponds to re-typing the object for which this salient subregion is defined.

The details of these learning systems are given in Section 3.1.2.1 and 3.1.2.2.
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3.1.2.1 Deep Network Learning

The LearnDBN algorithm pretrains a deep belief network, which consists of

consecutive RBMs. An RBM is an undirected graphical model consisting of a

visible and a hidden layer and the symmetric weights in between them. The

output of an RBM (the units in its hidden layer) can be considered as a higher

representation of its input (the units of its visible layer). To get the representa-

tions at different abstraction levels, a set of RBMs are stacked consecutively by

linking one RBM’s output to the next RBM’s input. In this work, the input of

the first RBM is fed by the pixels of a salient subregion Ωi, which is cropped out

of the binary image BW , and the output of the last RBM is used as the local

feature set φi of this salient subregion; see Algorithm 1. In this algorithm, Wj

and Bj are the weight matrix and the bias vector of the j-th RBM, respectively.

Algorithm 1 ExtractLocalFeatures

Input: salient subregion Ωi, number H of RBMs in the pretrained deep belief
network, weight matrices W and bias vectors B of the pretrained deep belief
network
Output: local feature set φi of the salient subregion Ωi

1: Π0 = Ωi

2: for j = 1 to H do
3: Πj = sigmoid(Πj−1 Wj + Bj)
4: end for
5: φi = ΠH

The LearnDBN function learns the weights and biases of the deep belief

network by pretraining it layer by layer using the contrastive divergence algo-

rithm [95]. For this purpose, it constructs a dataset Ddbn from randomly selected

salient subregions of randomly selected training images. Algorithm 2 gives its

pseudocode; see Table 3.1 for explanations of the auxiliary functions. Note that

LearnDBN should also input the parameters that specify the architecture of

the network, including the number of hidden layers (the number of RBMs) and

the number of hidden units in each hidden layer.
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Algorithm 2 LearnDBN

Input: training set D of original images, size ωsize of a salient subregion,
minimum circle radius rmin, architecture P of the deep belief network
Output: weight matrices W and bias vectors B of the pretrained deep belief
network

1: Ddbn = ∅
2: for each randomly selected I ∈ D do
3: BW ← ImageBinarization(I)
4: C ← CircleDecomposition(BW , rmin)
5: for each randomly selected ci ∈ C do
6: Ωi ← CropWindow(BW , ci, ωsize)
7: Ddbn = Ddbn ∪ Ωi

8: end for
9: end for

10: [W,B]← ContrastiveDivergence(Ddbn, P )

3.1.2.2 Cluster Learning

After learning the weights and biases of the deep belief network, the Extract-

LocalFeatures function is used to define the local deep features of a given

salient subregion. This work proposes to quantify the entire tissue image with

the labels (characteristics) of its salient subregions. Thus, these continuous fea-

tures are quantized into discrete labels. As discussed before, annotating each

salient subregion is quite difficult, if not impossible, and hence, it is very hard

to learn these labels in a supervised manner. Therefore, this work proposes to

follow an unsupervised approach to learn this labeling process. To this end, it

uses k-means clustering on the local deep features of the salient subregions. Note

that the k-means algorithm learns the clustering vectors V on the training set

Dkmeans that is formed up of the local deep features of randomly selected salient

subregions of randomly selected training images. The pseudocode of Learn-

ClusteringVectors is given in Algorithm 3. This algorithm outputs a set V

of K clustering vectors. In the next step, an arbitrary salient subregion is labeled

with the id of its closest clustering vector.
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Algorithm 3 LearnClusteringVectors

Input: training set D of original images, size ωsize of a salient subregion,
minimum circle radius rmin, number H of RBMs, weight matrices W and bias
vectors B of the pretrained deep belief network, cluster number K
Output: clustering vectors V

1: Dkmeans = ∅
2: for each randomly selected I ∈ D do
3: BW ← ImageBinarization(I)
4: C ← CircleDecomposition(BW , rmin)
5: for each randomly selected ci ∈ C do
6: Ωi ← CropWindow(BW , ci, ωsize)
7: φi ← ExtractLocalFeatures(Ωi, H,W,B)
8: Dkmeans = Dkmeans ∪ φi

9: end for
10: end for
11: V ← KMeansClustering(Dkmeans, K)

3.1.3 Image Representation and Classification

In the last step, a set of global features are extracted to represent an arbitrary

image I. To this end, all salient subregions are identified within this image

and their local deep features are extracted. Each salient subregion Ωi is labeled

with the id li of its closest clustering vector according to its deep features φi

by the AssignToClosestCluster auxiliary function (see Table 3.1). Then, to

represent the image I, global features are extracted by calculating a histogram on

the labels of all salient subregions in I (i.e., the characteristics of the components

that these subregions correspond to). At the end, the image I is classified by a

support vector machine (SVM) with a linear kernel based on its global features.

Note that, this study uses the SVM implementation of [96], which employs the

one-against-one strategy for multiclass classifications.
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3.2 Experiments

3.2.1 Datasets

We test our proposed method on two datasets that contain microscopic images

of colon tissues stained with the routinely used hematoxylin-and-eosin technique.

The images of these tissues were taken using a Nikon Coolscope Digital Micro-

scope with a 20× objective lens and the image resolution was 480 × 640. The

first dataset is the one that we also used in our previous studies. In this dataset,

each image is labeled with one of the three classes: normal, low-grade cancerous,

and high-grade cancerous. It comprises 3236 images taken from 258 patients,

which were randomly divided into two to form the training and test sets. The

training set includes 1644 images (510 normal, 859 low-grade cancerous, and 275

high-grade cancerous) of 129 patients. The test set includes 1592 images (491

normal, 844 low-grade cancerous, and 257 high-grade cancerous) of the remain-

ing patients. Note that the training and test sets are independent at the patient

level; i.e., images taken from a slide(s) of a particular patient are used either in

the training or the test set.

The second dataset includes a subset of the first one with the low-grade cancer-

ous tissue images being further subcategorized. Here only a subset was selected

since subcategorization was difficult for some images. Note that we also excluded

some images from the normal and high-grade cancerous classes to obtain more

balanced datasets. As a result, in this second dataset, each image is labeled with

one of the five classes: normal, low-grade cancerous (grade1), low-grade cancer-

ous (grade2), low-grade cancerous (at the boundary between grade1 and grade2),

and high-grade cancerous. The training set includes 182 normal, 188 grade1

cancerous, 121 grade1-2 cancerous, 123 grade2 cancerous, and 177 high-grade

cancerous tissue images. The test set includes 178 normal, 179 grade1 cancer-

ous, 117 grade1-2 cancerous, 124 grade2 cancerous, and 185 high-grade cancerous

tissue images. Example images from these datasets are given in Figure 3.2.
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3.2.2 Parameter Setting

The proposed method has the following model parameters that should be ex-

ternally set: minimum circle radius rmin, size of a salient subregion ωsize, and

cluster number K. The parameters rmin and ωsize are in pixels. Addition-

ally, the support vector machine classifier has the parameter C. In our ex-

periments, the values of these parameters are selected using cross-validation

on the training images of the first dataset without using any of its test sam-

ples. Moreover, this selection does not consider any performance metric ob-

tained on the second dataset. By considering any combinations of the follow-

ing values rmin = {3, 4, 5}, ωsize = {19, 29, 39}, K = {500, 1000, 1500}, and

C = {1, 5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000}, the parameters are set

to rmin = 4, ωsize = 29, K = 1500, and C = 500. In Section 3.2.4, we will discuss

the effects of this parameter selection to the method’s performance in detail.

In addition to these parameters, one should select the architecture of the deep

belief network. In this work, we fix this architecture. In general, the number of

hidden layers determines the abstraction levels represented in the network. We

set this number to four. We then select the number of hidden units as 2000, 1000,

500, and 100 from bottom to top layers, having the following considerations. For

our work, the hidden unit number in the first layer should be selected large enough

to effectively represent the pixels in a local subregion. On the other hand, the

number in the last layer should be selected small enough to effectively quantize

the subregions. The hidden unit numbers in between should be selected consistent

to the selected hidden unit numbers in the first and last layers. The investigation

of using different network architectures is considered as future work.

3.2.3 Results

Tables 3.2 and 3.3 report the test set accuracies obtained by our proposed Deep-

Feature method for the first and second datasets, respectively. These tables pro-

vide the class-based accuracies in their first three/five columns and the average
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Table 3.2: Test set accuracies of the proposed DeepFeature method and the com-
parison algorithms for the first dataset.

