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June, 2016

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Nail Akar(Advisor)

Ezhan Karaşan
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ABSTRACT

ENERGY MANAGEMENT IN ENERGY HARVESTING
WIRELESS SENSOR NODES WITH LIFETIME

CONSTRAINTS

Çağlar Tunç

M.S. in Electrical and Electronics Engineering

Advisor: Nail Akar

June, 2016

Advancements in the “Internet of Things (IoT)” concept enables large num-

bers of low-power wireless sensors and electronic devices to be connected to the

Internet and outside world over a wide area wireless network without a need for

human interaction. Using rechargeable batteries with energy harvesting to power

these wireless sensors has been shown to preserve the self-sustainability and self-

sufficiency of a sensor node and prolong its lifetime, hence the whole network it

belongs to. However, it brings the question of how to intelligently manage the

energy in the battery so that the node maintains its functionalities by keeping

the battery level over zero for an extended duration of time, known as the life-

horizon. We propose a risk-theoretic Markov fluid queue model to compute the

battery outage probability of a wireless sensor node for a given finite life-horizon.

The proposed method enables the performance evaluation of a wide spectrum of

energy management policies including those with adaptive sensing rate (or duty

cycling). In this model, the node gathers data from the environment according

to a Poisson process whose rate is to depend on the instantaneous battery level

and/or the state of the energy harvesting process (EHP) which is characterized

by a Continuous time Markov Chain (CTMC). Moreover, an engineering method-

ology is proposed by which optimal threshold-based adaptive sensing rate policies

are obtained that maximize the information sensing rate of the sensor node while

meeting lifetime constraints given in terms of battery outage probabilities. Nu-

merical results are presented for the validation of the analytical model and also

the proposed engineering methodology, using two-state CTMC-based EHPs.

Keywords: wireless sensor nodes, Internet of Things, energy harvesting, Markov

fluid queues, risk theory, battery outage probability, adaptive duty cycling.
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ÖZET

ENERJİ HARMANLAYAN KABLOSUZ ALGILAMA
DÜĞÜMLERİNDE YAŞAM SÜRESİ KISITLAMALI

ENERJİ YÖNETİMİ

Çağlar Tunç

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Nail Akar

Haziran, 2016

“Nesnelerin İnterneti (IoT)” kavramındaki gelişmeler, düşük güçte çalışan çok

sayıda kablosuz algılayıcının ve elektronik cihazın insan etkileşimine ihtiyaç duy-

madan İnternet ve dış dünyaya bağlanmasını sağlar. Kablosuz algılayıcılarda

enerji harmanlayan pillerin kullanımının algılayıcı düğümünün, dolayısıyla ait

olduğu ağın ömrünün uzamasını ve kendi kendini devam ettirebilmesini sağladığı

gösterilmiştir. Bununla birlikte ortaya düğümün yaşam ufku olarak bilinen geniş

bir zaman dilimi boyunca pilini tüketmeden işlevsel kalması sağlanacak şekilde

pildeki enerji miktarının nasıl akıllıca idare edileceği sorusu çıkmaktadır. Bu

tezde, kablosuz algılama düğümlerinde sonlu bir yaşam ufkunda pil tükenmesi

olasılığını hesaplayan risk teorisi tabanlı bir Markov akışkan kuyruk modeli

önerdik. Önerilen yöntem, uyarlanır algılama sıklığı (ya da iş çevrimi) da dahil ol-

mak üzere çeşitli enerji yönetim mekanizmalarının performans değerlendirmesini

mümkün kılmaktadır. Bu modelde düğüm bulunduğu ortamdan, sıklığı anlık

pil miktarına ve/veya Sürekli Zamanlı Markov Zinciri (CTMC) ile modellenen

enerji harmanlama sürecinin (EHP) durumuna bağlı olan bir Poisson sürecine

göre veri toplar. Öte yandan, pil tükenmesi olasılığı cinsinden verilen yaşam

süresi gerekliliklerini karşılarken bilgi algılama sıklığını eniyilemeyi hedefleyen,

eşik-tabanlı uyarlanır algılama sıklığı politikalarını veren bir mühendislik yöntemi

de geliştirdik. İki fazlı CTMC tabanlı EHP kullanarak, sayısal modeli ve önerilen

mühendislik yöntemini doğrulayan sayısal sonuçlar sunduk.

Anahtar sözcükler : kablosuz algılama düğümleri, Nesnelerin İnterneti, enerji har-

manlama, Markov akışkan kuyrukları, risk teorisi, pil tükenme olasılığı, uyarlanır

iş çevrimi.
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I would like to acknowledge TÜBİTAK for funding this thesis with BİDEB
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Chapter 1

Introduction

The phrase “Internet of Things (IoT)” was first coined by British technology

pioneer Kevin Ashton in 1999 during a presentation about supply chain manage-

ment at Procter & Gamble (P&G) [1]. As Ashton states in his article [1], albeit

the term has transformed into various meanings and undertaken different roles in

different contexts, its key feature has remained unchanged: computers gathering

and processing their own information without a need for human intervention.

