
AN ALGORITHM FOR ENERGY-EFFICIENT
BLUETOOTH SCATTERNET FORMATION AND MAINTENANCE

Canan Parnuk and Ezhan Karasan

Department ofElectrical and Electronics Engineering
Bilkent Universityl 06800, Ankara, Turkey, fcanan. ezhan}@ee. bilkent.edu.tr

Abstract - We discuss an energy-efficient, distributed
Bluetooth Scattemet Formation algorithm based on Device
and Link characteristics (SF-DeviL). SF-DeviL forms
multihop scatternets with tree topologies and increases
battery lifetimes of devices by using device types, battery
levels and received signal strengths. The topology is
dynamically reconfigured in SF-DeviL by depleting battery
levels and it is shown through simulations that the network
lifetime is increased by at least 32% compared to LMS
algorithm [I].

Keywords - Bluetooth, scattemet formation and
maintenance, energy-efficient topology construction.

1. INTRODUCTION
Bluetooth is a short-range (10-100m) wireless ad-hoc
network technology, that supports both voice and data
communication. Bluetooth operates in the unlicensed 2.4
GHz ISM band and employs fast frequency hopping spread
spectrum (FHSS). The basic network architecture of
Bluetooth is apiconet, which consists of a master and up to
7 active slave nodes. The master controls intra-piconet
communication by polling the slaves. Bluetooth also enables
inter-piconet communication by forming scatternets.
Scattemet is the network formed by interconnecting
piconets through shared nodes called bridges. A bridge node
can be master in one piconet and slave in the other (M I S) ,
slave in both piconets (S I S) or MISIS, etc.

The Bluetooth standard enables formation of scatternets,
but it does not define an exact method [2]. The problem of
scatternet formation can be stated as the assignment of
master, slave and bridge roles to Bluetooth nodes and the
assignment of links between nodes. Some factors that make
scatternet formation more challenging are: mobility of
devices, low computational and energy resources of devices,
devices with no prior knowledge about other nodes,
necessity to form the scattemet within a tolerable delay,
requirement to set up each link before data is exchanged
(due to frequency bopping channel).

Energy efficiency is one of the most important aspects of
Bluetooth operation since mobile devices rely on batteries.
Energy efficiency can be measured in terms of the lifetime
o f a scattemet, which is defined as the duration until one of
the Bluetooth devices exhausts its battery.

In this paper, we present a multi-hop, distributed
scattemet formation and maintenance algorithm called SF-
DeviL, that efficiently manages battery powers of devices in
order to increase scatternet lifetime. SF-DeviL uses device
characteristics (class of device, battery capacity and level)
and link features (received signal strength) together with

0-7803-8523-3/04/$20.00 02004 IEEE.

power control, in order to achieve energy efficiency. Master,
slave and bridge roles are based on device types. Established
links in the topology are chosen such that links with lower
transmit power requirements are given priority over
potential links with higher transmit powers. The minimum
transmit power for each candidate link is obtained from
quantized measurement of the received signal strength. One
of the important features of SF-DeviL is that slave nodes
select their masters. SF-DeviL reconfigures the scattemet
topology as the battery levels deplete and/or positions of
devices change in order to maintain energy-efficiency.
Simulations show that SF-DeviL increases scatternet
lifetime by at least 32% compared to the LMS algorithm [I]
while forming scatternets within reasonable delays.

The rest of the paper is organized as follows. Proposed
solutions for Bluetooth scatternet formation are reviewed
first and SF-DeviL is introduced next as an energy-efficient
algorithm for scattemet formation. Simulation results are
presented for comparing performances of SF-DeviL with
another scatternet formation algorithm in Section IV.