Arith. Harm.
Norm. Low High mean mean

DeepFeature 98.37 91.59 98.44 96.13 96.02

Handcrafted features

CooccurrenceMatrix 87.58 84.12 85.60 85.77 85.74

GaborFilter 91.24 82.23 78.60 84.02 83.70

LocalObjectPattern [44] 95.32 92.54 90.27 92.71 92.66

TwoTier [97] 99.18 93.83 93.77 95.59 95.53

Deep learning for supervised classification

AlexNet 99.39 97.39 75.88 90.89 89.53

GoogLeNet 99.59 97.04 80.16 92.26 91.40

Inception-v3 99.59 93.01 89.11 93.90 93.71

Deep learning for feature extraction (salient points)

SalientStackedAE 97.35 90.17 93.00 93.50 93.41

SalientConvolutionalAE 96.54 93.96 76.26 88.92 87.94

Deep learning for feature extraction (random points)

RandomRBM 95.93 87.91 96.89 93.58 93.40

RandomStackedAE [23] 97.96 90.05 90.27 92.76 92.62

RandomConvolutionalAE 95.32 88.63 79.38 87.77 87.28

class-based accuracies in the last two. These tables report the average class-based

accuracies instead of the overall test set accuracy since especially the first dataset

has an unbalanced class distribution. Here we provide the arithmetic mean of the

class-based accuracies as well as their harmonic mean since the arithmetic mean

can sometimes be misleading when values to be averaged differ greatly. These re-

sults show that the proposed method leads to high test set accuracies, especially

for the first dataset. The accuracy for the sub-low-grade cancerous classes de-

creases, as expected, since this subcategorization is a difficult task even for human

observers. The receiver operating characteristic (ROC) curves of these classifi-

cations together with their area under the curve (AUC) metrics are reported in

Section 3.2.5.

We also compare our method with four groups of other tissue classification al-

gorithms; the comparison results are also provided in Tables 3.2 and 3.3. The first

group includes four methods, namely CooccurrenceMatrix, GaborFilter, LocalOb-

jectPattern, and TwoTier, that use handcrafted features for image representation.
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Table 3.3: Test set accuracies of the proposed DeepFeature method and the com-
parison algorithms for the second dataset.

Low Low Low Arith. Harm.
Norm. (grade1) (grade1-2) (grade2) High mean mean

DeepFeature 96.63 88.83 67.52 62.90 80.54 79.28 77.24

Handcrafted features

CooccurrenceMatrix 87.64 71.51 50.43 39.52 78.38 65.50 60.03

GaborFilter 85.96 70.95 22.22 58.06 76.22 62.68 49.47

LocalObjectPattern [44] 92.70 89.39 48.72 58.87 77.30 73.40 69.04

TwoTier [97] 98.88 80.45 53.85 62.90 79.46 75.11 71.84

Deep learning for supervised classification

AlexNet 97.19 96.09 35.90 52.42 87.03 73.73 63.20

GoogLeNet 97.75 81.56 76.92 63.71 61.62 76.31 74.17

Inception-v3 98.88 89.94 38.46 66.94 86.49 76.14 67.81

Deep learning for feature extraction (salient points)

SalientStackedAE 98.31 87.71 55.56 58.87 83.24 76.74 72.92

SalientConvolutionalAE 98.88 80.45 45.30 51.61 70.27 69.30 63.92

Deep learning for feature extraction (random points)

RandomRBM 87.08 82.12 56.41 58.87 82.16 73.33 70.88

RandomStackedAE [23] 97.19 82.12 47.01 57.26 82.70 73.26 68.22

RandomConvolutionalAE 96.07 72.63 45.30 44.35 59.46 63.56 58.40

We use them in our comparisons to investigate the effects of learning features di-

rectly on image data instead of manual feature definition. The CooccurrenceMa-

trix and GaborFilter methods employ pixel-level textures. The CooccurrenceMa-

trix method first calculates a gray-level co-occurrence matrix and then extracts

Haralick descriptors from this matrix. The GaborFilter method first convolves

an image with log-Gabor filters in six orientations and four scales. Then, for each

scale, it calculates average, standard deviation, minimum-to-maximum ratio, and

mode descriptors on the response map averaged over those of all orientations [34].

Both methods use an SVM with a linear kernel for the final image classification.

For both datasets, the proposed DeepFeature method leads to test set accura-

cies much better than these two methods, which employ pixel-level handcrafted

features.

The LocalObjectPattern [44] and TwoTier [97] methods, which we previously

developed in our research group, use component-level handcrafted features. The

first one defines a descriptor with the purpose of encoding spatial arrangements

of the components within the specified local neighborhoods. It is similar to this

currently proposed method in the sense that it also represents the components
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with circular objects, labels them in an unsupervised way, and uses the labels’

distribution for image classification. On the other hand, it uses handcrafted fea-

tures whereas the currently proposed method uses deep learning to learn the

features directly from image data. The comparison results show the effective-

ness of the latter approach. The TwoTier method decomposes an image into

irregular-shaped components, uses Schmid filters [98] to quantify their textures

and employs the dominant blob scale metric to quantify their shapes and sizes.

At the end, it uses the spatial distribution of these components to classify the

image. Although this method gives good results for the first dataset, it is not that

successful to further subcategorize low-grade cancerous tissue images (Table 3.3).

The proposed DeepFeature method also gives the best results for this subcate-

gorization. All these comparisons indicate the benefit of using deep learning for

feature extraction.

The second group contains the methods that use CNN classifiers for entire

image classification [99, 100, 101, 102]. These methods transfer their CNN ar-

chitectures (except the last softmax layer since the number of classes is differ-

ent) and their corresponding weights from the AlexNet [103], GoogLeNet [104],

and Inception-v3 [104] models, respectively, and fine-tune the model weights on

our training images. Since these network models are designed for images with

227× 227, 224× 224, and 299 × 299 resolutions, respectively, we first resize our

images before using the models. The experimental results given in Tables 3.2

and 3.3 show that the proposed DeepFeature method, which relies on character-

izing the local salient subregions by deep learning, gives more accurate results

than all these CNN classifiers, which are constructed for entire images without

considering the saliency.

In the third group of methods (SalientStackedAE and SalientConvolution-

alAE ), we extract features from the salient subregions using two other deep

learning techniques. Recall that our proposed method trains a deep belief net-

work containing four layers of RBMs and uses the outputs of the RBM in the final

layer as the features. We implement these comparison methods to investigate the

effectiveness of using an RBM-based feature extractor for this application. The
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SalientStackedAE method trains a four-layer stacked autoencoder, whose archi-

tecture is the same with our network, and uses the outputs of the final autoen-

coder as its features. The SalientConvolutionalAE method trains a convolutional

autoencoder and uses the encoded representation, which is the output of its en-

coding network, as the features. This convolutional autoencoder network has an

encoder with three convolution-pooling layers (with 128, 64, and 32 feature maps,

respectively) and a decoder with three deconvolution-upsampling layers (with 32,

64, and 128 feature maps, respectively). Its convolution/deconvolution layers use

3 × 3 filters and its pooling/upsampling layers use 2 × 2 filters. Both methods

take the RGB values of a subregion as their inputs. Except using a different

feature extractor for the salient subregions, the other steps of the methods re-

main the same. The test set accuracies obtained by these methods are reported

in Tables 3.2 and 3.3. When it is compared with SalientConvolutionalAE, the

proposed DeepFeature method leads to more accurate results. The reason might

be the following: We use the feature extractor to characterize small local subre-

gions, whose characterizations will later be used to characterize the entire tissue

image. The RBM-based feature extractor, each layer of which provides a fully

connected network with a global weight matrix, may be sufficient to quantify a

small subregion and learning the weights for such a small-sized input may not be

that difficult for this application. On the other hand, a standard convolutional

autoencoder network, each convolution/deconvolution layer of which uses local

and shared connections, may not be that effective for such small local subregions

and it may be necessary to customize its layers. The design of customized archi-

tectures for this application is considered as future work. The SalientStackedAE

method, which also uses a fully connected network in each of its layers, improves

the results of SalientConvolutionalAE, but it still gives lower accuracies compared

to our proposed method.

The last group contains three methods that we implement to understand the

effectiveness of considering the saliency in learning the deep features. The Ran-

domRBM method is a variant of our algorithm. In this method, subregions are

randomly cropped out of each image (instead of using the locations of tissue com-

ponents) and everything else remains the same. Likewise, the RandomStackedAE
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and RandomConvolutionalAE methods are variants of SalientStackedAE and

SalientConvolutionalAE, respectively. They also use randomly selected subre-

gions instead of considering only the salient ones. Note that RandomStackedAE

uses stacked auto-encoders to define and extract the features, as proposed in [23].

The experimental results are reported in Tables 3.2 and 3.3. The results of all

these variants reveal that extracting features from the salient subregions, which

are determined by prior knowledge, improves the classification accuracies of their

counterparts, especially for the second dataset. All these comparisons indicate

the effectiveness of using the proposed RBM-based feature extractor together

with the salient points.

