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Abstract. We examine a generic three level mechanism of quantum computation in which all fundamental
single and double qubit quantum logic gates are operating under the effect of adiabatically controllable
static (radiation free) bias couplings between the states. Under the time evolution imposed by these bias
couplings the quantum state cycles between the two degenerate levels in the ground state and the quantum
gates are realized by changing Hamiltonian at certain time intervals when the system collapses to a two
state subspace. We propose a physical implementation of the mechanism using Aharonov-Bohm persistent-
current loops in crossed electric and magnetic fields, with the output of the loop read out by using a
quantum Hall effect aided mechanism.

PACS. 03.67.Lx Quantum computation – 03.67.-a Quantum information – 68.65.-k Low-dimensional,
mesoscopic, and nanoscale systems: structure and nonelectronic properties – 68.65.Hb Quantum dots

1 Introduction

Quantum computation [1] is based on the realization of the
logic gates by manipulating the quantum states via switch-
ing specific interactions in the course of the time evolution
of a quantum system. Recent trends in the experimenta-
tion of the small scale quantum logic gates [2] suggest that
the gate operations can be performed by efficient mecha-
nisms based on superconducting states in Josephson tun-
neling junctions.

The fundamental differences between the well explored
classical and the much less explored quantum computation
arises primarily from the manifestations of the fundamen-
tal principles of quantum mechanics. From the informa-
tion theory point of view, an ideal quantum computational
algorithm is expected to make maximal use of the super-
position and entanglement principles to implement what
is often called the principle of quantum parallelism. Ex-
ponentially unsurpassed performances are expected as a
result of this principle in tackling special algorithmic prob-
lems such as the quantum factorization algorithm due to
Shor [3], the Grover’s unstructured data search [4], or,
more generally, quantum simulation of the many-body
problems (e.g. Ref. [5]). On the other hand, and from
the physical point of view, making use of the principles
of quantum mechanics in a computational frame requires
full control of the interacting quantum system with an
external classical system which includes the input-output
measurement devices and weakly controllable environmen-
tal agents. The decoherence arises from the susceptibility
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of the interacting quantum system to the interferences cre-
ated by the environment. Crudely speaking, decoherence
can be summarized in the computational terminology as
the loss of computed information stored in the parame-
ters of the quantum state. In turn, decoherence leaves a
small room both spatially and temporally in the desirable
manipulation of the quantum state and the conditions to
fight decoherence may be very severe. In this context, find-
ing new mechanisms and new experimental systems aim-
ing to minimize all sources of decoherence is a major task
of the current research efforts in the realm of quantum
computation.

Most required interaction mechanisms in the manip-
ulation of the quantum gates that are proposed in the
literature are based on the coupling of the qubit states to
some resonant external radiation which then becomes a
major obstacle to control the environmental decoherence.
In an opposite context, the coupling to the environment
has also been suggested to keep the decoherence under
control. Lately new theoretical mechanisms based on multi
level quantum systems were proposed in which the envi-
ronment strongly couples under certain conditions to the
high levels of a multistate system but not to the qubit
subspace in a direct way (dissipation free subspaces). The
main requirement in these theories is therefore the preex-
istence of the dissipation free subspaces [6]. More recently
Beige et al. [7] have examined this idea theoretically in
a multi-atom three state model with a doubly degener-
ate ground state comprising the mentioned dissipationless
subspace with the third levels of the atoms strongly cou-
pled to each other and to a single cavity mode. Zanardi
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and Rasetti [8] discussed earlier a somewhat similar four-
state model with a dissipation free subspaces. When all
atoms are in the ground state and the cavity mode is un-
occupied, the dissipative interaction is effectively switched
off. As the result, the subspace comprising the doubly de-
generate ground state is dissipation free if the cavity field
is in the vacuum state.

In this article we propose a deceptively similar three
state idea based on the Aharonov-Bohm persistent current
rings. Persistent current states in normal (nonsupercon-
ductive) metals have been found in [9] (see also a review
paper [10]) and later in [11]. They appear as a manifes-
tation of the Aharonov-Bohm effect [12] produced by a
magnetic flux threading the loop, and are effected due to
the so called 2-nd Aharonov-Bohm effect (also in [12]) by
static electric field applied perpendicular to the magnetic
field. Our model utilizes this principle in three island flux
threaded rings in which the electron is allowed to hop from
one site to the other. In fact, our system bears no anal-
ogy with the 3-state proposal of Beige et al. neither in
the advantages of the latter nor in its disadvantages (the
noise induced by repetitive measurements over the dissi-
pative channel needed to keep system within the deco-
herence free subspace by a quantum Zeno effect [13]). The
3-state loop is the minimal Aharonov-Bohm system which
allows accomplishing quantum transitions (the quantum
logic gates) with static potentials.