11. SCATTERNET FORMATION ALGORITHMS
Proposed methods for Bluetooth scatternet formation show
differences in their approaches. A centralized approach [3]
needs extensive messaging between nodes and is impractical
in dynamic environments. Distributed techniques provide
the most appropriate solution for constructing scatternets. In
single-hop scattemet formation algorithms, it is assumed
that all nodes are within communication range of other
nodes [I ,4]. LMS [11, which tries to minimize the number of
piconets, and TSF [4] are distributed single-hop scattemet
formation algorithms that result in tree topologies and are
appropriate for maintaining topology changes such as node
additions and deletions (failures). Algorithms with multi-
hop scatternets [5-71 do not require the assumption that all
nodes are within communication range of other nodes, and
thus have a wider application range.

Algorithms also differ in the resulting scattemet topology:
some with tree [1,4-61 and some with mesh topologies [7] .
Two distributed, multi-hop scattemet formation protocols
resulting in tree topologies called Bluetrees are proposed in
[6]. A multi-hop solution that results in a mesh topology is
proposed in [7].

An energy-efficient, multi-hop scattemet formation
algorithm, called SF-DeviL, which forms scatternets with
tree topologies, is proposed in [5]. The resulting algorithm is
shown to form energy-efficient scatternets with increased
lifetime. Energy-efficient techniques for routing in
Bluetooth scatternets have been investigated, and it is shown

890

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on August 16,2010 at 06:40:16 UTC from IEEE Xplore. Restrictions apply.

that a considerable gain in network lifetime can be achieved
by using distance based power control and battery level
based masterislave switch [SI.

111. SF-DEVIL
SF-DeviL forms a scattemet such that efficient usage of
device batteries throughout scattemet operation is
maintained [5]. Battery capacities of devices and
transmission powers of potential links are considered in
forming the scattemet. In SF-DeviL, each device selects the
best master for itself. The selection of a single master by
each device results in a tree topology with leaf nodes
undertaking slave roles, intermediate nodes become M / S
type bridges and the root node undertake the master role.
SF-DeviL quantifies device and link specific features using
two parameters: Device Grade and Received Signal Strength
Grade.
A. Algorithm Parameters
Each device is assigned a Device Grade (DG) using the
‘class of device’ and battery level information. The class of
a device can expose many features of the node such as
mobility, traffic generation rate and battery capacity. For
example, a laptop has a larger battery capacity than a mobile
phone, and it most likely generates more traffic. Each
Bluetooth unit calculates its DG by:
D G = B a ~ ~ C a p a c i ~ : B a ~ e ~ ~ e l ~ T r ~ ~ ~ a t i o n G r a ~ (1)
where BatteryCapacity indicates the power capacity of the
device battery, BatteryLevel represents the fraction of
remaining battery and TrafficGenerationGrade is a
prediction of amount of traffic generated by the device.

The device class is known to Bluetooth modules, and it is
exchanged with neighboring devices during connection
establishment by using the 24-bit class of deviceiservice
(COD) field in the FHS packet [2]. We assume that the
BatleryLevel information is also embedded using some of
the reserved bits in the FHS packet. Thus, two devices that
establish a connection h o w DGs of each other.

Bluetooth supports power control, where the transmission
power can be lowered as long as reliable communication is
assured. Power control can be used for optimizing the
system interference and energy-efficiency. The Bluetooth
transceiver has a Receiver Signal Strength lndicator (RSSI)
that measures the strength of the received signal [Z]. In SF-
DeviL, each device assigns a Received Signal Strength
Grade (RSSG) to each neighboring device, based on the
measured RSSI for each link. RSSG is quantized according
to the strength of the received signal as: weak (W), medium
(M), strong (S) and very strong (VS).
B. Best Master Selection
Using DG and RSSG, each device chooses itself a master,
i.e., slaves choose their master based on DG and RSSG. The
selection of the ‘best master’ is done by comparing DG and
RSSG of a newly discovered neighbor with the current
master. The flow chart for the BestMaster selection
procedure is given in Fig. 1 for a generic node X. The

BeslMaster selection is done based on the following
observations:
1. A device with high DG is more appropriate to be a master

since it has higher battery capacity, battery level and/or
traffic generation rate.

