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Dynamic Boundary Control of a Euler-Bernoulli
Beam

Omer Morgiil

Abstract—We consider a flexible beam clamped to a rigid base at one
end and free at the other end. To stabilize the beam vibrations, we
propose a dynamic boundary force control and a dynamic boundary
torque control applied at the free end of the beam. We prove that with
the proposed controls, the beam vibrations decay exponentially. The
proof uses a Lyapunov functional based on the energy functional of the
system.

I. INTRODUCTION

Many mechanical systems, such as spacecraft with flexible ap-
pendages or robots with flexible arms can be modeled as coupled
rigid and elastic parts. In such systems, if a good performance of the
overall system is desired, the dynamical effect of the flexible parts
on the overall system has to be taken into account. Thus, modeling,
control, and stabilization of such flexible structures are important
for the control of such mechanical systems.

In recent years, the boundary control of flexible systems has
become an important research area. This idea is first applied to the
systems described by the wave equation (i.e., strings) [1}, and
recently extended to the Euler-Bernoulli beam equation [2], [3] and
to the Timoshenko beam equation [5]. In particular, it has been
proven that in a cantilever beam, a single nondynamic actuator
applied at the free end of the beam is sufficient to uniformly stabilize
the beam vibrations, [2], [3]. A good source of references to papers
in which boundary stabilization problems are treated using the
Lyapunov approach can be found in [6].

In this note, we consider a beam clamped to a rigid base at one
end and free at the other end. To stabilize the beam vibrations, we
propose a dynamic boundary force control and a dynamic boundary
torque control law (i.e., dynamic actuators) at the free end of the
beam. Under some assumptions, mainly the positive realness of the
actuator transfer functions, we prove that the beam vibrations
exponentially decay to 0. This generalizes an earlier result due to
Chen [2].

II. EQUATIONS OF MOTION

We consider a Euler-Bernoulli beam, clamped to a rigid base at
one end and free at the other, as shown in Fig. 1. In Fig. 1, the
horizontal and vertical axes are assumed to be fixed in an inertial
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Fig. 1. A flexible beam.

frame N. The beam is clamped to a rigid base fixed in V at the
point O, which is the origin of the inertial frame V.

We assume that the beam is initially straight along the horizontal
axis and this configuration is referred to as the reference configura-
tion for the beam. Let P be a material point on the beam whose
distance from O in the reference configuration is x and let # denote
the vertical displacement of P from its position in the reference
configuration. We also assume that the beam is inextensible, i.e., no
displacement along the horizontal axis, and that the beam is homo-
geneous with uniform cross-sections.

Assuming small displacements, neglecting the effect of gravity
and rotatory inertia of the beam cross-sections and using the
Euler-Bernoulli beam model, we obtain the following equations,
see [10]: forall t = 0

Elu, .. +pu,=0, O0<x<lL (1)
u(0,¢) =0, u(0,6)=0 (2)
Equxx(L’t) =f1(t) (3)
_Equx(L’ t) =f2(t) (4)

where a subscript denotes the partial differential with respect to the
corresponding variable, EI is the flexural rigidity of the beam, p is
the mass per unit length of the beam, L is the length of the beam;
(1) is the balance of forces at x along the vertical axis, (2) gives the
boundary conditions at the clamped end, (3) and (4) are the bound-
ary conditions at the free end, f,(f) and f,(¢) are the boundary
control force and the boundary control torque, both applied to the
free end, respectively.

Our control objective is this: find a control law for the control
force f,(f) and the control torque f,(¢) such that the solutions of
the system given by (1)-(4) satisfy the following asymptotic rela-
tions: forall 0 < x < L

lim u(x,¢) =0 (5)
fand )
lim u,(x, ) = 0. (6)
lindsd]

To stabilize the system given by (1)-(4), we propose the following
feedback control laws: for i = 1, 2

;= Aw; + bu(t) ()

_ T

fi(t) = ¢fw; + du(t) (8)
where, for i = 1, 2, w;€ R" is the actuator state, A,e R"*" is a
constant matrix, b;, ¢;€R"™ are constant column vectors, the
superscript 7 stands for the transpose, d;€R is a constant real
number, and u,(¢) is defined as

wt) = (L,0),  w(t)=uy(L1). reR. (9)
We note that for / = 1 (i = 2, respectively) (7) and (8) give the
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equations for the actuator whose input is u,(L, ) (u,(L,1),
respectively) and the output is the boundary control force f(¢) (the
boundary control torque f,(f), respectively).
We assume the following throughout this work.
Assumptions: For i = 1, 2
1) all eigenvalues of the matrix A; are in the open left-half
plane,
2) the triplet (A, b;, ¢;) is both observable and controllable,
3) d, >0, d, = 0; furthermore for some vy, > 0, y, = 0 such
that d, > v,, d, = 7,, we have the following:

Re{g,(jw)} > i i=1,2, weR (10)

where, for i = 1,2, gi(s) =d, + c](sI — A)™'b,. O

The assumption 3) implies that, for i = 1, 2, the actuator
transfer function g,(s) is a strictly positive real function.