From the perspective of quantum computation, the
fundamental exception of the proposed model from the
conventional approaches is that the mechanism utilizes ra-
diation free static couplings to perform the quantum logic
gates. Namely, the time evolution of the wavefunction is
induced by static interactions between the first two levels
(qubit) with the third (auxiliary) level. As the quantum
state cycles in this three state Hilbert space, the gate op-
erations are defined at the specific instants in this time
evolution such that the desired qugate is obtained in the
qubit subspace with no probability of occupation in the
auxiliary state. Moreover in the proposed model the oth-
erwise independent concepts of qubit and quantum gate
are inseparably unified within the same quantum unit. It
must therefore be stressed that in our model the leakage
of the wavefunction into the third level is not avoided,
on the contrary, the dynamical occupation of the third
level is an essential part of the time evolution of the state.
The advantages of the proposed model are that firstly the
wavefunction never leaks out of the three state Hilbert
space and secondly the quantum gates are obtained via ra-
diationless mechanisms as they involve time-independent
non-resonant interactions. To our knowledge, similar ra-
diationless qugate operations have not been discussed yet
and we expect that more physical realizations of the pro-
posal here may be found. One of the clear advantages of
the radiationless coupling is to suppress substantially the
environmental dissipation in the case when, for instance,
resonant coherent light pulse (as in the case of ion trap [14]
and many other mechanisms) or magnetic rf-fields (as in
the case of superconducting systems) are used to manip-
ulate the quantum states.

The paper is organized as follows. In Section 2 we
address the issue of the non-superconducting Aharonov-
Bohm persistent current in the mesoscopic or nanoscopic
system. In Section 3, the realization of the fundamental
single and double quantum logic gates is demonstrated for
these loops forming a full set of transformations needed for
the universal quantum computation. Section 4 discusses
the dissipation and decoherence effects in the Aharonov-
Bohm qubits, and Section 5 suggests the physical imple-
mentation of persistent current loops, including also the
usage of classical and quantum Hall effects for reading out
the information from the qubits.

2 Persistent current qubit

The realization of the quantum computation schemes that
use the concept of static flux, can be made with the
use of macroscopic quantum interference effects in su-
perconducting systems (the Josephson effect [15]), or the
Aharonov-Bohm persistent-current states in nonsupercon-
ducting structures of small size [10]. The latter structure
naturally realizes the inverted double-degenerate ground
state separated from the higher energy state(s) by a finite
gap. Comparatively to this, the superconducting junctions
in the macroscopic quantum regime [16] may suffer from
the decoherence due to inavoidable admixture of gapless
localized excitations near the barrier area activated at flip
transitions between the degenerate states (this is seen in
the broad resonances of the “Schrödinger Cat” states ob-
served experimentally [17–19]. Much better resolution of
such resonances in recent papers [20–22] still does not ad-
dress the phases of superposition states when any switches
are performed during the coherent evolution time).

In our paper we suggest the persistent current loops for
the physical realization of qubits and qugates. The three-
site loop is supplemented by a (macroscopic) nondemoli-
tion measuring device (the quantum Hall bar in this case),
which performs both tasks in a coherent and decoherence-
free fashion by coupling for a short time the qubit subspace
to the third (auxiliary) level.