IoT is currently one of the most appealing and emerging concepts in the engi-

neering literature that is related to all kinds of technologies which aim to enable

everyday objects around us to be permanently connected to each other on a large

scale network and to the outside world over the Internet, typically without a need

for human interaction [2–4]. In general, the devices in IoT systems, which consist

of sensors, wireless transceivers, power supplies (typically battery and/or capaci-

tor) and information processing units, are connected in an IoT network structure

with unique identifiers in IP domain. Considering the increasing number of the

devices in IoT world, which is estimated to grow up to 25 billion in a few years [5],

and the phasing in of IPv6 architecture which will permit even a larger number

of connected “things”, IoT will clearly be one of the most prominent concepts of

the next decades.
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Complying with the Ashton’s emphasis in [1] on the importance of the com-

puters that can see, hear and smell the world for themselves, one of the most

widespread application areas of today’s IoT systems is to monitor the sensory

information of an environment with the help of the embedded sensors and track

this information remotely over the Internet by using IoT facilities [2,4,6]. In fact,

the application areas and key concepts of sensors and IoT systems overlap to a

great extent such that sensor networks are generally considered as a subset of IoT

systems in telecommunication context as in [4]. Although sensor networks have

been comprehensively studied in the literature since late 1970s, advancement in

IoT technologies gives rise to new research directions in sensor networks and their

applications [7].

1.1 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) refer to an interconnection of a large number

of Sensor Nodes (SNs) each of which is deployed for the purpose of gathering

sensory information regarding the located environment and disseminating this

information across the WSN [8,9]. WSNs target a wide spectrum of applications

including indoor/outdoor environment monitoring, target tracking, logistics sup-

port, robotics, etc. [10]. As WSNs, which comprise sensor nodes communicating

with a common sink node in a peer-to-peer manner or according to a certain

topology, blend with IoT technologies, environmental monitoring and informa-

tion transfering over WSNs via the Internet becomes much more easier due to

the remote accessibility and self-sustainability of the structure [11].

One of the main concerns in the telecommunications literature regarding WSNs

is to control the energy consumption of the SNs to prolong the lifetime of the indi-

vidual SNs and thus that of the WSN they belong to [12,13]. Energy management

in traditional non self-rechargeable battery powered wireless sensor networks have

attracted vast attention in the literature for a few decades; where sensor nodes

in a network have to keep their batteries “alive” by avoiding operating too ag-

gresively which may on the other hand compromise the network performance in
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terms of the overall amount of data gathered [14–16]. Despite there exists studies

on how to prolong the battery, hence network lifetimes of battery-powered sensor

nodes, the need for human interaction in traditional batteries for replacing or

recharging purposes significantly restricts their application areas.

In order to deal with this issue and improve the performance of SNs, a promis-

ing technology is to use renewable energy sources such as solar, thermal, electro-

magnetic, indoor lighting, etc. to power SNs [17,18]. In this case, sensor nodes are

equipped with rechargeable batteries which are charged up by the energy sources

through a recharging circuitry. Although renewable energy sources significantly

prolong the lifetime of an SN, their usage gives rise to the question of how to

handle the variable energy level in its battery intelligently so that the SN can

maintain its functionality perpetually. We consider in this thesis the architecture

depicted in Figure 1.1 in which individual sensor nodes directly communicate

with a sink node in a single-hop network which acts as a gateway to the Internet

and focus on how to manage the energy of an individual node.

 

 

 

 

   

SN1 

SN2 

SN3 

Sink Node 
(Gateway) 

Internet 

Figure 1.1: Wireless sensor nodes connected to the Internet via the sink node
which serves as a gateway.
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1.2 Related Work

In this section, we summarize the related work in the literature on the energy

management strategies proposed for energy harvesting wireless sensor nodes and

also the statistical methods used for modeling energy harvesting processes.

1.2.1 Energy Management in Energy Harvesting Wireless

Sensor Nodes

There have been quite a few recent studies on the energy management problem

in energy harvesting wireless sensor nodes, see [19] for a recent review. A subset

of these studies concentrate on an optimization problem on the basis of the avail-

ability of the offline knowledge of energy and data arrivals at the SN, which is

most commonly referred to as the offline problem in the literature. The authors

in [20] examine two cases: (i) all packets are ready to be transmitted before the

system is initialized and (ii) packets arrive after system start-up. In both cases,

energy and data packet sizes and arrival times are known prior to the start of the

transmissions and the main objective is to minimize the transmission completion

time. [21] seeks to maximize the throughput in a given deadline, while assuming

a time-varying capacity and leakage for the battery. Moreover, instead of energy

quanta arrivals, the model in [21] also considers continuous energy profiles, which

are again known in advance. [22] examines the optimal solution that maximizes

the throughput for the offline scenario where due to storage losses, some portion

of the available energy is lost while being stored to the battery. First showing

that the optimal offline policy has a two-threshold structure, the authors then

provide a water-filling algorithm for the fading channel case and finally a dynamic

program formulation for an online policy is proposed.

As opposed to the offline problem; in online setting, energy and/or data pack-

ets arrive at the system according to statistical models. In [23], the authors

establish a threshold policy to maximize an average long-term reward function

for an energy harvesting process modelled as a two-state Markov chain; whereas
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in [24], a new dimension which represents the number of packets queued in a data

buffer is added to the Markov chain. [25] proposes a stochastic scheduling mech-

anism to sense the environment with high probability if the probability that a

significant change has occurred in the environment is also high, where the changes

in the state of the environment are predicted by using statistical models. An-

other change detection process is examined in [26] in which power allocation and

detection schemes are designed in order to minimize the detection delay while the

battery is replenished by a random process. [27] seeks to solve an optimization

problem to obtain sensing and transmission policies with the problem constraints

being the probabilities that the data buffer gets full or the battery depletes. An-

other example that manages data and energy buffers simultaneously is [28], in

which transition decisions between sleep and wake states are made according to

a cost function that takes into account the levels of these buffers. In [29], energy

reserve in a sensor node is assumed to be partially known and by comparing

the energy level with a predetermined threshold, the controller makes sensing

decisions.

