Journal of the Operational Research Society (2009) 60, 1349-1359

© 2009 Operational Research Society Ltd. All rights reserved. 0160-5682/09 -%(—

www.palgravejournals.com/jors/

A hub covering network design problem for cargo

applications in Turkey
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Hub location problems involve locating hub facilities and allocating demand nodes to hubs in order to provide
service between origin—destination pairs. In this study, we focus on cargo applications of the hub location
problem. Through observations from the Turkish cargo sector, we propose a new mathematical model for the
hub location problem that relaxes the complete hub network assumption. Our model minimizes the cost of
establishing hubs and hub links, while designing a network that services each origin—destination pair within
a time bound. We formulate a single-allocation hub covering model that permits visiting at most three hubs on
aroute. The model is then applied to the realistic instances of the Turkish network and to the Civil Aeronautics

Board data set.
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Introduction

Hubs are special facilities that serve as switching, tran-
shipment, and sorting points in many-to-many distribution
systems. Instead of serving each origin—destination pair
directly, hub facilities consolidate flow in order to take advan-
tage of economies of scale. Hub location problem involves
locating hub facilities and allocating demand nodes to hubs
in order to provide service between origin—destination pairs.
There are various applications of the hub location problem in
transportation, such as for air passengers and cargo and for
telecommunication network design. In this study, we focus
on cargo applications.

In a hub-network structure all demand points that generate
flow are allocated to hub nodes. There are two basic types of
allocation: single and multiple. In single allocation, non-hub
nodes (demand points) are allocated only to a single hub; in
multiple allocation, demand points can be allocated to more
than one hub. Each demand point can send and receive flow
only through the hub(s) that they are allocated to. In hub
networks, it is assumed that economies of scale are incor-
porated by a discount factor (usually referred to as o) when
using hub-to-hub connections.

Hub location research began with the work of O’Kelly
(1986). O’Kelly (1987) presented the first quadratic hub
location model. His formulation is referred to as the single
allocation p-hub median problem, because each demand
centre is allocated to a single hub, p hub facilities are to be
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located, and the objective function minimizes the total trans-
portation cost to serve a given set of demands. Later, various
linearizations of this quadratic model were proposed in the
literature (Campbell, 1994; Ernst and Krishnamoorthy, 1996;
Skorin-Kapov et al, 1996). Among these models, the best
mathematical formulation in terms of the computational
time requirement is given by Ernst and Krishnamoorthy
(1996), and the most efficient exact solution procedure is the
shortest-path based branch-and-bound algorithm presented
by Ernst and Krishnamoorthy (1998b). Researchers also
considered the multiple allocation version of the problem, in
which each demand centre may be allocated to more than
one hub (Campbell, 1994; Skorin-Kapov et al, 1996; Ernst
and Krishnamoorthy, 1998a).

In addition to considering the case when the number of
hubs to be located is fixed, the hub location problem with fixed
costs, in which the number of hubs to be located is a deci-
sion variable, also gained a considerable attention. Both single
(O’Kelly, 1992; Ernst and Krishnamoorthy, 1999; Labbé et al,
2005; Cunha and Silva, 2007; Chen, 2007) and multiple allo-
cation versions (Campbell, 1994; Mayer and Wagner, 2002;
Marin et al, 2006; Canovas et al, 2007) have been well studied.
The reader may refer to Campbell ef al (2002) and Alumur
and Kara (2008) for recent reviews on hub location problems.

In the studies discussed above on the p-hub median problem
and the hub location problem with fixed costs, the objective is
to minimize the total transportation cost. The studies focusing
on the service time are p-hub centre and hub covering type
problems.

In the p-hub centre problem, the objective is to mini-
mize the maximum travel time between two demand centres.
This problem was first proposed by Campbell (1994). Kara
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and Tansel (2000) provided various linearizations, and
Ernst et al (2002) provide the best mathematical formulation
for the p-hub centre problem, up to now.

The hub covering problem is to locate hubs to cover all
demand, such that the cost of opening facilities is minimized
(Campbell, 1994). An origin—destination pair is thought to
be covered if the travel time between them is within a pre-
determined time bound. Kara and Tansel (2003) studied this
problem and proposed some new formulations. Different and
better linear formulations are proposed by Ernst et al (2005)
and Wagner (2008).

A few studies in the literature focus on hub location prob-
lems that arise in cargo applications. Kara and Tansel (2001)
proposed a problem that they named the latest arrival hub
location problem. Their objective was to minimize the arrival
time of the last-arrived item, while accounting for both the
flight times and the time spent at hubs for unloading, loading
and sorting operations. Tan and Kara (2007) applied the latest
arrival hub covering version to the cargo delivery sector in
Turkey. Yaman et al (2007) incorporated multiple stopovers
into the latest arrival hub centre model to determine vehicle
routes.