The three state system in our consideration is defined
to be in a Λ-shaped configuration in Figure 1 under zero
bias potential, i.e. the ground state is doubly degener-
ate and there is a third (auxiliary) state. One possible
realization is via a three-sectional mesoscopic ring inter-
sected by tunneling barriers (or consisting of overlapping
metallic films separated by thin oxide layers) as shown in
Figure 2. The isolated qubit structure can in principle be
realized naturally as a three-island defect in an insulat-
ing crystal, similar to negative-ion triple vacancy (known
as F3-center) in the alkali halide crystal (see for instance
established textbooks such as Ref. [23]). The gate ma-
nipulations can be performed via an Aharonov-Bohm flux
perpendicular to the ring together with a constant electric
field within the plane of the ring (Fig. 3). The informa-
tion to be implemented into the computational basis of
the quantum computer is stored in the form of param-
eters of the persistent-current states of the normal-state
Aharonov-Bohm ring (the qubit), and processed via the
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Fig. 1. Λ-shaped level configuration of the persistent-current
normal-state Aharonov-Bohm qubit. 1, 2, 3 are the eigenstates
of Hamiltonian (1) at α = π/3 where 1 and 3 are the compu-
tational basis (qubit) registers |0〉, |1〉, whereas 2 is the qugate
(control) register |c〉. Arrows show virtual transitions between
the degenerate states through the excited state |c〉, effected by
the potential biases applied to the metallic sites of the three
sectional Aharonov-Bohm ring.

Fig. 2. (a) A sketch of magnetically focused lines of mag-
netic field (arrows) of the superconducting fluxon with flux
Φ1 = hc/2e making one half of the normal-metal flux quan-
tum, Φ0 = hc/e, and effecting the ring R with three normal is-
lands into a Λ-shaped configuration. The fluxon Φ1 is trapped
in the opening of superconducting foil (S) and further com-
pressed by a ferromagnetic crystal to fit into the interior of the
ring. (b) Schematic of the multi-ring qubit arrangement with
the sites (circles) on the surface of cylindrical wall R surround-
ing ferromagnetic cylinder (F) which focuses lines of magnetic
field in a cylindrical tube inside superconductor (S).

Fig. 3. A sketch of the electric field (shown by arrows) applied
to the ring through the potential electrodes (V) in direction
perpendicular to the direction of magnetic field. C is a coupling
loop providing the connection to the nondemolition-measuring
setup of the persistent current.

radiation free transitions between the states in an invari-
ant subspace, effected by the static bias potentials on the
sites of the ring (the qugates).

The system is expected to be robust with respect to
(small) deviation from the perfect atomic structure, pres-
ence of small amount of defects or impurities or other
imperfections. The reason is that the persistent-current
state is not a one similar to the ohmic current states in
classical metals but rather a thermodynamic equilibrium
state [9–11] with a nonzero current persisting while the
Aharonov-Bohm flux in a ring remains constant. Scatter-
ing by impurities doesn’t affect the magnitude of the cur-
rent if the effective mean free path of electron (l) is larger
than the ring diameter (d), and monotonically decreases
in amplitude at decreasing l. The current remains finite
rather then infinite, even at l = ∞, counterintuitive to
naive reasoning which may compare the persistent current
to the Ohmic currents in classical metal.

In the absence of the bias potentials, the dynamics of
the Aharonov-Bohm loop with 3 barriers is governed by
the pure tunneling Hamiltonian

H0 = −τ

3∑
n=1

(
a†

n an+1 eiα + a†
n+1 an e−iα

)
(1)

where τ is a real tunneling amplitude between the is-
lands and α is a controllable phase. Equation (1) is
represented in the diagonal basis by the eigenenergies
εm = −2 τ cos(2π

3 m + α) where α = 2πΦ/3Φ0 and Φ0

is a normal-metal flux quantum hc/e. The eigenener-
gies form the Λ configuration at the symmetric point
Φ = Φ0/2 = hc/2e with the energies (−1, 2,−1) τ for
m = 0, 1, 2 respectively. In fact, the model Hamiltonian in
equation (1) is an idealization of a realistic system where
the higher excited states are far removed from the first
three eigen levels. This condition is implied by τ � ∆E
where ∆E is the energy separation between the third and
the next excitation. The physical realization of this condi-
tion is permitted by three sufficiently deep quantum wells
localized in the corners of an equilateral triangle.