A very commonly used sensing policy in SNs is duty cycling, in which a sen-

sor node “wakes up” at certain times to measure data and then transits into a

“sleep” state in order to prevent unnecessary energy consumption [30]. Adap-

tive duty cycling is a widespread online energy management strategy proposed

in the literature to balance energy consumption during data measurement/tran-

mission and the randomness of the renewable energy resources [31–35]. The

authors in [31] consider several energy storage (rechargeable battery, capacitor)

and energy harvesting models (predictable, stochastic) for which optimal energy

spending algorithms that maximize the data rate of a single node are proposed.

In [32], the authors formulate an optimization problem to obtain the optimal duty

cycle, where the constraints are the QoS regarding latency and loss probability of

the packets that are queued in a finite-size buffer before being transmitted. The

authors in [33] compare two policies that adjust sensing epochs and make sensing

decisions. In the first policy, sensing events are periodic and take place if there is

enough energy in the battery or otherwise skipped, which is the optimal policy
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for an infinite-size battery whereas in the second policy, time between two con-

secutive sensing events also depends on the battery level and is adjustable. [34]

addresses the problem from a control-theoretic perspective not only to adjust the

duty cycle but also to decrease its variance for sustaining the stability of this pa-

rameter. The study in [35] uses a discrete model as the estimate of the harvested

energy, which is assumed to be periodic. Duty cycles are initialized according to

the levels of this discrete model. Moreover, according to the deviations of the

actual energy from the estimate, duty cycles are adjusted online.

Figure 1.2 depicts the system diagram we envision in this thesis. While an

energy harvesting resource provides power to the rechargeable battery, the SN

measures the physical quantities of interest from the environment and transmits

data packets containing information regarding the measured data directly to the

sink node in a single-hop manner during which energy is depleted from the battery.

In this model, we use stochastic models to characterize the energy harvesting

process which will be discussed in the following section in detail. As in the studies

in [31–35], we focus on the frequency of sensing events and specifically its effects

on the system performance and probability that the battery of SN is depleted

within a given amount of time. In particular, we model the duty cycle of the

SN as an exponentially distributed random variable whose rate determines the

frequency of the data from the environment. We will refer to this rate as sensing

rate throughout this thesis. Obviously, more frequent data gathering (i.e., higher

sensing rate) will improve the performance of the system of interest at the risk of

depleting the energy stored in the battery more rapidly. This particular tradeoff

between performance and lifetime is the main focus of this thesis.

1.2.2 Models for Energy Harvesting Processes

Due to the random and intermittent nature of energy harvesting resources, energy

harvesting processes (EHPs) are commonly modeled by stochastic processes in the

literature. [29, 36–48]. In [29, 36–44], discrete Markov models are used to model

the EHP. In [45], energy “packets” are assumed to arrive at the system according

6



 

 

End user 

Energy harvesting 
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Battery SN  
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packet 
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the battery 
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Internet 

Figure 1.2: System diagram.

to a Poisson process. [46] investigates how well six types of distributions, namely

discrete uniform, geometric, transformed geometric, Poisson, transformed Poisson

and two-state discrete Markovian, fit to the real-world solar data. Continuous

time Markov Chain (CTMC) models of the EHP are studied in [47, 48]. Similar

to these studies, we propose in this thesis to use CTMC-based EHPs.

In this thesis, we envision an energy harvesting SN model illustrated in Fig-

ure 1.3 with its rechargeable battery modeled by a single buffer for energy storage.

The EHP Z(t) dictates the instantaneous rate at time t at which the battery is

charged/discharged. Positive (negative) values for this rate are representative of

energy harvesting (leakage). We assume that Z(t) is governed by a general finite-

state CTMC with an initial probability vector α at time zero. In the SN model of

Figure 1.3, the process X(t) ∈ [0, B] denotes the stored energy at the battery at

time t and the capacity limit B represents the maximum amount of energy that

the battery can hold. The initial battery level is denoted by u, i.e., X(0) = u.

Similar to the system model envisioned in [23] and [26], when the SN decides to

sense the environment, it samples the physical quantities of interest, processes

this information, forms a data packet, and immediately transmits it towards the

receiver using the WSN facilities. Since the sensing, processing, packetization,

and transmission sub-steps are combined into one single step in this model, the

system we envision does not need to possess a data buffer to store data pack-

ets. For simplicity, we call this combined step as sensing. The count process
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related to the sensing epochs (or the data packet arrival process) is modeled by a

non-homogenous Poisson process with rate λ(X(t), Z(t)), also called the adaptive

sensing rate, which is allowed to depend on the instantaneous battery level and

the state of the harvester process. For the purpose of analytical tractability, we

assume that the SN does not carry transit traffic and the transmitted packets

are not errored in transit. Study of systems involving routed WSN traffic and

wireless packet errors are left for future research. These assumptions are more in

line with low-power wide area IoT networks as opposed to lower range wireless

multi-hop sensor networks. Moreover, the energy dissipated for one single data

packet transmission (denoted by S) is assumed to be exponentially distributed

with mean E[S]. We assume that this quantity captures the energy dissipated for

all the four sub-steps. Since the time scales of operation for the slower EHP and

the relatively rapid packet transmission process are quite different, we assume for

the sake of simplicity that the packet transmission takes place instantaneously

resulting in an abrupt energy drop by an amount of S each time a data packet

gets to be transmitted. Battery outage is said to occur at time t when the buffer

is first depleted, i.e., X(t) = 0, after which the SN would not able to fulfill its

functionalities. As the QoS constraint, we focus in this thesis on the lifetime

of the battery and propose to use the finite-horizon battery outage probability

which is defined as the probability of battery outage within a given time horizon

