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Abstract. In this study, the band structure and transmission spectra in multiferroic based Sierpinski-carpet
phononic crystal are investigated based on finite element simulation. In order to obtain the band structure of the
phononic crystal (PnC), the Floquet periodicity conditions were applied to the sides of unit cell. The square
lattice PnC consists of various piezoelectric inclusion in a rubber matrix with circular and triangular cross
section.
1 Introduction

Metamaterials opened new opportunities for controlling
radiation. Acoustic metamaterials (AMs) and phononic
crystals (PnCs) are drastically different from the
constituents of the traditional and other left-handed
materials. A number of AM-based conceptual function-
alities have been designed and realized experimentally in
the last decade [1–3]. Due to the having many promising
applications and unique physical properties, PnCs have
become great interest recently [4–6]. The presence of
band gaps (BGs) where non-propagating modes may
occur in the system leads to a variety of potential
applications such as, waveguides, sound filters, noise and
vibration reduction [7–11]. Due to the potential
applications of PnC designs with wide BG structure
and adjustable bands in communication, mechanical and
control engineering, the researchers concentrated their
work [12–15].

Many researchers have recently focused on fractal
structures to investigate its effect on band structure
[2,3,16–25].

Fractal designs are an innovative approach for
researchers working on photonic crystals and multimodal
plasmonic devices [17–19]. Studies on dispersion properties
of fractal structures in different geometries were carried
out. [20–25]. In present investigation we would like
demonstrate a new kind of acoustic metamaterial element
with fractal geometry, which is inspired by the fractal
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features of geography in the natural world [26,27]. Fractal
acoustic metamaterial (FAM) is a tapered structure with
self-similar mathematical description [27]. Although they
may appear complex, FAMs can be easily designed to
obtain specific parameters through high resolution com-
puter programs and can be reliably fabricated with existing
rapid-prototyping technology. Fractal surfaces have such
properties, like sound scattering by a fractal surfaces. One
of these fractal designs, the Sierpinski-carpet, was
described in 1916 byWaclaw Sierpinski [27]. The Sierpinski
carpet will have the aforementioned properties if its
inhomogeneities of sequentially decreasing scale have
alternative signs. Geometrically, the construction of the
Sierpinski carpet is as follows. An initial square is divided
by two lines parallel to one pair of its sides and by two lines
perpendicular to them into nine equal squares of smaller
size. The central square is separated from them. Another
eight squares are divided in the same way into nine squares
of smaller scale, and the central squares are separated from
them, and so on. A fractal structure is formed in the limit.
In this structure, each separated square of a given linear
dimension is surrounded by eight separate squares of a
thrice smaller linear dimension. In reality, the subdivision
of squares ends at a certain step n. The acoustic Sierpinski
carpet is a set of inhomogeneities in the form of squares
with sequentially decreasing side lengths Hn (“a”), n=0, 1,
2, …, where Hn=3–nH and H is the side of the central
square. The number of squares of the n-th scale is equal to
8n, and the total area of the squares of this scale is
8nHn

2=H2(8/9)n. From this formula, it follows that the
total area of the squares of the n-th scale slowly decreases
with the growth of n and is equal to eight-ninths of the area
of the preceding scale.

In this study, firstly, the quasi-Sierpinski-carpet
phononic crystal unit cell was identified and then the
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Fig. 1. Traditional Sierpinski-carpet unit cells at different levels
with circular cross-section (a) L1; (b) L2; (c) L3 levels with
triangular cross-section (d) L2; (e) L3 levels.

Table 1. Material properties.

Material BaTiO3 LiNbO3

r [kg/m3] 6020 4700
d31 [m/V] �3.45E-11 �1.00E-12
d33 [m/V] 8.56E-11 6.00E-12
d15 [m/V] 3.92E-10 6.80E-11
sE11 [m.s2/kg] 8.05E-12 5.78E-12
sE33 [m.s2/kg] 1.57E-11 5.02E-12
sE12 [m.s2/kg] �2.35E-12 �1.01E-12
sE13 [m.s2/kg] �5.24E-12 �1.47E-12
sE44 [m.s2/kg] 1.84E-11 1.70E-11
sE66 [m.s2/kg] 8.84E-12 1.36E-11
eS11/eo 2920 84
eS11/eo 168 30
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band structure was obtained along Г-X-M-Г the path.
Figure 1 shows the unit cells of different filling fractions and
cross-sections of traditional Sierpinski-carpet phononic
crystals.
Fig. 2. Used finite array for obtaining the transmission spectra of
PnC.
2 Method

In order to obtain the band structure of the PnC, the
Floquet periodicity conditions were applied to the sides of
unit cells 1–4 and 2–3 in Figure 1a. The square lattice PnC
consists of BaTiO3 and LiNbO3 inclusion in a rubber
matrix with circular and triangular cross section.

