
- HOLLAND

ABSTRACT METAPROLOG ENGINE

ILYAS C I C E K L I

t> A compiler-based meta-level system for MetaProlog language is presented.
Since MetaProlog is a meta-level extension of Prolog, the Warren Abstract
Machine (WAM) is extended to get an efficient implementation of meta-
level facilities; this extension is called the Abstract MetaProlog Engine
(AMPE). Since theories and proofs are main meta-level objects in
MetaProlog, we discuss their representations and implementations in
detail. First, we describe how to efficiently represent theories and deriv-
ability relations. At the same time, we present the core part of the AMPE,
which supports multiple theories and a fast context switching among
theories in the MetaProlog system. Then we describe how to compute
proofs, how to shrink the search space of a goal using partially instantiated
proofs, and how to represent other control knowledge in a WAM-based
system. In addition to computing proofs that are just success branches of
search trees, fail branches can also be computed and used in the reasoning
process. © Elsevier Science Inc., 1998 <1

1. INTRODUCTION

Meta-level facilities in logic programming languages provide explicit representation
of databases (theories), statements (clauses), derivability relationships between
theories and goals, and proofs. These facilities may also include explicit representa-
tion of the control knowledge used by the underlying theorem prover. This explicit
representation of meta-level objects and control knowledge may improve the
expressive power of the language and help to shrink the search space of a goal by
avoiding unnecessary searches.

Address correspondence to Ilyas Cicekli, Department of Computer Engineering and Information
Science, Bilkent University, 06533 Bilkent, Ankara, Turkey, Email: ilyas@cs.bilkent.edu.tr.

Received October 1995; revised April 1996; accepted January 1997.

THE JOURNAL OF LOGIC PROGRAMMING
© Elsevier Science Inc., 1998
655 Avenue of the Americas, New York, NY 10010

0743-1066/98/$19.00
PII S0743-1066(97)00075-7

170 I. CICEKLI

Many systems with some kind of meta-level facility are presented in the
literature [32]. Weyhrauch's FOL system [42, 43] builds up contexts (theories) by
declaring predicates, functions, constants, and variables, and defining axioms. In
that system, theorems are proved with respect to the axioms of a context and
proofs are recorded. In the OMEGA system [3], a metalanguage defines the syntax
of expressions and statements, viewpoints describe sets of assumptions, and the
consequence concept formalizes the derivability relationship between statements
and viewpoints. METALOG [17], an extension of Prolog, explicitly asserts control
knowledge separate from regular clauses in the system, and uses this control
knowledge when it chooses a literal from a goal list and a clause from the clause
database. Russell's MRS system [34] and the system developed by Gallaire and
Lasserre [20] also use some kind of explicitly represented control knowledge. The
system developed by Lamma et al. [22-24] for the contextual logic programming
[27] represents a set of Prolog clauses as a unit, and an ordered set of units as a
context. Nadathur et al. [30] create a new context, adding clauses in an implication
goal to the current context in their system. Some other researchers in the logic
programming community have sought meta-level facilities in meta-interpreters [11,
35, 37-39, 44] based on Prolog. Even standard Prolog [10, 16, 36] has some
meta-level facilities. The predicates assert and retract add and remove clauses from
a system-wide database by destroying the old version of that database. The meta
predicate call tries to prove an explicitly given goal with respect to the single
system-wide database. There are no notions of contexts in standard Prolog.

MetaProlog is a meta-level extension of Prolog that has evolved from the
research of Bowen and Kowalski [6, 7]. In MetaProlog, theories are made explicit
so that they can be manipulated like other data objects in the system. Once
theories are made explicit, deductions are made from these theories instead of a
single system-wide database. The basic two-argument demo predicate in MetaPro-
log is used to represent the derivability relation between an explicitly represented
theory and goal. Another meta-level facility in MetaProlog is dynamically con-
structed proof trees. They are collected by the system when a goal is proved with
respect to a theory by using the three-argument version of a demo predicate. A
given partially instantiated proof of a goal when the deduction of that goal is
started may shrink the search space of that goal.

The derivability relation in the system proposed by Bowen and Kowalski is
represented by a two-argument predicate demo between theories and goals. The
correctness and completeness of the derivability relation are expressed by the
reflection rule. For a theory T and a goal G, the reflection rule is as follows:

demo(T, G) iff G is derivable from T

Later, this rule provided the justification for the implementation of the derivability
relation as context switches in the MetaProlog system.

The Abstract MetaProlog Engine (AMPE) [14, 15], which efficiently implements
meta-level facilities in MetaProlog, is an extension of the Warren Abstract Ma-
chine (WAM) [1, 41]. This system provides mechanisms to represent and compute
control knowledge and meta-level facilities such as theories, proofs, fail branches,
and derivability relation. The AMPE runs in two different modes. The simple mode
of the AMPE supports multiple theories and the basic two-argument demo
predicate. In the proof mode of the AMPE, proofs and fail branches can be
computed and used to control the underlying theorem prover.

ABSTRACT METAPROLOG ENGINE 171

There can be many applications of meta-level facilities in a logic programming
language. An obvious application of proofs is the explanation facility of an expert
system. Collected proofs can be used to give justification about the behavior of a
rule-based expert system. Sterling describes a meta-level architecture for expert
systems in [40]. In [18], Eshghi shows how to use meta-level knowledge in a
fault-finding problem in logic circuits. Cicekli [15] shows how to use multiple
theories and fail branches in MetaProlog to express digital circuits and a fault
diagnosis algorithm on them. Bowen [8] describes how to use meta-level program-
ming techniques in knowledge representation.

This paper presents the design and implementation of a compiler-based system
for the MetaProlog programming language. The MetaProlog system presented here
provides efficient implementations of meta-level facilities in MetaProlog, such as
theories, proofs, fail branches, and derivability relations. The following four sec-
tions are reserved to explain the Abstract Meta Prolog Engine (AMPE) extended
from the WAM to get the efficient implementation of MetaProlog. Section 2
describes how multiple theories and the two-argument derivability predicate demo
are represented in the MetaProlog system, and Section 3 describes the core part of
the AMPE, which supports multiple theories in MetaProlog. The core part is used
in both modes of the AMPE. Section 4 describes the representation of proofs and
fail branches, which are the second most important meta-level objects after
theories in the MetaProlog system. Section 5 describes the proof mode of the
AMPE, which supports proofs and fail branches in the system. Finally, Section 6
compares our system with other WAM-based systems [22-24, 30] dealing with
contexts.

2. METAPROLOG THEORIES

Theories are the first meta-level objects to be addressed in many meta-level
systems. They are made explicit in these meta-level systems so that they can be
manipulated like other data objects. Since they are explicitly represented, we can
reason about them or we can discuss their characteristics. Since explicit representa-
tions of theories and statements are available, the provability relation between
them can also be explicitly defined.

In the MetaProlog system, theories represent sets of Prolog clauses. There can
be more than one theory in the system at any given time. A theory is created from
an old theory, and it is discarded when the need for that theory disappears. In fact,
when a theory is created, a variable is bound to its internal representation, and that
theory is only accessible in contexts where that variable is accessible. They are
treated in the same way as any other data structure in the system.

The provability relation holding between a theory and a goal is represented by a
two-place demonstrate predicate demo in the MetaProlog system. The relation
demo(Theory, Goal) holds precisely when Goal is provable in Theory.

Similar facilities for dealing with theories can also be found in the OMEGA
description system [3]. In the OMEGA language, viewpoints describe sets of
assumptions, and the consequence concept represents the derivability relationship
holding between viewpoints and statements.

Furukawa et al. [28] also use theories to represent logic databases, and they
implement the derivability relation between these logic databases and statements.

172 i. CICEKLI

Worlds in Nakashima's P r o l o g / K R system [29] are also very similar to theories in
the MetaProlog system.

Lamma et al. [22, 23] use contexts to represent multiple theories in a logic
programming framework. They also extent the Warren Abstract Machine to the
Context Warren Abstract (C-WAM) to handle multiple theories. In their system, a
context is created for the derivation of a goal, and it is automatically destroyed
after the derivation if the goal is deterministic. Similarly, a context in the system of
Nadathur et al. [30] is also created for the derivation of a goal, and it is discarded
afterward.

In the rest of this section, we will discuss how to create theories in the
MetaProlog system. We will also introduce a mechanism for representing theories
to provide fast access to predicates in theories. Another representation of theories
is also suggested in [4] and [5].

2.1. Creation of Theories

In Prolog there is only one theory, and all goals are proved with respect to this
single theory. On the other hand, there can be more than one theory in MetaPro-
log at a certain time, so that a goal can be proved with respect to one or more of
them. When the predicate demo(Theory, Goal) is submitted as a goal, the
MetaProlog system tries to prove Goal with respect to Theory. The same goal can
also be proved with respect to a different theory in the system.

Since there is a single implicitly represented database in Prolog, ad hoc methods
are used when there is a need to update this database. The built-in predicates
assert and retract update the Prolog database to create a new version of this
database by destroying the old version in the favor of the new version. On the
other hand, we do not need to destroy an old theory when we create a new one
from that theory in the MetaProlog system.

Theories of the MetaProlog system are organized in a tree whose root is a
distinguished theory, the base theory. The base theory consists of all built-in
predicates, and all other theories in the system are its descendants; i.e., all built-in
predicates in the base theory can be accessed from all other theories in the system.