The quantitative evaluations provided in Table 3.2 reveal that the DeepFeature

method leads to higher test set accuracies than all comparisons methods. On

the other hand, the test set accuracy of low-grade cancerous class is relatively

lower than the test set accuracies of normal and high-grade cancerous classes. In

order to improve this accuracy, we decided to classify the test images in the first

dataset with the DeepFeature method, which is trained with the second dataset,

where low-grade cancerous images are recategorized into three separate classes

and better represented. Since the second dataset consists of images of five classes,

the trained model classifies the test images in the first dataset into five classes. In

order to classify the images in the first dataset into three classes, the low-grade

(grade1, grade 1-2, and grade2) cancerous classes are annotated with a single

low-grade cancerous class. Table 3.4 reports the test set accuracies obtained

by the proposed DeepFeature method trained on the first and second datasets,

respectively. These quantitative results reveal that the proposed DeepFeature

method trained on the second dataset improves the test set accuracy of the low-

grade cancerous class at the expense of decreasing those of the normal and high-

grade cancerous classes. The improvement of accuracy in low-grade cancerous

images is achieved by training the model with three low-grade cancerous classes.
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Table 3.4: Test set accuracies for the first dataset provided by the proposed
DeepFeature method trained on the first and the second datasets, respectively.

Arith. Harm.
Norm. Low High mean mean

DeepFeature (trained on the first dataset) 98.37 91.59 98.44 96.13 96.02

DeepFeature (trained on the second dataset) 95.93 96.92 89.88 94.24 94.14

3.2.4 Parameter Analysis

The DeepFeature method has four external parameters: minimum circle radius

rmin, size of a salient subregion ωsize, cluster number K, and SVM parameter

C. This section analyzes the effects of the parameter selection on the method’s

performance. To this end, for each parameter, it fixes the values of the other three

parameters and measures the test set accuracies as a function of the parameter

of interest. These analyses are depicted in Figures 3.4 and 3.5 for the first and

the second datasets, respectively.

The minimum circle radius rmin determines the size of the smallest circular ob-

ject (tissue component) located by the CircleDecomposition algorithm. Its

larger values cause not to locate smaller objects, which may correspond to impor-

tant small tissue components such as nuclei, and not to define salient subregions

around them. This may cause an inadequate representation of the tissue, which

decreases the accuracy as shown in Figures 3.4(a) and 3.5(a). On the other hand,

using smaller values leads to defining noisy objects and the use of the salient

subregions around them slightly decreases the accuracy.

The parameter ωsize is the size of a salient subregion cropped for each compo-

nent by the CropWindow algorithm. This parameter determines the locality

of the deep features. When ωsize is too small, it is not sufficient to accurately

characterize the subregion, and thus, the component it corresponds to. This sig-

nificantly decreases the accuracy. After a certain point, it does not affect the

accuracy too much, but of course, increases the complexity of the required deep

neural network. This analysis is depicted in Figures 3.4(b) and 3.5(b).

The cluster number K determines the number of labels used for quantizing
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(a) (b)

(c) (d)

Figure 3.4: For the first dataset, test set accuracies as a function of the model
parameters: (a) minimum circle radius rmin, (b) size of a salient subregion ωsize,
(c) cluster number K, and (d) SVM parameter C.

the salient subregions (components). Its smaller values may result in defining

the same label for components of different types. This may lead to an ineffective

representation, decreasing the accuracy. Using larger values only slightly affects

the performance (Figures 3.4(c) and 3.5(c)).

The SVM parameter C controls the trade-off between the training error and the

margin width of the SVM model. Using values smaller and larger than necessary

may cause underfitting and overfitting, respectively. Unfortunately, similar to

many hyperparameters in machine learning, there is no foolproof method for its

selection and its value must be determined empirically. As shown in Figures 3.4(d)

and 3.5(d), our application necessitates the use of C in the range between 250

and 1000.
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(a) (b)

(c) (d)

Figure 3.5: For the second dataset, test set accuracies as a function of the model
parameters: (a) minimum circle radius rmin, (b) size of a salient subregion ωsize,
(c) cluster number K, and (d) SVM parameter C.

3.2.5 ROC Curves and AUC Analysis

This section presents the ROC curve and AUC analysis for the experiments of

our proposed method and the comparison algorithms. Although this analysis is

well defined for binary classifications, there is no consensus on how to obtain

the ROC curves for multi-class classification problems. In our experiments, we

follow the following procedure for both our proposed method and the comparison

algorithms. In this procedure, we generate a ROC curve for each class separately,

by considering only the posterior probabilities that the multi-class SVM classifier

outputs for this particular class (we do not consider the posteriors of the other

classes). We threshold these posteriors with the threshold values across the [0, 1]

interval and obtain the true positive rate (TPR) and the false positive rate (FPR)

for each threshold. We then use these rates to generate the ROC curve.
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Table 3.5: For the first dataset, the area under curve (AUC) metrics of the
proposed DeepFeature method and the comparison algorithms. These metrics
are calculated on the test samples of this dataset.

Arith. Harm.
Norm. Low High mean mean

DeepFeature 0.9974 0.9895 0.9942 0.9937 0.9937

Handcrafted features

CooccurrenceMatrix 0.9618 0.9615 0.9418 0.9550 0.9549

GaborFilter 0.9728 0.9584 0.9452 0.9588 0.9587

LocalObjectPattern [44] 0.9901 0.9756 0.9841 0.9833 0.9832

TwoTier [97] 0.9996 0.9907 0.9872 0.9925 0.9925

Deep learning for supervised classification

AlexNet 0.9990 0.9848 0.9750 0.9863 0.9862

GoogLeNet 1.0000 0.9913 0.9859 0.9924 0.9923

Inception-v3 1.0000 0.9882 0.9827 0.9903 0.9902

Deep learning for feature extraction (salient points)

SalientStackedAE 0.9982 0.9885 0.9888 0.9918 0.9918

SalientConvolutionalAE 0.9984 0.9651 0.9293 0.9643 0.9635

Deep learning for feature extraction (random points)

RandomRBM 0.9950 0.9837 0.9935 0.9907 0.9907

RandomStackedAE [23] 0.9976 0.9836 0.9811 0.9874 0.9874

RandomConvolutionalAE 0.9927 0.9528 0.9224 0.9560 0.9551

After obtaining the ROC curve for each class separately, we calculate the area

under this curve. Tables 3.5 and 3.6 report the class-specific AUC metrics ob-

tained on the test samples of the first and second datasets, respectively. Note that

the last two columns of these tables present the averages of these class-specific

AUC metrics. Here we provide the arithmetic mean of the class-specific AUC

metrics as well as their harmonic mean since the arithmetic mean can sometimes

be misleading when values to be averaged differ greatly. These tables indicate

the effectiveness of our proposed DeepFeature method for the representation and

classification of histopathological images. It yields better results than the other al-

gorithms, which is also consistent with our findings reported in Tables 3.2 and 3.3.

The ROC curves used in the calculation of these AUC values are presented in

Figures 3.6, 3.7 and 3.8 for the first dataset, and in Figures 3.9, 3.10 and 3.11 for

the second one.
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Table 3.6: For the second dataset, the area under curve (AUC) metrics of the
proposed DeepFeature method and the comparison algorithms. These metrics are
calculated on the test samples of this dataset.

Low Low Low Arith. Harm.
Norm. (grade1) (grade1-2) (grade2) High mean mean

DeepFeature 0.9991 0.9752 0.9284 0.9206 0.9727 0.9592 0.9582

Handcrafted features

CooccurrenceMatrix 0.9808 0.9083 0.8228 0.7971 0.9541 0.8926 0.8867

GaborFilter 0.9692 0.9100 0.8056 0.8234 0.9483 0.8913 0.8864

LocalObjectPattern [44] 0.9899 0.9622 0.9084 0.8946 0.9612 0.9433 0.9419

TwoTier [97] 0.9997 0.9651 0.8865 0.9001 0.9725 0.9448 0.9427

Deep learning for supervised classification

AlexNet 0.9974 0.9802 0.8939 0.9132 0.9766 0.9523 0.9505

GoogLeNet 1.0000 0.9893 0.9326 0.8764 0.9764 0.9549 0.9527

Inception-v3 0.9999 0.9773 0.9015 0.9234 0.9677 0.9540 0.9526

Deep learning for feature extraction (salient points)

SalientStackedAE 0.9998 0.9736 0.9259 0.9130 0.9590 0.9543 0.9532

SalientConvolutionalAE 0.9991 0.9337 0.8539 0.8397 0.9530 0.9159 0.9119

Deep learning for feature extraction (random points)

RandomRBM 0.9951 0.9588 0.8923 0.9167 0.9693 0.9465 0.9450

RandomStackedAE [23] 0.9993 0.9544 0.8750 0.8894 0.9560 0.9348 0.9325

RandomConvolutionalAE 0.9906 0.9185 0.8549 0.8244 0.9157 0.9008 0.8972

3.2.6 Discussion

This study introduces a new feature extractor for histopathological image repre-

sentation and presents a system that uses this representation for their classifica-

tion. This system classifies an image with one of the predefined classes, assuming

that it is homogeneous. This section discusses how this system can be used in a

digital pathology setup, in which typically lower magnifications are used to scan

a slide. Thus, the acquired images usually have a larger field of view and may be

homogeneous or heterogeneous. To this end, this section presents a simple algo-

rithm that detects the regions belonging to one of the predefined classes in such

a large image. Developing more sophisticated algorithms for the same purpose or

for different applications could be considered as future research work.

