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Abstract - We discuss an energy-efficient, distributed 
Bluetooth Scattemet Formation algorithm based on Device 
and Link characteristics (SF-DeviL). SF-DeviL forms 
multihop scatternets with tree topologies and increases 
battery lifetimes of devices by using device types, battery 
levels and received signal strengths. The topology is 
dynamically reconfigured in SF-DeviL by depleting battery 
levels and it is shown through simulations that the network 
lifetime is increased by at least 32% compared to LMS 
algorithm [I]. 

Keywords - Bluetooth, scattemet formation and 
maintenance, energy-efficient topology construction. 

1. INTRODUCTION 
Bluetooth is a short-range (10-100m) wireless ad-hoc 
network technology, that supports both voice and data 
communication. Bluetooth operates in the unlicensed 2.4 
GHz ISM band and employs fast frequency hopping spread 
spectrum (FHSS). The basic network architecture of 
Bluetooth is apiconet, which consists of a master and up to 
7 active slave nodes. The master controls intra-piconet 
communication by polling the slaves. Bluetooth also enables 
inter-piconet communication by forming scatternets. 
Scattemet is the network formed by interconnecting 
piconets through shared nodes called bridges. A bridge node 
can be master in one piconet and slave in the other ( M I S ) ,  
slave in both piconets ( S I S )  or MISIS, etc. 

The Bluetooth standard enables formation of scatternets, 
but it does not define an exact method [2]. The problem of 
scatternet formation can be stated as the assignment of 
master, slave and bridge roles to Bluetooth nodes and the 
assignment of links between nodes. Some factors that make 
scatternet formation more challenging are: mobility of 
devices, low computational and energy resources of devices, 
devices with no prior knowledge about other nodes, 
necessity to form the scattemet within a tolerable delay, 
requirement to set up each link before data is exchanged 
(due to frequency bopping channel). 

Energy efficiency is one of the most important aspects of 
Bluetooth operation since mobile devices rely on batteries. 
Energy efficiency can be measured in terms of the lifetime 
o f a  scattemet, which is defined as the duration until one of 
the Bluetooth devices exhausts its battery. 

In this paper, we present a multi-hop, distributed 
scattemet formation and maintenance algorithm called SF- 
DeviL, that efficiently manages battery powers of devices in 
order to increase scatternet lifetime. SF-DeviL uses device 
characteristics (class of device, battery capacity and level) 
and link features (received signal strength) together with 
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power control, in order to achieve energy efficiency. Master, 
slave and bridge roles are based on device types. Established 
links in the topology are chosen such that links with lower 
transmit power requirements are given priority over 
potential links with higher transmit powers. The minimum 
transmit power for each candidate link is obtained from 
quantized measurement of the received signal strength. One 
of the important features of SF-DeviL is that slave nodes 
select their masters. SF-DeviL reconfigures the scattemet 
topology as the battery levels deplete and/or positions of 
devices change in order to maintain energy-efficiency. 
Simulations show that SF-DeviL increases scatternet 
lifetime by at least 32% compared to the LMS algorithm [I] 
while forming scatternets within reasonable delays. 

The rest of the paper is organized as follows. Proposed 
solutions for Bluetooth scatternet formation are reviewed 
first and SF-DeviL is introduced next as an energy-efficient 
algorithm for scattemet formation. Simulation results are 
presented for comparing performances of SF-DeviL with 
another scatternet formation algorithm in Section IV. 

11. SCATTERNET FORMATION ALGORITHMS 
Proposed methods for Bluetooth scatternet formation show 
differences in their approaches. A centralized approach [3] 
needs extensive messaging between nodes and is impractical 
in dynamic environments. Distributed techniques provide 
the most appropriate solution for constructing scatternets. In 
single-hop scattemet formation algorithms, it is assumed 
that all nodes are within communication range of other 
nodes [I ,4]. LMS [ 11, which tries to minimize the number of 
piconets, and TSF [4] are distributed single-hop scattemet 
formation algorithms that result in tree topologies and are 
appropriate for maintaining topology changes such as node 
additions and deletions (failures). Algorithms with multi- 
hop scatternets [5-71 do not require the assumption that all 
nodes are within communication range of other nodes, and 
thus have a wider application range. 