In Figure 1, theories T1 and T2 are created from the base theory. These
theories inherit all predicates of the base theory. Similarly, theories T3 and T4 are
descendants of the theory T2. Although the arrows in Figure 1 represent the father
relation between theories, the father relation is not used in the actual implementa-
tion of theories. Instead of the father relation, the default theory relation between
theories is used in the representation of theories. The default theory relation will
be explained in Section 2.3.

A new theory is created from an old theory by adding or dropping some clauses.
The new theory inherits all of the procedures of the old theory, except for
procedures explicitly modified during its creation. The system can still access both
the new theory and the old theory. The following built-in predicates are used to
create new theories in the MetaProlog system:

addto(OldTheory, Clauses, NewTheory)

dropfrom(OldTheory, Clauses, NewTheory)

ABSTRACT METAPROLOG ENGINE 173

• T1

~,~. base theory

O . T 2

O" T3 " ~ T4

FIGURE 1. A theory tree in the MetaProlog sys-
tem.

The given clauses (Clauses) are added to (dropped from) the given old theory
(OldTheory) to create a new theory (NewTheory) by the predicate addto (dropfrom).
The variable NewTheory is bound to the internal representation of the new theory
after the execution of one of these commands. Let us assume that p is a procedure
in NewTheory. The clauses of p are exactly the same as clauses of p in OldTheory,
if p does not contain any clause in Clauses. Otherwise, the clauses of p in
NewTheory consist of the clauses in OldTheory and Clauses, which belong to p if
NewTheory is created by the addto predicate. If NewTheory is created by the
dropfrom predicate, the clauses of p contain all clauses of p in OIdTheory except
the clauses that appear in Clauses.

The first argument of the addto (dropfrom) predicate is a theory (a theory name
or a variable bound to the internal representation of a theory), the second
argument is a list of clauses, and the third argument must be an unbound variable
that is going to be bound to the internal representation of the new theory after the
successful execution of the addto (dropfrom) predicate. Both predicates create a
completely new theory with a unique theory identifier in its internal representation.
This means that any two theories with two different internal representations are
not unifiable in our system, even though they may contain exactly the same clauses.
In fact, this is the reason why the last argument of these predicates must be an
unbound variable. Two theories can be unifiable only if they have the same internal
representations.

2.2. Permanent Theories

After a new theory is created in the MetaProlog system from an old theory that
already exists in the system, normally a variable is bound to the internal represen-
tation of the new theory. We can access the new theory by using this variable, and
this variable should be passed to places where that theory must be accessed.
Sometimes, passing this variable to many places is not very practical. For this
reason, some theories in the MetaProlog system are given global names, and they
can be referred to by using their names anywhere in the program. These theories
are called permanent theories.

Permanent theories are always present in the system, and they can be accessed
via their names. On the other hand, a temporary theory, a theory without any name,
is only accessible in the environments where there exists at least one variable
bound to its internal representation. A temporary variable is accessible in the
MetaProlog system as long as there is a variable bound to its internal representa-
tions. Although the space occupied by a permanent theory cannot be reclaimed by
the system, the space occupied by a temporary theory may be reclaimed during

174 i. CICEKLI

backtracking, or by the garbage collector if that theory is no longer accessible. In
fact, the life cycle of a temporary theory is similar to the life cycle of a structure in
the heap.

A permanent theory can be created by using the built-in predicate consult, or a
temporary theory can be converted into a permanent theory by using the built-in
predicate nameof. For example, when the goal consult(FileName, TheoryName) is
executed, a new theory that contains all predicates in the given file is created, and
the name TheoryName is assigned to it. The built-in nameof(Theory, TheoryName)
can convert the temporary theory designated by Theory into a permanent theory,
and the name TheoryName is assigned to it. Afterward, this permanent theory can
be accessed via its name at any time.

2.3. Default and Nondefault Theories
Theories in the MetaProlog system are classified into two groups: default theories
and nondefault theories. Every theory in the MetaProlog system possesses a default
theory, except for the base theory. The default theory of a theory is the theory in
which we search for a procedure if the given theory does not know anything about
that procedure. The search starts from a node of the theory tree and proceeds with
default theories along a certain branch until the procedure is found or the root of
the tree is reached.

A nondefault theory is a theory that carries complete information about all
procedures that are modified in all nondefault ancestor theories between this
theory and its default theory. Access to these procedures is very fast, at the
expense of copying pointers to these procedures during the creation of a theory
from a nondefault theory. Each theory T (default or nondefault) has a pointer to
its default theory DT, which happens to be the first ancestor default theory working
from T. The descendants of a default theory D do not carry any information about
the procedures occurring in D. In other words, the default theory D stops any
further propagation of information about procedures from its ancestors to its
descendants. If only default theories are used, access to a given procedure in a
given theory may require a search through all of its ancestor theories. In this case,
access to a procedure may be slow, but no copying of references is needed.
Depending on the problem, the system tries to use one or the other approach, or a
combination of both to achieve a balance between the speed of access and the
space overhead.

When a new theory T is created from a nondefault theory N, the default theory
of T will be its father's default theory; i.e., T's default theory will be N's default
theory. But if a new theory is created from a default theory, its default theory will
be its father. In the first case, the new theory will be at its father's level in the tree.
In the second case, the new theory will be at one level above its father's level. Thus
we do not need to increment the depth of the tree when a new theory is created
from a nondefault theory. In Figure 2a, a theory T2 is created from a default
theory DT1. The father of T2 and the default theory of T2 are the same theory. On
the other hand, when a theory T2 is created from a nondefault theory NDT1 (cf.
Figure 2b), the father of T2 is different from the default theory of T2.

The naive approach is to have all of the theories in the system be default
theories. In this case, the default theory relation between theories is the same as

ABSTRACT METAPROLOG ENGINE 175

• DT1 ~ DT1

T2

(~ : nondefault theory
• : default theory

--~ : father relation
: default theory relation

I DT ----~

NDT1
~ DT

NDT1

M--(D T2

a. From A Default Theory b. From A Nondefault Theory

FIGURE 2. Creation of a theory from default and nondefault theories.

the father relation 1 between them. This situation can be seen in Figure 3. In this
approach, when a new theory is created, it will be at one level above its father 's
level, because all theories are default theories. Thus the theory tree can become
very deep, which explains why a search for a procedure can be expensive. For
example, to reach the procedure "p" from theory T4, it is first searched for in
theory T4, where it does not exist. Then it is searched for in theory T2, and finally
it is found in theory T1. Thus, to access the procedure "p" from theory T4, we have
to search for it in three theories.

To shorten the depth of the theory tree, we introduce nondefault theories. I f
there is at least one nondefault theory in the system, this situation is called the
nondefault theory approach. In this approach, the default theory of a given theory
can be one of its remote ancestors instead of its father. In fact, when a new theory
T2 is created from a nondefault theory T1, the father of T2 will be different from
the default theory of T2. If no theory is created from any nondefault theory, the
theory tree will be the same as the theory tree in the naive approach. The
advantage of the nondefault theory approach is apparent when we start to create
theories from nondefault theories. At that time, the depth of the tree will not grow
fast, and the search for procedures will generally be shorter.

Figure 4 shows the tree of theories of Figure 3 in the nondefault theory
approach. We assume that the only default theory is the base theory, and theories
T1, T2, T3, and T4 are nondefault theories. In this tree, reaching a procedure is
much faster than reaching the same procedure in the tree of the naive approach.
For example, to access the procedure "p" from theory T4, it is sufficient to search
only T4, since a pointer to the procedure "p" was copied into T2 and T4 during
their creations. On the other hand, in the naive approach we had to search three
theories to access the same procedure.

The price we pay for fast access to procedures in the nondefault theory
approach is that we have to copy references to procedures of nondefault theories
into their descendants. However, since we copy only a reference for each proce-
dure into the new theory, this copying operation does not cost too much.

1 Internally, there is no father relation in the system. Only the default theory relation between
theories is present.

176 I. CICEKLI

~ . base theory

i p(1)

, . :~ .TI: {p(:)}

• "~rq(a) "..+p(2)

2: {q(a)} T3: (p(1),p(2)}

I" +q(b)
• • : default theory

• • ~ : father relation
T4: {q(a),q(b)}

: default theory relation

FIGURE 3. A t h e o r y tree in the na ive approach•

The system should decide which theories ought to be default theories and which
ones ought to be nondefault theories• To get the best performance from this
approach, the theories with many procedures should be default theories, and the
theories with few procedures should be nondefault theories• The decision of the
system depends on this observation. The system assumes that a theory T is a

-- _'A base theory r f ~ T '

+p(1)

. ' - ~ . T 1 : {p(1)}

• "Jrq(a) • .+p(2)

(T2: {p(1),q(a)}

i +q(b)

T3: {p(1),p(2)}

O : nondefault theory

• : default theory

• .* : father relation
T4: {p(1),q(a),q(b)}

: default theory relation

FIGURE 4. A t h e o r y tree in the n o n d e f a u l t t h e o r y approach.

A B S T R A C T M E T A P R O L O G E N G I N E 177

default theory if it contains more procedures than a threshold number of proce-
dures. In other cases, the system assumes that theory T is a nondefault theory. Of
course, this decision can also be left to the user.

2.4. Context Switching

Since multiple theories are allowed in MetaProlog, we have to know at any time
which context the system is in, and how to switch to another context whenever
necessary. The MetaProlog system always runs in a certain context (also called the
current theory), and all goals are proved with respect to this current theory. To
prove a goal with respect to a certain theory T, first the context (current theory) is
switched to T, and then the goal is proved with respect to the current theory.