Our detection algorithm first slides a window with a size that the classifica-

tion system uses (in our case, the size of 480 × 640) over the entire large image

and then extracts the features of each window and classifies it by the proposed

DeepFeature method. Since these windows may not be homogeneous, it does not
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(a) (b)

(c) (d)

(e)

Figure 3.6: ROC curves for the test samples of the first dataset. These curves
are obtained for the proposed DeepFeature method and the comparison algo-
rithms that use handcrafted features: (a) DeepFeature, (b) CooccurrenceMatrix,
(c) GaborFilter, (d) LocalObjectPattern [44], and (e) TwoTier [97] methods.
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(a) (b)

(c) (d)

(e)

Figure 3.7: ROC curves for the test samples of the first dataset. These curves are
obtained for the proposed DeepFeature method and the deep learning based com-
parison algorithms: (a) DeepFeature, (b) AlexNet, (c) GoogLeNet, (d) Inception-
v3, and (e) SalientStackedAE methods.
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(a) (b)

(c) (d)

(e)

Figure 3.8: ROC curves for the test samples of the first dataset. These curves
are obtained for the proposed DeepFeature method and the deep learning based
comparison algorithms: (a) DeepFeature, (b) SalientConvolutionalAE, (c) Ran-
domRBM, (d) RandomStackedAE [23], and (e) RandomConvolutionalAE meth-
ods.

48



(a) (b)

(c) (d)

(e)

Figure 3.9: ROC curves for the test samples of the second dataset. These curves
are obtained for the proposed DeepFeature method and the comparison algo-
rithms that use handcrafted features: (a) DeepFeature, (b) CooccurrenceMatrix,
(c) GaborFilter, (d) LocalObjectPattern [44], and (e) TwoTier [97] methods.
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(a) (b)

(c) (d)

(e)

Figure 3.10: ROC curves for the test samples of the second dataset. These
curves are obtained for the proposed DeepFeature method and the deep learning
based comparison algorithms: (a) DeepFeature, (b) AlexNet, (c) GoogLeNet, (d)
Inception-v3, and (e) SalientStackedAE methods.
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(a) (b)

(c) (d)

(e)

Figure 3.11: ROC curves for the test samples of the second dataset. These
curves are obtained for the proposed DeepFeature method and the deep learn-
ing based comparison algorithms: (a) DeepFeature, (b) SalientConvolutionalAE,
(c) RandomRBM, (d) RandomStackedAE [23], and (e) RandomConvolutionalAE
methods.

51



directly output the estimated class labels, but instead, it uses the class labels

of all windows together with their posteriors in a seed-controlled region growing

algorithm. In particular, this detection algorithm has three main steps: posterior

estimation, seed identification, and seed growing. All these steps run on circular

objects, which we previously define to approximate the tissue components and to

represent the salient subregions, instead of image pixels, since the latter is much

more computationally expensive. Thus, before starting these steps, the circular

objects are located on the large image and the connectivity between them are

defined by constructing a Delaunay triangulation on their centroids.

The first step slides a window over the objects and estimates posteriors for

all sliding windows by DeepFeature. Then, for each object, it accumulates the

posteriors of all sliding windows that cover this object. Since our system classifies

a window with a predefined class and since these classes may not cover all tissue

formations (e.g., lymphoid or connective tissue), this step defines a reject action

and assigns it a probability. It uses a very simple probability assignment; the

reject probability is 1 if the maximum accumulated posterior is greater than

0.5, and 0 otherwise. The objects are then relabeled by also considering the

reject probabilities. As future work, one may define the reject probability as a

function of the class posteriors. As an alternative, one may also consider to define

classes for additional tissue formations and retrain the classifier. The second step

identifies the seeds using the object labels and posteriors. For that, it finds the

connected components of the objects that are assigned to the same class with

at least Tseed probability. It identifies the components containing more than Tno

objects as the seeds. In our experiments, we set Tseed = 0.90 and Tno = 500. The

last step grows the seeds on the objects with respect to their posteriors. At the

end, the seeds of objects are mapped to image pixels by assigning each pixel the

class of its closest seed object, and the seed boundaries are smoothed by majority

filtering.

We test this detection algorithm on a preliminary dataset of 30 large images.

These images were taken with a 5× objective lens and the image resolution is

1920× 2560. Most of the images are heterogeneous; only five of them are homo-

geneous to test the algorithm also on large homogeneous images. In our tests,
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we will directly use the classifier trained for our first dataset without any mod-

ification or additional training. Hence, the aim will be to detect low-grade and

high-grade colon adenocarcinomatous regions on these large images as well as

those containing normal colon glands. Thus, we only annotate those regions on

the large images. Example images together with their annotations are given in

Figures 3.12, 3.13, and 3.14. The visual results of the algorithm are also given

for these examples. For quantitative evaluation, the recall, precision, and F-score

metrics are calculated for each class separately. For class C, the standard defi-

nitions are as follows: Precision is the percentage of correctly classified C pixels

that actually belong to C. Recall is the percentage of actual C pixels that are

correctly classified as C by the algorithm. F-score is the harmonic mean of these

two metrics. The results for these metrics are reported in Table 3.7. This table

also reports the results obtained by relaxing the precision and recall definitions

with respect to our application, in which the aim is colon adenocarcinoma detec-

tion. Since this cancer type mainly affects epithelial cells, non-epithelial regions

are left as unannotated in our datasets. Indeed, one may include these regions to

any class without changing the application’s aim. Thus, for class C, we relax the

definitions as follows: Precision is the percentage of correctly classified C pixels

that actually belong to C or a non-epithelial region. Recall is the percentage of

actual C pixels that are correctly classified as C or with the reject class by the

algorithm.

The visual and quantitative evaluations reveal that the detection algorithm,

which uses the proposed classification system, leads to promising results. Thus,

it has the potential to be used with a whole slide scanner. To do that, a whole

slide should be scanned with a low magnification of the scanner, and the acquired

image, which has a larger field of view, can be analyzed by this detection algo-

rithm. Although it yields successful results for many large images, it may also

give misclassifications for some of them, especially for those containing relatively

large non-epithelial regions; an illustrative example is given in Figure 3.14. When

non-epithelial regions are small, incorrect classifications can be compensated by

correct classifications of nearby regions and the reject action. However, when
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Table 3.7: Results of the colon adenocarcinoma detection algorithm on a prelim-
inary dataset of large images.

Standard Definitions Relaxed Definitions

Precis. Recall F-score Precis. Recall F-score

Normal 92.96 79.71 85.83 99.48 88.37 93.60

Low-grade 83.01 91.30 86.96 91.03 93.32 92.16

High-grade 70.82 98.61 82.44 87.00 99.93 93.02

they are large, such compensation may not be possible and the system gives in-

correct results since there is no separate class for such regions. Defining an extra

class(es) will definitely improve the accuracy on these regions. This is left as

future research work.
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Chapter 4

Image Embedded Segmentation:

Uniting Supervised and

Unsupervised Objectives for

Segmenting Histopathological

Images

4.1 Methodology

The proposed method, which we call the iMage EMbedded Segmentation

(iMEMS) method, defines a new embedding to transform semantic segmentation

to the problem of image-to-image translation and solves it using a conditional

generative adversarial network (cGAN). Its motivation is as follows: The pro-

posed transformation facilitates an easy and effective way of uniting a supervised

task of semantic segmentation and an unsupervised task of image reconstruction

into a single task. By its definition, learning this united task inherently requires

meeting the supervised and unsupervised objectives simultaneously. Thus, the

network should jointly learn image features to segment an image and context
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features to reconstruct it. This joint learning stands as an effective means of

regularizing the network training.

The training phase starts with generating a multi-channel output image for

each training instance. Then, original input images together with their generated

outputs are fed to the cGAN for its training (Figure 4.1). Afterwards, the output

of an unsegmented image is estimated by the generator of the trained cGAN.

The details are given in the following sections. The iMEMS method is imple-

mented in Python using the Keras framework. The source codes are available at

http://www.cs.bilkent.edu.tr/∼gunduz/downloads/iMEMS.