Returning to the ideal model in equation (1), the three
sites interact by a bias potential loop with the site poten-
tial Vn = V0 cos (2π n/3) where n = 1, 2, 3 is the site in-
dex. It is clear that for this choice, the potential can be
obtained by a conservative field since the total potential
around the loop vanishes, i.e. V1 + V2 + V3 = 0. The total
Hamiltonian is then the sum of equation (1) and the site-
potential and is represented in the diagonal basis of H0

by the matrix (in units of τ)

H0 + H1(V0) =


−1 ν ν

ν 2 ν
ν ν −1


 (2)

where H0 = diag(−1, 2,−1) is the Hamiltonian (1) in the
diagonal form, ν = V0/2τ is the dimensionless interac-
tion parameter. The proposed mechanism is designed to
be radiation free and the quantum gate operations are
performed by adiabatically tuning the static potentials.
The system is prepared in a particular ground state (no
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Fig. 4. Eigenenergies of the ring biased with a potential V0.
Eigenstates 1 and 3 are degenerate at V0 = 0 where they form
the qubit states. The commensurate situation, marked by ar-
rows, appears at K = 1 and at K = 3 where it allows for the
temporal (virtual) transition to a higher level 2 and back thus
effecting the bit-flip transition (at K = 1) and the Hadamard-
like gate (at K = 3).

occupation of the auxiliary level) and the time evolution
is continued until the period t = t∗ at which the auxiliary
level cycles back to its initial configuration. The other pa-
rameters are adjusted so that the desired single-qubit gate
is realized at the end of the single cycle of the auxiliary
level. The unitary time evolution at t = t∗ is then given by

eit∗(H0+H1(V0)) =


A 0 B

0 X 0
C 0 D


 (3)

where A, B, C, D are complex, X is a pure phase and,
other than the unitarity condition, no other restrictions
apply on the matrix elements. The form of the unitary
matrix in equation (3) leaves the qubit subspace invariant
irrespectively of the value of X as long as the initial wave-
function is confined to the same subspace. The instan-
taneous vanishing of the certain matrix elements in (3) is
due to the destructive interference in the transition ampli-
tudes between the auxiliary level and the qubit subspace.
Using the exact expressions describing the absolute level
amplitudes, it can be inferred that the destructive inter-
ference condition at t = t∗ can be satisfied if the transi-
tion energies are commensurate. One way to express this
condition is

E3 − E1 = K (E2 − E3) , K = integer (4)

where Ei = Ei(V0) , i = 1, 2, 3 are the eigenenergies
of (2) plotted against V0 in Figure 4. In fact, equation (4) is
a condition on the static potential. Solving the eigenvalues
of equation (2) we find that the potential is allowed to take
a discrete set of values determined by

V
(K)
0 = − 2

3K

[
K2 + K + 1 + (K − 1)

√
K2 + 4K + 1

]
.

(5)

Fig. 5. Bit evolution at K = 1. At point indicated by an
arrow (t = t1), the population of control register (|c〉) vanishes
whereas the populations of the computational registers of qubit
(|0〉) and (|1〉), interchange.

Mention that similar transformation may also apply to a
three-Josephson junction qubit as discussed in [24].

3 Qugate operations

We now demonstrate that different values of the inte-
ger K performs different qubit gates. In particular, among
the fundamental single qubit gates the bit flip and the
Hadamard-like gates can be realized by the time evolu-
tion of the Hamiltonian alone in equation (2) at certain
instants and at specifically tuned values of V0. Among the
elementary qubit gates, the phase gate requires a control
on the relative phase between the degenerate states. In
order to induce a relative phase, the otherwise degener-
ate states in the qubit subspace are made nondegenerate
by a shift in their eigenlevels by turning on a degener-
acy breaking interaction. This is a relatively well known
method in the case of Aharonov-Bohm rings, for instance,
by slightly shifting the dc-flux away from the value where
doubly degenerate configuration is defined. The net ef-
fect of this shift in the adiabatic limit is represented by a
diagonal, degeneracy breaking effective term in the total
Hamiltonian

H2 = diag(∆ε1, ∆ε2, ∆ε3). (6)

The diagonal form of equation (6) implies that the phase
shift can be obtained independently from the other gates
since, due to the diagonal form, the time evolution is mani-
festly adiabatic. One other advantage in this diagonal form
is that the transformation leaves the qubit subspace in-
variant and thus it can be conveniently used for phase
correction. We demonstrate below the realization of the
different single qubit operations by a mere change of the
integer K and letting the system time-evolve. The pop-
ulations of the three eigenstates of the Hamiltonian in
equation (2) are plotted in Figure 5 as functions of time
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Fig. 6. Bit evolution at K = 3. At point indicated by an
arrow (t = t3), the population of control register (|c〉) vanishes
whereas the computational basis of the qubit, originally in a
state (|1〉, equally populates to states |0〉 and |1〉.