Algorithms also differ in the resulting scattemet topology: 
some with tree [1,4-61 and some with mesh topologies [7 ] .  
Two distributed, multi-hop scattemet formation protocols 
resulting in tree topologies called Bluetrees are proposed in 
[6]. A multi-hop solution that results in a mesh topology is 
proposed in [7]. 

An energy-efficient, multi-hop scattemet formation 
algorithm, called SF-DeviL, which forms scatternets with 
tree topologies, is proposed in [5]. The resulting algorithm is 
shown to form energy-efficient scatternets with increased 
lifetime. Energy-efficient techniques for routing in 
Bluetooth scatternets have been investigated, and it is shown 
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that a considerable gain in network lifetime can be achieved 
by using distance based power control and battery level 
based masterislave switch [SI. 

111. SF-DEVIL 
SF-DeviL forms a scattemet such that efficient usage of 
device batteries throughout scattemet operation is 
maintained [5]. Battery capacities of devices and 
transmission powers of potential links are considered in 
forming the scattemet. In SF-DeviL, each device selects the 
best master for itself. The selection of a single master by 
each device results in a tree topology with leaf nodes 
undertaking slave roles, intermediate nodes become M / S  
type bridges and the root node undertake the master role. 
SF-DeviL quantifies device and link specific features using 
two parameters: Device Grade and Received Signal Strength 
Grade. 
A. Algorithm Parameters 
Each device is assigned a Device Grade (DG) using the 
‘class of device’ and battery level information. The class of 
a device can expose many features of the node such as 
mobility, traffic generation rate and battery capacity. For 
example, a laptop has a larger battery capacity than a mobile 
phone, and it most likely generates more traffic. Each 
Bluetooth unit calculates its DG by: 
D G = B a ~ ~ C a p a c i ~ : B a ~ e ~ ~ e l ~ T r ~ ~ ~ a t i o n G r a ~  (1) 
where BatteryCapacity indicates the power capacity of the 
device battery, BatteryLevel represents the fraction of 
remaining battery and TrafficGenerationGrade is a 
prediction of amount of traffic generated by the device. 

The device class is known to Bluetooth modules, and it is 
exchanged with neighboring devices during connection 
establishment by using the 24-bit class of deviceiservice 
(COD) field in the FHS packet [2]. We assume that the 
BatleryLevel information is also embedded using some of 
the reserved bits in the FHS packet. Thus, two devices that 
establish a connection h o w  DGs of each other. 

Bluetooth supports power control, where the transmission 
power can be lowered as long as reliable communication is 
assured. Power control can be used for optimizing the 
system interference and energy-efficiency. The Bluetooth 
transceiver has a Receiver Signal Strength lndicator (RSSI) 
that measures the strength of the received signal [Z]. In SF- 
DeviL, each device assigns a Received Signal Strength 
Grade (RSSG) to each neighboring device, based on the 
measured RSSI for each link. RSSG is quantized according 
to the strength of the received signal as: weak (W), medium 
(M), strong (S) and very strong (VS). 
B. Best Master Selection 
Using DG and RSSG, each device chooses itself a master, 
i.e., slaves choose their master based on DG and RSSG. The 
selection of the ‘best master’ is done by comparing DG and 
RSSG of a newly discovered neighbor with the current 
master. The flow chart for the BestMaster selection 
procedure is given in Fig. 1 for a generic node X. The 

BeslMaster selection is done based on the following 
observations: 
1. A device with high DG is more appropriate to be a master 

since it has higher battery capacity, battery level and/or 
traffic generation rate. 

2. Establishing links with lower path loss provides 
advantages since transmission power and interference can 
be reduced by using power control. 
BestDevice(master, neighbor) is the procedure which 

determines the most suitable master for X. The BestMaster 
selection procedure chooses the better node between the 
current master and a newly discovered neighbor. A 
discovered neighbor is selected as the master only if it bas a 
larger or equal DG compared to X. When DGs are equal, the 
device with larger number of slaves o r  larger BD-ADDR is 
selected as the master. 

A link with RSSG = VS has priority over other links. This 
ensures that links between devices receiving strong signals 
from each other are established, :io that less power is 
consumed for transmitting signals, thereby increasing the 
lifetime of the scattemet and reducing interference. The 
node with the largest sum of RSSG and DG is preferred as 
the master. Using this rule, a closer PDA can be chosen to 
be the master than a far away laptop. 