In the hub location literature, it is usually assumed that
the hub network is complete, with a direct link between
every hub pair. However, building complete hub networks may
unnecessarily increase the total investment costs in designing
hub networks. In reality, most of the less-than-truckload and
telecommunication networks do not operate on a complete
hub network structure.

A few studies in the literature relax the complete hub
network assumption. For example, the study by Nickel et al
(2001) investigated the hub location problems arising in urban
traffic networks and incurred a fixed cost for locating hub
links. A recent study by Yoon and Current (2008) presented
a model for the multiple allocation hub location and network
design problem. They allowed direct connections between the
non-hub nodes and also incurred variable arc costs associ-
ated with demand on the arcs. The hub arc location problems
proposed by Campbell et al (2005a,b) presented a different
modelling approach. Instead of locating hub facilities, their
hub arc location problems located hub arcs with reduced unit
costs. The resulting hub arc network in their problems need
not be connected.

In this study, motivated from the cargo applications, a new
hub location problem including hub network design deci-
sions is proposed. The outline of this paper is as follows.
The next section presents the motivation and definition of
the problem. The third section presents and explains the
proposed mathematical model. In the fourth section some
linearizations of the model are introduced. The fifth section
provides the computational analysis on both the Civil Aero-
nautics Board (CAB) data set—a benchmark data set from
the literature—and the Turkish network, and the last section
presents concluding remarks together with possible future
research directions.

Motivation and problem definition

In an attempt to model the real-life hub location problems
encountered in the cargo sector, in this paper, we aim to
provide a tool for designing cost-effective hub networks for
cargo companies. In order to observe the real-life require-
ments in this sector, many interviews were held with various
cargo companies operating in Turkey. It was then found
out that many of the hub location problems proposed in the
literature lack some real-life requirements from this sector.
In this section, we present our main observations from the
cargo sector and then we will define our problem based on
these observations.

In cargo applications, the transportation of cargo from
origin to destination is handled by operation centres. The
journey of a cargo starts from a branch office. A customer
either takes his cargo to the branch office of a cargo firm or
phones the firm for a pick-up. Branch offices are allocated
to operation centres. At the end of each day, a branch office
sends its whole cargo to its assigned operation centre. At
the operation centres, the cargo is sorted according to the
destination and is loaded into larger and more specialized
vehicles based on the destination. When the cargo from every
branch office allocated to that operation centre is received,
the vehicles are sealed and start their routes. These routes
are previously determined by the cargo company, so that at
the end, each cargo is transported to the operation centre of
its destination branch office. At the end of the journey, the
branch offices pick up their cargo from the operation centres
by themselves, and, finally, cargo reaches its destination point.

Because cargo companies use special, faster, and larger
trucks travelling between operation centres, economies of
scale are generated by this transportation. This structure used
by cargo companies is precisely the same as the hub network
structure. Therefore, we identify the branch offices of a cargo
company as demand points and the operation centres as hubs.
As each branch office is allocated to a single operation centre,
in most of the cargo firms, we consider a single-allocation
structure. In general this hub network structure is similar
for most of the cargo companies; however, we note that
each cargo company may have its own characteristics or
requirements.

Through interviews with major cargo firms in Turkey,
it was determined that the cargo firms’ main objective is
customer satisfaction. Customer satisfaction in this sector is
directly related with reliability and guaranteed service time.
In practice, the quicker and safer you send the cargo, the
more likely the customers are to be satisfied. Most of the
national and worldwide cargo companies operate on a time
basis. They provide different services to customers based on
different delivery time guarantees. Thus, in this sector, time is
a major concern. Most of the hub location literature focuses
on sending flows with minimum cost and does not consider
service time at all. Conversely, in the models that consider
time (p-hub centre, hub covering, and latest arrival types of
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models), the transportation costs are neglected. However, in
reality, both the establishment of hubs and using hub links
incurs some cost, while guaranteeing service time. To the
best of our knowledge no multi-objective study in the hub
location literature considers the objectives related to both
cost and service time. Because it was observed that service
time is the primary objective for cargo companies, in this
study, the service time is treated as a hard constraint rather
than as an objective.

Truck synchronization is an important concern in designing
hub networks for cargo companies. If a cargo truck is to visit
a hub node in its route, then the flow generated from this in-
between hub may wait for that truck to arrive. Or conversely,
the cargo may not be ready at a hub when the truck arrives.
Given that there is an initial service time guarantee, a company
needs to consider these waiting times so that the cargo is
delivered within the promised service time.