H. The main goal of this thesis is to first analytically obtain the finite-horizon

battery outage probability as a function of all system model parameters. Note

that this probability depends on the initial buffer level u, initial probability vector

α of the EHP, and also the time horizon H. The second goal of this thesis is to

use this mathematical analysis as an instrument to find the optimal transmission

policies regarding the choice of the sensing rate function λ(X(t), Z(t)) meeting

the lifetime constraint with the purpose of maximizing the average long-term

sensing rate. Towards the second goal and for tractability purposes, we focus our

attention to the very commonly used two-state CTMC model for the EHP and

threshold-based transmission policies in which the instantaneous sensing rate λ is

either λmin or λmax > λmin, depending on whether X(t) is above or below a given

threshold dictated by the current state of the harvesting process. This general-

ity in analysis allows us to compare and contrast various non-adaptive/adaptive

8
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Figure 1.3: Energy harvesting SN model.

sensing rate policies.

For mathematical analysis, a connection is established in this thesis between

ruin probabilities in risk theory and battery outage probabilities in energy har-

vesting sensor nodes. In risk theory, the ruin problem is described through an

insurance company which is exposed to an incoming cash flow in the form of

premiums and an outgoing cash flow in the form of claims, the arrival epochs and

sizes of claims being modeled by various stochastic processes in the literature;

see [49] and the references therein. For an insurer with initial surplus u, the

ultimate ruin probability is the probability that the insurer’s surplus level even-

tually falls below zero, i.e., the insurance company goes bankrupt [49]. In most

practical scenarios, it is crucial to know about the probability of the surplus level

falling below zero within a given finite time horizon, called the finite-horizon ruin

probability [50]. The role of premiums (claims) in risk theory will be shown in

this thesis to be played by energy harvesting (sensing) in energy harvesting sensor
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nodes. Consequently, the counterpart of ruin probabilities turns out to be battery

outage probabilities, both within a given time horizon. Recently, [51] proposed

a Multi-Regime Markov Fluid Queue (MRMFQ) model to find the finite-horizon

ruin probabilities for an insurance company with surplus-dependent premiums,

claim arrivals modeled by a Markovian arrival process, and PH-type claim sizes

with a matrix-analytical algorithm. With the proposed technique of [51], one can

express the finite-horizon ruin probability in terms of the steady-state probability

mass accumulations of the associated MRMFQ at certain levels. In this thesis, we

extend the method proposed in [51] to compute the finite-horizon battery outage

probabilities of Figure 1.3 using the so-called risk-theoretic MRMFQ model. As

related work, Markov fluid queue models have been used to analyze the energy

process of a rechargeable battery in a few studies. In [52], a two-regime fluid

queue is used where the regimes correspond to the battery level compared to

a threshold and battery discharge rates are chosen to be different in these two

regimes. On the other hand, [53] investigates a wireless node powered by multi-

ple batteries each of which is modeled by an MRMFQ but the focus has been on

the mean SN lifetime rather than the battery outage probability, the latter being

more information-bearing.

The contributions of this thesis can be summarized as follows:

� A risk-theoretic methodology is proposed to calculate the finite-horizon bat-

tery outage probability of an energy harvesting wireless sensor node that

employs threshold-based adaptive sensing rate policies. Simulation results

verify that the proposed method can very rapidly and accurately calculate

the finite-horizon battery outage probability and average sensing rate. To

the best of our knowledge, such a numerical method to calculate the bat-

tery outage probability within a given finite lifetime does not exist in the

literature.

� By using this analytical tool as a numerical engine, we propose a search-

based method to find the optimal operational parameters of a threshold-

based sensing policy, namely State-Dependent Threshold Policy (SDTP),

10



that maximizes the average sensing rate while lifetime constraints are sat-

isfied.

The thesis is organized as follows. In Chapter II, we describe two types of

Markov Fluid Queues, namely Single Regime Markov Fluid Queues (SRMFQs)

and Multi Regime Markov Fluid Queues (MRMFQs). We also provide the bound-

ary conditions and equations required to solve each of them and then describe

the procedure to solve the latter in detail. The computational procedure for find-

ing the battery outage probabilities for the system of Figure 1.3 is presented in

Chapter III. In Chapter IV, the proposed analytical technique is validated using

simulations. Moreover, the engineering methodology that we propose is presented

for a wide range of system parameters. In Chapter V, we conclude the thesis with

final remarks.
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Chapter 2

Markov Fluid Queues

Markov Fluid Queues (MFQs) are systems in which the rate of change of a buffer

content is governed by a Markov Process, which is usually called the background

process or driving process. This process is a CTMC whose states determines the

rates of change (or drifts) of the buffer content. Hence, MFQs have two key

components, the infinitesimal generator of the background process and the drift

values for each state of this process.