RSSG(ne1ghbor) = VS 
&& 

RSSG(mas1er) != ‘VS 

neighbor) ] 

[DG(master)+ RSSGimaster)] c 
, 
1 I retumneighbor 1 

Fig. I ,  Flow chart for BestMaster procedure 

C. Algorithm for Scatternet Formation 
SF-DeviL is a two-phase algorithm: 
I. During the first phase, each nodi: continuously tries to 

discover other devices. Each time a new neighbor is 
discovered, the better master for 1:he node is determined 
by choosing between its current master and the newly 
discovered neighbor according to the BestMaster 
procedure. This phase ends when the discovery timeout 
(discTO) is reached. At the conclujion of this phase, each 
slave should have chosen a master and connected to it. 

1 I .h  the beginning of the second phase, each device has 
either found a master, or it has declared itself as the root 
of the scattemet. In the second phase, paging procedures 
are initiated by the nodes that have no assigned master, so 
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that disconnected trees resulting after the fust phase, are 
merged. This phase ends when all disconnected trees are 
united into a scattemet. 
SF-DeviL is a distributed algorithm where each device 

upon initialization starts the MAIN procedure given in 
Table I .  The generic device X calculates its DG and starts 
device discovery by alternating between inquiry and inquiry 
scan modes [2,3] until a neighboring device Y is found and 
a link is established. X executes the ArrangeRoles(X,Y) 
procedure given in Table 2, by which either the master-slave 
roles for the established X-Y link are chosen or the link is 
deleted. Node X gets the BD-ADDR, DG of Y through 
exchange of FHS packets and RSSG from RSSl 
measurements. 

In line 2 of by the ArrangeRoles procedure, X uses the 
BestMaster procedure to select the best master for itself. If 
Y is chosen, X frees itself from its current master and 
becomes the slave of Y. If X is the inquirer (which implies 
that X becomes the master of Y automatically after 
connection establishment), X and Y switch mastedslave 
roles for X to become the slave of Y. This is done to ensure 
that ‘better nodes’ are masters. If Y is not a better master for 
X, the newly established X-Y link is broken. 

Node X continues with the discovery of neighbors, 
seeking the best master for itself by comparing newly 
discovered neighhors with its current master. X forms a list 
of its discovered neighhors by adding the discovered devices 
to its neighbor-list(X). The first phase continues until the 
discovery timeout (discTO) is reached. 

If X has not found a master in the fust phase, it declares 
itself as the semiroot (this term is used for a node that may 
potentially be the root of the scattemet) and runs the 
Semiroot procedure given in Table 3. In this procedure, the 
semiroots accessible by a single hop are merged fxst 
(line I ) ,  and the semiroots accessible in multiple hops are 
then merged (line 4). The detection of being a semiroot or 
the actual root, and merging of disconnected trees in case of 
being a semiroot, is done by the P-PS(X, B) procedure 
given in Table 4. In the second phase of SF-DeviL, at least 
one device runs the Semiroot procedure. 

Through exchanging messages with the tree members, the 
semiroot discovers if there exists any unconnected but 
heurd node, that appears in one of the neighbor-lists of the 
descendants but is not connected to the tree. At line 3 of P- 
PS procedure, X either learns that it is the actual root (in 
which case SF-DeviL terminates), or X gets the list of all 
unconnected but heard devices so that it can initiate paging 
procedures to connect to these disconected nodedtrees. If 
any unconnected node exists, X starts alternating between 
page and page scan modes, paging all the unconnected 
nodes with DG t DG(X) (line 5 of P-PS procedure). If the 
unconnected nodes have DG c DG(X), X only does page 
scanning. This is done, to ensure that other semiroots are 
paged rather than their members (since tree descendants 
have smaller DG). 