Let the assumptions 1)-3) stated above hold. Then it follows
from the Kalman-Yacubovitch lemma that, for i = 1, 2, given
any symmetric positive definite matrix Q; e R"*", there exist a
symmetric positive definite matrix P;e R™*" and a vector
g;€R™ satisfying

Az'TPi+PiA1= _qiqiT_fiQi (11)

1
Pb; - Eci: V{di~v)a (12)

provided that €; > 0 is sufficiently small, see [13, p. 201].

To analyze the system given by (1)-(4), (7)-(9), we first
define the function space 5 as follows:
# = {(uu, w w,)" |ueH$, u,eL? w eR™, w,eR™}

(13)

where the spaces L2 and HY are defined as follows:

L2={f:[0,L]—>R[/0Lf2dx<oo} (14)

Hi={fel?|f,f. /", f®el?,  f(0) =f(0) =0}.
(15)
Equations (1)-(4), (7)-(9) can be written in the following ab-
stract from:
z= Az, z(0) e # (16)
where z = (u u, w, w,)Te#, the operator A: #— H# is a
linear unbounded operator defined as
U,

EI 9*
Az = T Xt . (17)
Aw, +bu,(L)
Aywy + byu (L)
The domain D( A) of the operator A is defined as:
D(A):= {(u u, w, wy)" |ueHg,

w,eR™

u,e HZ,
w eR™M,
~Elu, (L) + clw, +du,(L) =0,
Elu, (L) + clw, + dyu,, (L) = 0}. (18)

Let the assumptions 1)-3) hold, let, for i = 1, 2, Q,e R™*"i
be an arbitrary symmetric positive definite matrix and let P;e
R"*", g, R"™ be the solutions of (11) and (12) where P; is
also a symmetric and positive definite matrix. In #, we define

the following ‘‘energy’’ inner-product:

N 1 rL 1 rL
(Z,Z>E=E/(; pu,ﬁ,dx+§/0 Equxﬁxxdx

+ WPw, + wiP,w, (19)

where z = (u u, w; w,)7, 2= (& @, W, W,)7. We note that
A, together with the energy inner-product given by (19) be-
comes a Hilbert space [2], [7]. The ‘‘energy’’ norm induced by
(19) is

) 1 L ) 1 L )
E(t) = |z(t)|z= 5/ pu? dx + 5/ EN dx
0 0

+ wiPow, + wlP,w, (20)

where the first term is the beam kinetic energy, the second term
is the beam potential energy [10]. The last two terms are a
measure of the actuator ‘‘energy.”’

Note that E(f) = 0 on a time interval [a, b] if and only if
u(x, t) = 0 and u,(x, t) = 0 almost everywhere on [0, L], for
all te[a, b]. This follows from (20) and (2).

Proposition: Consider the system given by (1)-(4), (7)-(9).
Let the assumptions 1)-3) hold. Then the energy E(¢) given by
(20) is a nonincreasing function of time along the classical
solutions of (1)-(4), (7)-(9). (For the terminology of partial
differential equations and semigroup theory, the reader is referred
to, e.g., [11].)

Proof: By differentiating (20) with respect to time, using
(1)-(4), (7)-(9) and integrating by parts, we obtain

E(t) = —Elu, (L, )u,(L,t) + Elu (L, t)u,(L,1)
+wl(A]P, + P, A))w, + wl(AIP, + P, A,)w,
+2wiPbu,(L,t) +2wiP,byu,,(L,t)
_dluf(l” 1) —dyu3 (L, 1) — ew{Qw,

Wi Qw,

—clwu (L, t) — cdwyu,, (L, t)
~wiqg{w, — wig, i w,
+2wlPbu,(L,t) +2wlP,byu,(L,t)
~miu; (L, t) = vaui (L, 1)

—eW QW — W] 0,w,
_(m”r(l"t)
—(Va& =7z uglL, 1) - wig,)’ (@)

where to obtain the first equation we differentiated (20), used (1),
(7), integrated by parts twice and used (2); to obtain the second
equation we used (8) and (11); and to obtain the last equation, we
used (12). Since E(t) < 0, it follows that the energy E(¢) is a
nonincreasing function of time along the classical solutions of
-4, (D-9). -
Theorem 1: Consider the system given by (16), where the
operator A is given by (17) and the spaces /# and D(A) are
given by (13) and (18), respectively. Then the operator A
generates a C;, semigroup 7(¢) in # . Moreover, if z(0) € D( A),
then z(f) = T(#)z(0), t = 0, is the unique classical solution of
(16) and z(f)eD(A), t = 0. (For the terminology on semi-
group theory, the reader is referred to [11].)
Proof: From (21) it follows that A is dissipative on . It
can also be shown that the operator NI — A4: # — # is onto for