4.1.1 Proposed Embedding

Let I be an RGB image in the training set, GI be its grayscale, and SI be its

ground truth segmentation map that may contain K possible labels. This embed-

ding generates a K-channel output image OI by superimposing the grayscale GI

on the segmentation map SI . For that, for each segmentation label k ∈ {1, ..., K},
it generates an output channel O

[k]
I . For a pixel p, this output channel is defined

as follows:

O
[k]
I (p) =


⌊
GI(p)

2

⌋
+ 128 if SI(p) = k

127−
⌊
GI(p)

2

⌋
if SI(p) 6= k

(4.1)

This definition maps grayscale intensities of all pixels belonging to the k-th label

to the interval of [128, 255] in the k-th output channel O
[k]
I and to the interval of

[0, 127] in all other channels. However, in mapping these intensities to [0, 127],

it inverts their values to make the characteristics of pixels in foreground and

background regions of the k-th channel more distinguishable. In other words, a

grayscale intensity interval [0, 255] is mapped to [128, 255] in the k-th output

channel if a pixel belongs to the k-th label, and to [127, 0] otherwise. Note

that this definition equally divides the grayscale interval to represent pixels in

foreground and background regions in the k-th channel. This is an appropriate

choice for our application since each channel needs to represent two types of
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: (a) An original input image I. (b) Its ground truth segmentation
map SI . (c) The first, (d) second, (e) third, and (f) fourth channels in its output
image, which are generated for the segmentation label shown as green, red, yellow,
and blue in SI , respectively. Note that this semantic segmentation problem is a
task of predicting one of the five labels for each pixel; this particular image does
not contain any pixel belonging to the fifth label. Thus, the generated output
image OI has five channels (i.e., O

[1]
I , O

[2]
I , O

[3]
I , O

[4]
I , and O

[5]
I are generated for

the input image). This figure shows only four of these channels.

regions (i.e., background and foreground regions). However, this definition can

easily be modified such that it uses unequal divisions of the interval, if this is

necessary for other applications.

This definition is illustrated in Figure 4.2. As seen here, foreground regions in

each channel seem brighter, as they are mapped to [128, 255], whereas background

regions seem darker, as they are mapped to [0, 127]. Thus, it is trivial to segment

foreground regions in each channel of this output image. Besides, both foreground

and background regions in this output preserve the original image content, which

helps regularize a network in learning how to distinguish these two regions.
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4.1.2 cGAN Architecture and Training

The definition in Equation 4.1 requires the ground truth map SI for an input

image I. Thus, the iMEMS method only employs this definition to generate the

output images for segmented training instances, which are used to train a cGAN.

Then, for an unsegmented (test) image, iMEMS estimates this output from an

original input image using the trained cGAN. In other words, it translates one

image to another using a cGAN.

The generator of this cGAN inputs a normalized RGB image I and outputs a

K-channel image ÔI . It uses a UNet architecture with an encoder and a decoder

connected by symmetric connections (Figure 4.3). The convolution layers, except

the last one, use 3 × 3 filters and the ReLU activation function. The last layer

uses a linear function since it estimates continuous intensity values of the output

image. The pooling/upsampling layers use 2× 2 filters. Extra dropout layers are

added to reduce overfitting; the dropout factor is set to 0.2.

The discriminator inputs a normalized RGB image and the K-channel output

image corresponding to this input. Its output is a class label to indicate whether

the output image is real or fake; i.e., it estimates if this output is calculated by

Equation 4.1 using the ground truth or produced by the generator. Its archi-

tecture is given in Figure 4.4. It has the same operations with the generator’s

encoder except that its last layer uses the sigmoid function. This network uses

a convolutional PatchGAN classifier [89], which uses local patches to determine

whether the output image is real or fake rather than the entire image.

The generator and discriminator networks are trained from scratch. The batch

size is 1. The network weights are learned on the training images for 300 epochs.

At each epoch, the loss is calculated on the validation images and the network

that gives the minimum validation loss is selected at the end.

The loss settings of this cGAN are the same with [89]. The objective function

is argminGmaxD Ladv(G,D) + λ LL1(G), where Ladv(G,D) is the adversarial

loss on the discriminator’s outputs and LL1(G) is the L1 loss on the generator’s
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Figure 4.4: Architecture of the discriminator network in the cGAN.

output. Similar to [89], the weight λ of the L1 loss is selected as 100. It is worth

to noting that although this objective linearly combines two losses, its purpose

is different than the proposed iMEMS method. As opposed to iMEMS, this

objective does not directly aim to combine the losses of the supervised task of

semantic segmentation and the unsupervised task of image reconstruction. The

iMEMS method defines an embedding to unite these two tasks into a single one

and uses a cGAN for better learning this united task. Indeed, both the generator

and the discriminator of the cGAN define their tasks on the united task of the

iMEMS method, which means the adversarial and L1 losses are also defined on

this united task.

4.1.3 Tissue Segmentation

For an unsegmented image U , the iMEMS method estimates the output ÔU

using the generator of the trained cGAN and segments it based on this es-

timated output. In particular, it classifies each pixel p with a segmentation

label k whose corresponding output has the highest estimated value; that is,

ŜU(p) = argmaxkÔ
[k]
U (p). For the image shown in Figure 4.2, the estimated out-

put images are illustrated in Figure 4.5.
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(a) (b) (c)

(d) (e)

Figure 4.5: Output maps Ô
[k]
U estimated by the generator of the cGAN for the

image shown in Figure 4.2.

4.2 Experiments

4.2.1 Datasets

We test the iMEMS method on three datasets that contain microscopic images of

hematoxylin-and-eosin stained tissues. The first one is an in-house colon dataset

and the other two are publicly available epithelium and tubule datasets, which

are prepared by another research group [22].

The in-house dataset contains 365 images of colon tissues collected from the

Pathology Department Archives of Hacettepe University. Images are scanned at

5×, using a Nikon Coolscope Digital Microscope. Image resolution is 960× 1280.

In each image, regions are annotated considering five labels. The details of this

annotation are given in Section 4.2.1.1. In this dataset, 100 images are randomly

selected as training instances. The remaining ones are used as test instances, on

which we measure the performance of our method and comparison algorithms.
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The epithelium dataset consists of 42 estrogen receptor positive breast can-

cer images scanned at 20×. Image resolution is 1000 × 1000. In each image,

non-overlapping regions are annotated as either epithelium or background [22].

Since the size of this dataset is relatively small, we randomly split it into five

folds and measure the performance using five-fold cross-validation. Furthermore,

we divide an image of each fold into four equal non-overlapping parts in order

to make images optimal for the proposed architecture and also to increase the

number of training instances. Note that all four parts belonging to the same

image are used in the same fold.

The tubule dataset consists of 85 colorectal images scanned at 40×. As these

images have different resolutions, we rescale them to 522 × 775 pixels, which is

the resolution of more than 90 percent of all images. In each image, tubule and

background regions are annotated [22]. Likewise, the size of this dataset is also

relatively small. Thus, we also use five-fold cross-validation to assess the methods’

performance.

4.2.1.1 Annotation Procedure for In-House Colon Dataset

In each image, non-overlapping regions are annotated with one of the five labels:

normal, tumorous (colon adenocarcinomatous), connective tissue, dense lymphoid

tissue, and non-tissue (empty glass and debris). This annotation is not perfect and

may contain inevitable inconsistencies since small subregions of different labels

may be found together, due to the nature of colon tissues, and their separate

annotation may become quite difficult at the selected magnification. Considering

the following three factors that mainly contribute to this difficulty, images are

annotated as consistently as possible.

First, normal/tumorous regions consist of small connective tissue and non-

tissue subregions. This is inevitable since a normal/tumorous region contains

colon glands, which have a luminal area (empty looking subregion) inside, and

connective tissue as the supporting material between the glands. In annotations,

such luminal areas and connective tissues are included into the corresponding
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(a)

(b)

(c)

(d)

(e)

Figure 4.6: Example images of our in-house colon dataset together with their
annotations. In annotations, each label is shown with a different color: normal
(green), tumorous (red), connective tissue (yellow), dense lymphoid tissue (blue),
and non-tissue (pink).
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normal/tumorous region. However, if there exists a “wide” enough connective

tissue region between the glands, it is separately annotated with the connective

tissue label. In Figures 4.6(a) and 4.6(b), two such small connective tissue sub-

regions are indicated with red arrows. They are included in their corresponding

normal and tumorous regions since they are relatively small. On the other hand,

wider connective tissues are annotated as separate regions (yellow regions shown

in the second row). Here we make every effort to be as consistent as possible

to identify wide regions. Likewise, in Figure 4.6(c), the normal region contains

small empty (non-tissue) parts, some of which are shown with blue arrows. These

small parts are included into the normal region. However, the left-bottom corner

of the image is annotated as a separate region since it belongs to the empty glass

but not the tissue.

Second, due to the density heterogeneity in a colon tissue, sectioning paraffin-

embedded tissue blocks may result in white artifacts. Examples are shown with

black arrows in Figures 4.6(d) and 4.6(e). When these artifacts are found next to a

gland, they are included into the normal/cancerous region that the gland belongs

to. Otherwise, they are included into the corresponding connective tissue region.