In the MetaProlog system, there are two ways to switch context from one theory
to another. The first one, called temporary context switching, is the context switching
operation done by the predicate demo. The command demo(Theory, Goal) switches
the context to Theory, and then Goal is proved with respect to the current theory.
After the execution of this command, the context is automatically switched back to
the previous context. The predicate demo can be defined in Prolog as follows:

demo(Theory, Goal):-
context(PreviousContext),
switch_context(Theory),
call(Goal),
switch_context(PreviousContext).

where the context predicate gets the current theory in which the system is currently
running, and switch_context is a low-level system predicate that switches the
context to the given theory.

The second one, called permanent context switching, is the context switching
operation done by the setcontext predicate. The command setcontext(TheoryName),
which is normally executed at the top level to define the context of the top level of
the MetaProlog system, switches the context to the theory designated by Theory-
Name. After the execution of this command, the context is not switched back to the
previous context. Of course, the context can be switched to another theory by
submitting another setcontext command. The setcontext predicate can only be used
with permanent theories (theories with names).

3. ABSTRACT METAPROLOG ENGINE

In 1983, Warren published a paper [41] describing an abstract machine for Prolog
execution that consists of an abstract instruction set and several data areas on
which the instructions operate. The model described in that paper for Prolog
execution is now known as the Warren Abstract Machine (WAM). Many re-
searchers in the logic programming community recognized the fact that the WAM
represented a breakthrough in the design of Prolog systems and other computa-
tional logic systems. In fact, many commercial [2, 31] and noncommercial [9, 33]
Prolog systems based on the WAM have been implemented after the introduction
of the WAM. A full description of the WAM can be found in [1, 41]. After this
point, we will assume that the reader is familiar with the WAM.

178 I. C1CEKLI

One of the main goals in our project was to achieve efficient implementation of
MetaProlog. Since MetaProlog is an extension of Prolog, the best starting point
was the WAM. For this purpose, the WAM was extended to an Abstract MetaPro-
log Engine (AMPE). Along the way, our own version of a WAM-based Prolog
system [9] was created and then extended to the current MetaProlog system.

The AMPE can run in two different modes. The first one is the simple mode, in
which the system runs when a two-argument demo predicate is encountered. The
system runs in the proof mode when a three-argument or a four-argument demo
predicate is encountered. The system can not only prove a goal with respect to a
theory, but also collect the proof when it runs in the proof mode. Since the proof of
a goal is collected when the system is in the proof mode, the system runs more
slowly. However, the simple mode does not carry the burden of the proof mode.
When it is needed, the system will switch from one mode to another during
execution. The core part of the AMPE described in this section is used in both
modes. But there are also extra features of the AMPE that are only used when it is
in the proof mode. Proofs and their implementation are explained in Sections 4
and 5.

The core part of the AMPE is responsible for supporting multiple theories in
the MetaProlog system. Since the MetaProlog system should be able to switch from
one theory to another theory during execution, a fast context-switching mechanism
is needed in the MetaProlog system. This task is accomplished by a theory register
in the AMPE. This theory register is also saved in choice points, so that the context
can be restored during backtracking.

Theories can be created on the fly during execution and discarded when the
need for them disappears. So, the storage allocated for these theories should be
reclaimed after they are discarded. In other words, their treatment should be
similar to the treatment of structures and lists in the system. This observation
suggests that the code area and the heap of the WAM should be integrated as a
single data area in the AMPE.

The AMPE performs most of the functions of the WAM, but it also has some
extra features to handle multiple theories of MetaProlog. These extra features of
the AMPE in the simple mode are as follows:

1. A different memory organization, which is more suitable to handling com-
piled procedures and theories as data objects of the system.

2. Extra registers to handle theories in MetaProlog.
3. Functions of the procedural instructions in the AMPE that are different from

their functions in the WAM.
4. A failure routine that should be able to switch to the proof mode during

failure if it is necessary.

In the rest of this section, the core part of the AMPE will be discussed. In this
discussion, the AMPE is widely compared with the WAM to explain similarities
and differences between them.

3.1. Memory Organization of the AMPE
The memory of the AMPE is divided into three consecutive areas (Figure 5). The
heap and the local stack grow from low memory to high memory, and the trail
grows from high memory to low memory.

ABSTRACT METAPROLOG ENGINE 179

Trail

Local
Stack

Heap

high memory

low memory

FIGURE 5. Memory organization of the AMPE.

The function of the local stack and the trail is the same as their function in the
WAM, except that choice points carry extra information. Every choice point,
whether it is created when the system is in the simple mode or in the proof mode,
carries extra locations to store the current context (theory) and the current mode
of the system. Choice points and environments that are created when the system is
in the proof mode also carry extra information about proofs or branches. The
implementation of proofs and branches is explained in Section 5.

The AMPE does not have a separate area in which to store code as the WAM
does. Instead, the code area and the heap are integrated as a single data area in
the AMPE. The heap holds compiled procedures and theory descriptors in addition
to structures and lists. Compiled procedures and theory descriptors are represented
by boxes, which are explained in Section 3.4.

Since the built-in predicates addto and dropfrom are backtrackable, the space
held by the code created by these built-in predicates should be reclaimed during
their failure. For example, the command addto(T1, [p(1), p(2)], T2) creates theory
T2 by adding two clauses, namely p(1) and p(2), to theory T1. So it creates a new
theory descriptor for T2, two compiled clauses, and an indexing block for the
procedure p/1 on the heap. If backtracking occurs, theory T2 will be discarded,
and all of the space used will be reclaimed if the space is not protected by another
data structure in the heap. If the space is protected, it can be recovered during
garbage collection. In other words, all unused space (held by theory descriptors,
compiled procedures, or other data structures) in the heap can be reclaimed during
backtracking or garbage collection.

3.2. Machine Registers

The AMPE has all the registers the WAM has, and it uses two extra registers to
handle theories, and two registers to indicate the current mode of the AMPE.
These are the only four new registers used when the system is in the simple mode.
There are other extra registers used in the AMPE when the system is in the proof
mode.

The registers that are the same as the WAM registers perform the same
functions in the AMPE. For example, the program counter (P in the WAM) still
points to the instruction to be executed, and the last choice point register (B in the
WAM) still points to the last choice point in the local stack. Since the code area

180 L CICEKLI

and the heap in the WAM are integrated as a single data area in the AMPE,
registers P and CP (program continuation pointer) point to this single data area in
the AMPE.

The first new register is the theory register TH, which holds a pointer to the
internal representation of a theory of the system. The register TH holds the
current theory of the system, in which a procedure is searched for when a call to
that procedure is encountered. The value of the TH is changed when the context of
the system is switched to another context by the predicates demo or setcontext. The
theory register TH is also saved in choice points, so that it can be restored from the
value saved in the last choice point during backtracking.

The second register, the theory counter register CTH, is simply a counter that
holds the next available theory-id, which is an integer. The function of the theory
counter register CTH is to produce a unique theory-id for each theory in the system.
When a new theory is created, this register is automatically incremented to hold
the next available theory-id.

The control register CTR indicates the mode of the AMPE, and the control
information register CTRInfo holds control information. When the system is in the
simple mode, the register CTR contains flags indicating whether the system is in
the simple mode, or it is in the proof mode and skipping the proof 2 of a goal.
Information in registers CTR and CTRInfo is only used to decide whether the
system has to switch to the proof mode or not during a failure when the system is
in the simple mode. The function of these registers in the proof mode and failure
routines in both modes are explained in detail in Section 5. These registers are also
saved in choice points, so that the system can switch from one mode to another
during backtracking.

3.3. Procedural Instructions

A MetaProlog program is directly compiled into instructions of the A M P E in the
same manner as a Prolog program is compiled into instructions of the WAM. The
instruction set of the A M P E is the same as the instruction set of the WAM, except
that the functions of the procedural instructions differ from their functions in the
WAM. Since each procedure in the WAM can be uniquely determined by its name
and its arity, its address can be directly found when a call or an execute instruction
is executed. On the other hand, when a call or an execute instruction is executed in
the AMPE, the procedure is searched for in the current theory, which lives in the
theory register TH. If the procedure is not found in the current theory, it is searched
for in the default theory of the current theory, which is one of the ancestors of the
current theory. A procedure is searched for among procedures of a theory using a
hash function. This search continues recursively through default theories until the
procedure is found, or backtracking occurs if it cannot be found. Figure 6 presents
the search algorithm used to find a location of a procedure in instructions call and
execute.

2 Before the AMPE starts to skip the proof of a goal, it switches from the proof mode to the simple
mode, and it runs in the simple mode until execution of that goal is completed. Then it switches back to
the proof mode.

ABSTRACq" METAPROLOG ENGINE 181

search_proc(Proc) {
/* move the current theory into a temporary register T * /
T ~ TIt ;
do {

if Proc is found in T
then {

Loc ,--- location of Proe in T;
return(Loc); }

else
T ,-- default theory of T;

} while {T is not the base theory}
/* Search is failed * /
Fail; }

FIGURE 6. Theory search algo-
rithm.

Although only the functions of the procedural instructions are different from
their functions in the WAM when the system runs in the simple mode, the
functions of some other instructions are also different from their functions in the
WAM and in the simple mode of the AMPE when the system runs in the proof
mode. In fact, the functions of the procedural instructions in the proof mode also
differ from their functions in the simple mode. The functions of those instructions
in the proof mode are presented in Section 5.

