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Abstract

Visualization is crucial to the effective analysis of biological pathways. A poorly laid

out pathway confuses the user, while a well laid out one improves the user�s comprehen-

sion of the underlying biological phenomenon.

We present a new, elegant algorithm for layout of biological signaling pathways. Our

algorithm uses a force-directed layout scheme, taking into account directional and rect-

angular regional constraints enforced by different molecular interaction types and sub-

cellular locations in a cell. The algorithm has been successfully implemented as part of a

pathway visualization and analysis toolkit named PATIKAPATIKA, and results with respect to

computational complexity and quality of the layout have been found satisfactory.

The algorithm may be easily adapted to be used in other applications with similar con-

ventions and constraints as well.

PATIKAPATIKA version 1.0 beta is available upon request at http://www.patika.org.
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1. Introduction

Graphs are commonly used to model relational information that arises in

numerous areas from software engineering to telecommunications to biology.

Objects are the nodes or vertices in a graph; relations or links are the edges
in a graph. The usefulness of the relational model depends on whether the

drawing, or the layout, of the graph effectively conveys the relational informa-

tion to the users. A poorly drawn diagram confuses the user of an application,

while a well laid out diagram improves the user�s comprehension of the data.

As graph drawing applications have grown larger in terms of the size of

graphs displayed, manual layout of graphs has become more difficult and te-

dious. This has motivated a great deal of research in automatic graph drawing

[1]. As graphical user interfaces have improved, and more state-of-the-art soft-
ware tools have incorporated visual functions, interactive graph editing and

diagramming facilities have become important components in visualization

systems [2]. Biology is no exception; human genome is expected to create an

extremely complex network of information, composed of hundred thousands

of different molecules and factors [3,4]. Knowing the map of this network as

completely as possible is very important since it will potentially explain the

mechanisms of life processes as well as disease conditions. Such knowledge will

also serve as a key for further biomedical applications such as development of
new drugs and diagnostic approaches. In this regard, a cell can be considered

as an inherently complex multi-body system. In order to make useful deduc-

tions about such a system, one needs to consider cellular pathways as an inter-

connected network rather than separate linear signal routes (Fig. 1).

Recently a number of molecular interaction and pathway databases and

integrated software tools have been developed to address this need [5–10]. Even

though some of these databases support visual interfaces based on graph rep-

resentations, most of them either use static images or cannot cope well with
more complex, non-standard pathways. A multitude of general [1] and con-

strained [11–14] graph layout algorithms that have been developed in the past,

does not seem to be able to directly address the specific needs and established

conventions of pathway graphs. This is due to a number of reasons including

directional and regional constraints inherent in a pathway graph. In many

cases, the relations among pathway elements impose a pattern on the pathway.

In the literature, such molecular patterns are drawn in varying ways highly

depending on the pathway ontology used. In order to create a meaningful
drawing of the given pathway data, one should employ extensive techniques



Fig. 1. A (partial) example of a signaling pathway. (For colour see online version.)
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of graph layout to visualize such patterns and emphasize the contextual mean-

ing of the data.

There has been a few studies done specifically for layout of biological path-

ways, focusing on metabolic pathways. Karp and Paley [15] proposed a divide-

and-conquer algorithm to identify a number of pre-determined subtopologies

such as paths, cycles, and trees so that different layout approaches may be ap-
plied on each part. Becker and Rojas [16] improve this approach by supple-

menting a special force-directed layout algorithm and additional layout

heuristics. Schreiber [17] presents a layout algorithm for drawing biochemical

pathways within BioPath, based on the graph drawing algorithm by Sugiyama

et al. [18] for the computation of layered layouts of directed acyclic graphs,

with extensions for clustering disjoint subgraphs and some domain specific

constraints. Unfortunately none of these algorithms may be applied to signal-

ing pathways using a state-transition ontology and a compartment based cell
model.

PATIKAPATIKA [8], a pathway database and tool, is composed of a server-side, scal-

able, object-oriented database and client-side editors to provide an integrated,

multi-user environment for visualizing and manipulating network of cellular

events. PATIKAPATIKA is mainly intended for signaling pathways whose underlying
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graph structure can be arbitrarily more complicated and irregular than that of

metabolic pathways.