Third, lymph cells are found almost everywhere in the tissue. The group of these

cells is only annotated as a separate region when they form a dense lymphoid

tissue, see Figure 4.6(e). Likewise, we make every effort to be consistent to

identify the dense regions.

4.2.2 Results

Two metrics are used for quantitative evaluation. The first one is the pixel-level

accuracy, which gives the percentage of correctly predicted pixels in all images.

The second one is the pixel-level F-score that is calculated for each segmentation

label separately. That is, for each label, the F-score is calculated considering the

pixels of this label as positive and those of the other label(s) as negative. The

average of these class-wise F-scores is also calculated. The quantitative results

are reported in Table 4.1. In this table, the metrics are calculated on the test set
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images for the in-house colon dataset. For the other two datasets, these are the

average test fold metrics calculated over five runs (using five-fold cross-validation).

Note that, for each run, the method of interest is trained on the images of four

out of five folds and the remaining one is considered as the test fold. These results

show that the proposed iMEMS method gives high F-scores for all segmentation

labels, leading to the best accuracy and the best average F-score, for all datasets.

Visual results on example test set/fold images are shown in Figures 4.7-4.17.

They reveal that the iMEMS method does not only give higher performance met-

rics but also produces more realistic segmentations that adhere to spatial conti-

guity in pixel predictions, especially for the in-house colon dataset (Figures 4.7-

4.11). This is attributed to the effectiveness of using the proposed embedding as

the output and learning it with a cGAN. Since this output also includes the origi-

nal image content, it provides regularization on the segmentation task. Moreover,

since the discriminator performs real/fake classification on the entire output, it

enforces the generator to produce embeddings that better preserve the shapes of

the segmented regions.

To better explore these two factors (namely, using the proposed embedding

and learning it with a cGAN), we compare iMEMS with five comparison algo-

rithms summarized in Table 4.2. These algorithms either estimate the original

segmentation map or the proposed embedding using either a UNet or a cGAN.

For fair comparisons, the algorithms that use a cGAN have the same architecture

with our method and those that use a UNet have the architecture of our method’s

generator. The last layer of a network uses a linear function if it estimates the

proposed embedding, and a softmax function if it estimates the segmentation

map. Two comparison algorithms use a multi-task network that concurrently

learns the segmentation and image reconstruction tasks. These networks contain

a shared encoder and two parallel decoders, whose architectures are the same

with those of the generator.

First, we compare iMEMS with three algorithms that consider none or only

one of the two factors. UNet-C-single is the baseline that considers none; it
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Image Annotation

iMEMS UNet-C-single

cGAN-C-single UNet-R-single

UNet-C-multi UNet-C-multi-int

Figure 4.7: For the in-house colon dataset, visual results on an example test
image. Segmentation labels are shown with green (normal), red (tumorous),
yellow (connective tissue), blue (dense lymphoid tissue), and pink (non-tissue).
Results are embedded on original images for better visualization.
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Image Annotation

iMEMS UNet-C-single

cGAN-C-single UNet-R-single

UNet-C-multi UNet-C-multi-int

Figure 4.8: For the in-house colon dataset, visual results on an example test
image. Segmentation labels are shown with green (normal), red (tumorous),
yellow (connective tissue), blue (dense lymphoid tissue), and pink (non-tissue).
Results are embedded on original images for better visualization.
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Image Annotation

iMEMS UNet-C-single

cGAN-C-single UNet-R-single

UNet-C-multi UNet-C-multi-int

Figure 4.9: For the in-house colon dataset, visual results on an example test
image. Segmentation labels are shown with green (normal), red (tumorous),
yellow (connective tissue), blue (dense lymphoid tissue), and pink (non-tissue).
Results are embedded on original images for better visualization.
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Image Annotation

iMEMS UNet-C-single

cGAN-C-single UNet-R-single

UNet-C-multi UNet-C-multi-int

Figure 4.10: For the in-house colon dataset, visual results on an example test
image. Segmentation labels are shown with green (normal), red (tumorous),
yellow (connective tissue), blue (dense lymphoid tissue), and pink (non-tissue).
Results are embedded on original images for better visualization.
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Image Annotation

iMEMS UNet-C-single

cGAN-C-single UNet-R-single

UNet-C-multi UNet-C-multi-int

Figure 4.11: For the in-house colon dataset, visual results on an example test
image. Segmentation labels are shown with green (normal), red (tumorous),
yellow (connective tissue), blue (dense lymphoid tissue), and pink (non-tissue).
Results are embedded on original images for better visualization.
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Figure 4.12: For the epithelium dataset, visual results on an example test image.
Segmentation labels are shown with red (epithelium) and green (background).
Results are embedded on original images for better visualization.
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Figure 4.13: For the epithelium dataset, visual results on an example test image.
Segmentation labels are shown with red (epithelium) and green (background).
Results are embedded on original images for better visualization.
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UNet-C-multi UNet-C-multi-int

Figure 4.14: For the epithelium dataset, visual results on an example test image.
Segmentation labels are shown with red (epithelium) and green (background).
Results are embedded on original images for better visualization.
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Figure 4.15: For the tubule dataset, visual results on an example test image.
Segmentation labels are shown with red (tubule) and green (background). Results
are embedded on original images for better visualization.
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UNet-C-multi UNet-C-multi-int

Figure 4.16: For the tubule dataset, visual results on an example test image.
Segmentation labels are shown with red (tubule) and green (background). Results
are embedded on original images for better visualization.
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Figure 4.17: For the tubule dataset, visual results on an example test image.
Segmentation labels are shown with red (tubule) and green (background). Results
are embedded on original images for better visualization.
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estimates the original segmentation map using a UNet. cGAN-C-single esti-

mates the segmentation map but this time with the cGAN also used by iMEMS.

UNet-R-single also estimates the proposed embedding but not using a cGAN.

The results in Table 4.1 show that the contribution of both factors is critical to

obtain the best results. Furthermore, they show that the proposed embedding

provides effective regularization for network training regardless of the network

type. UNet-R-single improves the results of UNet-C-single and iMEMS im-

proves those of cGAN-C-single. Nevertheless, the proposed embedding together

with the cGAN yields better improvement.

Next, we compare iMEMS with another regularization technique that simul-

taneously minimizes supervised and unsupervised losses defined on the segmen-

tation and image reconstruction tasks, respectively. This technique relies on con-

structing a multi-task network whose weights are learned by minimizing a joint

loss function [12, 14]. For the supervised loss, Lseg, the average cross-entropy is

used. For the unsupervised loss, two definitions are used. First is the reconstruc-

tion loss, Lrec, defined at the input level; it is the mean square error between the

input and reconstructed images. Second is the sum of the reconstruction losses,

Lint, at the intermediate layers; they are the mean square errors between the

maps of the corresponding encoders and decoders. Here two more comparison

algorithms are implemented. UNet-C-multi linearly combines the supervised loss

with the reconstruction loss at the input level without considering those defined

at the intermediate layers whereas UNet-C-multi-int also considers the latter

losses. Here two variants are implemented since it becomes harder to select the

right contribution of each loss in the joint loss function as the number of losses

increases. These variants are to better understand this phenomenon.

UNet-C-multi defines its joint loss function as

Lmodel = λseg Lseg + λrec Lrec (4.2)

where λseg and λrec are the coefficients of the supervised and unsupervised

losses, respectively. Here to find a good combination of these coefficients, we

set λrec = (1− λseg) and perform the grid search on the test set/fold images. In

Figures 4.18(a), 4.18(c), and 4.18(e), the metrics are plotted as a function of λseg
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for the in-house colon, epithelium, and tubule datasets, respectively. When λseg

is too small, the performance of the segmentation task decreases dramatically.

On the contrary, when it is close to 1, the image reconstruction task cannot help

improve the results. This grid search selects λseg = 0.6, which gives the best aver-

age F-score for the in-house colon dataset. Using the same approach, λseg = 0.4

is selected for the other two datasets. Table 4.1 and Figures 4.7-4.17 present

the results for these λseg values. These results show that a multi-task network,

which regularizes its training by simultaneously minimizing the supervised and

unsupervised losses, improves the results of the single-stage networks. On the

other hand, iMEMS leads to better results. The reason might be the following:

First, iMEMS unites the supervised and unsupervised tasks into a single one and

trains its network by minimizing the loss defined on the united task. This united

task provides a very natural way of loss definition, eliminating the necessity of

defining a joint loss function with right contributions of the supervised and un-

supervised losses. This may provide more effective regularization for employing

unsupervised learning in network training. Second, iMEMS learns this united

task by benefiting from the well-known synthesizing ability of cGANs. Thanks to

using a cGAN, iMEMS produces realistic outputs that better comply with spatial

contiguity.

UNet-C-multi-int defines a similar loss function, but this time, also consider-

ing the sum of the reconstruction losses, Lint, at the intermediate layers. It defines

the following joint loss function, which is also used in [12, 14] to regularize their

network training.