- wlg,)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 37, NO. 5, MAY 1992

all A > 0 (see [7] for similar proofs). Therefore, it follows that
D(A) is dense in #, see [11, p. 16]. Hence from the
Lumer-Phillips theorem [11, p. 14], we conclude that A gener-
ates a C, semigroup T(f) on . That z(¢) = T(£)z(0), t = 0,
is the unique classical solution of (1)-(4), (7)-(9) when z(0) e
D(A), and that z(¢) € D(A), t = 0, follows from the semigroup
property, see [11]. O

Next, we prove that the energy E(f) decays exponentially to
zero along the classical solutions of (16).

Theorem 2: Consider the system given by (16). Let the
assumptions 1)-3) hold. Then the energy E(#) given by (20)
decays exponentially to zero along the classical solutions of (16).

Proof: We consider the following function

V(t) =2(1 — e)tE(t) + Z/pru,ux dx  (22)

where € e (0, 1) is an arbitrary constant.
In the sequel, we need the following inequalities:

L L
u*(s, t) sL/ ul dstZ/ ul, dx,
0 0

L
u2(s, t)sL/ .dx sel0,L] (23)
0

ab < 8%a* + b* /82, a,b,6eR, 6 %0 (24)

where (23) follows from boundary conditions and Jensen’s in-
equality [12, p. 110]. Using (20), (23), and (24), it follows that
there exists a constant C > 0 such that the following inequality
holds for all £ = 0

[2(1 - €)1 - C]E(1) = V(1) = [2(1 - €)t + C] E(1).
| (29)
Differentiating (22) with respect to time, we obtain

V(1) = 2(1 = ) E(¢) +2(1 — €)tE(t)
L L
+2/ pxu,u, dx + 2/ pxuU,, dx
0 0
=2(1 - &) E(t) +2(1 — )tE(1)
L L
- 2EI/ Xl ypp iy X + 2/ pxuu,, dx. (26)
0 0

Using integration by parts, (24), and the boundary conditions
(2)-(4), we obtain

L
A = —251/ Xttt dX
0
= —2EILu, (L, )u,, (L, t)+2E (L, t)u,(L,1?)

L
+EIL (L, ) - 351/ ul, dx
0

A

(2L8? +283)u(L, 1) + (4Ld7 /87 )u7 (L, 1)
+(4/83 + 2L /ENd5u% (L, 1)
+(42/83) (cTwy)’

L
+(4/62 + 2L /EI)(cIw,)’ — 351/ Wl de  (27)
0

L L
Ay=2 / oxuu,, dx=pLu?(L,t) - / puzdx  (28)
0 0

where 8, # 0, 6, # 0 are arbitrary constants.

641

Using (21), (27), and (28) in (26), we obtain
V(t) =2(1 - e)E(t) +2(1 — e)tE(t) + A, + 4,
L
< —5/ pu? dx — [2(1 = €)te,wTQw,
0
2
(@L/8t)(ciwi) ]
—[2(1 - e)te;wiQw, — 2(1 — ) wiP,w,
—(4/83 + 2L /EI)(cIw,)’]
—[2(1 - €)ty, — 4Ld7 /87 — pL]u?(L, ¢)
—[2(1 - e)ty, - (4/83 + 2L/EN)d3 W2 (L, 1)
-2(1 - E)t(«/d1 —v,u,(L,t) - wqul)2
2
=2(1 = e)t(Vdy = vau (L. t) - wig,)
L
(e+2)EI/ W2, dx—- (283 +283)u2(L, 1) |.
0
(29)
By choosing 8, and &, sufficiently small, -the last term in (29)

can be made negative (see (23)). Hence, from (29) it follows that
there exists a 7 = 0, such that the following holds:

-2(1 - e)wlPw, —

v(ty=o0, t=T. (30)
This, together with (25) implies that
E(1) V(T) T 31
) ———, t=T.
(2(1-¢)t-0) (1)

By (21), E(t) < E(0); hence (25) implies that V(T) < Ky E(0)
for some constant K, > 0. Therefore, from (21) and (31), we
conclude that for some constant K, > 0, the following holds:

/ TIT()2 )14 d <K, |2(0)]*  vz(0)eD(4) (32)

where E(t) = || z(2)||? (see (20)) and z(¢) = T(£)z(0) (see the
Theorem 1). Then, by density of D(A) in s, we conclude that
the following also holds:

/m]yT(t)z(O)||4dt<oo vi(0)e#. (33)