In this paper, we introduce an efficient and powerful layout algorithm de-

vised for pathway graphs as defined by PATIKAPATIKA ontology [19]. Our algorithm

is based on the spring force directed layout algorithm [20] with regional

constraints. Moreover, it uses a similar idea to magnetic fields of Sugiyama
et al. [21] but employs per-edge fields to enforce edge orientation constraints,

which are allowed to adaptively change during layout. An additional technique

called ‘‘pulsing’’ is applied to reduce edge crossings and node overlaps. Finally,

it is naturally incremental as an update on the pathway data may be quickly

reflected on the previous layout.
2. Pathway model

The structure of pathway graphs highly depend on the type of the pathways

(e.g., metabolic or signaling) and the model or ontology used to represent the

biological phenomenon. We assume the basics of the ontology described in

[8,19], which represents a cellular process in the form of a directed graph called

pathway graph, using a compartment based state-transition pathway model.

Usually the pathway graphs representing signaling pathways do not possess

the nice, uniform properties (e.g., can be decomposed into paths, cycles, and
trees easily) that those representing metabolic pathways do.

A molecule may have any number of states to depict changes in its informa-

tion context through chemical or physical modifications. Changes in the sub-

cellular location of a molecule are also regarded as a change in its

information context. In order to reflect these changes each state is associated

with exactly one compartment such as cell membrane, nucleus or mitochondria.

A transition, represented as a distinct type of node, provides a convenient mean

for conveying event-specific information like reaction constants or the complex
regulatory behavior. Each transition has a number of associated states, which

may be products, substrates or effectors of the transition. All these relations are

represented by different edge types (Fig. 2).
3. Algorithm

We build up our algorithms based on the model described above. Each state
is associated with a compartment, and each compartment is a rectangular area

defined by two horizontal and two vertical compartment separators. Whenever

possible, we follow the conventions and draw substrate(s) on one side of the

transition (to its left by default) and product(s) of a transition on the opposite

side (to its right by default), respectively. This naturally leads to left-to-right



Fig. 2. An example illustrating the basics of the assumed ontology. The states, transitions, and

interactions (substrates such as the one with source S1, products such as the one with target S1 0,

and effectors such as the one with source S2) are represented with ovals, rectangles, and lines of

varying types, respectively, and cellular compartments are separated by orthogonal lines. (For

colour see online version.)
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oriented hierarchical structures for acyclic pathway graphs for which compart-

mental constraints do not violate this orientation (e.g., product of a transition

is in a compartment to the left of the compartment in which the same transi-

tion�s substrates reside).

3.1. Main idea

We have chosen to use a force-directed layout algorithm with constraints to
satisfy the criteria of the specific underlying model as well as the general con-

ventions in pathway graph drawings. Basically, it is a virtual dynamic system in

which nodes are assumed to be physical objects with a certain ‘‘electrical

charge’’, connected via ‘‘springs’’ of a pre-specified desired length. Thus each

node in a pathway graph is applied both spring and node-to-node repulsion

forces. Spring forces include relativity constraint forces that are applied on each

substrate, product, activator or inhibitor node, along with the associated tran-

sition, to align the corresponding edge to lie towards the left, right, top or bot-
tom of the transition, respectively. Furthermore, each horizontal (vertical)

compartment separator is part of this physical system, on which the rest of

the system can apply forces, moving them in only vertical (horizontal) direc-

tion. We also assume ‘‘gravitational’’ forces (one per compartment) on com-

partment separators, disallowing a compartment to unnecessarily expand.

Fig. 3 explains varying types of such forces with a sketch. As a result, the opti-

mal layout is regarded as the state of this system in which total energy is

minimal.
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Fig. 3. An example showing various types of forces on a state A (Fs, Fr, and Frc: spring, repulsion,

and relativity constraint forces, respectively) and a compartment separator. As a result both move

towards left as defined by total forces, FA and FC, respectively, acting upon them. (For colour see

online version.)
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The layout algorithm is split into three major phases, each of which alter-

nates between odd and even-numbered minor phases. The first major phase is

mainly for unscrambling the pathway graph with the help of high repulsion

force ranges. Here we use the concept of pulsing to avoid node overlaps and

decrease edge crossings. This is achieved by having high repulsion forces and

turning them on and off at alternating minor phases, creating a pulse-like effect,

similar to that of the heart of a living being; the graph expands to a much larger

area in a new minor phase compared to the previous one, and vice versa.
The second phase is where each edge adapts a best orientation for itself.