Lmodel = λseg Lseg + λrec Lrec + λint Lint (4.3)

As aforementioned, as their number increases, it becomes harder to adjust the

coefficients relative to each other. In our experiments, we use the best configu-

ration of λseg = 0.6 and λrec = 0.4 selected by UNet-C-multi for the in-house

colon dataset and λseg = 0.4 and λrec = 0.6 for the other datasets, and deter-

mine the coefficient λint also by the grid search. This grid search gives the best

average F-score when λint is 0.8, 0.7, and 0.3, for the in-house colon, epithelium,

and tubule datasets, respectively. For the in-house colon, epithelium, and tubule

datasets, the metrics are plotted as a function of λint in Figures 4.18(b), 4.18(d),
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(a) (b)

(c) (d)

(e) (f)

Figure 4.18: Accuracy and average F-scores of UNet-C-multi as a function of λseg
(a) for the in-house colon, (c) epithelium, and (e) tubule datasets, respectively.
Accuracy and average F-scores of UNet-C-multi-int as a function of λint (b) for
the in-house colon, (d) epithelium, and (f) tubule datasets, respectively.
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and 4.18(f), respectively. The test set/fold results for these λint values are pro-

vided in Table 4.1. Here it is observed that the inclusion of the intermediate

layer losses does not help further improve the results. The reason might be the

following: The linear function, which is used by UNet-C-multi-int as well as by

the previous studies [12, 14], may not be the best way to combine these losses

and/or it may require a more thorough coefficient search. On the contrary, the

iMEMS method requires neither such an explicit joint loss function definition

nor such a coefficient search since its proposed united task intrinsically combines

these losses.

The comparison methods presented in quantitative and visual results are de-

signed and implemented in order to evaluate the effectiveness of the proposed

contributions. On the other hand, comparing the proposed iMEMS method with

recent studies using these publicly available datasets can reveal the holistic contri-

bution of the method to the digital pathology literature. To this end, we compare

iMEMS with two deep learning studies using the publicly available epithelium and

tubule datasets. The first study [105] employs a fully convolutional residual net-

work (FCRN) followed by a pyramid dilated convolution (PDC) module to obtain

multi-level and multi-scale contextual information. The second study [106] pro-

poses to use a recurrent residual convolutional neural network based on UNet

architecture (R2U-Net) for semantic segmentation. While the first study reports

only the average F-score, the second study reports the pixel-level accuracy in

addition to the average F-score.

The FCRN method firstly reports the F-score for their baseline model which

does not include the PDC module and the F-score is 0.8831 ± 0.02 for the ep-

ithelium dataset and 0.8242± 0.03 for the tubule dataset. Our proposed iMEMS

method leads to better results for both datasets than the baseline version of the

FCRN method. Next, the FCRN method augments the training data in both

datasets by applying transformations including rescaling and horizontal and ver-

tical flipping. In this data augmented version, the reported F-score is 0.8981±0.02

for the epithelium dataset and 0.8646±0.03 for the tubule dataset. In this setting,

while the iMEMS method obtains better results in the tubule dataset, the FCRN

method produces a higher F-score metric. At this point, it should be noted that
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this comparison may not be fair, as the iMEMS method has been trained with

a more deficient dataset than the comparison method. Lastly, the first study

reports the F-scores of the FCRN model including the PDC module trained with

the augmented datasets. The reported F-score is 0.9066 ± 0.01 for the epithe-

lium dataset and 0.8950 ± 0.02 for the tubule dataset. For both datasets, the

FCRN method including the PDC module gives higher F-scores than the iMEMS

method. By comparing the F-scores presented for the first method consecutively,

it is revealed that the performance of the FCRN method is increased essentially

by augmenting the dataset rather than the additional PDC module. A fairer com-

parison can be achieved by training the iMEMS method with a similar augmented

dataset.

Before applying the R2U-Net to the epithelium and tubule datasets, the au-

thors have cropped non-overlapping patches from original images in order to

obtain more samples and employ networks with less number of parameters. The

F-score and pixel-level accuracy are 0.9050 and 0.9254 for the epithelium dataset

and 0.9013 and 0.9031 for the tubule dataset, respectively. According to these re-

sults, the R2U-Net model produces higher F-scores and accuracy values than the

proposed iMEMS method for both datasets. It should be noted that the R2U-Net

applied semantic segmentation on the cropped patches and the presented metrics

were obtained on these cropped patches but not the entire images.

Lastly, in order to evaluate the effectivenes of the iMEMS method for cross-

organ segmentation, we segmented images in the epithelium and tubule datasets

with the iMEMS models trained on the tubule and epithelium datasets, respec-

tively. To this end, all images in the epithelium (tubule) dataset are first rescaled

to be in appropriate dimensions with the networks trained on the tubule (epithe-

lium) dataset. Then, the rescaled images in the epithelium dataset are segmented

using each of the five iMEMS models that was trained on each fold in the tubule

(epithelium) dataset. The quantitative results in Table 4.3 reveal that the iMEMS

method does not produce accurate segmentation maps in this new setting. The

reason might be the following: Since the epithelium dataset includes images of

breast tissues and the tubule dataset includes images of colon tissues, whose tis-

sue formations are different, the representation learned for one dataset cannot
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Table 4.3: F-scores and accuracies of the proposed iMEMS method for cross-
organ segmentation. (a) For the epithelium dataset, these are the average metrics
obtained on the five test folds trained on the tubule dataset. (c) For the tubule
dataset, these are also the average metrics obtained on the five test folds trained
on the epithelium dataset.

F-scores
Epithelium Backgr. Average Accuracy

iMEMS (trained on the epithelium dataset) 85.51 92.40 88.96 90.17

iMEMS (trained on the tubule dataset) 52.19 79.92 66.05 71.87

(a)

F-scores
Tubule Backgr. Average Accuracy

iMEMS (trained on the tubule dataset) 87.08 87.00 87.04 87.09

iMEMS (trained on the epithelium dataset) 60.64 65.39 63.01 63.80

(b)

sufficiently contribute to the segmentation of images in the other dataset.

4.2.3 Discussion

In Figures 4.7-4.17, it is observed that especially the comparison algorithms yield

many small segmented regions, which can be easily corrected by post-processing.

To understand how this affects the results, two different post-processing ap-

proaches are employed for the in-house colon dataset. The analysis is similar

for the other two datasets. First, the following simple post-processing algorithm

is applied to the segmentation maps obtained from the iMEMS method and com-

parison algorithms: Starting from the smallest one, each segmented region smaller

than an area threshold τ is merged with its smallest adjacent region. This merge

continues until there remains no region smaller than τ . The results reported in

Table 4.4(a) indicate that this post-processing is effective to increase the perfor-

mance. However, this increase is similar for all algorithms and does not change

the conclusion drawn from the comparative study. Note that this table reports the

average F-scores and the accuracies; both metrics show the same trend. The vi-

sual results presented in Figures 4.19-4.21 reveal that this simple post-processing

is effective in correcting small incorrect regions, but determining the τ threshold

inaccurately may cause the small regions that are already correctly segmented to
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be assigned to incorrect classes.

Conditional random fields (CRFs) have been frequently employed as a post-

processing step to refine the segmentation maps generated by FCNs [27, 79] since

they incorporate pair-wise potentials between adjacent image pixels. Thus, a fully

connected CRF [107], which considers pair-wise potentials on all pairs of pixels in

the image in a tractable algorithm, is used as the second post-processing method

for all competing methods. The quantitative results presented in Table 4.4(b)

show that using the CRF method as a post-processing step increases average

F-scores and accuracies almost evenly for all competing methods. On the other

hand, although the use of CRF improves the performance of all competing meth-

ods, it has some disadvantages in the context of the histopathological data used.

In Figures 4.19(h) and 4.21(h), the CRF method corrects small connective tis-

sue regions that are segmented incorrectly within normal and tumorous regions

and annotates them with the correct class label. However, in Figures 4.20(h)

and 4.21(h), connective tissue regions between normal and tumorous regions are

incorrectly annotated with normal or tumorous classes by the CRF method since

connective tissues occupy small regions between the two adjacent normal and tu-

morous class regions. Therefore, it is possible to say that, for datasets containing

small regions between two adjacent large regions annotated with different classes

or small regions annotated with a different class than their surrounding regions,

CRFs may incorrectly edit the segmentation maps provided by FCN methods.