2. Establishing links with lower path loss provides
advantages since transmission power and interference can
be reduced by using power control.
BestDevice(master, neighbor) is the procedure which

determines the most suitable master for X. The BestMaster
selection procedure chooses the better node between the
current master and a newly discovered neighbor. A
discovered neighbor is selected as the master only if it bas a
larger or equal DG compared to X. When DGs are equal, the
device with larger number of slaves o r larger BD-ADDR is
selected as the master.

A link with RSSG = VS has priority over other links. This
ensures that links between devices receiving strong signals
from each other are established, :io that less power is
consumed for transmitting signals, thereby increasing the
lifetime of the scattemet and reducing interference. The
node with the largest sum of RSSG and DG is preferred as
the master. Using this rule, a closer PDA can be chosen to
be the master than a far away laptop.

RSSG(ne1ghbor) = VS
&&

RSSG(mas1er) != ‘VS

neighbor)]

[DG(master)+ RSSGimaster)] c
,
1 I retumneighbor 1

Fig. I , Flow chart for BestMaster procedure

C. Algorithm for Scatternet Formation
SF-DeviL is a two-phase algorithm:
I. During the first phase, each nodi: continuously tries to

discover other devices. Each time a new neighbor is
discovered, the better master for 1:he node is determined
by choosing between its current master and the newly
discovered neighbor according to the BestMaster
procedure. This phase ends when the discovery timeout
(discTO) is reached. At the conclujion of this phase, each
slave should have chosen a master and connected to it.

1 I .h the beginning of the second phase, each device has
either found a master, or it has declared itself as the root
of the scattemet. In the second phase, paging procedures
are initiated by the nodes that have no assigned master, so

891

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on August 16,2010 at 06:40:16 UTC from IEEE Xplore. Restrictions apply.

that disconnected trees resulting after the fust phase, are
merged. This phase ends when all disconnected trees are
united into a scattemet.
SF-DeviL is a distributed algorithm where each device

upon initialization starts the MAIN procedure given in
Table I . The generic device X calculates its DG and starts
device discovery by alternating between inquiry and inquiry
scan modes [2,3] until a neighboring device Y is found and
a link is established. X executes the ArrangeRoles(X,Y)
procedure given in Table 2, by which either the master-slave
roles for the established X-Y link are chosen or the link is
deleted. Node X gets the BD-ADDR, DG of Y through
exchange of FHS packets and RSSG from RSSl
measurements.

In line 2 of by the ArrangeRoles procedure, X uses the
BestMaster procedure to select the best master for itself. If
Y is chosen, X frees itself from its current master and
becomes the slave of Y. If X is the inquirer (which implies
that X becomes the master of Y automatically after
connection establishment), X and Y switch mastedslave
roles for X to become the slave of Y. This is done to ensure
that ‘better nodes’ are masters. If Y is not a better master for
X, the newly established X-Y link is broken.

Node X continues with the discovery of neighbors,
seeking the best master for itself by comparing newly
discovered neighhors with its current master. X forms a list
of its discovered neighhors by adding the discovered devices
to its neighbor-list(X). The first phase continues until the
discovery timeout (discTO) is reached.

If X has not found a master in the fust phase, it declares
itself as the semiroot (this term is used for a node that may
potentially be the root of the scattemet) and runs the
Semiroot procedure given in Table 3. In this procedure, the
semiroots accessible by a single hop are merged fxst
(line I) , and the semiroots accessible in multiple hops are
then merged (line 4). The detection of being a semiroot or
the actual root, and merging of disconnected trees in case of
being a semiroot, is done by the P-PS(X, B) procedure
given in Table 4. In the second phase of SF-DeviL, at least
one device runs the Semiroot procedure.