Dividing the buffer into fixed-size regimes expands the scope of the analy-

sis that can be done using MFQs. With different numbers of regimes, three

different systems can be derived from MFQs: Single-Regime MFQ (SRMFQ),

Multi-Regime MFQ (MRMFQ) and Continuous Feedback MFQ (CFMFQ).

In SRMFQs, the background process and drift values are fixed and indepen-

dent of the buffer content. On the other hand, these parameters are piecewise

constant (continuous) functions of the buffer level in MRMFQs (CFMFQs). In

this chapter, after briefly describing SRMFQs, we discuss MRMFQs, which will

be used in the analytical method proposed in this thesis, in detail.

MFQs have been studied in several studies including [54], [55], [56], [57], [58].

In [54], the main focus is on SRMFQs and a spectral solution approach is used

to solve for the steady-state behavior of the system which is also utilized by [55]

12



to solve multi-regime systems. The study in [56] proposes a stable numerical

method to solve the steady-state joint probability density function (pdf) vector

of SRMFQs which is based on Additive Decomposition (AD), whereas [57] extends

this method to multi-regime case. We will utilize the numerical method described

in [57] to obtain the steady-state solution of the MRMFQ model proposed in this

thesis.

2.1 Single-Regime Markov Fluid Queues

Let X(t) and Z(t) denote the buffer content and the background process, respec-

tively, at time t. Moreover, let Q denote the infinitesimal generator of Z(t). For

N being the number of states of Z(t), we also denote the drift of each state by

ri, for 1 ≤ i ≤ N . The diagonal drift matrix R which contains the drift values

on the diagonal is defined as follows:

R =


r1

r2

. . .

rN

 ·

We also define S0, S− and S+ as the sets of states with zero, negative and positive

drifts, respectively. The solution of an SRMFQ for a finite buffer of size B is ex-

pressed either in terms of the probability density function (pdf) or the cumulative

density function (cdf) of the queue occupancy at the steady-state. The cdf and

pdf vectors of an SRMFQ are defined as follows:

Fi(x, t) = Pr{X(t) ≤ x, Z(t) = i}, 1 ≤ i ≤ N,

F (x, t) = [F1(x, t) · · ·FN(x, t)] , 0 < x < B,

fi(x, t) = d
dx
Fi(x, t), 1 ≤ i ≤ N,

f(x, t) = [f1(x, t) · · · fN(x, t)] , 0 < x < B.
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Then the steady-state cdf are pdf vectors can be written as:

Fi(x) = lim
t→∞

Fi(x, t), 1 ≤ i ≤ N,

F (x) = [F1(x) · · ·FN(x)] , 0 < x < B,

fi(x) = lim
t→∞

fi(x, t), 1 ≤ i ≤ N,

f(x) = [f1(x) · · · fN(x)] , 0 < x < B.

The steady-state joint pdf vector f(x) = [f1(x) · · · fN(x)], 0 ≤ x ≤ B, where B

is a finite buffer size, is given by the following system of differential equations:

d

dx
f(x)R = f(x)Q (2.1)

with the probability mass accumulations occurring at the boundary points 0 and

B denoted by c(0) =
[
c

(0)
1 · · · c

(0)
N

]
and c(B) =

[
c

(B)
1 · · · c(B)

N

]
, respectively, and given

by as follows:

c
(0)
i = lim

t→∞
Pr{X(t) = 0, Z(t) = i}, 1 ≤ i ≤ N,

c
(B)
i = lim

t→∞
Pr{X(t) = B, Z(t) = i}, 1 ≤ i ≤ N,

for i = 1, 2, ..., N . The steady-state solution of a SRMFQ should satisfy the

following boundary conditions:

c
(0)
i = 0, ∀i ∈ S+, (2.2)

c
(B)
i = 0, ∀i ∈ S−, (2.3)

f(0+)R = c(0)Q̃(0), (2.4)

f(B−)R = c(B)Q̃(B), (2.5) B∫
0

f(x)dx+ c(0) + c(B)

1 = 1, (2.6)

where Q̃(0) and Q̃(B) are the infinitesimal generator matrices defined at the bound-

ary points 0 and B, respectively, and 1 denotes a column vector of ones of

appropriate size. If the buffer size is infinity, condition (2.3) is replaced with
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c(B) = [0 · · · 0] since there can be no accumulation at infinity; and (2.5) is replaced

with stability conditions so that the buffer content will not increase indefinitely.

Since SRMFQs are equivalent to MRMFQs with the regime number being equal

to one, their steady-state pdf solution can directly be obtained from the one of

MRMFQs, which will be described next. For the details of SRMFQ boundary

and stability conditions, the reader is referred to [59].

2.2 Multi-Regime Markov Fluid Queues

The main difference between SRMFQs and MRMFQs is that the generator and

drift matrices in an MRMFQ system are piecewise constant functions of the buffer

level. Having a finite size B <∞, the buffer is partitioned into K regimes, where

K > 1, with the regime boundaries ordered as 0 = T (0) < T (1) < ... < T (K−1) <

T (K) = B. If the buffer size is infinity, than the size of the last regime will be

infinity as well.