Each time X connects to any of the other semiroots, it 
executes the ArrangeRoles procedure. At the conclusion of 

ReverseLinks (device X, device U): 
1 if (Y==BestMuster(X, U)) 
2 then Y becomes the master of X 
3 

4 
5 

do mastedslave switch at nodes 
from X to semiroot of X 

do master/slave switch from Y to semiroot of Y 
else X becomes the master of Y 

Table 1. Main procedure of SF-DeviL 
1 MAIN: 

Phase 1: 
1 Upon initialization, calculate DG(X) 
2 counter discTO 
3 while counter > 0 and no neighbor discovered yet 
4 Alternate between inquiry and inquiry scan modes 
5 if a device Y is discovered 
6 then establish link to Y 
I ArrungeRoles(X. Y) 
8 counter t discTO 
Phase 2: 
9 if X has no master 

10 then execute Semiroot(X) 
11 else exit 

Table 2.  ArrangeRoles procedure 
ArrangeRoles( device X, device U) 
1 Add BD-ADDR(Y).DG(Y).RSSG(Y) to neighLm-ky)o 
2 if (Y==BestMuster(current master of X, Y) ) 
3 then delete link to the current master 
4 if X is the inquirer 
5 then do master/slave switch 
6 else request Y to disconnect from itself 

Ta-rocedure 
Semiroot (device X): 
1 P-PS (X, true) 
2 if any unconnected node exists 
3 then if X has no master 
4 

5 exit 
6 else exit 

then for each descendant D of X, 
execute P-PS (D, false) 

Table 4. P-PS procedure 
P-PS (device X. boolean B): 
1 timer CpagingTO 
2 while timer > 0 
3 
4 
5 
6 
7 then if (B ==true) 
8 then ArrangeRoles(X, Y) 
9 else ReverseLinks(X 
10 timer t pagingTO 
I 1  else exit 

Check if any unconnected but heurd node exists 
if any unconnected node exists 

then alternate between page and page scan 
if connection established with any Y 
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ArrangeRoles, X decides whether it will keep the link and if 
so which node will become the master. After each merging 
of trees, X goes to line 2 and 3 of P-PS procedure, checking 
unconnected nodes, since the new link may have brought 
new unconnected but heard devices. 

X may not be able to establish a link with any of the 
paged devices and may not be paged for a specific paging 
timeout (pagingTO), meaning that X is not in the 
commirnication range of the seeked devtces or the once 
heard devices are gone. In this case, if X has a master (X 
may have a master after merging trees), it gives up Semiroot 
procedure and reports the unconnected devices to the 
semiroot of its tree and exits. If X has no master, it orders its 
descendants to page the unconnected but heard devices (line 
4 of Semiroot procedure). This is done to provide multihop 
connectivity among disconnected trees, the semiroots of 
which are not in communication range of each other. All the 
members of the tree page these devices in cooperation (also 
do PS alternatively) for pagingT0. If an unconnected device 
is detected by a member of the tree, a connection is 
established through that member with the newly discovered 
node by using the ReverseLinks procedure given in Table 5. 
The slave, s, of this connection, determined by BestMaster 
selection, requests the semiroot for masterlslave switching at 
intermediate nodes from the semiroot of s upto itself. If no 
device is found, X declares itself as the root and SF-DeviL 
scatternet formation terminates. The proof that SF-DeviL 
always generates connected scatternets is given in [5]. 
D. Topology Maintenance in SF-DeviL 
SF-DeviL handles topology maintenance by reconfiguring 
the scatternet topology when battery levels are depleted. If 
BatteryLevel of a device (except leaf nodes) reaches a 
threshold value, a scatternet update request is sent to the 
root. The root orders all members to re-calculate their DGs 
and collects the updated DG information from all 
descendants. The root sends a packet, which includes 
BD-ADDR and DG of all tree members, to its descendants. 
Upon receiving this packet, each tree member starts paging 
devices with higher or equal DG and enters page scan mode 
alternatively. This way the devices with decreasing battery 
levels are pushed downward towards the leaf positions in the 
tree to increase their battery lifetimes. 

IV. SIMULATION RESULTS 
A C++ based simulator based on the Bluetooth 
specifications [2] is developed in order to evaluate the 
performance of SF-DeviL. The lifetime, number of piconets, 
and formation delay of SF-DeviL and LMS scatternets are 
compared. The effects of changing discTO on SF-DeviL 
performance are also investigated. Two different networking 
scenarios are considered a network with identical devices 
(corresponding to a homogeneous sensor network) and a 
network with devices of different classes (corresponding to 
multiple PANS or a heterogeneous sensor network). 

In the simulations, nodes are randomly distributed in an 
area of 10mxIOm. Although SF-DeviL supports multi-hop 
operation, nodes are positioned such that all nodes can 
communicate with each other since this is required by the 
reference LMS algorithm. For a given number of nodes, the 
averages of the results for five randomly generated node 
locations and traffic patterns are reported. 