In our case, the traditional Sierpinski-carpet producing
procedure begins with a square of length “a” is divided into
9 identical subsquares in the 3-by-3 grids and the central
subsquare is subtracted and filled with piezoelectric
inclusion to form the first step (L1). Then, the same
procedure is applied repeatedly to the remaining 8 sub-
squares (L2). With this method, fractal structures of
different levels could be formed up to last in different
geometries.

In PnC’s, some arrangements are made on the
Sierpinski-carpet to increase the filling fraction, which
is an important feature affecting the band structure. For
each step, the first frame is taken as a reference (Fig. 1a),
the unit cell is subdivided into sub-squares with
the grids o obtain the supercell as shown in Figures 1b
and 1c.

In Figure 1, by applying to the Floquet periodicity
conditions to the edges of the super cell the band structures
are obtained using the finite elementmethod (FEM). In the
Sierpinski-carpet fractal production procedure at different
levels of the reference cross-sections (circle and triangle)
was used in Figure 1a. With the formula n=m2L, the
number of grids in the center of the unit cell for L= i
(i=2,3) was obtained according to this production
procedure. In this fractal production procedure, m is the
number of grids in step x and y in step 1, and k is the number
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of sub-squares in direction x or y in the first step. The
mechanical properties of the rubber matrix are obtained
from literature [24]. The piezoelectric material properties in
the rubber matrix used in analysis are as shown in Table 1
[28].

We used the finite array of scatterers in Figure 2 for
calculating the transmission spectra of PnC. The trans-
mission spectra were calculated according to absolute
displacement as in literature 20log10(UB/UA) in dB where
UA and UB are normalized displacement at A and B point
respectively [29–32].
3 Results and discussions

We used circular and triangular cross-section rods as seen
in Figure 1 in circular lattice Sierpinski-carpet fractals with
three levels (L1, L2 and L3) of PnC.

While there was no band observed in any triangular
cross-section and any inclusion material in case of
traditional Sierpinski-carpet L1, L2 and L3 levels. In case
of circular cross-section with BaTiO3 inclusion in case L1
level only 1 band observed 2.78 gap size at 2.08 frequency
and 2.39 gap size at 2.1 frequency in case of LiNbO3
inclusion. In case of L2 level when BaTiO3 circular cross-
section rods used, we observed 0.17 gap size at 2.27 fre-
quency and 0.04 gap size at 2.12 frequency in case of
LiNbO3 inclusion. There were band observed in circular
cross-section BaTiO3 and LiNbO3 inclusions in case of L3
level.

In quasi Sierpinski-carpet where there was K=4, and
M=6 L1 level, there was a wide full band observed at a
-p2



Fig. 3. Band structure of quasi-Sierpinski carpet PnC consists of
BaTiO3 in a rubber matrix in case K4, M6, L1 (a) circular rod; (b)
triangular rod.

Fig. 4. Band structure of quasi-Sierpinski carpet PnC consists
of BaTiO3 in a rubber matrix in case K4, M6, L2 (a) circular rod;
(b) triangular rod.

Fig. 5. Band structure of BaTiO3/rubber PnC and topological
insulator properties in case M6K4 L2.
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22.73 gap size at 1.15, 10.03 gap size at 1.23 frequencies for
circular and triangular BaTiO3 inclusions as seen in
Figure 3.

In quasi Sierpinski-carpet with circular cross-section
BaTiO3/rubber PnC at L2 level, the low-frequency bands
observed at the L1 level were disappeared, but high-
frequency bands occurred at 4.87, 1.5 gap sizes at 2.32, 1.87,
1 and 1.1 gap sizes at and 2.33, 3.44, 3.74, 3.83 frequencies
as seen in Figure 4.

Figure 5 shows the dispersion relation of BaTiO3/
rubber PnC with M6K4L2 level PnC with circular
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cross-section inclusion. It could be said that BaTiO3 based
PnC has a topological phase as in some narrow-band
insulators. The band structure includes Dirac point
degeneration, which is characterized by the presence of
the circulating medium. The resulting acoustic bands have
non-zero numbers indicating that they are topologically
nontrivial [33].

Figure 6 shows the 3D band structure of BaTiO3/
rubber PnC for first three modes with their associated
reduced velocities along the G-X-M-G direction inM6K4L2
case.

We have created a new quasi-Sierpinski-carpet fractal
design that combines the central circle with sub-circles
based on the M6K4L2 design shown in Figure 7. We
obtained the band structure and transmission spectra of
new fractal by using BaTiO3/LiNbO3 inclusions in the
rubber matrix. Figure 8 shows band structure and
transmission spectra of BaTiO3/rubber and LiNbO3/
rubber PnC’s respectively. As seen Figure 8 the new
fractal structure has the wide BG.