If T (k−1) < X(t) < T (k), the system is said to be in regime k at time t. We

denote infinitesimal generator and drift matrices of regime k by Q(k) and R(k),

respectively, for 1 ≤ k ≤ K, where R(k) is the diagonal matrix whose diagonal

elements are the drifts of state i, r
(k)
i , for 1 ≤ i ≤ N . Note that within regime k,

Q(k) and R(k) are constant. Similar to Q(k) and R(k), we define Q̃(k) and R̃(k) as

the infinitesimal generator and drift matrices associated with the boundary point

T (k) for 0 ≤ k ≤ K, where the drift of state i at the boundary T (k) is denoted by

r̃
(k)
i . S

(k)
0 , S

(k)
− and S

(k)
+ denote the sets of states with zero, negative and positive

drifts, respectively, in regime k. On the boundary point T (k), 0 ≤ k ≤ K, these

sets are denoted by S̃
(k)
0 , S̃

(k)
− and S̃

(k)
+ . According to the signs of the drifts of a

state in two adjacent regimes, the states with non-zero drifts are classified into

three as follows:

� Absorbing state: If r
(k)
i > 0 and r

(k+1)
i < 0, state i is called absorbing at the

boundary point T (k).
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� Repulsive state: If r
(k)
i < 0 and r

(k+1)
i > 0, state i is called repulsive at the

boundary point T (k).

� Emitting state: If r
(k)
i and r

(k+1)
i have the same sign, state i is called emitting

at the boundary point T (k).

We also define joint cdf and pdf vectors for regime k, 1 ≤ k ≤ K, as follows:

F
(k)
i (x, t) = Pr{X(t) ≤ x, Z(t) = i}, 1 ≤ i ≤ N,

F (k)(x, t) =
[
F

(k)
1 (x, t) · · ·F (k)

N (x, t)
]
, T (k−1) < x < T (k),

f
(k)
i (x, t) = d

dx
F

(k)
i (x, t), 1 ≤ i ≤ N,

f (k)(x, t) =
[
f

(k)
1 (x, t) · · · f (k)

N (x, t)
]
, T (k−1) < x < T (k).

Then steady-state cdf and pdf vectors can be written as:

F
(k)
i (x) = lim

t→∞
F

(k)
i (x, t) 1 ≤ i ≤ N,

F (k)(x) =
[
F

(k)
1 (x) · · ·F (k)

N (x)
]

T (k−1) < x < T (k),

f
(k)
i (x) = lim

t→∞
f

(k)
i (x, t) 1 ≤ i ≤ N,

f (k)(x) =
[
f

(k)
1 (x) · · · f (k)

N (x)
]

T (k−1) < x < T (k).

Moreover, the steady-state probability mass accumulations are defined at bound-

ary point k for 0 ≤ k ≤ K as follows:

c
(k)
i = lim

t→∞
Pr{X(t) = 0, Z(t) = i}, 1 ≤ i ≤ N,

c(k) =
[
c

(k)
1 · · · c

(k)
N

]
, 1 ≤ i ≤ N.

Similar to the Eqn. (2.1), the set of differential equations that give the steady-

state solution of an MRMFQ in terms of joint pdf vector is as follows:

d

dx
f (k)(x)R(k) = f (k)(x)Q(k). (2.7)

The steady-state solution given by Eqn. (2.7) should satisfy the following bound-

ary conditions:
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c
(0)
i = 0, ∀i ∈ S(1)

+ , (2.8)

c
(k)
i = 0, ∀i ∈

(
S

(k)
+ ∩ S

(k+1)
+

)
∪
(
S

(k)
− ∩ S

(k+1)
−

)
, 1 ≤ k < K, (2.9)

c
(k)
i = 0, ∀i ∈

(
S

(k)
− ∩ S

(k+1)
+

)
∩
(
S̃

(k)
+ ∪ S̃

(k)
−

)
, 1 ≤ k < K, (2.10)

c
(K)
i = 0, ∀i ∈ S(K)

− , (2.11)

f (1)(0+)R(1) = c(0)Q̃(0), (2.12)

f (k+1)(T (k)+)R(k+1) − f (k)(T (k)−)R(k) = c(k)Q̃(k), 1 ≤ k < K, (2.13)

f
(k)
i (T (k)−) = 0, ∀i ∈ S(k)

− ∩
(
S̃

(k)
0 ∪ S̃

(k)
+

)
, 1 ≤ k < K, (2.14)

f
(k+1)
i (T (k)+) = 0, ∀i ∈

(
S̃

(k)
0 ∪ S̃

(k)
−

)
∩ S(k+1)

+ , 1 ≤ k < K, (2.15)

f (K)(B−)R(K) = −c(K)Q̃(K), (2.16) K∑
k=1

T (k)−∫
T (k−1)+

f (k)(x)dx+
K∑
k=0

c(k)

1 = 1. (2.17)

Note that the boundary conditions (2.11) and (2.16) are valid only if the buffer

is of finite size. On the other hand, if B = ∞, a
(K)
0 = 0 and a

(K)
+ = 0 should

hold since the system must be bounded in regime K, which replace the conditions

(2.11), (2.16). Moreover, the stability condition

π(K)R(K)1 < 0 (2.18)

should also be satisfied where π(K) is the steady-state vector of Q(K).

2.3 Ordered Schur Form

Before outlining the numerical methodology used in thesis, we first describe the

ordered Schur decomposition of a given matrix, which will be a significant com-

ponent of the methodology. In particular, our aim in this section is to find a
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matrix Y for a real square matrix A such that

Y −1AY =

A0

A−

A+

 , (2.19)

where A0, A− and A+ are upper triangular blocks having eigenvalues with 0,

negative and positive real parts on the diagonals, respectively.