In this study, while building our model, we focused on
needs of a major cargo company operating in Turkey, say
Company A. (The Company does not like to share either its
name or the details of their hub network for confidentiality
reasons.) Company A is among the largest cargo companies
operating in Turkey. The company provides service between
every city pair in Turkey. The company authorities believe that
building hub facilities increases their service quality. Given
that the company uses a high number of hubs, sending sepa-
rate trucks from a hub to all other hubs is quite costly in
terms of investment on the total number of trucks. Thus, they
force some trucks to visit intermediate hubs to decrease this
total investment cost. Hence, the company currently employs
an incomplete hub network structure. Through our interviews
with other companies in the region it was found that almost
all of the cargo firms operating in Turkey do not employ a
complete hub network structure. The incomplete hub network
design problem is commonly encountered in the cargo sector.
Therefore, the basic assumption in the hub location litera-
ture of building complete hub networks is not valid in these
applications.

A general concern of the cargo companies is the safety of
the cargo. Company A wants to ensure their customers that
their cargo will arrive at the destination at the guaranteed time
without any loss or damage to the cargo. For safety reasons,
the cargo trucks travelling between hubs are sealed on the
beginning of every route and unsealed at each stop at a hub.
While using an incomplete hub network structure, a sealed
truck can be unsealed at a hub other than the destination hub
of a cargo in that truck. In these in-between stops at hubs a
cargo may be mistakenly unloaded resulting in a delay in the
service time or may get lost. Even though such instances are
rarely met, many precautions are taken by the company to
prevent any loss or delay of the cargo. One of their precautions
is that they want to minimize the number of intermediate hub
stops on any route. In a complete hub network structure, cargo
trucks visit two hubs on a route. They are sealed in the origin
hub and unsealed at the destination hub. In order to reduce

the operational costs, while regarding safety, the Company A
uses an incomplete hub network structure, where a cargo truck
is allowed to make at most one additional stop in travelling
between two hubs. So, they use a hub network on which each
origin—destination pair receives service by visiting at most
three hubs on a route.

With these observations, in this study, we propose a new
mathematical model. This new model determines the location
of hubs, allocates demand centres to these hubs, and designs
a hub network by relaxing the assumption of having a fully
interconnected hub network. We formulate a single-allocation
hub covering model that permits visiting at most three hubs
on a route. We have also considered the possible waiting times
at the in between hub nodes while modelling the problem.
The model minimizes the total costs, including the costs of
establishing hubs and hub links, subject to a time limit on the
maximum service time.

The proposed model is applicable for all the cargo compa-
nies operating on a time basis in addition to the ones oper-
ating in Turkey. By the use of our model it may be realized
that designing complete hub networks is cost wise inefficient,
while there is no contribution to the service time guarantee.
On the other hand, using at most a 3-hub stop strategy rather
than a complete (2-hub stop) one may decrease the investment
on the total number of trucks considerably, while regarding
safety. Since our model also takes the truck synchronization
into account, it is possible to provide the same service, for
example, to a network consisting of four hubs with four trucks
in contrast to a complete hub network requiring 12 trucks.

A generalization of our problem is the incomplete hub
covering network design problem. Incomplete hub networks
are commonly encountered in many real-life hub network
structures. Our 3-stop strategy is a special case of the incom-
plete hub network design problem. However, the 3-hub stop
networks are desirable for many applications. For example,
for the cargo companies using air transportation, employing
complete hub networks may be cost wise inefficient since an
airplane is to be assigned between every hub. On the other
hand, taking off and landing constitute the main operational
cost of a flight. So, in order to decrease operational costs it is
desirable to limit the number of take offs and landings for each
airplane, for example to three. In addition, there are some air
regulations restricting the total flight time of an airplane and
staff for a single route. Similarly, in air passenger applica-
tions, assigning separate aircraft and staff between every hub
causes congestion in airports and air networks, as well as high
investment and operating costs to the company. However, it
is also very undesirable for the passengers to stop at four or
five hubs on a route. So, airline companies need to limit the
number of hub stops on a route as well.

Many additional special cases of building incomplete hub
networks are proposed for different applications in the litera-
ture. For example, in telecommunication literature designing
different hub network (usually referred as backbone network)
topologies such as star, ring, tree, and path are considered.
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The reader may refer to Klincewicz (1998) for such applica-
tions. For some applications, it is desirable to use paths with
few numbers of edges in telecommunication. Dahl (1999)
and Dahl and Johannessen (2004) pointed out the need for
using few edges in paths in order to avoid unacceptable delay
and to increase reliability. The constraint on the number
of edges to be visited in between any origin—destination
pair is referred as hop-constraints. Dahl (1999) studied the
k-hop constrained problem and the related polyhedra. Dahl
and Johannessen (2004), on the other hand, studied the
2-hop constraint problem on a given network and proved its
NP-hardness. They provide a path-based formulation of the
problem and identified its polyhedral. The 2-hop constraint
idea is very similar to our 3-hub stop idea. The former
restricts the number of edges to be visited to two while we
restrict the number of hub nodes to be visited to three.