and for K = 1. The first observation is that the maxi-
mal occupation of the auxiliary state is 20% of the to-
tal unit probability. At periodic time intervals, of which
period t1 is indicated on the horizontal axis by an ar-
row, the population in the auxiliary state vanishes and
the wavefunction instantaneously collapses onto the qubit-
subspace non-demolitionally. Hence, at t = t1 the degen-
erate levels exchange their population. The bit flip should
introduce no relative phase between the qubit states, thus,
one needs to know not the probabilities but the ampli-
tudes. These can be directly obtained from the unitary
time evolution at K = 1 (which corresponds in equa-
tion (2) to V

(1)
0 = −2τ). Evolving the Hamiltonian in

(2) at this configuration for t1 = π/
√

6 (in units of �/τ),
t1 = π/

√
6 (in units of �/τ) as

exp


−it1


−1 −1 −1
−1 2 −1
−1 −1 −1





 =


 0 0 −1

0 1 0
−1 0 0


 (7)

and ignoring the overall phase, we obtain a bit-flip in the
qubit subspace.

The second gate manifested by the commensuration
condition is the Hadamard gate which is obtained at
K = 3. In Figure 6 the occupation of the states are plotted
as functions of time. The period t3 at which the instan-
taneous collapse to the qubit subspace with symmetric
occupations occurs is indicated by an arrow. The unitary
matrix that performs this operation is

exp



−it3




−1 V
(3)
0 /2 V

(3)
0 /2

V
(3)
0 /2 2 V

(3)
0 /2

V
(3)
0 /2 V

(3)
0 /2 −1







=

eiα

√
2




1 0 −i

0
√

2eiβ 0

−i 0 1


 (8)

V

V

C

Q
Q

1
2

H

Fig. 7. A sketch of the CNOT quantum gate. The loop of the
qubit No.1 couples via the superconducting loop C to quantum
Hall bar (H) in the form of a Corbino disk. The voltage output
RxyJ ′

1 from the disk is supplied (after subtracting a constant
value V0, not shown in the figure) to potential electrodes V
thus controlling the flip transition in the qubit No. 2.

where t3 = π/2 [E2(V
(3)
0 ) − E3(V

(3)
0 )] = 0.7043492 (in

units of �/τ) and V
(3)
0 = −2τ(13 + 2

√
22)/9. The α is an

overall phase which is ignored, and β is the phase of the
auxiliary level which is irrelevant for the qubit subspace.
The gate in (8), after correcting the phase by a relative
phase shift becomes a Hadamard gate in the qubit sub-
space. The phase is corrected by a phase gate which is
obtained by turning off V0 and shifting the levels by H2

(Eq. (6)). The shifted flux removes the degeneracy with
a net effect implied by H2 and, under the time evolution,
phases between the states are induced without changing
the populations. The time dependence of the transforma-
tion induced by the phase gate is

G(φ) = e−i t (Hd+H2) =


eiφ1(t) 0 0

0 eiφ2(t) 0
0 0 eiφ3(t)


 · (9)

The relative phase (φ1−φ3)/2 = φ(t) applies to the qubit
subspace and the phase induced on the auxiliary level can
be totally ignored. The relative phase correction needed
in equation (8) can be achieved by sandwiching it between
the two phase gates G(φ = −π/4). By this demonstration
it is also clear how to perform a phase flip which can be
obtained by producing φ = π/2.

The realization of the controlled operations with dou-
ble qubits is an essential requirement of any mechanism
of quantum computation. It is possible to obtain a CNOT
gate in the quantum system we propose. Both three level
systems are initially prepared to be in their qubit sub-
spaces and they are connected by a quantum nondemoli-
tional measurement device which reads the first qubit and
depending on its state, induces a static potential V

(1)
0 in

the second qubit to perform the bit flip. The experimental
scheme is shown in Figure 7 which employs two mesoscopic
rings, a Hall bar in the form of a Corbino disk [25] in the
full quantum regime and superconducting loop. The per-
sistent current J1 in the loop of qubit Q1 creates a current
in the superconducting loop J ′

1 = ηJ1 where η is the effi-
ciency of current transformation and converts it to voltage

V = RxyJ
′
1 = n

h

e2
J ′

1 (10)
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on the center of nth Hall plateau. (The system is assumed
to be initiated such that current in a loop is zero at zero
persistent current in a qubit loop; the other possibility
could be to include the −Φ0/2 compensating coil between
Q1 and H to exclude the large static flux Φ0/2 in the
qubit.) Estimate shows that due to a large value of Rxy

(27kΩ on the main Hall plateau), the voltage V is enough
to drive the qubit at the efficiency η ∼ 0.1.