The following classes of devices are used: laptops, mobile 
phones, PDAs, headsets, peripherals and sensors. The 
devices are initially assigned with full batteries. At each 
node, traffic is generated randomly with a rate proportional 
to the TrafficGenerationGrade that is assigned to each 
device based on the kind of traffic it generates. 

Power consumed for transmissiodreception at each slot is 
taken as P.,,,,t for transmission and P,,,,iue for reception. 
Power consumed in standby mode is ignored. Based on the 
specifications of Bluetooth chips currently in the market, the 
maximum transmit power and Pre,,i,, are assumed to be 
equal. Power control is done at each node assuming a 
receiver sensitivity of -60dBm. P,,,,,i, can be reduced by at 
most 30% by the power control. The following path loss 
model is used: 

PL(d) = PL(do) i 10 ylog(d/de) i X,, 
where PL(d) denotes the path loss, in dB, for a path of 
length d, PL(&=lm)=3OdB, y=2.5, X,=N(O,o) with o=5dB. 

We assume that nodes are fixed, and topology is 
reconfigured only in response to battery level depletions. 
Each device, other than leaf node::, initiates a scatternet 
update when its battery is halved, i.e., BatteryLevel 5%. 

The average scattemet lifetimes, as a function of the 
network size, are given in Fig. 2 for scatternets consisting of 
different device classes and all sensors, respectively. 
Different values of discTO are used for SF-DeviL in order 
to analyze the trade-off between optimality of the topology 
and formation delay. For different device types, the lifetime 
is increased substantially with and without topology 
maintenance with respect to the LM:S algorithm. When all 
devices are sensors, the lifetime is increased by up to 32% 
without, and by 86.443% with the topology maintenance. 
The effect of maintenance is more pronounced in the 
homogeneous sensor network since batteries of some nodes 
deplete very rapidly. These results show that SF-DeviL 
increases lifetime for both cases, but more when different 
device classes exist. It is observed that batteries of leaf 
nodes deplete first for different device classes, since devices 
with higher DGs are assigned as the root and bridge nodes. 
Thus scatternet updates in response to decreasing battery 
levels may not significantly increase the lifetime until the 
network becomes larger so that the nodes in the upper layers 
of the tree topology are heavily loaded with traffic. 

Average lifetimes of SF-DeviL scatternets for different 
values of discTO exhibit similar behavior. Large discT0 
means longer IilS intervals and more battery dissipation 
during discovery, which lessens the lifetime for some cases. 
On the other hand, with a small discTO, e.g., discT0<5 sec, 
a smaller fraction of neighboring devices can be discovered 
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Fig. 4. Scatternet formation delay 

and a connected scatternet topology cannot always be 
formed. Simulations show that with discTO=5 sec, about 
half of the neighbors are discovered, whereas with 
discTO=lO sec almost all neighbors can be discovered. 

SF-DeviL, unlike LMS, does not have the explicit goal of 
forming scatternets with small number of piconets. As 
shown in Fig. 3, the number of piconets with LMS is smaller 
than SF-DeviL, and there is not a significant difference 
between different values of discTO for SF-DeviL. In Fig. 4, 
the formation delay for SF-DeviL is shown as a function of 
the network size for different values of discTO. We observe 
that the formation of the scatternet takes longer than LMS. 
The connection delay for SF-DeviL increases with the 
network size due to the increase of number of discovered 
neighbors. Increasing discTO increases connection delay, 
thus there is a trade-off between formation delay and 
discovering more neighbors. Simulations show that discTO=5 
sec provides a good compromise between these two trends. 

V. CONCLUSION 
SF-DeviL is a Bluetooth scatternet formation and 
maintenance protocol that is optimized for low-power 
consumption in multi-hop wireless networks. SF-DeviL 
reconfigures the topology in response to depleting battery 
levels. It produces scatternets where a node participates in 
just two piconets so that bridge nodes do not become 
bottlenecks between multiple piconets. 

Simulations are used to show that using class and link 
characteristics during scatternet formation, network 
lifetimes are substantially prolonged. SF-DeviL forms 
topologies with number of piconets close to the minimum 
within reasonable formation delays. 
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