3.4. Data Types

Data types in the AMPE are similar to Warren's data types in the WAM, except
that we have one extra data structure to hold untagged data, such as compiled
clauses or theory descriptors. Untagged data in the AMPE, called box, are sealed
between two tagged words.

Each object in the AMPE is represented by one or more 32-bit words. The low
two, four, or eight bits of a word can be used as a tag. Two-bit tags are used to
represent pointer data types such as references, structure (or box) addresses, and
list addresses. An unbound variable is represented by a reference to itself. Four-bit
tags are used to represent nonpointer one-word objects such as integers and
functors. Eight-bit tags are used to represent objects consisting of more than one
word; these are boxes. The low four bits of an eight-bit tag indicates that the object
is a box, and the next four bits of the tag indicates the type of that box.

A box consists of consecutive words of memory such that the first and last words
are box headers. Words between these box headers are untagged, and their formats
depend on the type of box in question. Although the interior part of a box normally
holds untagged words, it can also hold tagged words. Those tagged words should be
located at word boundaries, and their positions in the box should be determined by
the type of box. A box header is a word in the following format:

] box box
size of box type tag

The box tag shows that the word is a box header, and the box type shows the type
of that box. The rest of the box header holds the size of that box in words. The
format of the interior part of a box depends on the type of the box.

182 I. CICEKLI

size of compiled clause i compiled i bo x j I
I [clause tag

WAM Instructions
for the clause

size of compiled clause [compiled [box
I I clause tag

FIGURE 7. A compiled clause box.

For example, the box given in Figure 7 represents a compiled clause. The box
headers at the beginning and at the end of the box show that it is a box for a
compiled clause. The untagged part of that box contains WAM instructions for the
clause, including indexing instructions such as try_me_else, retry_me_else, or
trust_me_else as the first instruction of the clause.

Similarly, theory descriptors, index blocks, try-retry-trust blocks, and floating
point numbers are represented by boxes. Of course, the formats of their untagged
portions are different from each other. A theory descriptor contains a theory-id
that uniquely identifies that theory, a pointer to its default theory, and pointers to
compiled procedures belonging to the theory. A try-retry-trust block is a box whose
untagged portion consists of a sequence of try, retry, and trust instructions. The
untagged portion of an index block contains a switch-on_term instruction together
with sequences of try, retry, and trust instructions.

The box header at the end of a box may appear unnecessary to the reader, but it
plays an important role during garbage collection. It helps to identify the box when
the heap is searched from top to bottom during garbage collection.

4. PROOFS

In MetaProlog, not only can goals be proved with respect to different theories, but
their proofs can also be collected for future use. A proof is normally computed by
execution of a three-argument demo predicate. A three-argument demo predicate
represents a derivability relation between a theory and a goal with a certain proof.
For example, if the command demo(Theory, Goal, proof(Proof)) is executed by the
system, the variable Proof is bound to the proof of Goal in Theory.

Proofs are meta-level objects that have many applications in artificial intelli-
gence, such as producing explanations in an expert system. For example, let
Carexpert be a theory that represents an expert program written in MetaProlog to
determine troubles in a given car. To find the problem in a given car, the following
goal may be submitted:

demo(Carexpert, find_trouble(Car, Problem)). (4.1)

The variable Car is an input theory that contains information about a specific car
or asks questions to get information about that car. The procedure find-trouble of
the theory Carexpert finds the problem in a given ear and returns Problem as an
output. When the two-argument demo predicate in (4.1) is successfully executed,
the trouble in the given car is found. The system can find the trouble in the given

ABSTRACT METAPROLOG ENGINE 183

car by using the two-argument demo predicate, but it cannot explain how it finds
that trouble. To get the proof describing how Carexpert finds the trouble, the
following goal should be submitted:

demo(Carexpert, find-trouble(Car, Problem), proof(Proof)). (4.2)

After the execution of this goal, the variable Proof will be bound to the proof of
the predicate find-trouble in the theory Carexpert. The explanation for how
Carexpert finds the trouble in the given car can be given later by examining Proof.
We get this proof without any changes to the expert program Carexpert.

In the example above, Proof is a variable that is bound to the proof of the
predicate find_trouble after the execution of the three-argument demo predicate
in (4.2). However, Proof can also be partially instantiated to a proof before that
goal is submitted. For example, assume that the procedure find_trouble can find
out any kind of trouble in a given car. But we only want to find out troubles in its
cooling system. To achieve this, we can instantiate Proof to a partial proof that
forces the system to look for only trouble in the cooling system. In this case, we still
do not need to change anything in the expert program Carexpert, but we can force
the system to look for certain kinds of problems by giving a partial proof.

4.1. Structure of Proofs
The proof of a goal G in MetaProlog is a list whose head is an instance of G, and
whose tail is a list of proofs of its subgoals. Of course, if it does not have any
subgoals, its proof will be a singleton list. In Figure 8, patterns of proofs in two
different cases are shown. In the first case, since the goal G is unified with a fact,
the head of the proof of G is an instance of G, and the tail of proof is an empty list.
In the second case, since G is unified with the head of a clause with one or more
subgoals in its body, the tail of the proof of G is the list of subproofs of subgoals in
that clause.

For example, let Carexpert be a theory containing the clauses given in Figure 9a.
That theory represents a very simple expert program that finds the problem in a
given car and suggests a solution to repair that problem. Clauses given in Figure 9b
represent a problem in a specific car. To get a repair suggestion for the problem
given in Figure 9b together with the proof of how that suggestion is found by the
system, the following goal can be submitted:

demo(Carexpert, repair suggestion(Car, Suggestion), proof(Proof)). (4.3)

After the execution of the three-argument demo predicate in (4.3), the variable
Suggestion is bound to a term that represents a repair suggestion, and the variable
Proof is bound to the following proof, which represents how the system gets that

Case I Case 2

Goal G: p(X)
Clause : p(a).
Proof : [p (a)]

Goal G: p(X).
Clause : p(b) :- q(X), r(X).
Proof : [p(b), <proof of q(X)>, <proof of r(X)>]

FIGURE 8. Structure of proofs.

184 I. CICEKLI

repair-suggestion(Car,Suggestion) :-
find_trouble(Car,Problem),
get-suggestion(Problem, Suggestion).

get-suggestion(water_leak(Source), replace(Source)) :- hose(Source).
get-suggestion(water_leak(clamp), tighten(clamp)).
get -suggestion(oil-leak(oil.pan_bolt), replace(oil_pan_bolt)).

hose(radiator-hose).
hose(bypass_hose).

find_trouble(Car,Problem) :- check-cooling.system(Car,Problem).
find_trouble(Car,Problem) :- check-oil-system(Car,Problem).

check_cooling2ystem(Car,waterdeak(Source)) :-
demo (Car,leaking (water)),
demo(Car,leaking_from(Source)).

check_oil-system(Car,oil_leak(Source)) :-
demo(Car,leaking(oil)),
demo(Car,leaking-from(Source)).

a. Theory Carezpert

leaking(water).
leaking.from(radiator_hose).

b. Theory Car
FIGURE 9. Theories for a simple expert system.

suggestion:

[repair_suggestion((theory car) , replace(radiator_hose)),
[find_trouble((theory car ~ , water_leak(radiator_hose)),

check_cooling_system((theory car), water-leak(radiator-hose)),
[demo((theory car ~, leaking(water)), [leaking(water)]]
[demo((theory car), leaking_from(radiator_hose)),

[leaking_from(radiator_hose)]]]]
[get-suggestion(water-leak(radiator-hose), replace(radiator-hose)),

[hose(radiator-hose)]]].

The head of the proof list above is an instance of our original goal in (4.3), and
its tail is a list of proofs of subgoals of that goal. In the proof list above, (theory
car) is a theory descriptor representing the theory Car in Figure 9b. After the
proof above is collected by the system, an explanation can be given for why the
system gets that repair suggestion by analyzing the collected proof. We can also
submit the goal in (4.3) with a partial proof as follows:

demo(Carexpert, repair-suggestion(Car, Suggestion),
proof([repair--suggestion(Car , Suggestion),

[find_trouble(Car, Problem),
[check-oil_system(Car, Problem) l SubProof]]

I RestofProof])).

In this case, the third argument of the demo predicate is a partial proof that
forces the system to look only for the trouble in the oil system of the given car.

ABSTRACT METAPROLOG ENGINE 185

After a successful execution of that goal, the partial proof is completed by the
system. If there is no solution in the form given in the partial proof, the goal fails,
even though there may be solutions in some different form.

4.2. Skipping Proofs

When a three-argument demo predicate, demo(T,G, proof(P)), is successfully
executed, the variable P is bound to a proof of G in T. This proof contains the
proofs of all subgoals of G. Although proofs are useful in many applications, all
details of proofs may be unnecessary in some cases. We should not pay the extra
cost to collect these unnecessary parts of proofs in those cases.

In the MetaProlog system, certain subproofs of a proof can be skipped by using
a four-argument demo predicate instead of a three-argument demo predicate. The
fourth argument of this demo predicate contains control information about sub-
goals of the goal given in that demo predicate. This control information is a list of
procedures whose proofs are skipped during the execution of the given goal.
Continuing with our Carexpert example in the previous subsection, let us assume
that we are only interested in how the system gets a repair suggestion for a
problem, but we do not care how it finds that trouble in a given car. In other words,
we do not care about the proof of the subgoal, find-trouble(Car, Problem). To skip
the proof of that subgoal, the following four-argument demo can be submitted:

demo(Carexpert, repair_suggestion(Car, Suggestion),
proof(Proof), skip([find_trouble /2])).