The Hall voltage generated in the bar is designed so
that either V

(1)
0 or zero voltage is produced corresponding

to the fixed value of the current flowing in one or the other
direction. The Hall bar is connected to the V electrodes of
qubit Q2. If the voltage is V

(1)
0 , the bit flip of the second

qubit is realized after time t1 or if the voltage is zero no
change is made. The procedure may in principle be exe-
cuted in a totally reversible way if the Hall bar operates
in the manifestly quantum regime. According to measure-
ments [25], longitudinal currents in the contactless realiza-
tion of the quantum Hall effect (the Corbino geometry)
persist for hours, i.e. the longitudinal resistance Rxx is
extremely small, practically a vanishing quantity.

4 Dissipation and decoherence

The main obstacle to many qubit realizations is the de-
coherence, i.e. loss of phase memory in the qubit due to
interaction with the environment. Switch operations also,
being not fully reversible, result in dissipation and deco-
herence which effects the evolution of the quantum system.
We now examine these main sources of decoherence and
estimate the time scale of decoherence for the suggested
radiation-free mechanism.

We identify two decoherence regimes depending on the
interaction with the external switch or with a continuous
background noise field. In the switching phase, the dissi-
pation from the qubit can be calculated semiclassically by
using the standard formula for the radiative power

W =
2

3c3
〈|p̈|2〉 (11)

in which p is the dipole moment estimated as |p| ∼ ed
(d = 2R is a diameter of the loop) and |p̈| estimated as
edω2 where characteristic frequency ω is of the order of
inverse switching time t∗ ∼ �/τ (τ is the hopping energy
scale as in (1)). This gives an estimate of the characteristic
quality factor (Qdiss = ωτdiss)

Qdiss ∼ �cω2
0

e2ν2
hopp

∼
(

e2/d

τ

)2 1
α3

0

(12)

where ω0 = πc/d is the radiation frequency in a cavity
of size d and νhopp is the hopping frequency of the order
of τ/�. α0 is a fine structure constant e2/�c. For the
physical parameters we consider, the typical case of d ≤
10−5 cm and τ ∼ 1 meV implies a sufficiently high qubit
quality factor roughly of the order of Qdiss ∼ 108.

On the other hand, in the idling phase, the qubit may
experience transitions between the qubit eigenstates due

to the interaction with the environment field. The pri-
mary source being the dipole radiation, these secondary
effects result in the fluctuations in the flux from its desired
value. Considering that all electromagnetic fluctuation ef-
fects (including the low temperature as well as zero point
oscillations in an electromagnetic cavity) will one way or
another couple to the flux in the ring, a general decoher-
ence model can be devised by assuming that the flux phase
α in equation (1) is allowed to fluctuate as a result of the
electromagnetic background noise. Hence we consider in
equation (1) α → α + ∆̂Φ/Φ0 where α is the desired flux
phase required for the implementation of the qu-gates and
∆̂Φ some flux fluctuation associated with the background
noise field where we will assume that |∆̂Φ|/(Φ0α) � 1. By
using equation (1) we formulate the coupling of the noise
field to the ring as

Hdec = τ

2∑
n=0

a†
n an+1

(
e2πi∆̂Φ/Φ0 − 1

)
+ h.c. (13)

where ∆̂Φ is the operator associated with the environmen-
tal background field. The fluctuations in the flux induced
by the background field deforms the transitions between
the energy configuration and hence upsets the time evo-
lution of the qubit states.

A general background noise field can be formulated as

A =
∑
k

ek

(
4π�c2

V ωk

)1/2 (
ck + c†−k

)
eikr (14)

where c†k (ck) are the photon creation and annihilation
operators. The coupling of the environment to the qubit
arises from the Hamiltonian in equation (1) with an addi-
tional radiative field as

H = −τ

3∑
n=1

a†
nan+1eiα exp

(
ie
�c

∫ n+1

n

Adl
)

+ h.c.