Through exchanging messages with the tree members, the
semiroot discovers if there exists any unconnected but
heurd node, that appears in one of the neighbor-lists of the
descendants but is not connected to the tree. At line 3 of P-
PS procedure, X either learns that it is the actual root (in
which case SF-DeviL terminates), or X gets the list of all
unconnected but heard devices so that it can initiate paging
procedures to connect to these disconected nodedtrees. If
any unconnected node exists, X starts alternating between
page and page scan modes, paging all the unconnected
nodes with DG t DG(X) (line 5 of P-PS procedure). If the
unconnected nodes have DG c DG(X), X only does page
scanning. This is done, to ensure that other semiroots are
paged rather than their members (since tree descendants
have smaller DG).

Each time X connects to any of the other semiroots, it
executes the ArrangeRoles procedure. At the conclusion of

ReverseLinks (device X, device U):
1 if (Y==BestMuster(X, U))
2 then Y becomes the master of X
3

4
5

do mastedslave switch at nodes
from X to semiroot of X

do master/slave switch from Y to semiroot of Y
else X becomes the master of Y

Table 1. Main procedure of SF-DeviL
1 MAIN:

Phase 1:
1 Upon initialization, calculate DG(X)
2 counter discTO
3 while counter > 0 and no neighbor discovered yet
4 Alternate between inquiry and inquiry scan modes
5 if a device Y is discovered
6 then establish link to Y
I ArrungeRoles(X. Y)
8 counter t discTO
Phase 2:
9 if X has no master

10 then execute Semiroot(X)
11 else exit

Table 2. ArrangeRoles procedure
ArrangeRoles(device X, device U)
1 Add BD-ADDR(Y).DG(Y).RSSG(Y) to neighLm-ky)o
2 if (Y==BestMuster(current master of X, Y))
3 then delete link to the current master
4 if X is the inquirer
5 then do master/slave switch
6 else request Y to disconnect from itself

Ta-rocedure
Semiroot (device X):
1 P-PS (X, true)
2 if any unconnected node exists
3 then if X has no master
4

5 exit
6 else exit

then for each descendant D of X,
execute P-PS (D, false)

Table 4. P-PS procedure
P-PS (device X. boolean B):
1 timer CpagingTO
2 while timer > 0
3
4
5
6
7 then if (B ==true)
8 then ArrangeRoles(X, Y)
9 else ReverseLinks(X
10 timer t pagingTO
I 1 else exit

Check if any unconnected but heurd node exists
if any unconnected node exists

then alternate between page and page scan
if connection established with any Y

892

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on August 16,2010 at 06:40:16 UTC from IEEE Xplore. Restrictions apply.

ArrangeRoles, X decides whether it will keep the link and if
so which node will become the master. After each merging
of trees, X goes to line 2 and 3 of P-PS procedure, checking
unconnected nodes, since the new link may have brought
new unconnected but heard devices.

X may not be able to establish a link with any of the
paged devices and may not be paged for a specific paging
timeout (pagingTO), meaning that X is not in the
commirnication range of the seeked devtces or the once
heard devices are gone. In this case, if X has a master (X
may have a master after merging trees), it gives up Semiroot
procedure and reports the unconnected devices to the
semiroot of its tree and exits. If X has no master, it orders its
descendants to page the unconnected but heard devices (line
4 of Semiroot procedure). This is done to provide multihop
connectivity among disconnected trees, the semiroots of
which are not in communication range of each other. All the
members of the tree page these devices in cooperation (also
do PS alternatively) for pagingT0. If an unconnected device
is detected by a member of the tree, a connection is
established through that member with the newly discovered
node by using the ReverseLinks procedure given in Table 5.
The slave, s, of this connection, determined by BestMaster
selection, requests the semiroot for masterlslave switching at
intermediate nodes from the semiroot of s upto itself. If no
device is found, X declares itself as the root and SF-DeviL
scatternet formation terminates. The proof that SF-DeviL
always generates connected scatternets is given in [5].
D. Topology Maintenance in SF-DeviL
SF-DeviL handles topology maintenance by reconfiguring
the scatternet topology when battery levels are depleted. If
BatteryLevel of a device (except leaf nodes) reaches a
threshold value, a scatternet update request is sent to the
root. The root orders all members to re-calculate their DGs
and collects the updated DG information from all
descendants. The root sends a packet, which includes
BD-ADDR and DG of all tree members, to its descendants.
Upon receiving this packet, each tree member starts paging
devices with higher or equal DG and enters page scan mode
alternatively. This way the devices with decreasing battery
levels are pushed downward towards the leaf positions in the
tree to increase their battery lifetimes.