During the computation of the goal above, the proof of the procedure find_trouble
is skipped (i.e., its proof is not collected), and the proof of the goal is bound to the
following term:

[repair-suggestion((theory car), replace(radiator-hose)),
[find_trouble((theory car), water_lead(radiator-hose))[(skipped proof)],
[get_suggestion(water_leak (radiator_hose), replace(radiator_hose)),

[hose(radiator-hose)]]].

In the proof term above, (skippedproof) is a constant that represents a skipped
proof.

4.3. Fail Branches

In the previous sections, only proofs that are just success branches in a search tree
are discussed. In this section, fail branches of a search tree and how they are
collected in the MetaProlog system are discussed.

When the following three-argument demo predicate is executed in the MetaPro-
log system, Branch is bound to the leftmost branch of the search tree of Goal
relative to Theory:

demo(Theory, Goal, branch(Branch)).

Backtracking into this demo predicate will cause Branch to be bound to the
successive branches of the search tree. This branch can be a success branch (proof)
or a fail branch of the search tree.

186 I. CICEKLI

1. p(X,Y):-q(X,Y).

2. p(X,Y) :- q(X,Z), q(Z,Y).

3. q(a,b).

4. q(b,c). *-- p(X,Y)

2

,-- q(X,Y)

/

S u c c e s s s u c c e s s

{X=a,Y=b} {X=b,Y=c}

-- q(X,Z),q(Z,Y)

*--- q(b,Y) *-- q(c,Y)

< \ 4
failure success failure failure

{X=a,Y=c}

FIGURE 10. A trivial theory and its search tree.

In Figure 10, a trivial theory T and a search tree of the goal p(X, Y) relative to
theory T are given. In the search tree, there are three success branches and three
fail branches. After the execution of demo(T, p(X, Y), branch(Branch)), the vari-
able Branch is bound to the leftmost branch of the search tree. The branches in
Figure 10 are represented in the MetaProlog system as follows:

I st Branch : [p (a, b) , [q (a, b)]]

2nd Branch: [p(b, c), [q(b, c)]]

3 ra Branch: [p (a , Y) , [q (a , b)] ,
4 th Branch : [p (a , c) , [q (a , b)] ,
5 th Branch: [p (b , Y) , [q (b , c)] ,
6 th Branch : [p (b , Y) , [q (b , c)] ,

[q(b, Y), fail]]

[q(b, c)]]

[q(c, Y), fail]]

[q(c, Y), fail]].

Each fail branch has exactly one atomic fail subbranch. An atomic subbranch is a
list whose head is a subgoal and whose tail is the list [fail]. For example, the atomic
fail branch of the third Branch above is the following term:

[q(b, Y), fail].

An atomic fail branch separates a fail branch into two parts. The first part is the
collected part of the fail branch, and the second part is the uncollected part of the
fail branch. Even though fail branches are not completely collected, their collected
parts are enough to give the reason for that failure. The collected part will reflect
all unifications occurring before the failure, and the atomic fail subbranch will
reflect the exact location of that failure.

5. PROOF MACHINE

The system normally switches from the simple mode to the proof mode when it
encounters a three-argument or four-argument demo predicate when it is running
in the simple mode. Of course, if the system encounters those predicates in the

ABSTRACSr M E T A P R O L O G E N G I N E 187

proof mode, it stays in the proof mode. In the proof mode, a success or fail branch
of a goal is also collected as it is developed by the underlying theorem prover. The
system can also be forced to collect certain specified branches of the search tree
of a goal by giving a partially instantiated branch in the three-argument or four-
argument demo predicate.

In the proof mode of the AMPE, extra mechanisms are used to support proofs
in MetaProlog, in addition to the mechanisms used in the simple mode for the
implementation of multiple theories and context switching among these theories.
The simple mode of the AMPE may be called the simple machine, and the proof
mode of the AMPE the proof machine after this point. The proof machine assigns
different meanings to the procedural instructions, and it uses extra registers to
handle proofs in addition to the basic mechanism used in the simple mode of the
AMPE. In the rest of this section, properties of the proof machine are discussed.

5.1. Registers in the Proof Mode

The proof machine uses two new extra registers to collect proofs. The first one, the
proof register Pr, points to the part of the proof that is currently being collected by
the system. The second one, the continuation proof register CPr, points to the part
of the proof that will be collected by the system after the part of the proof
indicated by the proof register Pr is collected. There is a very close analogy
between the proof register Pr and the program pointer register P, as well as
between the proof continuation register CPr and the continuation program pointer
register CP.

These two new registers are initialized with parts of a proof template for
oncoming proof computation when a three-argument or four-argument demo
predicate is executed. The values pointed to by these registers are unified with
parts of proofs when the procedural instructions are executed in the proof mode.
Section 5.2 explains how they are exactly handled by procedural instructions.

The continuation proof register CPr is also saved in environments by the
allocate instruction, and restored by the deallocate instruction in the proof mode.
Environments created in the proof mode are marked by a bit to show that they
were created in the proof mode. The existence of this mark bit does not lead to any
overhead in the simple mode, because this mark bit is only used in the proof mode
or during garbage collection [13].

Choice points created in the proof mode differ from choice points created in the
simple mode. Choice points created in the proof mode hold values of the registers
Pr and CPr in addition to other values that are saved in choice points created in
the simple mode. The type of a choice point can be determined by the saved value
of the control register CTR in that choice point.

The control register CTR is a flag register that holds certain flags to determine
different situations in the AMPE. Two groups of flags can be used in the register
CTR when the system is in the proof mode. There are two flags in the first group,
and they are set when a three-argument or four-argument demo predicate is
executed. Values of these flags are not changed during the execution of that demo
predicate unless another demo predicate is executed as a subgoal. The first flag is
the modeflag used to determine the mode of the system. In this case, that flag will
be set to a value to indicate that the system is in the proof mode. The second flag is

88 I. CICEKLI

the branch flag. The branch flag is 0 when the system collects only success branches
(proofs) of a goal, and it is 1 when the system collects all branches of a goal,
including fail branches. The second group contains skip flags, which are used when
proofs of certain procedures are skipped.

The content of the control information register CTRInfo can be either the
constant "nil" or a pointer to a control information box that holds certain control
information in the proof mode. It will point to a control information box when
proofs of some procedures are skipped, or all branches of the search tree of a goal
are collected.

A control information box has three slots. The first slot is a pointer to a list of
procedures whose proofs will be skipped. The second and third slots hold an
environment pointer and a program pointer, respectively. If a failure occurs when
the system collects all branches, the environment pointer register E and the
program pointer register P are restored from values stored in those slots, and
execution continues from the location stored in the third slot. Of course, before
control is transferred to that location, a fail branch is collected.

5.2. Machine Instructions in the Proof Mode

The functions of some indexing instructions and all procedural instructions in the
proof mode are different from their functions in the simple mode. These instruc-
tions have to do extra work to collect proofs or to save extra information in choice
points. The indexing instructions try_me and try instructions save two new registers
Pr and CPr in choice points, in addition to values saved in choice points created in
the simple mode when they are executed in the proof mode. Procedural instruc-
tions a r e also responsible for collecting proofs of procedures in addition to
transferring control to those procedures.

When a call instruction for a procedure p / n is executed, the content of the
proof register Pr is unified with a list in the following form:

[[p(A 1 A .) I Sub Proofs] I RestofProof]. (5.a)

The term above represents a part of the proof of the calling procedure. The head
of the list above represents a proof of the procedure p / n , and the tail of that list,
RestoProof, represents proofs of later subgoals in the procedure, which calls p /n .
The head of the proof list, p(A 1 A,) , is the term whose functor is p and whose
ith argument is a value unified with the ith argument register. The tail of the proof
list, SubProofs, represents proofs of subgoals in the body of a clause of the
procedure p / n . The algorithm of call instruction in the proof mode is given in
Figure l la . If any unification in the algorithm given in Figure l l a fails, backtrack-
ing occurs. This can only happen if a partial (or complete) proof is passed in a
demo predicate to choose only certain branches in a search tree. Before control is
transferred to the procedure p / n , the proof register Pr is set to point to the tail of
the proof of the procedure p / n , SubProofs in (5.1), to compute the proof of the
procedure p / n . Since the procedure p / n is not the last subgoal in the calling
procedure, we have to continue to collect the rest of this calling procedure after
the proof of the procedure p / n is collected. For that reason, the register CPr is set
to point to that part of the proof, RestoProof in (5.1), of the calling procedure.