= H0 + Hint (15)

where H0 is the Hamiltonian in (1), and Hint is given in
the diagonal basis of H0 by the matrix

(Hint)m,m′ = −i
τ

3
eiα

∑
k

|∆Φk|
Φ0

e2πin(m−m′)/3

× e−2πim′/3Λ(k)
(
ck + c†−k

)
(16)

where

Λ(k) =
∮

dθ ek · nθ eiRk cos θ , (17)

with nθ as the angular unit vector, arising from the line
integral of the background environment field in equa-
tion (16). We also assumed that the fluctuations are weak
and expanded the e

ie
�c

�
A·dl to first order in the back-

ground field. In (16) we defined |∆Φk| = R(4π�c2

V ωk
)1/2 as a

typical order of magnitude in the background flux noise.



I.O. Kulik et al.: Quantum computational gates with radiation free couplings 225

The decoherence can be estimated from the first order
correction to the state vector of qubit Ψ . Assume that the
qubit is originally in a state Ψ0 = |0〉 which is one of the
eigenstates of H0. At a time t the change in the state due
to the coupling to the background field will be

|δΨ〉 =
3∑

m=0

C0m(t)|m〉 (18)

where

C0m(t) =
ieτ
�c

∑
k

eiαΛ(k)
ei(ε0−εm−ωk)t − 1

ε0 − εm − ωk
· (19)

Square of modulus of δΨ has linear dependence on t at
large t, consistent with the “Golden rule”, from which we
estimate the characteristic quality factor due to the envi-
ronmental decoherence

Qdec ∼ �
2cω2

0

e2νhopp∆ε
(20)

where ∆ε is a characteristic energy of transition or the
environment temperature. We now compare the radiative
quality factor Qdiss given by equation (12) with the en-
vironmental one in equation (20). If ∆ε 	 �νhopp then
Qdiss = Qdec and hence Qdec ∼ 108 for the parameters
used in equation (12). In case of transition between the
non-degenerate states (0 → 1 and 1 → 2) ∆ε is of order of
νhopp and for the 0 → 2 we assume ∆ε ∼ kBT considering
kBT � �νhopp.

The above estimates show that the decoherence effects
are relatively small for small loops with the highly trans-
parent hopping channels allowing in principle up to 108 co-
herent operations with the qubit. Our estimate shows that,
with the radiation free coupling between the qubits, the
transitions between the degenerate states are more pro-
tected against decoherence compared to non-degenerate
ones. Another problem is the “instrumental decoherence”
related to the Ohmic bath spectrum (the Nyquist noise)
which is known to be much stronger at low frequencies
than the vacuum fluctuations of the field. Indeed, ma-
nipulation of qubits while transforming quantum infor-
mation with quantum gates is assumed by applying static
voltages for precisely defined (short) intervals. During this
process the low frequency tail of the voltage fluctuations
is naturally cut out and the strong low frequency sector
of the noise is eliminated. This mechanism can be pro-
vided either by resistive sources or by the electrometric
devices which reduce the noise. Mention that our qugates
do not bear any quantum restrictions (those including the
Planck’s constant) regarding the precision of the voltage
amplitudes and durations.

Similarly to system noise, the multilevel structure (the
higher energy levels above the Λ-shaped structure) will
cause a deviation in the time evolution of qubit from the
one calculated on basis of the idealized three-level model
of equations (1, 2). This effect is similar to transverse re-
laxation in the NMR experiments and vanishes at small
enough τ/∆E ratio, i.e. at deep enough potential wells

creating qubit sites. In principle, a proper error correc-
tion scheme can be added to (at least partly) compensate
for the effect of extra levels by renormalizing the param-
eters (V ∗, t∗ - the voltage amplitudes and durations) of
the qugate transformations (“tuning of the qugate”). This
problem will be discussed elsewhere.

5 Physical implementation

Among the crucial points in the computation are a re-
producible initialization, storing the information until the
final readout, and an accurate readout which we exam-
ine respectively. For the initialization, the magnetic flux
is shifted adiabatically from half flux quantum and the
system is allowed to relax to the nondegenerate low-
est energy state |0〉 by spontaneous emission. We either
leave the state there or, by applying a Hadamard gate, a
Schrödinger Cat state is obtained which is conventionally
the initial state in some quantum computing algorithms,
in particular Shor’s algorithm for factorizing large inte-
gers [3].