Here we use the concept of ‘‘maturity’’ for the orientation of an edge. As an

edge stays in a certain orientation (e.g., left-to-right or top-to-bottom) over

consecutive iterations, its maturity is increased; and after a certain period, it

‘‘adapts’’ this orientation. This is especially useful when default orientation

cannot be satisfied. For instance, if the flow of the pathway is from mitochon-

dria to ER (i.e., from right-to-left), the edges on the pathway will adapt a right-

to-left orientation after a while.
The last major phase is the stabilization phase, where all forces are at a min-

imum level, and pulsing and adaptive layout are disabled. In this phase, com-

partments are also allowed to shrink, so unnecessary space around the

compartment bounds can be eliminated. In other words, this phase is where

we ‘‘polish’’ the overall layout of the pathway.

In what follows we present our layout algorithm in a bottom–up fashion.
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3.2. Layout algorithm

We assume that the pathway graph object G = (V,E) to be laid out is imple-

mented using an adjacency list representation and can be referenced through

structures named Graph, Node, and Edge. Layout specific data and functional-

ity are assumed to be kept in these structures. In the following pseudo code,
location of a biological node u is represented with L(u). In addition, cumulative

spring forces Fs, due to incident edges on u are denoted by Fs(u). Similarly,

cumulative repulsion forces Fr, acting on u due to other nodes in a certain geo-

metric neighborhood of u are denoted by Fr(u).

The following method is used for calculating the relativity constraint forces,

Frc, acting over an edge. These forces are based on the conventions of pathway

drawings. For instance, a product of a transition is drawn to its right; thus the

product is applied a force proportional to the distance by which it is to the left
of the associated transition. These forces are calculated per edge and reflected

on its end nodes as follows:

Algorithm. ApplyRCF(Edge e = (u,v))

(1) if adaptive layout enabled and in major phase 2 then

(2) e.maturity + = 1

(3) orientDiscrepancy: = je.assignedOrientation � e.orientationj
(4) if e.maturity P MATURITY_THRESHOLD and

orientDiscrepancy P MAX_ORIENT_DISCREPANCY then

(5) Change orientation of e as appropriate

(6) e.maturity: = 0

(7) Calculate Frc on e according to its orientation

(8) Fs(u) + = Frc

(9) Fs(v) � = Frc
Wehave anH(1) time processing of each edge�s current orientation. If the edge
cannot satisfy its current orientation, then we assign a new orientation to it based

on its current position vector. The method is clearly of H(1) time complexity.

The next method calculates the general spring forces acting on each edge.

The formula for calculating the spring forces acting on an edge is

F s ¼ ðk � edgeLengthÞ2=g;
where k is the ideal edge length and g is the elasticity constant of the edge:

Algorithm. ApplySpringForces(Graph G = (V,E))

(1) for e = (u,v) 2 E do

(2) Calculate the spring force Fs acting on e



142 B. Genc, U. Dogrusoz / Information Sciences 176 (2006) 135–149
(3) Fs(u) + = Fs

(4) Fs(v)� = Fs

(5) call APPLYRCFAPPLYRCF(e)
The overall time complexity of this method is H(jEj) as all steps inside the
for-loop can be processed in H(1) steps.

Node-to-node repulsion forces are calculated using the formula

F r ¼ a=ðd2
x þ d2

yÞ;

where a is the repulsion constant and dx and dy are the differences in x and y

coordinates of the two repulsing nodes, respectively:

Algorithm. ApplyRepulsionForces(Graph G = (V,E))

(1) Create empty set S of layout nodes
(2) for u 2 V do

(3) Insert u into S

(4) for v 2 V�S do

(5) if dist(u,v) in repulsionRange then

(6) Calculate repulsion force Fr acting on u and v

(7) Fr(u) + = Fr

(8) Fr(v)� = Fr
Steps 6–8 are handled in H(1) steps, which are executed a total of maximum

O(jVj2) times, making the overall complexity of the method O(jVj2). However,

since a node pair affect each other only when they are below a certain geometric

distance, the average complexity is expected to be lower than this.