For cargo applications, k-additional stop topology for the
hub network can also be considered. For safety concerns
and the geographical structure of Turkey, Company A uses a
1-additional stop strategy. Our main motivation in this study
is to design optimum hub networks with the 1-additional stop
strategy and also to observe the effect of relaxing the complete
hub network assumption on service requirements.

In this study, some computational analysis on the Turkish
network is provided. The model was also tested on the CAB
data set, which is a benchmark data set used for hub location
problems. It was shown through application of the well-known
CAB data set that, in some cases, there is no need for a
complete hub network, even for the tightest values of service
time requirements.

Mathematical model

We are given a network on which the set of nodes (demand
centres) are identified. Our problem is to find the location
of hub nodes, to allocate the demand nodes to the located
hub nodes, and to determine which links are to be estab-
lished between hub nodes in order to provide service within
a given time bound and allowing for at most three hub stops
on any route. Let N be the set of demand nodes, and let H
be the candidate set of hub nodes. Candidate hub nodes can
be among the set of demand nodes.

The parameters of our mathematical model are as follows:

FH; = fixed cost of opening a hub at node j
FL;; = fixed cost of opening a hub link between hubs i and j
t;; = travel time between nodes i and j
f = maximum service time requirement
o= hub-to-hub transportation discount factor

The decision variables of the mathematical model:

rj= ready time of cargo at hub j
x;j= 1if node i is allocated to hub at node j; O otherwise

Figure 1 Decision variables of the mathematical model.

vij= 1 if a hub link is established between hubs i and j;
0 otherwise

zixj= 1 if hub k is used when travelling from hub i to hub
J; 0 otherwise

The decision variables of the model are schematically
shown in Figure 1.

An integer programming formulation of the problem
(3-stop-0) defined above is as follows:

Minimize ZFHjxjj + Z ZFLijy,-j 1

jeH jeH ieH
subject to
D x=1 foralli € N )
jeH
xijngj foralli € N, ]GH (3)

2yij<xij+xj; forallie H, jeH 4)

A=yi)— D xu— Y. %

IeH: I#i IeH:1#)
< Y wy forallieH. jeH (5
keH: ki k]

foralli € H,
jeEH, keH (6)
Dz < —yi) forallieH, jeH

2Zikj < Yik + Yij

keH
@)
Yij = Yji foralli e H, je H (8)
ri 2tijXij forallie N, je H ©)]

(rj+ri+at)y;<p forallie H, jeH

(10)
(rj +Max{re, ri + atig} + oti)zie; <

forallie H, jeH, ke H (11)
x;; €10, 1} forallie N, je H (12)
vij € {0, 1} forallie H, je H (13)

zikj € {0, 1} foralli e H, j € H,
ke H (14)
ri =0 forall j e H (15)

The objective function (1) minimizes the total cost of estab-
lishing the hub network. The total cost term includes the fixed
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cost of locating hubs and establishing hub links. Constraints
(2) and (12) together ensure that each demand node is allo-
cated to exactly one hub, that is, we use single-allocation.
Constraint (3) states that a demand node can be allocated to a
node only if a hub is opened at that node. Constraint (4) links
x variables to y variables and ensures that a hub link can only
be opened between two established hubs.

We force the model via constraint (5) so that if a direct
link does not exist between two hub nodes, these two hubs
must be reachable via stopping at a hub node in between.
Thus, every two demand centre can receive service via at
most three hubs on a route. Note that for given i and j, the
summations » ;.. Xi and 3, % on the left-hand
side of the constraint (5) both take on the value O if i and j
are both hub nodes, that is, if x;; =1 and x;; = 1. Thus, the
left-hand side of the constraint (5) takes on the value 1, if
a direct hub link is not established between two established
hubs and forces the z variable to take on the value 1 for some
hub k. Constraints (6) and (7) are logical constraints linking
y and z variables. The in-between hub can only be used if a
direct hub link exists from both of the hubs (constraint (6)).
We do not need to use an in-between hub, if a direct hub
link connection between two hubs exists, and exactly one hub
must be used in travel between two hubs (constraint (7)).