Exponential decay follows from a result due to Pazy, [11, p.
116], that is there exist constants 0 < M < oo and 6 > 0 such
that the following holds:

E(t) =Me™™, t=0. (34)

In fact, by density, (32) will hold on /#, hence exponential
decay obtains along all finite energy solutions, not just classical
solutions. O

Remark 1: Assume that the feedback laws which give f(¢)
and f,(¢) are given by two transfer functions g,(s) and g,(s),
instead of (7) and (8). In this case, a minimal realization of g,(s)
and g,(s) in the form of (7) and (8) can always be found.
Because of minimality, for i = 1, 2, the eigenvalues of A; are
the same as the poles of -g;(s). Hence, if the feedback laws are
specified by two proper transfer functions g,(s) and g,(s), the
assumptions 1)-3) can be replaced by the following two assump-
tions: for i =1, 2

Assumptions:

i) The poles of g;(s) are in the open left-half plane.

ii) There exist constants vy, > 0, v, = 0 such that the follow-
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ing holds:
QE{gi(jm)} > v, weR. d

Remark 2: Note that the result of Theorem 2 still holds even if
£,(5) = 0 (see (10)), that is if f,(¢) = 0, £ = 0 (see (4)). In this
case (7) will not exist for i =2 and (8) will yield ¢, =0,
d, = 0. Hence, we have vy, = 0, and consequently from (21) and
(29) we conclude the exponential decay of the energy. O

Remark 3: In the case of nondynamic control laws, for
i =1, 2, (7) will not exist and (8) reduces to

flt) =dwu, (L, 1), So(t) = dyu (L, 1),
d >0,

(35)

d, =z 0.

(36)
This is the case considered by Chen [2]. Hence, the results
presented here may be considered as a generalization of some
results of [2], and consequently, we obtain a wider class of
exponentially stabilizing controllers for the system given by
(-

One way of implementing the control laws given by (36) is to
use actuators whose inputs are u,(L,?) and u,,(L,f), and
whose outputs are f(#) and f,(¢), where the actuator transfer
functions are given by d, and d,. From a practical point of view,
however, most actuators show some dynamic behavior, at least
over a frequency range [14]. In this case, Theorem 2 provides a
sufficient condition to ensure exponential stability, whereas the
results of [2] do not apply.

Also note that the proposed dynamic control (7)-(8), as well as
the standard nondynamic one (36), change the frequency-domain
characteristic of the system; that is the eigenvalues of the opera-
tor given by (17) are completely different than the eigenvalues of
the uncontrolled system. This change in the spectrum, although
limited, can be used for some control applications, such as
eigenvalue assignment, disturbance rejection (see [8]). Note that
the dynamic control offers more degrees of freedom to change the
spectrum of the operator given by (17), than the standard nondy-
namic one. This point is still under investigation and will be the
subject of a forthcoming paper. We also note that the use of
dynamic control for a rotating flexible structure yields some
interesting results, such as it may be possible to achieve fast
rotation rates without destroying stability, [9].

One way of implementing the dynamic boundary control pre-
sented here is to use gas jets at the tip of the beam and to control
the gas pressure by a dynamic actuator. (In [4], it has been noted
that the pressurized gas tanks with servo-controlled actuators can
be used to significantly reduce the dynamic response of tall
buildings.) Also, a classical way of employing such control laws
is to use parallel/series combinations of standard mass-spring-
dampers, see [10], [4]. O

. CoNCLUSION

In this note, we considered the stabilization of a clamped-free
Euler-Bernoulli beam using dynamic boundary control. Under some
assumptions, one of which is the positive realness of the actuator
transfer functions corresponding to the dynamic boundary controls,
we proved that the energy of the beam-actuator configuration decays
exponentially to zero. We also give an equivalent characterization of
our assumptions which guarantees the exponential stability of the
beam-actuator configuration in the Remark 1. This latter set of
assumptions are in the frequency domain and are easy to check. Our
results are a generalization of an earlier result due to Chen 2], and

provide a wider class of stabilizing actuators for the clamped-free
Euler-Bernoulli beam.

An interesting research topic would be the characterization of
other, if possible all, finite-dimensional exponentially stabilizing
controllers for the clamped-free Euler-Bernoulli beam.
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Time-Varying Riccati Differential Equations with
Known Analytic Solutions

Chiu H. Choi

Abstract—This note presents several examples of large-scale time-
varying stiff as well as nonstiff Riccati differential equations (RDE’s)
with known analytic solutions. These examples are useful for testing the
accuracy and efficiency of algorithms for solving such equations. Ana-
Iytic expressions of the eigenvalues of the solutions of the RDE’s are
also found. Eigenvectors of some of the solutions are also given.

I. INTRODUCTION

Many algorithms have been proposed to solve matrix Riccati
differential equations. Most of these algorithms were tested only
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