The CHECKCOMPRULESCHECKCOMPRULES method is called to control the compartment con-

straints as well as updating node coordinates before the next layout step:

Algorithm. CheckCompRules(Graph G = (V,E))

(1) for u 2 V do

(2) L(u) + = Fr(u)

(3) if u is a state and u violates bounds and resizing is enabled then

(4) Expand compartment of u

(5) L(u) + = Fs(u)

(6) if u is a state and u violates bounds then
(7) Alter L(u) to keep u within borders

(8) Increment error by total displacement of u
Either compartment resizing is enabled and the compartment borders are al-

lowed to expand to create enough space for the node displacements or the node
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movements are ‘‘trimmed’’ to fit in the current compartment bounds. Notice

that expansion and shrinkage (which is performed periodically during LAY-LAY-

OUTOUT) of a compartment both affect the geometry of the contents of the neigh-

boring compartments. For instance, if the cytoplasm expands from its bottom,

both nucleus membrane and nucleus located below it will shift towards bottom

along with its contents.
Step 4 is a bit complicated and possibly requires displacement of all nodes in

the graph, thus takes O(jVj) time to complete. Note that the compartments are

usually resized no more than once or twice per iteration. This is because,

although multiple nodes may request a resize operation, once the first resize

is realized, the new compartment bounds will suffice for the following resize

requests. Therefore, we can expect the overall time complexity of the method

to be O(jVj2) in the worst case and O(jVj) on the average.

The main method making use of earlier ones to implement the layout algo-
rithm is as follows:

Algorithm. Layout()

(1) step: = 0

(2) if an incremental layout is to be done then

(3) Increment step to second major phase

(4) else
(5) Set repulsionRange to MAX_REPULSION_RANGE

(6) while step 6 MAX_ITERATION_COUNT do

(7) if entering second major phase then

(8) Set repulsionRange to desiredRange for second major phase

(9) error: = 0

(10) call APPLYSPRINGFORCESAPPLYSPRINGFORCES()

(11) if in an odd minor phase or third major phase then

(12) call APPLYREPULSIONFORCESAPPLYREPULSIONFORCES()
(13) call CHECKCOMPRULESCHECKCOMPRULES()

(14) if in third major phase and resizing is enabled and step mod shrinkPe-

riod = 0 then

(15) Shrink all compartments from all sides as much as possible

(16) if error < ERROR_THRESHOLD then

(17) Jump to next minor phase by adjusting step

(18) if in third major phase then

(19) Immediately end layout
(20) step: = 1
Let us analyze each phase independently. The first and second major phases

only differ in the amount of repulsion range considered when calling APPLYRE-APPLYRE-

PULSIONFORCESPULSIONFORCES. For the first major phase, a very high repulsion range is used,
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thus more node pairs are considered in these calculations. Minor phases indeed

affect the time complexity more than the major phases, since in even-numbered

minor phases the repulsion force calculations are disabled. Thus, for the odd-

numbered minor phases and first two major phases the overall worst-case time

complexity of each layout iteration is O(jEj + jVj2 + jVj) = O(jVj2) for sparse

graphs. For the even-numbered phases this complexity is reduced to
O(jEj + jVj). In the third major phase, the repulsion forces are always calcu-

lated; additionally, a shrink operation is performed at certain periods. The

shrink operation is similar to the expand operation and handled in O(jVj) time,

making the overall complexity of the third major step O(jVj2) for sparse

graphs. Since there are multiple phases and we may skip the remaining itera-

tions of a phase upon achieving the errorThreshold value, it is very difficult

to make an average case complexity analysis for the algorithm. However, for

the worst case if we assume that all phases are executed to the end and all node
pairs are considered for repulsion calculations, the overall complexity of one

layout iteration is O(jVj2). Overall this yields a worst-case time complexity of

O(K Æ jVj2) over a total of K iterations needed for minimizing the total energy

of the system.
4. Implementation

The algorithm described above has been implemented within the PATIKA

pathway editor [8]. The development environment was Sun�s Java SDK 1.3 and

Microsoft Windows XP operating system on an ordinary personal computer.