IV. SIMULATION RESULTS
A C++ based simulator based on the Bluetooth
specifications [2] is developed in order to evaluate the
performance of SF-DeviL. The lifetime, number of piconets,
and formation delay of SF-DeviL and LMS scatternets are
compared. The effects of changing discTO on SF-DeviL
performance are also investigated. Two different networking
scenarios are considered a network with identical devices
(corresponding to a homogeneous sensor network) and a
network with devices of different classes (corresponding to
multiple PANS or a heterogeneous sensor network).

In the simulations, nodes are randomly distributed in an
area of 10mxIOm. Although SF-DeviL supports multi-hop
operation, nodes are positioned such that all nodes can
communicate with each other since this is required by the
reference LMS algorithm. For a given number of nodes, the
averages of the results for five randomly generated node
locations and traffic patterns are reported.

The following classes of devices are used: laptops, mobile
phones, PDAs, headsets, peripherals and sensors. The
devices are initially assigned with full batteries. At each
node, traffic is generated randomly with a rate proportional
to the TrafficGenerationGrade that is assigned to each
device based on the kind of traffic it generates.

Power consumed for transmissiodreception at each slot is
taken as P.,,,,t for transmission and P,,,,iue for reception.
Power consumed in standby mode is ignored. Based on the
specifications of Bluetooth chips currently in the market, the
maximum transmit power and Pre,,i,, are assumed to be
equal. Power control is done at each node assuming a
receiver sensitivity of -60dBm. P,,,,,i, can be reduced by at
most 30% by the power control. The following path loss
model is used:

PL(d) = PL(do) i 10 ylog(d/de) i X,,
where PL(d) denotes the path loss, in dB, for a path of
length d, PL(&=lm)=3OdB, y=2.5, X,=N(O,o) with o=5dB.

We assume that nodes are fixed, and topology is
reconfigured only in response to battery level depletions.
Each device, other than leaf node::, initiates a scatternet
update when its battery is halved, i.e., BatteryLevel 5%.

The average scattemet lifetimes, as a function of the
network size, are given in Fig. 2 for scatternets consisting of
different device classes and all sensors, respectively.
Different values of discTO are used for SF-DeviL in order
to analyze the trade-off between optimality of the topology
and formation delay. For different device types, the lifetime
is increased substantially with and without topology
maintenance with respect to the LM:S algorithm. When all
devices are sensors, the lifetime is increased by up to 32%
without, and by 86.443% with the topology maintenance.
The effect of maintenance is more pronounced in the
homogeneous sensor network since batteries of some nodes
deplete very rapidly. These results show that SF-DeviL
increases lifetime for both cases, but more when different
device classes exist. It is observed that batteries of leaf
nodes deplete first for different device classes, since devices
with higher DGs are assigned as the root and bridge nodes.
Thus scatternet updates in response to decreasing battery
levels may not significantly increase the lifetime until the
network becomes larger so that the nodes in the upper layers
of the tree topology are heavily loaded with traffic.