Theorem 1. There exists an orthogonal matrix Z for every real square matrix

A such that

ZTAZ = T =

[
T11 T12

0 T22

]
,

where T is upper block-triangular with each diagonal block being either a 1×1 entry

and an eigenvalue of A or a 2 × 2 matrix corresponding to a complex conjugate

pair of eigenvalues of A. Moreover, matrix Z can be chosen in a way that the

eigenvalues are placed in the diagonal blocks of T in any desired order [60].

By Theorem 1, one can find a matrix Z such that

ZTAZ =

A0 A1 A2

A− A3

A+

,

where A0, A− and A+ are upper triangular blocks as (2.19). In order to obtain

the exact form in (2.19), the authors in [61] describes a procedure which defines

matrix Y as follows:

Y = Z

[
I X1

0 I

]I 0 0

0 I X2

0 0 I

,
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where X1 and X2 can be obtained by solving the following Sylvester equations:

X1

[
A− A3

0 A+

]
− A0X1 =

[
A1 A2

]
, (2.20)

X2A+ − A−X2 = A3. (2.21)

2.3.1 Matlab Implementation

Let us now present a numerical example to demonstrate how to obtain the ordered

Schur form by using Matlab version 8.5. We consider a 4-state CTMC with the

following infinitesimal generator and drift matrices:

Q =


−3 0.5 1 1.5

1 −1.5 0.5 0

0 2 −2 0

1 3 0.5 −4.5

, R =


1 0 0 0

0 −2 0 0

0 0 −1 0

0 0 0 3

,

from which matrix A is computed as1:

A = Q(R)−1 =


−3 −0.25 −1 0.5

1 0.75 −0.5 0

0 −1 2 0

1 −1.5 −0.5 −1.5

 ·

In Matlab , the Schur decomposition of matrix A is obtained by executing the

command [Z1,T1]=schur(A), which gives an orthogonal matrix Z1 and upper

block-triangular matrix T1 as:

Z1 =


−0.7697 0.5494 −0.3112 0.0941

0.1955 −0.2660 −0.8028 0.4965

0.0370 −0.0821 −0.4974 −0.8628

0.6066 0.7878 −0.1059 0.0121

,

1One can follow the procedure described in [57] to handle the case of singular per-regime
drift matrices which is caused by zero-drift states.
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T1 =


−3.2825 0.8147 −0.5633 −0.4066

0 −0.8713 2.0846 0.0107

0 0 0 0.2658

0 0 0 2.4038

,

which satisfy the matrix equation ZT
1 AZ1 = T1. We note that the eigenvalues of

A are -3.2825, -0.8713, 0 and 2.4038, which occur in the diagonal of matrix T1. In

order to place the eigenvalues in specific locations, we the function ordschur.m

in Matlab that takes an input vector for ordering the eigenvalues, highest (low-

est) value of which corresponds to the leftmost (rightmost) block diagonal. For

this particular example, we execute the following command:

Z,T = ordschur(Z1,T1,[2 2 3 1])

to place the zero eigenvalue to the upper-left corner, followed by the blocks con-

taining the eigenvalues with negative real parts and then the ones with positive

real parts. At this step, we have the orthogonal matrix Z satisfying

ZTAZ = T =


0 0.5344 1.9235 0.0456

0 −3.2825 1.1580 0.4193

0 0 −0.8713 0.2411

0 0 0 2.4038

 ·

As discussed before, we now eliminate the non-zero entries in the off-diagonals.

We solve two Sylvester matrix equations for matrices X1 and X2, which are used

to eliminate the non-zero off-diagonal entries in the first and second-third rows,

respectively, by executing the following commands:

X1 = −T(1,2:4)/T(2:4,2:4), (2.22)

X2 = sylvester(−T(2:3,2:3),−T(4,4),T(2:3,4)). (2.23)

We finally calculate matrix Y as
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Y = Z

[
I −X1

0 I

]I 0 0

0 I −X2

0 0 I

 ,

=


0.2582 0.7798 −1.1249 0.1555

−0.5164 −0.1980 0.6136 0.3741

−0.2582 −0.0375 0.1986 −0.9265

0.7746 −0.6146 −2.2791 0.0147

 ,

which satisfies

Y −1AY =


0 0 0 0

0 −3.2825 1.1580 0

0 0 −0.8713 0

0 0 0 2.4038

 ·

2.4 Solution of MRMFQs

Throughout the thesis, we assume that per-regime drift matrices R(k), k = 1, ..., K

are nonsingular because all of the drift values of the model proposed in the next

chapter are non-zero. Hence, the solution provided in this section covers the

steps for the case where per-regime drift matrices are invertible. Nonetheless, the

reader is referred to [57] for the details of the solution procedure for the case with

zero drift states.