ABSTRACT METAPROLOG ENGINE 189

proofpart ~ createlist;
unify(Pr,proofpart);
prooflist *-- createlist;
unify(head(proof par t),prooflist);
proofhead *-- createterm(p,n); %
unify (head(prooflist),proofhead); %
for(i = 1;i < n ; i ~-- i + 1) %

unify(A/,argument (proof head,i));
Pr - - tail(prooflist); %
CPr ~ tail(proofpart); %
CP ~ nextlocation(P); %
P ~ location(p/n); %

% Create a list structure on the heap
% Unify it with the content of Pr
% Create a list structure on the heap
% Unify it with the head of "proofpart"

Create term p / n
Unify it with the head of "prooflist"
Unify its i th argument with Ai

Set Pr to point to the tail of "prooflist"
Set CPr to point to the tail of "proofpart"
Set CP to point to the next instruction
Jump to procedure p / n in current theory

a. Cal l I n s t r u c t i o n

proofpart *-- createlist; %
unify(Pr,proofpart); %
unify(tail(proofpart),[]); %
prooflist ~-- createlist; %
unify (head(proofpart),prooflist); %
proofllead *-- createterm(p,n); %
unify(head(prooflist),proofhead); %
f o r (i = 1;i<_ n ; i ~ - - - i + 1) %

unify(A/,argument (proofhead,i));
Pr ~- tail(prooflist); %
P *-- location(p/n); %

Create a list structure on the heap
Unify it with the content of Pr
Unify its tail with the symbol "nil"
Create a list structure on the heap
Unify it with the head of "proofpart"
Create term p / n
Unify it with the head of "prooflist"
Unify its i th argument with A i

Set Pr to point to the tail of "prooflist"
Jump to procedure p / n in current theory

b. Execute I n s t r u c t i o n

unify(Pr,[]);
Pr *-- CPr;
P *-- CP;

% Unify the content of Pr with an empty list
% Move the content of CPr into Pr
% Move the content of CP into P

c. Proceed I n s t r u c t i o n

FIGURE 11. Algorithms of procedural instructions in proof mode.

On the other hand, when an execute instruction for the procedure p / n is
executed, the content of the proof register Pr is unified with a singleton list, whose
only element is the proof list of that procedure. The term unified with the content
of the register Pr is as follows:

[[p (A 1 A.)lSubProofs]]. (5.e)

Since the procedure p / n is the last subgoal in the calling procedure, the execute
instruction is responsible for completing the proof of the calling procedure with the
term above. The full algorithm of the execute instruction is given in Figure llb. If
all unifications in the algorithm given in Figure l lb are successful, the register Pr
is set to point to the tail of the proof of the procedure p / n , SubProofs in (5.2), for
the oncoming proof computation of that procedure. Since the procedure p / n is the
last subgoal in the calling procedure, we do not need to update the register CPr.

When a proceed instruction is executed in the proof mode, the content of the
proof register Pr is unified with an empty list, and the content of the continuation
proof register CPr is moved to the register PC. The algorithm of the proceed
instruction is given in Figure llc.

190 i. CICEKLI

p(X,Y) :- p/2: q/l:
q(X), r(Y). allocate 1 get args of q/1

get args of p/2 proceed
q(a), put args of q/1

call q/1,l
r(b). put args of r/1 r/t:

deallocate get args of r/1
execute r/1 proceed

FIGURE 12. A trivial program and its WAM instructions.

Example 5.1. In this example , we will use a trivial p r o g r a m to represen t a theory T,
and we will t race the p roo f compu ta t i on of a goal in that theory. In this trace, we
show how registers Pr and CPr are changed by procedura l instructions, and which
par t of the p roo f is collected at each step. Now let us assume tha t the trivial
p rog ram in Figure 12 represen ts the theory T. The first clause of that trivial
p rog ram has two subgoals, and the second and third clauses are unit clauses.
Figure 12 also gives W A M instructions of that trivial p r o g r a m af ter its compilat ion.
The compi led clauses of the p rocedures q / 1 and r / 1 have a proceed instruction,
since they are unit clauses. T h e compi led clause of the p rocedure p / 2 has a call
instruction and an execute instruction. W h e n the pred ica te d e m o (T , p (X , Y) ,
proof(Proof)) is executed, the contents of registers Pr and CPr and the p roo f
being collected are changed as shown in the trace given in Figure 13. Before
control is t ransfer red to the p rocedure p / 2 , a p roo f t empla te list whose head is the
goal in the demo predica te and whose tail is an unbound var iable is created, and
the register Pr is set to poin t to the tail of this list. Later , each p rocedura l
instruction adds new proofs to this list and upda tes registers Pr and CPr properly ,
depend ing on that p rocedura l instruction.

5.3. Implementation of the demo Predicate

A branch of a search tree of a goal can be collected by a three-argument or
four-argument demo predicate. A branch collected by a demo predicate can be a
fail branch or a success branch (proof), depending on the arguments of that demo

At the beginning
of procedure p/2

After the execution
of call q/1 in p/2

After the execution
of proceed in q/1

After the execution
of execute r/1 in p/2

After the execution
of proceed in r/1

Proof: [p(X,Y) I -]
Tpr

Proof: [p(X,Y), [q(X) [_] [_]
Tpr TCPr

Proof: [p(a,Y), [q(a)] [_]
Tpr

Proof: [p(a,Y), [q(a)], [r(Y) I -]]
l'pr

Proof: [p(a,b), [q(a)], [r(b)]]

FIGURE 13. Trace of execution of a trivial program.

A B S T R A C T M E T A P R O L O G E N G I N E 191

predicate. If the third argument of a demo predicate is proof(P), only success
branches will be collected. On the other hand, if it is branch(B), all branches,
including fail branches, of the search tree of the given goal are collected by the
system.

The fourth argument of a demo predicate gives control information to be used
while proving that goal. The control information is a list of procedures whose
proofs will be skipped during execution of a goal in that demo predicate. The third
argument of a demo predicate also carries a kind of control information. It
determines whether only success branches or all branches are going to be collected.

A three-argument demo predicate is the same as a four-argument demo without
a skip list. In the MetaProlog system, a four-argument demo predicate is defined as
follows:

demo(Theory, Goal, Branch, SkipPreds):-
context (CurrTheory),
proof-context(CurrCTR, CurrCTRInfo, CurrPr, CurrCPr),
switch_context(Theory),
switch_proof_mode(Branch, SkipPreds),
call(Goal),
reset-proof-mode(CurrCTR, CurrCTRInfo, CurrPr, CurrCPr),
switch_context(CurrTheory).

The predicates context and proof-context get the current values of the registers
TH, CTR, CTRInfo, Pr, and CPr to be restored after the execution of Goal is
completed. The predicate switch_context sets the current theory register TH to the
given theory in the demo predicate. The predicate switch_proof_mode prepares
the registers CTR, CTRInfo, Pr, and CPr for oncoming proof computation. These
registers are set as follows, depending on values of the third and fourth arguments
of the demo predicate. After these registers are set, execution continues in the
proof mode.

CTR

• Mark the register CTR to indicate that the AMPE will be in the proof mode.

• Mark the register CTR to indicate that all branches of the search tree will be
collected if the third argument is in the form of branch(B).

CTRInfo

• Create a new control information box with three slots if there is any
procedure whose proof will be skipped or if all branches will be collected. If
a control information box is created, we continue to fill this control informa-
tion box; otherwise, the register CTRInfo is set to constant "nil."

• Set the first slot of the control information box to the list of procedures
whose proofs will be skipped if there is any; otherwise, set it to constant
"nil."

• If all branches are to be collected, save environment pointer E in the second
slot, and a pointer to the body of the demo predicate in the third slot. This
code pointer points to the location of subgoal reset_proof_mode in the body
of the demo predicate, and the saved environment pointer points to the

192 I. CICEKLI

Box Header

Skip List

Box Header

/

Environment of demo/4

demo/4:

put args of switch_proof_rnode/2

call switch_proof_rnode/2,N l

put args of call/1

call call/l,N'2

put args of reset_proof_mode/4

call reset-proof-mode/4,N3

FIGURE 14. A control information box and demo predicate.

environment of the four-argument demo predicate (cf. Figure 14). These
values are used to transfer control to the four-argument demo during a
failure.

Pr and CPr

• Create a proof template on the heap for oncoming proof computation, set
register Pr to the head of that proof template, and register CPr to the tail of
that template. This proof template is as follows:

[[call(Goal), Branch] [Rest].

This template represents a part of the proof of the four-argument demo
predicate. The head of this template represents a proof of goal call(Goal).
The proof of call(Goal) is a singleton list whose element is the proof of
Goal.

After the execution of call(Goal) is completed, Branch is bound to the leftmost
branch of the search tree of Goal relative to Theory. The predicates reset_
proof-mode and switch_context restore old values of the registers CTR, CTRlnfo,
Pr, CPr, and TH, and execution continues in the simple mode or in the proof
mode, depending on the restored value of the register CTR.

5. 4. Implementation o f Skipping o f Branches

When a call or execute instruction is executed for a procedure whose proof should
be skipped, the system switches from the proof mode to the simple mode to skip its
proof. The algorithms for call and execute instructions in Section 5.2 should check
whether the proof of the procedure will be skipped. If it will be skipped, they have
to switch the mode of the AMPE from the proof mode to the simple mode before
they transfer control to that procedure.

Before control is transferred to a procedure whose proof will be skipped, the
proof register Pr points to the tail of the proof of that procedure. Since a singleton
list is chosen to represent a skipped proof in the MetaProlog system, the content of

ABSTRACT METAPROLOG ENGINE 193

Box Header for Compiled Clause
load-CTR <CTR value>
load_CP <CP value>
swit ch_to_proof.xnode
proceed
Box Header for Compiled Clause

FIGURE 15. A skip break point.

the proof register Pr should be unified with an empty list after the execution of the
procedure is completed in the simple mode. In other words, the proof of that
procedure will be a singleton list whose only element is an instance of that
procedure call.

After the execution of that procedure is completed in the simple mode, the
mode of the AMPE has to be switched back to the proof mode to continue to
collect the proof of the calling procedure. But the system cannot know when the
execution of that procedure is completed in the simple mode. This problem is
solved by creating a skip break point that will be executed after the procedure
is completed in the simple mode. Normally, when the execution of a procedure is
completed, the execution continues from the location pointed at by the continua-
tion program pointer register CP. This is the location at which execution must be
interrupted at the end of the procedure whose proof is skipped in the simple mode.
Before control is transferred to that procedure, a skip break point (cf. Figure 15) is
created on the heap. The register CP is set to point to the beginning of instruc-
tions of this skip break point, and the register CTR is marked to indicate that the
system will be skipping a branch of the search tree.