We obtained the transmission spectra of PnC by using
the finite array in Figure 2 and compared them with the
band structure of caseM6K4. Figure 9 shows a comparison
of the band structure and transmission spectra for all of
investigated types scatterers.

As seen in Figure 9a BG’s observed between 2.27 and
2.38 as well as 2.52 and 2.58 for BaTiO3/rubber PnC and
between 2.45 and 2.50 for LiNbO3/rubber PnC as seen in
Figure 9b.
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Fig. 6. 3D Band structure of BaTiO3/rubber PnC for first three
bands.

Fig. 7. New quasi-Sierpinski-carpet fractal design based on M6K4
level 2.

Fig. 8. Band structure of circular cross-section scatterers
(a) BaTiO3; (b) LiNbO3 in a rubber matrix M6K4 L2 level
PnC and transmissions.

Table 2. Full band gap size variation of a quasi-Sierpinski-carpet case M6K4 Level 1 PnC with a circular and triangular
cross-section.

Band Num. Circular cross-section Triangular cross-section

BaTiO3 LiNbO3 BaTiO3 LiNbO3

Mid Gap
(a/c)

Gap Size
(%)

Mid Gap
(a/c)

Gap Size
(%)

Mid Gap
(a/c)

Gap Size
(%)

Mid Gap
(a/c)

Gap Size
(%)

1 1.15 22.7 1.21 14.1 1.26 10.3 1.3 1.57
2 2.18 0.16 2.18 0.16 1.4 0.36 1.4 0.28
3 3.38 0.83 3.38 0.83 1.84 1.14 2.14 1.04
4 3.74 0.27 3.74 0.17 3.79 0.22 3.73 0.3
5 4.16 0.04 – – 4.18 0.84 4.19 0.64
6 – – – – 4.85 0.27 4.85 0.31
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The band structures of quasi Sierpinski-carpet PnCs
consisting of various BaTiO3 and LiNbO3 inclusions with
circular and triangular cross-sections at L1, L2 and L3
levels are shown in Tables 2 and 3.

As can be seen from the tables while L1 level PnC has a
wide band range at low frequencies, has no multiband
capability and L2 and L3 level PnCs have multiband
20902
characteristics at high frequencies, while the low frequency
band disappears.

4 Conclusions

In this study, the band structure and transmission spectra
in two dimensional 2D multiferroic based Sierpinski-carpet
-p4



Fig. 9. Band structure of circular cross-section scatterers
(a) BaTiO3; (b) LiNbO3 in a rubber matrix M6K4 L2 level
PnC and transmissions spectra’s.

Table 3. Full band gap size variation of a quasi-Sierpinski-carpet case M6K4 Level 2 PnC with a circular and triangular
cross-section.

Band Num. Circular cross-section Triangular cross-section

BaTiO3 LiNbO3 BaTiO3 LiNbO3

Mid Gap
(a/c)

Gap Size
(%)

Mid Gap
(a/c)

Gap Size
(%)

Mid Gap
(a/c)

Gap Size
(%)

Mid Gap
(a/c)

Gap Size
(%)

1 2.32 4.87 2.48 2.25 2.12 1.07 2.21 1.24
2 2.53 1.5 3.64 0.8 2.32 1.46 2.32 1.34
3 4.35 1.33 4.53 1.62 3.45 1.87 3.95 1.56
4 4.77 1.32 5.84 3.97 4.74 1.46 4.28 0.74
5 5.17 1.33 6.96 1.51 5.90 1.24 5.94 0.82
6 5.82 4.4 7.17 0.43 6.60 1.33 6.64 0.79
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phononic crystal with circular and triangular cross-sections
piezoelectric scatterers in a rubber matrix were investigat-
ed based on finite element simulation. We can summarize
the results herein above:

–
 The broad band was observed at low frequency;

–
 The band structures are compatible with transmission
spectra’s;
20902
–

-p
Inclusion geometry is effective on band structure;

–
 Better band structures can be achieved with different
fractal designs;
–
 Proposed PnC has topological insulator properties;

–
 As seen from Figures 3 and 4, L1 level PnC does not have
multiband properties, although a multiband exists in L2
levels.L3 has difficulty in production and the width of the
bands formed is narrower than L2 level is not suitable for
practical applications;
–
 As shown in [8] by applying voltage to the piezoelectric
inclusions the proposed PnC can be used as actively
guiding waves;
–
 It will lead to the emergence of new research areas in the
development of various devices such as RF communica-
tion, sensor, medical ultrasound, filtering, waveguiding.
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