4.2.4 Refining the iMEMS method with the DeepFeature

method

The iMEMS method is proposed to segment homogeneous regions in hetero-

geneous colon tissue images. Small segmented regions yielded by the iMEMS

method can be easily corrected with the simple and CRF post-processing meth-

ods presented in the previous section. On the other hand, these post-processing

methods may be insufficient for medium-sized and relatively large regions. In

order to correct such regions with a more robust method, one may consider to
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.19: For the in-house colon dataset, visual results on an example test
image after applying post-processing. (a) An original input image. (b) Its ground
truth segmentation map. (c) Segmentation map generated by iMEMS method.
Segmentation maps after applying the simple post-processing with different area
thresholds τ ; (d) τ = 5000, (e) τ = 10000, (f) τ = 25000, and (g) τ = 50000
pixels. (h) Segmentation map after applying the CRF post-processing.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.20: For the in-house colon dataset, visual results on an example test
image after applying post-processing. (a) An original input image. (b) Its ground
truth segmentation map. (c) Segmentation map generated by iMEMS method.
Segmentation maps after applying the simple post-processing with different area
thresholds τ ; (d) τ = 5000, (e) τ = 10000, (f) τ = 25000, and (g) τ = 50000
pixels. (h) Segmentation map after applying the CRF post-processing.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.21: For the in-house colon dataset, visual results on an example test
image after applying post-processing. (a) An original input image. (b) Its ground
truth segmentation map. (c) Segmentation map generated by iMEMS method.
Segmentation maps after applying the simple post-processing with different area
thresholds τ ; (d) τ = 5000, (e) τ = 10000, (f) τ = 25000, and (g) τ = 50000
pixels. (h) Segmentation map after applying the CRF post-processing.
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incorporate the DeepFeature method into the iMEMS method. To explore this

possibility, we have designed the following postprocessing method and applied it

to the results obtained on the in-house colon dataset. For that, first, salient sub-

regions are defined around cytological tissue components within the training and

test images of this dataset. Then, these subregions are characterized by learning

their local features using a DBN in an unsupervised way. These local features

are clustered by the k-means algorithm and each subregion is represented with

a cluster label with respect to its local feature vector. Unlike the homogeneous

dataset used in the DeepFeature study, the training and test images in the in-

house colon dataset contain regions belonging to different classes. Therefore, to

train the SVM classifier, a histogram of the subregion labels is calculated for each

region in the ground truth maps of the training images.

With the aforementioned approach, 266 regions of five classes are obtained

from 80 tissue images in the training set of the in-house colon dataset. Then, for

each test image, the segmentation map is estimated by the iMEMS method and

each segmented region R in this map is refined by this trained SVM classifier.

To this end, the salient subregions in each segmented region R are located, their

deep local features are calculated by the DBN and their cluster labels are found

based on these local features. Then, the histogram for region R is calculated on

these cluster labels and inputted to the SVM classifier. The output of the SVM

classifier is used as the new semantic label of this region R.

The visual results obtained by the proposed approach are presented in Fig-

ure 4.22. First of all, it should be noted that not only medium-sized regions

but also large regions within the test images are reclassified by the DeepFeature

method. According to the visual results, the DeepFeature method has also re-

classified large regions that were correctly classified by the iMEMS method in the

same way as successful. This reveals that the DeepFeature method gives accurate

results in relatively large regions containing sufficiently large number of salient

subregions, and hence, cluster labels. In the meantime, it is observed that in-

correctly segmented medium-sized regions, which represent the main purpose of

the proposed approach, are refined with the proposed approach. Medium-sized

regions that were incorrectly segmented by the iMEMS method within the large
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regions in Figures 4.22(a-d) are refined with the DeepFeature method and classi-

fied with the correct class label. In Figure 4.22(e), the region annotated as empty

by the iMEMS method is incorrectly classified as connective tissue by the Deep-

Feature method. The reason might be the following: Regions identified as empty

are frequently occurred within regions belonging to different classes, and in these

cases, they are annotated with the class label surrounding them. Since the Deep-

Feature method is trained on homogeneous regions independent of each other,

it does not take into account the context and neighborhood information of the

image and can make such erroneous classifications. Finally, it should be noted

that the small-sized regions do not contain sufficiently large number of salient

subregions, and hence, cluster labels, so the classification of these regions by the

DeepFeature method cannot produce reliable results. In these cases, it would be

more appropriate to use the annotations estimated by the iMEMS method.
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Chapter 5

Conclusion

Digital pathology aims to provide auxiliary tools for pathology in addition to

manual examination of histopathological images by expert pathologists in or-

der to prevent the error-prone human factor and overlong examination periods.

Advances in artificial intelligence and machine learning lead fast and accurate

methods to be used in digital pathology systems. Traditional machine learning

methods aim to perform histopathological image analysis with the handcrafted

features they define, but the performance of these methods is also directly depen-

dent on the quality of these handcrafted features, and hence, how these features

are defined. Deep learning methods, which are frequently employed in many fields

recently, extract these features from data directly. However, many deep learning

models proposed in the field of histopathological image analysis require annotated

data that are limited and difficult to obtain. To address these shortcomings, this

thesis introduces deep learning approaches for histopathological image analysis

to learn features directly from data instead of using handcrafted features and

incorporates unsupervised learning into the supervised objectives to avoid the

inadequacy of annotated data. In this regard, it introduces two deep learning

methods for the classification and segmentation of histopathological images by

exploiting unsupervised learning for feature extraction and training regularization

purposes.
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The first study presents a semi-supervised classification method for histopatho-

logical tissue images. As its first contribution, this method proposes to determine

salient subregions in an image and to use only the quantizations (characteriza-

tions) of these salient subregions for image representation and classification. As

the second contribution, it introduces a new unsupervised technique to learn the

subregion quantizations. For that, it proposes to construct a deep belief net-

work of consecutive RBMs whose first layer takes the pixels of a salient subregion

and to define the activation values of the hidden unit nodes in the final RBM

as its deep features. It then feeds these deep features to a clustering algorithm

for learning the quantizations of the salient subregions in an unsupervised way.

As its last contribution, this study is a successful demonstration of using re-

stricted Boltzmann machines in the domain of histopathological image analysis.

We tested our method on two datasets of microscopic histopathological images

of colon tissues. Our experiments revealed that characterizing the salient sub-

regions by the proposed local deep features and using the distribution of these

characterized subregions for tissue image representation lead to more accurate

classification results compared to the existing algorithms.

The second study proposed the iMEMS method that employs unsupervised

learning to regularize the training of a fully convolutional network for a super-

vised task. This method proposes to define a new embedding to unite the main

supervised task of semantic segmentation and an auxiliary unsupervised task of

image reconstruction into a single task and to learn this united task by a condi-

tional generative adversarial network. Since the proposed embedding corresponds

to a segmentation map that preserves a reconstructive ability, the united task of

its learning enforces the network to jointly learn image features and context fea-

tures. This joint learning lends itself to more effective regularization, leading to

better segmentation results. Additionally, this united task provides an intrinsic

way of combining the segmentation and image reconstruction losses. Thus, it

attends to the difficulty of defining an effective joint loss function to combine the

separately defined segmentation and image reconstruction losses in a balanced

way. We tested this method for semantic tissue segmentation on three datasets
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of histopathological images. Our experiments revealed that it leads to more ac-

curate results compared to its counterparts.

5.1 Future Work

The DeepFeature method uses the histogram of quantized salient subregions for

defining a global feature set for the entire image. One future research direction is

to investigate the other ways of defining this global feature set, such as defining

texture measures on the quantized subregions. Another research direction is to

explore the use of different network architectures. For example, one may consider

combining the activation values in different hidden layers to define a new set of

deep features. On an example application, we have discussed how the proposed

system can be used in a digital pathology setup. The design of sophisticated

algorithms for this purpose is another future research direction of this study.

The iMEMS method is proposed to segment a heterogeneous tissue image into

its homogeneous regions. Thus, it can be easily applied to segmenting tissue com-

partments in whole slide images (WSIs), as in the case of many previous studies.

To do so, a WSI can be divided into image tiles, on which the method predicts

the output. Alternatively, an image window can be slid on the WSI and the esti-

mated outputs can be averaged to obtain the final segmentation. This application

can be considered as one future research direction. The focus of this study is to

segment a histopathological image into its tissue compartments. It is possible

to extend this idea for the instance segmentation problem in histopathological

images. This extension may require modifying the embedding such that it also

covers additional supervised tasks (such as the task of predicting instance bound-

aries) that might be important for instance segmentation. The investigation of

this possibility is considered as another future research direction.

We also discuss how to incorporate both methods into a single one. For this

purpose, the DeepFeature method is used to refine the regions in the segmenta-

tion maps obtained by the iMEMS method since DeepFeature method is quite
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accurate in classifying homogeneous regions. On the other hand, as mentioned in

the previous subsection, the success of the DeepFeature method is directly pro-

portional to the size of the regions segmented by the iMEMS method and it may

not produce accurate classifications for small-sized regions. Therefore, in a future

work, the class label of one of the two methods can be chosen according to the

size of the segmented regions and the amount of salient subregions it contains.

In addition to this, in order to obtain a sufficiently large number of cluster la-

bels, the DeepFeature method can classify fixed-size windows in a sliding window

scheme instead of regions segmented by the iMEMS method. Then, final class

labels of pixels can be obtained by combining these classifications with a method

similar to majority voting.
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