The theoretical analysis of the algorithms has shown that the overall com-

plexity of the algorithm is K Æ O(jVj2) over a total of K iterations. Thus, a qua-

dratic behavior of execution time vs. number of nodes was expected, assuming

K does not grow in the order of the graph size. It should be noted that in var-

ious modes of the layout (adaptive layout mode, compartment resizing mode,
incremental mode, etc.) the number of iterations required to finalize the layout

differs significantly. The tests presented here are executed in adaptive mode

with compartment resizing enabled. The algorithm converges a lot quicker in

incremental mode for relatively minor changes in the topology and/or geome-

try of an already laid out graph.

For each test a random graph is generated and all nodes are randomly as-

signed a compartment. The number of edges per graph is chosen to be linear

in the number of nodes as in a typical pathway graph. For similar reasons
one in every 20 edges or so are added as a back edge to form a new cycle. Each

case includes five different test runs with 25, 50, 100, 150, and 200 nodes on the

average. The average of results obtained are presented in Table 1. The execu-

tion times have been measured for each major component of the layout inde-

pendently to discover their individual effects. Moreover, the total time of the



Table 1

Test results (ASF: apply spring forces, ARF: apply repulsion forces, CCR: check compartment

rules)

jVj Iter Max Iter ASF (ms) ARF (ms) CCR (ms) Combined (ms) Total (ms)

25 6948 7500 99 56 600 756 869

50 7415 7500 155 233 1205 1594 1725

100 7462 7500 265 903 2423 3592 3784

150 7467 7500 463 1882 4026 6372 6674

200 7500 7500 474 3500 5351 9326 9694
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layout process is compared with the total contribution of these components to
observe constant workload on smaller components (such as shrinking the com-

partments, which is done at certain intervals, independent of the number of

nodes) of the algorithm.

Fig. 4 shows the run time behavior of each layout component with increas-

ing number of nodes. It is clear that the time spent inside the APPLYSPRING-APPLYSPRING-

FORCESFORCES method is linear with respect to the number of nodes as expected

(due to the number of edges being a constant multiple of nodes in test graphs).

In theoretical analysis, we have stated that the APPLYREPULSIONFORCESAPPLYREPULSIONFORCES

method is quadratic with respect to the number of nodes. Our test results sup-

port our claim and reveals the quadratic O(jVj2) behavior of this component.

The CHECKCOMPRULESCHECKCOMPRULES method was stated to have a linear contribution to

the theoretical time complexity with respect to the number of nodes in the
Fig. 4. Graph size vs. execution time. (For colour see online version.)



Fig. 5. A randomly laid out p53 pathway in PATIKA.PATIKA. (top); same pathway after our layout

algorithm executes (bottom). (For colour see online version.)
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Fig. 6. Layouts of randomly generated pathway graphs of varying size and complexity. (For colour

see online version.)
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graph. The slight deviation from linearity observed is due to the fact that some

graphs may have a larger number of nodes close to the compartment bound-

aries than the others, which results in more compartment resizing operations.

The total time complexity is seen to be quadratic as expected from theoret-

ical analysis. Another important observation is that the compartment con-

straints are the major burden in the layout for small graphs, while as the
graph size increases over a few hundred nodes, the calculation of repulsion

forces dominate the execution time of the layout process. Overall, since most

pathway analysis is done with small graphs of at most a hundred nodes or

so, the performance of the algorithm is easily within acceptable range.

In addition, the quality of the layout is found to be acceptable in terms of

general graph drawing criteria (e.g., discovering symmetries, generating plane

drawings of planar graphs, and minimizing node-to-node overlaps and edge

crossings) as well as pathway graph drawing conventions. Fig. 5 shows the lay-
out of a p53 pathway within the PATIKA editor while Fig. 6 shows some ran-

domly generated graphs laid out using our algorithm.
5. Conclusion

We have presented a new efficient algorithm for layout of biological signal-

ing pathways, the underlying graph structure of which can be arbitrarily non-
uniform and complex. Our algorithm uses a force-directed layout scheme with

physical constraints due to cell geometry and constraints imposed by drawing

conventions. In addition, it is inherently incremental as force-directed ap-

proaches normally are and keeps the relative positions of pathway objects

when relatively minor changes are made in the topology and/or geometry of

a pathway. The algorithm has been successfully implemented as part of a path-

way integration and analysis toolkit named PATIKAPATIKA. Finally, the algorithm

may be easily adapted to be used in other applications with similar conventions
and constraints as well.
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