The case for an in-between hub is illustrated in Figure 1.
Because y;; =0 for x;; =1 and x;; = 1, the left-hand side
of constraint (5) takes on the value 1 forcing the model to
use another hub in between hubs i and j. By constraints (6)
and (7) z;x; must be equal to 1 for some k such that x; =1,
vitk =1, and y;; = 1. Then in the figure either z;;; or z;;; must
be equal to 1. Note that by constraint (7) only one of z;; or
zj;; can take on the value 1.

We establish an undirected hub network so that if a hub
link is opened in one direction it should also be opened in
the other direction (constraint (8)). Constraint (9) ensures
that the ready time of the cargo at a hub is greater than the
time needed to travel from all the demand points allocated to
that hub. Remember that in cargo applications, a hub waits
for all the cargo coming from demand centres that is allo-
cated to that hub before sending the cargo to another hub or
demand centre. The left-hand side of constraint (10) calculates
the maximum travel time between demand centres allocated
to two different hubs, when a direct hub link is established
between these two hubs. Whereas, the maximum travel time
between demand centres allocated to two different hubs when
a direct hub link is not established in between is calculated
in constraint (11). Remember that if there is not a direct hub
link between two hubs, there is a known hub to be visited
in between, which is obtained by z variables. Note that the
ready time of the cargo at the in-between hub may be greater
than the time required to travel from the origin to the in-
between hub. Thus, we need the maximum operator on the
left-hand side of constraint (11). Constraints (12)—(15) are the
constraints that define binary variables and the non-negativity
constraints.

This mathematical model is a nonlinear programming
model due to constraints (10) and (11). If we let |N| =n and
|H| = h the model has (h* + k% + nh) binary variables and
(2h3 + 5h% 4+ 2nh + n) constraints.

Linearizations

We propose constraint (10a) below for the linearization of
constraint (10).

rj—I—ri—i—(xtijy,-jgﬁ forallieH, ]GH (103.)

Let us refer to the new formulation by replacing constraint
(10) with (10a) as (3-stop-1).

Theorem 1 Any feasible solution to (3-stop-0) is a feasible
solution to (3-stop-1) and vice versa.

Proof Let (x,y,z,7) be a feasible solution to (3-stop-0).
Let us show that (x,y,z,r) is also feasible to (3-stop-1).
As all constraints other than constraint (10) are common to
Consider the Equation (10a) associated with nodes i and j.
There are two cases depending on the value of y;;.

e Case 1: y;; = 1. Then constraints (10) and (10a) yield the
same left-hand side.

e Case 2: y;j = 0. The left-hand side of the constraint (10)
yields 0; however, the left-hand side of the constraint (10a)
yields r; + r;. It suffices to show that r; +r; is less than or
equal to f. Note that when i = j, constraint (10a) yields
2r; < ff because f;; = 0 and y; = 0. Thus, we have both
r <f/2 and r; <f/2. By summing these two, we obtain
rjp+ri < p. Thus, constraint (10a) is satisfied.

To prove the converse, observe that the left-hand side of (10)
is always less than or equal to the left-hand side of (10a);
that is,

(7)‘+V{+O€l‘,’j)yl‘j<}’)‘+I",'+Otl‘,'jyl‘j foralli € H, ]EH

Therefore, any feasible solution to (3-stop-1) is also feasible
to (3-stop-0). O

For the linearization of constraint (11), we provide two sets
of constraints below:

rit+ritotgizi <P forallie H, jeH, keH
(11a)
ritri + o(tig+tij)zig <P forallie H, jeH, ke H
(11b)

Let us refer to the new formulation by replacing constraint
(11) with (11a) and (11b) in (3-stop-1) as (3-stop-2).

Theorem 2 Any feasible solution to (3-stop-1) is a feasible
solution to (3-stop-2) and vice versa.
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Proof Let (x,y, zZ, 1) be a feasible solution to (3-stop-1). Let

and (11b). Consider the Equation (11a) and (11b) associated
with nodes i, j, and k. There are three cases, depending on
the value of r;, ry, and zjy;.

o Case 1: zjj =1

o Case la: riy >r; + at;;. Then constraints (11) and (11a)
yield the same left-hand side. However, the left-hand
side of constraint (11b) yields r; +r; + a(tix + 1) < .
But as r; + r; + oty + oty <rj + e + ot <P, the
constraint (11b) is also satisfied.

o Case 1b: ry <r; +at;;. Then constraints (11) and (11b)
yield the same left-hand side. The left-hand side of
constraint (11a) yields r; + ry + of; <f. But as, r; +
ri 4oty <rj+ri + oty + ot; < B, the constraint (11a)
is also satisfied.

o Case 2: zj;; = 0. The left-hand side of the constraint (11)
yields 0; however, the left-hand side of the constraint (11a)
yields r; +ry, and the left-hand side of the constraint (11b)
yields 7 +r;. It suffices to show that both r; +ry and r; +7;

are less than or equal to 5. From constraint (10a) and the
argument in the proof of Theorem 1, we know that 7; < g,
e < g and r; < g By summing these constraints, we obtain
rj +ri < f and r; +r; < f. Thus, both constraints (11a) and

(11b) are satisfied.