A skip break point is a compiled clause that contains four AMPE instructions.
Three of these four instructions are new AMPE instructions, and they are executed
in the simple mode. The last one is a proceed instruction. When a skip break point
is created, the current values of registers CTR and CP are saved in the first two
instructions of this skip break point. These first two instructions, load_CTR and
load_CP, restore the original values of these registers. When the third instruction,
switch_to_proof_mode, is executed, the system switches back to the proof mode.
When the last instruction, proceed, in the skip break point is executed in the proof
mode, the content of the proof register is bound to an empty list, and execution
continues from the location indicated by the register CP.

5.5. Failure Routines

When a failure occurs, an earlier state of the computation should be restored from
the values stored in the last choice point. Since the mode of the system is a part of
a state of computation in the AMPE, failure routines should be able to switch from
one mode to the other. They should also be able to collect a fail branch when the
system collects all branches in a search tree.

First, failure routines in both modes check whether the system is collecting all
branches of a search tree. If the system is collecting all branches, a fail branch of
that search tree is collected by failure routines. Since we collect a failure branch of
a subgoal whose proof is skipped when there is no success branch in the search
tree of that subgoal, the failure routine in the simple mode checks this condition
before it collects that fail branch. The following actions are taken when the

194 I. CICEKLi

conditions above are satisfied in either mode:

• The content of the proof register Pr is unified with the term [fail], which
represents a part of a fail branch.

• Since the execution should continue in the last demo predicate that caused
the collection of all branches in a search tree, the environment of this demo
predicate is restored from the control information box in the register
CTRInfo. Then control is transferred to the location stored in that control
information box after the mode of the system is switched back to the proof
mode.

If all branches of the search tree are not being collected, failure routines in both
modes perform functions similar to those of the failure routine in the WAM. First,
trailed entries are untrailed, and registers are restored from values stored in the
last choice point. The registers Pr and CPr are restored if that choice point is
created in the proof mode; otherwise, they are not restored. The system switches to
the mode determined by the restored register CTR.

6. RELATED WORK

Many proposals to extend logic programming with theories (modules or contexts)
and proofs have been presented [12, 21-27, 30] in the literature. Some of them are
just interested in the expressive power, flexibility, and declarative semantics of
meta-level facilities without emphasizing implementation techniques for these
meta-level facilities. Since our paper is mainly about the implementation of
the meta-level facilities in MetaProlog, and since the work done by Lamma et al.
[22, 24] and the work done by Nadathur et al. [30] are the only studies that
concentrate on the implementation of contexts, we will compare our work with
theirs. There are two main differences between our system and the other two
systems mentioned above:

• In those systems, contexts are implicitly created to be used only in the
derivation of a single goal, whereas we have explicit handles (MetaProlog
variables bound to theory descriptors) to contexts, so that they can be used in
derivations of more than one goal. This difference can explain the reason for
the usage of a stack for the implementation of contexts in those systems, and
the usage of the heap to keep theories in our system.

• To locate a procedure in a context may be faster in the MetaProlog system
than in those systems, because of the nondefault theory approach in our
system.

In the rest of this section, these differences are discussed in detail and justifications
for some of our design decisions are given.

The system developed by Lamma et al. [22-24] for contextual logic program-
ming [27] has units that are sets of clauses identified by Prolog constants, and
contexts that are ordered lists of units. The contexts in their system are closely
related to the theories in our system. In their system, when an extended goal
u >> G is executed, a new context is created from the current context by adding
clauses of the unit u to the current context before starting the derivation of the
goal G. This new context is only used in the derivation of the goal G, and it is only

A B S T R A C T M E T A P R O L O G E N G I N E 195

implicitly accessible during its derivation. If the goal G is deterministic, the new
context is automatically discarded after the completion of its derivation. If it is
nondeterministic, the new context is not discarded, so that backtracking to that
goal can be possible. Since there is no explicit handle for a context in their system,
a variable cannot be bound to it, and it cannot be returned as a value. At the
implementation level, the unit u is pushed into a stack to create a new context
when the extended goal u >> G is encountered. If the goal G is deterministic, the
pushed unit is popped from the stack to discard that new context after the
derivation of G. The new stack that is used to implement contexts in their system is
called the context stack.

In the system developed by Nadathur et al. [30], a context is also created for the
derivation of a goal and discarded afterward. The addition of clauses takes place as
a result of an implication goal. The clauses in an implication goal are added to the
program before solving the goal in that implication goal. If the goal is determinis-
tic, the need for the context created for this goal disappears, and the space
occupied by that context can be reclaimed in their system. Again, a stack-based
mechanism is appropriate for the implementation of contexts in their system, as in
the system developed by Lamma et al. They push a special environment (called an
implication record) into the local stack to create a new context and pop this
implication record to discard this context. The main difference between these two
systems is that the local stack is used to keep contexts in the system of Nadathur
et al. instead of a separate context stack, which is used in the system developed by
Lamma et al.

On the other hand, a theory is explicitly created by the predicates addto and
dropfrom in the MetaProlog system, and an explicit handle to that theory is
returned as a value. After the creation of a theory, the variable given in the
third-argument position is bound to the internal structure of this new theory. A
theory is accessible as long as the variable bound to its internal representation is
accessible. A theory can be used in derivations of more than one goal once it is
created. The life cycle of a theory depends on the life cycle of the variable bound
to that theory in the MetaProlog system. The life cycle of a theory is similar to the
life cycle of a structure in the heap. In fact, this is the reason why we keep theories
in the heap by removing the code area in our WAM-based system. We cannot put
theories into a stack, because their life cycles are not restricted by the life cycle of
the derivation of a single goal. For example, the MetaProlog goal

addto(OldTheory, Clauses, NewTheory), demo(NewTheory, Goal)

can be simulated by

unit1 >> Goal

in the contextual logic programming (CxLP), if the unit unitl contains the same
clauses in Clauses and the current context contains the same clauses in OldTheory.
In the system developed by Lamma et al., a new context, which will be equal to
NewTheory, is created by adding clauses in the unit unitl to the current context,
and it is only used during the derivation of Goal. On the other hand, in the
MetaProlog system, the new theory, to which NewTheory is bound, will not be
automatically discarded after the execution of the demo predicate, and the same

196 I. CICEKLI

theory can be returned as a value to be used in other demo predicates to prove
different goals with respect to that theory, or in theory creation predicates such as
addto to create another new theory from that theory.

In the system developed by Lamma et al., they adopt an explicit representation
of the context as a set of units. The code of each unit is composed of procedures
explicitly defined in that unit. To access a procedure in the current context, that
context is searched in the units of the current context. For example, if the current
context is the ordered set of units [Un, Un-1 U1], and we want to access the
procedure p/n in the current context, that procedure is searched in the unit Un. If
it is not found in U,, then it is searched in U,_ 1. This search continues until the
procedure p/n is found or no more units are left to be searched. In their system,
the cost of accessing a procedure will depend on the number of units in the current
context. The search can be expensive if there are a lot of recursive extended goal
invocations. In this discussion, we assumed that the call to the procedure p/n is a
lazy goal of their system. In their system, the right code for local and eager goals is
found at compile or extension times, respectively.

In the system developed by Nadathur et al., the time needed to locate the code
of a predicate in a context is proportional to the number of the nesting levels of
implication goal invocations in that context. They have to search the right code for
a predicate in implication records created on the local stack for each implication
goal. The search starts from the most current implication record on the top of the
stack and continues until the predicate is found or the bottom of the stack is
reached. This can be expensive if there are a lot of recursive implication goal
invocations.

In our system, to access a procedure in a theory T, that procedure is searched in
T. If it is not found there, it is searched in the default theory of T. This search
proceeds with default theories along the branch from T to the base theory. The
procedure is searched in each theory using a hash function. The maximum number
of theories that may be searched is the number of default theories on the branch
from T to the base theory. In fact, this is the reason why the nondefault theory
approach is used in the representation of theories instead of the parent relation
among theories. In our system, most theories will be nondefault theories, and a few
of them will be default theories. Thus the number of default theories that will be
searched to access a procedure will be small, and the search for that procedure will
not be expensive. If we make all theories in our system default theories, a search
for a predicate will be similar to the search in the system developed by Lamma
et al.

Since we are not aware of any WAM-based system that collects proofs and uses
them to shrink search spaces of goals in the literature, we are not able to compare
our implementation with any other system. There are meta-interpreters that collect
proofs [36-40], but they do not efficiently implement proofs, because of the extra
layer of interpretation. To the best of our knowledge, our system is the only system
in the literature that deals with proofs at the WAM level. To handle proofs, we use
extra registers and assign different meanings to procedural instructions. These
extensions are smoothly integrated with the original WAM.

7. CONCLUSION

To implement meta-level facilities such as theories, proofs, fail branches, and
control knowledge in a WAM-based system, we have to extend the WAM by

ABSTRACT METAPROLOG ENGINE 197

redefining meanings of indexing and procedural instructions, introducing new
registers to be used in proof computations, and loading extra tasks to failure
routine. To be able to explicitly represent meta-level objects and control knowl-
edge, some guidelines for changes to the WAM can be summarized as follows:

1. New registers may be needed to get efficient implementation of these
meta-level objects. We had to introduce the theory register TH to handle
multiple theories, and the proof register Pr and the proof continuation
register CPr to handle proofs.