Average lifetimes of SF-DeviL scatternets for different
values of discTO exhibit similar behavior. Large discT0
means longer IilS intervals and more battery dissipation
during discovery, which lessens the lifetime for some cases.
On the other hand, with a small discTO, e.g., discT0<5 sec,
a smaller fraction of neighboring devices can be discovered

893

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on August 16,2010 at 06:40:16 UTC from IEEE Xplore. Restrictions apply.

discTO=lOsec

10 20 30 40 50
Number of Nodes l

I 18 ,

I 10 20 30 40 SO
Number of Nodes

discTO=5sec

discTO=lOsec

i
b)

Fig. 2. Scatternet lifetime when devices are of:
a) different types, b) same type

+SF-DewL /

10 20 30 40 50
Number of Nodes

Fig. 3. Number of piconets

+ SF-Dewt /
discTO=lOsec

+ SF-DeUL /
discTO=5sec

I 10 20 30 40 M
Number of Nodes

Fig. 4. Scatternet formation delay

and a connected scatternet topology cannot always be
formed. Simulations show that with discTO=5 sec, about
half of the neighbors are discovered, whereas with
discTO=lO sec almost all neighbors can be discovered.

SF-DeviL, unlike LMS, does not have the explicit goal of
forming scatternets with small number of piconets. As
shown in Fig. 3, the number of piconets with LMS is smaller
than SF-DeviL, and there is not a significant difference
between different values of discTO for SF-DeviL. In Fig. 4,
the formation delay for SF-DeviL is shown as a function of
the network size for different values of discTO. We observe
that the formation of the scatternet takes longer than LMS.
The connection delay for SF-DeviL increases with the
network size due to the increase of number of discovered
neighbors. Increasing discTO increases connection delay,
thus there is a trade-off between formation delay and
discovering more neighbors. Simulations show that discTO=5
sec provides a good compromise between these two trends.

V. CONCLUSION
SF-DeviL is a Bluetooth scatternet formation and
maintenance protocol that is optimized for low-power
consumption in multi-hop wireless networks. SF-DeviL
reconfigures the topology in response to depleting battery
levels. It produces scatternets where a node participates in
just two piconets so that bridge nodes do not become
bottlenecks between multiple piconets.

Simulations are used to show that using class and link
characteristics during scatternet formation, network
lifetimes are substantially prolonged. SF-DeviL forms
topologies with number of piconets close to the minimum
within reasonable formation delays.

REFERENCES
[I] C. Law, A. K. Mehta, K.-Y. Siu, “A New Bluetooth Scanemet

Formation Protocol,” Mobile Networks and Applications, vol.
8, no. 5, pp. 485-498, 2003.

[2] Bluetooth SIG, “Specification of the Bluetooth System,”
Version 1.1, http:llwww.hluetooth.com.

[3] T. Salonidis, P. Bhagwat, L. Tassiulas, R. LaMaire,
“Distributed topology construction of Bluetooth personal
area networks,” INFOCOM’OI, Anchorage, Alaska, pp.
1577-1586, April 2001.
G. Tan, A. Miu, J. Guttag and H. Balakrishnan, “An Efficient
Scatternet Formation Algorithm for Dynamic Environments,”
CCNO2, Cambridge, November 2002.

[SI C. Pamuk, E. Karasan, “A Tree-Based Energy-Efficient
Distributed Algorithm for Forming Bluetooth Scanemet
Topologies,” Med-Hoc-Net’04, Bodrum, Turkey, June 2004.

[6] G. V. Zamba, S. Basagni, I. Chlamtac, “Bluetrees-Scattemet
Formation to Enable Bluetooth Based Ad Hoc Networks,”
ICC’2001, pp. 273-277, Helsinki, Finland, June 2001

[7] C. Petrioli, S. Basagni, 1. Chlamtac, “BlueMesh: Degree-
Constraint Multi-Hop Scanemet Formation for Bluetooth
Networks,” Mobile Networks and Applications, vol. 9, no. I ,
pp. 33-47,2004.

[SI B.J. Prabhu, A. Chockalingam, “A Routing Protocol and
Energy Efficient Techniques in Bluetooth Scattemets,”
ICC’02, pp. 3336-3340, New York, 2002.

[4]

894

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on August 16,2010 at 06:40:16 UTC from IEEE Xplore. Restrictions apply.

http:llwww.hluetooth.com