Thus, we conclude that (x,y,z,7) is also feasible to
(3-stop-2).

To prove the converse, observe that the left-hand side of
(11) is either equal to the left-hand side of (11a) or (11b) or
less than both of them. So any feasible solution to (3-stop-2)
is also feasible to (3-stop-1). [

Now, let us state the linearized mathematical model
(3-stop).
Minimize (1)
subject to (2)—(9), (10a), (11a), (11b), (12)—(15).

Corollary 1 Any feasible solution to (3-stop-0) is a feasible
solution to (3-stop) and vice versa.

Corollary 2 An optimum solution to (3-stop) is also an
optimum solution to (3-stop-0) and vice versa.

(3-stop) is a strong linearization of (3-stop-0) in three ways:
(1) it uses precisely the same set of variables as in (3-stop-0),
that is, there is no change in the dimension of the space; (2)
the feasible sets are the exactly the same; and (3) the optimal
sets are the same.

For our applications we added constraint (16):

z,-kjg(l—y,-j) forallieH, jGH, ke H (16)

to the model (3-stop) in order to have tighter LP relaxations.

Computational results

The model is first applied on the Turkish network. On this
network, 81 cities are considered demand centres. We took 16
candidate sites for hub locations among these demand centres:
the most populated and industrialized cities in Turkey suitable
for hub location (Yaman et al, 2007). Figure 2 shows the
geographical locations of the demand centres and candidate
hub locations on a map of Turkey and Table 1 presents the
names of the candidate hub locations.

Our problem parameters for this Turkish network are
summarized in Table 2. The travel times (#;;) between all
nodes on the network can be obtained from Kara (2008). The
fixed costs for locating hub facilities (FH;) are taken from a
previous study by Tan and Kara (2007). Various factors, such
as the industrialization level, the in and out cargo intensity,
land price, and the highway intensity of different cities have
been considered in determining these fixed costs.

In addition to the fixed cost of opening hubs, the total
cost term in the objective function includes the costs for
establishing hub links (FL;;). In order to propose a general
model, we allowed for the costs of establishing hub links to
differentiate each link in the model. However, through our
interviews with cargo firms we observed that the costs for

® Demand centres
ACandidate hub locations

Figure 2 Geographical locations of the 81 demand centres, 16 of which are candidate hub locations.
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using inter-hub links are actually fixed, are the same for all
links, and are not proportional to distances, that is, that FL;; =
FL for all i € H and j € H. Thus, we take the link costs to
be fixed in our computations. In order to observe the changes
on the hub network with respect to these cost values, we took
two different fixed cost values for hub links: low link cost
and high link cost. The low link cost value is a fixed value
that is taken as relatively lower than the average fixed hub
costs, and the high link cost value is taken as approximately
the average of fixed hub cost values.

Through our interviews with cargo firms, the hub-to-hub
transportation time discount factor (o) was found to be 0.9 on
ground transportation in Turkey. Thus, we took « to be 0.9 in
all of our computations.

Table 1 Names of the candidate hub locations

1. Adana 5. Diyarbakar 9. Istanbul 13. Samsun

2. Ankara 6. Erzurum 10. Izmir 14. Sivas

3. Antalya 7. Gaziantep 11. Konya 15. Trabzon

4. Bursa 8. Mersin 12. Manisa 16. Sanlurfa

Table 2 Parameters for the Turkish network

Parameter Value

IN| 81

|H | 16

tij, FH j From Tan and Kara (2007)

o 0.9

FL Low and High

B (min)
Interval-1: 5 hubs 1800-1820
Interval-2: 4 hubs 1830-1850
Interval-3: 3 hubs 1860-1920
Interval-4: 2 hubs 1930-1980

In this Turkish network, with a 0.9 discount factor, the
tightest possible service time value between two demand
centres is about 30 h, that is, 1800 min. We varied the service
time values () between 30 and 33 h (1800-1980 min) with
10-min time intervals. In order to comment on the computa-
tional times more realistically, we divided the f§ values into
four intervals. The first interval (Interval-1) starts from the f§
value of 1800 min, which results in opening five hubs on the
Turkish network. All of the tested f values in Interval-1 lead
to opening five hubs. Interval-2 starts from the first § value
leading to opening four hubs, which is 1830 min. Thus, with
10-minute time intervals, 1830 min is the tightest possible f§
value for opening four hubs on this network. Similarly, the
f values in Interval-3 and Interval-4 lead to opening three
and two hubs, respectively. The summary of the f values and
intervals are listed in Table 2.