2. Explicit representation of control knowledge may be handled by storing this
control knowledge in some data structure pointed at by some new registers.
This task is handled by CTR and CTRInfo registers in the MetaProlog
system. To achieve more efficiency, some portions of control knowledge may
be implemented by using separate mechanisms, but they may increase the
complexity of the architecture.

3. Environments and choice points may need to keep extra information about
meta-level objects and control knowledge.

4. Most of the mechanisms introduced to handle meta-level objects and control
knowledge are used by procedural instructions and failure routines.

If the guidelines above are followed, new control knowledge may easily be added
to a WAM-based system. For example, to control the depth of a proof tree, extra
information can be included in control information boxes, and that extra informa-
tion can be used by procedural instructions. To do this, control information should
keep a new value indicating the maximum depth of a proof tree, and a new global
counter should hold the current depth. Procedural instructions may check whether
the maximum depth is reached by comparing those two values.

Thanks to Ken Bowen for valuable feedback during this research. This paper has benefitted from the
suggestions for improvements by its anonymous reviewers.

REFERENCES
1. A'it-Kaci, H., Warren's Abstract Machine: A Tutorial Reconstruction, MIT Press, Cam-

bridge, MA, 1991.
2. ALS Prolog Reference Manual, Applied Logic Systems, 1988.
3. Attardi, G. and Simi, M., Metalanguage and Reasoning across Viewpoints, in: Proc. 6th

ECAI, Pisa, Italy, 1984.
4. Bacha, H., Meta-Level Programming: A Compiled Approach, in: Proc. 4th Int. Conf.

Logic Programming, MIT Press, Cambridge, MA, 1987, pp. 394-410.
5. Bacha, H., MetaProlog Design and Implementation, in: Proc. 5th Int. Conf. Symp. Logic

Programming, MIT Press, Cambridge, MA, 1988, pp. 1371-1387.
6. Bowen, K. A. and Kowalski, R. A., Amalgamating Language and Metalanguage in Logic

Programming, in: K. Clark and S.-A. Tarnlund (eds.), Logic Programming, Academic
Press, London, 1982, pp. 153-173.

7. Bowen, K. A. and Weinberg, W., A Meta-Level Extension of Prolog, in: Proc. 1985
Symp. Logic Programming, IEEE Computer Society Press, Washington, DC, 1985, pp.
48-53.

8. Bowen, K. A., A Meta-Level Programming and Knowledge Representation, New Gener-
ation Comput. 3:359-383 (1985).

198 I. CICEKLI

9. Bowen, K. A., Buettner, K. A., Cicekli, I., and Turk, A., A Fast Incremental Portable
Prolog Compiler, Lecture Notes Comput. Sci. 225:650-656 (1986).

10. Bratko, I., PROLOG Programming for Artificial Intelligence, 2nd edition, Addison-
Wesley, New York, 1990.

11. Bruffaerts, A. and Henin, E., Negation as Failure: Proofs, Inference Rules and Meta-In-
terpreters, in: H. Abramson and M. H. Rogers (eds.), Meta-Programming in Logic
Programming, MIT Press, Cambridge, MA, 1989, pp. 169-190.

12. Bugliesi, M., Lamma, E., and Mello, P., Modularity in Logic Programming, J. Logic
Programming 19/20:443-502 (1994).

13. Cicekli, I., A Garbage Collector for the MetaProlog System (or: Collecting All the
Garbage in Prolog Systems), Logic Programming Research Group Technical Report
LPRG-TR-88-2, Syracuse, NY, 1988.

14. Cicekli, I., Design and Implementation of an Abstract MetaProlog Engine for MetaPro-
log, in: H. Abramson and M. H. Rogers (eds.), Meta-Programming in Logic Programming,
MIT Press, Cambridge, MA, 1989, pp. 417-434.

15. Cicekli, I., Design and Implementation of an Abstract MetaProlog Engine for MetaPro-
log, Ph.D. Dissertation, Syracuse University, Syracuse, NY, 1991.

16. Clocksin, W. F. and Mellish, C. S., Programming in Prolog, 2nd edition, Springer Verlag,
New York, 1984.

17. Dincbas, M. and Le Pape, J., Metacontrol of Logic Programs in METALOG, in: Proc.
Int. Conf. Fifth Generation Comput. Syst., Tokyo, 1984.

18. Eshghi, K., Applications of Meta-Language Programming to Fault Finding in Logic
Circuits, in: Proc. 1st Int. Conf. Logic Programming, Marseille, 1982.

19. Eshghi, K., MetaLanguage in Logic Programming, Ph.D. Dissertation, Imperial College,
London, 1986.

20. Gallaire, H. and Lasserre, C., A Control Metalanguage for Logic Programming, in: Proc.
Logic Programming Workshop, 1980.

21. Giordano, L. and Martelli, A., A Modal Reconstruction of Blocks and Modules in Logic
Programming, in: Proc. 1991 Int. Symp. Logic Programming, MIT Press, Cambridge, MA,
1991, pp. 239-253.

22. Lamma, E., Mello, P., and Natali, A., The Design of an Abstract Machine for Efficient
Implementation of Contexts in Logic Programming, in: Proc. 6th Int. Conf. Logic
Programming, MIT Press, Cambridge, MA, 1989, pp. 303-317.

23. Lamma, E., Mello, P., and Natali, A., Reflection Mechanisms for Combining Prolog
Databases, Software Practice Experience 21:603-624 (1991).

24. Lamma, E., Mello, P., and Natali, A., An Extended Warren Abstract Machine for the
Execution of Structured Logic Programs, J. Logic Programming 14:187-222 (1992).

25. Mello, P. and Natali, A., Extending Prolog with Modularity, Concurrency and Meta-
Rules, New Generation Comput. 10:335-359 (1992).

26. Miller, D., A Logical Analysis of Modules in Logic Programming, J. Logic Programming
6:79-108 (1989).

27. Montiero, L. and Porto, A., Contextual Logic Programming, in: Proc. 6th Int. Conf. Logic
Programming, MIT Press, Cambridge, MA, 1989, pp. 284-302.

28. Miyachi, T., Kunifuji, S., Kitakami, H., Furukawa, K., Takeuchi, A., and Yokota, H., A
Knowledge Assimilation Method for Logic Databases, in: Proc. 1984 Int. Symp. Logic
Programming, IEEE Computer Society Press, Washington, DC, 1984, pp. 118-125.

29. Nakashima, K., Knowledge Representation in Prolog/KR, in: Proc. 1984 Int. Symp.
Logic Programming, IEEE Computer Society Press, Washington, DC, 1984, pp. 126-130.

30. Nadathur, G., Jayaraman, B., and Kwon, K., Scoping Constructs in Logic Programming:
Implementation Problems and Their Solution, J. Logic Programming 25:119-161 (1995).

31. Quintus Prolog Reference Manual, Quintus Computer Systems, 1985.
32. des Rivieres, J., Meta-Level Facilities in Logic-Based Computational Systems, in: Proc.

Workshop on Meta-Leuel Architectures and Reflection, Alghero-Sardinia, Italy, 1986.
33. Roy, P. V., A Prolog Compiler for the PLM, Master's Thesis, University of California,

Berkeley, 1984.

AB~STRACT METAPROLOG ENGINE 199

34. Russell, S., The Complete Guide to MRS, Knowledge Systems Laboratory Report
KSL-85-12, Stanford, 1985.

35. Safra, M. and Shapiro, E., Meta-Interpreters for Real, in: E. Shapiro (ed.), Concurrent
Prolog, Vol. 2, MIT Press, Cambridge, MA, 1987, pp. 166-179.

36. Sterling, L. and Shapiro, E., The Art ofProlog, MIT Press, Cambridge, MA, 1986.
37. Sterling, L. S., Meta-Interpreters: The Flavors of Logic Programming?, in: Proc. Work-

shop Deductive Databases Logic Programming, Washington, DC, 1986, pp. 163-175.
38. Sterling, L. S. and Beer, R. D., Incremental Flavor-Mixing of Meta-Interpreters for

Expert System Construction, in: Proc. 3rd Syrup. Logic Programming, IEEE Computer
Society Press, Washington, DC, 1986, pp. 20-27.

39. Sterling, L. S. and Lakhotia, A., Composing Prolog Meta Interpreters, in: Proc. 5th Int.
Conf. Symp. Logic Programming, MIT Press, Cambridge, MA, 1988, pp. 386-403.

40. Sterling, L. S., A Meta-Level Architecture for Expert System, in: R. Maes and D. Nardi
(eds.), Meta-Level Architectures and Reflection, North Holland, Amsterdam, 1988.

41. Warren, D. H. D., An Abstract Prolog Instruction Set, SRI Technical Report 309, 1983.
42. Weyhrauch, R. W., Prolegomena to a Theory of Mechanized Formal Reasoning, Artif.

lntell. 13:133-170 (1980).
43. Weyhrauch, R. W., An Example of FOL Using Metatheory, in: Proe. 6th Conf.

Automated Deduction, Springer-Verlag, New York, 1982.
44. Yalcinalp, U. and Sterling, L., An Integrated Interpreter for Explaining Prolog's Suc-

cesses and Failures, in: H. Ambramson and M. H. Rogers (eds.), Meta-Programming in
Logic Programming, MIT Press, Cambridge, MA, 1989, pp. 191-204.