Concerning the read-out and read-in, for parallel read-
out in a large scale computation some of the produced
data needs to be read in parallel and simultaneously in
a number of qubits. This implies that the information in
some qubits must be stored until all necessary operations
are performed and during this time the qubit subspace
should be free of dissipation. The coherence can be main-
tained by adopting the H1 = 0, H2 = 0 case as the idling
configuration in the doubly degenerate eigenbasis of H0.
The degenerate configuration helps the states to maintain
relative phase coherence.

In conclusion, we suggested a radiation free mech-
anism whose physical Hamiltonian allows for coupled
qubit/qugate storage and processing of information in a
reversible, scalable way with reduced decoherence effects.
The system implementation remains to be a future task
which may become less demanding due to high degree of
flexibility in setup organization regarding in particular the
use of multi-loop qubits and quantum mesoscopic effects
other than the original Aharonov-Bohm one, including the
Berry phase and spin-orbit interaction induced persistent
currents.
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TÜBİTAK.

References

1. M.A. Nielsen, I.L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, 2000)

2. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73,
357 (2001)



226 The European Physical Journal B

3. P.W. Shor, in Proc. 35th Annual Symp. Th. Comp. Sci-
ence, edited by S. Goldwasser (IEEE Comp. Soc. Press,
Los Alamos, 1994), p. 124

4. L. Grover, Phys. Rev. Lett. 79, 325 (1997); M. Boyer, G.
Brassard, P. Hoyer, A. Tapp, Fortsch. Phys. 46, 493 (1998)

5. S. Lloyd, Science 273, 1073 (1996)
6. D. Bacon, J. Kempe, D.A. Lidar, K.B. Whaley, Phys. Rev.

Lett. 85, 1758 (2000); J. Kempe, D. Bacon, D.A. Lidar,
K.B. Whaley, Phys. Rev. A 6304, 2307 (2001)

7. A. Beige, D. Braun, B. Tregenna, P.L. Knight, Phys. Rev.
Lett. 85, 1762 (2000)

8. P. Zanardi, M. Rasetti, Phys. Rev. Lett. 79, 3306 (1997)
9. I.O. Kulik, Pis’ma Zh. Eksp. Teor. Fiz. 11, 407 (1970)

[JETP Lett., 11, 275 (1970)]
10. I.O. Kulik, Non-decaying currents in normal metals, in:

Quantum Mesoscopic Phenomena and Mesoscopic Devices
in Microelectronics, edited by I.O. Kulik, R. Ellialtioglu
(Kluwer, Netherlands, 2000), p. 259

11. M. Buttiker, Y. Imry, R. Landauer. Phys. Lett. A 96, 365
(1983)

12. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959)
13. D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.-O. Stamatescu,

H.D. Zeh, Decoherence and the Appearance of a Classical
World in Quantum Theory (Springer Verlag Publ., 1996)

14. J.J. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

15. A. Barone, G. Paterno, Physics and Applications of the
Josephson Effect (J. Wiley, New York, 1982)

16. T.P. Orlando, J.E. Mooij, C.H. van der Wal, L.S. Levitov,
S. Lloyd, J.J. Mazo, Phys. Rev. 60, 15398 (1999)

17. R. Rouse, S. Han, J.E. Lukens, Phys. Rev. Lett. 75, 1614
(1995)

18. Y. Nakamura, C.D. Chen, J.S. Tsai, Phys. Rev. Lett. 79,
2328 (1997)

19. P. Silvestrini, V.G. Palmieri, B. Ruggiero, M. Russo, Phys.
Rev. Lett. 79, 3046 (1997)

20. D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C.
Urbina, D. Esteve, M.H. Devoret, Science 296, 886 (2002)

21. Y. Nakamura, Yu. Pashkin, J.S. Tsai, Nature 398, 786
(1999)

22. Y. Yu, S. Han, X. Chu, S. Chu, Z. Wang, Science 296, 889
(2002)

23. C. Kittel, Introduction to Solid State Physics (J. Wiley,
New York, 1996)

24. J.P. Pekola, J.J. Toppari, M. Aunola, M.T. Savolainen,
D.V. Averin, Phys. Rev. B 60, R9931 (1999)

25. V.T. Dolgopolov, A.A. Shashkin, N.B. Zhitenev, S.I.
Dorozhkin, K. von Klitzing, Phys. Rev. B 46, 12560 (1992)