We took our runs on CPLEX 8.1, on an AMD Opteron
252, 2.6 GHz server with 2GB RAM. All the runs are solved
to optimality.

Figures 3a—d schematically show some of our computa-
tional results. The location of the hubs and established hub
links are shown in these figures. In order to avoid complica-
tions, we did not show the allocation of demand nodes in these
figures. From Figure 3a and b, with the service time bound of
1800 min, observe that even though the link costs are different,
there is no change in either the location of the hubs or the
established hub links. However, note that the resulting hub
network in both of the solutions is incomplete. In Figure 3c,
we obtained a complete hub network with 1850 min of service
time bound and with low link costs. On the other hand, when
we increased the link costs (Figure 3d) the hubs are opened
in different locations in order to reduce the total link cost,
and we obtained an incomplete hub network. In general we
discovered that, except in a few instances, our solutions on
the Turkish network were insensitive to the link costs.

Figure 3 Computational results on the Turkish network. (a) 1800 min, low link cost; (b) 1800 min, high link cost; (c¢) 1850 min, low

link cost; and (d) 1850 min, high link cost.
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Table 3 shows our computational times obtained by using
CPLEX 8.1. This table lists the minimum, maximum, and
average CPU times obtained, corresponding to four different
f intervals. In Interval-1, we have an instance that lasted more
than 7.5 h. This is the highest CPU time that we have observed
on this network, and it corresponds to the instance with the
tightest f3, shown in Figure 3b. However, even for Interval-1
with tight f values we have results in an average of about
2.5h. This value decreases to approximately 45s with loose
f values in Interval-4.

We have shared and discussed these solutions with different
possible fixed costs and f§ values with the authorities in
Company A. Our proposed solutions turned out to be very
different than their current hub network structure. The author-
ities in Company A are currently evaluating our solutions.

In order to discuss and compare our results with the hub
location literature, we have also tested our model on the well-
known CAB data set. The CAB data set was first introduced
by O’Kelly (1987), and it is based on the airline passenger
interactions between 25 US cities in 1970, evaluated by the
CAB. Figure 4 shows the names and geographical locations
of these 25 cities on the CAB data set.

The Parameters taken for the instances on the CAB data set
are listed in Table 4. There are 25 nodes in the CAB network,

Table 3 CPU times on the Turkish network

Min Max Average
B Interval-1 43.13 min 7.79h 2.47h
f Interval-2 19.38 min 1.22h 43.46 min
B Interval-3 1.34 min 6.23 min 2.96 min
f Interval-4 7.625 1.27 min 4547s

and we took all nodes to be the candidate hub locations.
Because there are no real travel-time values presented in the
literature on the CAB data set, we took travel times equal
to travel distances. Travel distances between 25 nodes on the
CAB data set were obtained from Beasley (1990). Again, no
real data on fixed hub costs is reported in the literature, so
we took the fixed hub cost value to be 100 and fixed for all
locations (O’Kelly, 1992). To observe any changes on the hub
network we tested two different fixed link cost values. We
took fixed link costs to be 1 and 100, where 1 corresponds to
low link costs and 100 to high.

Similar to all of the applications on the CAB data set in the
literature, we varied the o values. We took o to be 0.8, 0.6, 0.4,
and 0.2. We varied f§ according to the optimum p-hub centre
solutions found in Kara and Tansel (2001), corresponding to
locating four, three, and two hubs for each o value. We again
took our runs on CPLEX 8.1 on the same server.

Figure 5 presents two results from the CAB data set. In
both of these results, the o value is taken to be 0.8, and
the [ value is the tightest possible service distance on this

Table 4 Parameters for the CAB network

Parameter Value

[N| 25

|H| 25

tij = dij

FH 100

FL 1,100

o 0.8, 0.6, 0.4, 0.2

B Tightest possible distance for each « value

corresponding to locating four, three and two hubs

23. Seattle

8. Denver

22. San Francisco

12. Los Angeles

@ 19. Phoenix

15. Minneapolis

11. Kan&as City

10. Houston

3. Boston

9. Detroit 17. New Yorl
4. Chicago 6. Cleveland
@13 Philadelphia
@2. fai
20. Pittsburgh 2. Baltimore
21,8t Lauis 5. Cincinnati 25. Washington
13. Memphis
1. Atlanta

7. Dallas/Fort Worth

16. New Orleans

24. Tampa

14. Miami

Figure 4 Names and geographical locations of the cities in the CAB data set.
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Figure 5 Computational results on the CAB data set. (a) o = 0.8, § = 2457 with low link cost and (b) & = 0.8, f§ = 2457 with high

link cost.

network with four hubs, corresponding to this o value, which
is 2457. Figures 5a and b show the corresponding results
with low and high link costs, respectively. When we increased
the fixed link costs, the model locates one more hub, and the
link number is reduced by one. Note that in both of these
figures the resulting hub network is incomplete, even though
the service distance requirement is at its minimum possible
value. The results from the CAB data set also prove that the
complete hub network assumption presented in most of the
hub location models is not necessary in application. In all of
the CAB data set instances that corresponded to opening four
hubs, all solutions resulted in incomplete hub networks.

We have listed our computational times on the CAB data
set in Table 5. For each o value (0.8, 0.6, 0.4, and 0.2) we

Table 5 The average CPU times for the CAB data set

Low link cost High link cost

a=0.2 4.08 min 1.05h
a=0.4 5.69 min 20.93 min
a=0.6 17.03 min 50.36 min
o=0.8 52.14 min 6.32h

took three different § values and two different link costs (low
and high).

In the CAB data set, the problems with low link costs
tend to be solved quicker than the corresponding high link-
cost instances. Also, the solution times tend to increase as
o increases. The worst case performance of our model on
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this data set is obtained when the value of o is 0.8. The
highest CPU time that we observed on this data set is below
11 h (for the instance shown in Figure 5b), and the lowest is
about 265.

With both the Turkish network and the CAB data set, we
have obtained optimal solutions with our proposed model
in reasonable CPU times. Since we have tested the tightest
possible f§ values in both of the data sets, we presume that
these are among the hardest instances on these data sets. When
we compare the average CPU time requirements, the CAB
data set instances turned out to be a little bit harder than the
Turkish network instances. This is due to the increase in the
number of candidate hub locations; the CAB data set contains
25 candidate hub locations, whereas the Turkish network
contains 16. On the other hand, we observed that the increase
in the number of demand centres did not lead to a signifi-
cant increase in the CPU time requirements compared to the
increase in the CPU time with the increase in the number of
candidate hub locations. In both of the data sets, except in a
few instances, the solutions turned out to be insensitive to the
link costs. However, again in both of the data sets, the low link
cost instances required less CPU time than the corresponding
high link cost instances.

Even though we have tested the tightest possible § values in
both of the data sets, the model resulted in building incomplete
hub networks in most of the instances. This shows that the
service that is provided with a complete hub network can also
provided with an efficiently designed incomplete one with
less investment cost requirements.

Conclusion and future research directions

After interviewing many cargo companies, many real-life
requirements were observed from the cargo sector. It was
found that the basic assumption in the hub location literature
of building complete hub networks is not always valid. In
this paper, this assumption is relaxed and a new mathematical
formulation is proposed for a special case of the hub location
problem for cargo applications. Because it was observed that
time is a major concern the focus was on the hub covering
version of the problem and a service time bound is consi-
dered for every origin—destination pair. In addition to the
fixed costs of building hubs, the fixed costs of building hub
links are also considered in the model. In order to take the
waiting time at hubs into account, the truck synchronization
is modelled as well.

The model designs an incomplete hub network allowing at
most three hub stops on a route from any origin to destination.
It has been observed that such a strategy is also desirable
in air cargo, air passenger, and telecommunication networks,
in addition to ground cargo transportation. After determining
the link costs and service time requirements, a company can
adopt the model presented in this study.

The model is solved in reasonable CPU times with the
optimization solver CPLEX on both the Turkish network and

the CAB data set. Some of the results on both networks
are demonstrated. It was found that there is no need for a
complete hub network even for the tightest values of service
time requirements.

A generalization of the model is to build incomplete hub
networks with no restriction on the number of hub stops.
Reader should note that such networks may result in undesir-
ably long paths in the hub network, causing probably higher
operational costs. In addition to building general incomplete
hub networks, one may focus on different special network
structures applicable for different application areas of the
problem such as for telecommunication applications.

It has been observed that real life has many additional
requirements to those considered in this paper. For future
research, one could focus on different objective functions. For
example, one could maximize the next-day delivery between
two demand centres. Furthermore, the multi-modal transporta-
tion problem is an important area of research. Today, most
of the cargo companies employ both air and ground trans-
portation networks, and we believe that the literature does
not contain enough studies of this problem. Thus, there will
be a need for hub location models in this area in the near
future.
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