First, we define A(k) = Q(k)
(
R(k)

)−1
for k = 1, ..., K from which Eqn. (2.7)

can be written as follows:

d

dx
f (k)(x) = f (k)(x)A(k). (2.24)

As a direct consequence of Theorem 1 and the remaining steps in Section 2.3, one

can find a non-singular matrix Y (k) for matrix A(k) such that the form in (2.19)
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is obtained. In mathematical form, for k = 1, ..., K, one can write the following

expression:

(
Y (k)

)−1
AY (k) =

0

A
(k)
−

A
(k)
+

 (2.25)

where eigenvalues of matrix A(k) with negative and positive real parts appear on

the diagonals of A
(k)
− and A

(k)
+ , respectively; and 0 is a square matrix having zeros

on the diagonal whose size is equal to the number of zero eigenvalues of matrix

A(k). We now decompose matrix
(
Y (k)

)−1
as

(
Y (k)

)−1
=

L
(k)
0

L
(k)
−

L
(k)
+

 (2.26)

where the blocks L
(k)
0 , L

(k)
− and L

(k)
+ , correspond to the zero eigenvalues and the

ones with negative and positive real parts, respectively. Then, the solution of (2.7)

for regime k, k = 1, ..., K can be written as follows:

f (k) = a(k)

 L
(k)
0

eA
(k)
− (x−T (k−1))L

(k)
−

e−A
(k)
+ (T (k)−x)L

(k)
+

 (2.27)

where a(k) =
[
a

(k)
0 a

(k)
− a

(k)
+

]
is the vector of unknowns to be solved for. Fi-

nally, one can solve for the unknowns a(k) and c(k) by re-writing equations (2.8)-

(2.17) (using Eqn. (2.27)) in terms of the unknowns. This algorithm requires the

solution of a linear matrix equation of at most size N(2K + 1). The computa-

tional complexity of the proposed algorithm can be reduced to O(N3K) on the

basis of the observation that the linear matrix equation is in block tridiagonal

form [51].
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Chapter 3

Fluid Queue-Based Analysis of

Energy Harvesting Sensor Nodes

In this chapter, we combine the energy process of an energy harvesting SN with

the fluid queue analysis described in Chapter 2. We construct the system model

and then, we derive the expressions for the finite-horizon battery outage proba-

bility and average sensing rate.

3.1 System Model

Without loss of generality, we assume that an SN consumes energy only when

it transmits packets. There are also studies that examines the case in which an

SN consumes energy also during processing the data and when it is idle. Idle

state power can be modeled by a negative drift for the states in which the SN is

idle. Furthermore, energy required for data processing can simply be combined

with the consumed energy during transmission since there is no buffer for data

storage and all the measured data and corresponding data packets are transmitted

immediately as long as there is enough energy in the battery.
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Table 3.1: Table of main notation.
Parameter Definition Unit

X(t) Battery level at time t mWh
u Initial battery level (X(0)) mWh
B Battery capacity mWh
pi Energy harvester output power at state i mW
di Net drift of the battery at state i mW
lb Energy leakage rate of the battery mW

λi(k) Sensing rate at state i and regime k hour−1

α Initial probability vector
H Deterministic time horizon hour
l Erlangization level of the horizon H

For tractability of the model, we recapitulate the main notation in Table 3.1.

The Energy Harvesting Process (EHP) Z(t) ∈ {0, 1, ..., N − 1} is governed by an

N -state CTMC with infinitesimal generator denoted by Q. We refer to the states

of the energy harvesting process as the harvester states. When the EHP resides

in state i, the harvester output power level is denoted by pi, for 0 ≤ i ≤ N − 1.

Accordingly, we define the matrix P = diag(p0, p1, . . . , pN−1). A fixed leakage

rate from the battery is assumed and denoted by lb. Subsequently, we define the

net power matrix D = P−lbI = diag(d0, d1, . . . , dN−1), where di = pi−lb denotes

the net rate of change of the stored energy in the battery when the EHP resides

in state i.

We focus on the particular case when the sensing rate function λ(X(t), Z(t)

is a piece-wise constant function of the instantaneous battery level X(t), i.e.,

the sensing rate is fixed when X(t) resides between two boundaries. For this

purpose, we define the regime boundaries 0 = T (0) < T (1) < · · · < T (J) =

u < · · · < T (K) = B, where u and B are the initial battery level and battery

capacity, respectively. The battery is said to reside in regime k at time t when

T (k−1) < X(t) < T (k). We denote the sensing rate in harvester state i and regime

k by λi(k) for 0 ≤ i ≤ N − 1 and 1 ≤ k ≤ K. We define the regime-k sensing

rate matrix Λ(k) = diag (λ0(k), λ1(k), . . . , λN−1(k)) for 1 ≤ k ≤ K.

The system starts to operate with initial battery level u and in an harvester

state according to a given initial probability vector α = [α0 α1 . . . αN−1] where
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αi = Pr{Z(0) = i}. Whenever Z(t) is in state i, energy is stored in the battery

with rate di = pi − lb. When pi < lb, the energy buffer is drained at rate

lb − pi. When T (k−1) < X(t) ≤ T (k), a sensing event occurs in the interval

(t, t + ∆t) with probability λi(k)∆(t) + o(∆t) where o(∆t)
∆t
→ 0 as ∆t → 0. A

sensing event leads to an immediate battery energy drop with amount S which is

exponentially distributed with mean E[S]. Obviously, the battery level X(t) can

not be negative. The time of battery outage denoted by τ(u,α) is given by

τ(u,α) = inf{t > 0 : X(t) = 0}, (3.1)

and the finite-horizon battery outage probability before the so-called horizon

value H denoted by ψ(u,α, H) is then given by

ψ(u,α, H) = Pr{τ(u,α) ≤ H}. (3.2)

The average sensing rate (denoted by λavg) represents the average number of

transmitted packets i) in the time interval [0, H] if no outage occurs within H,

or ii) in the interval [0, τ(u,α)] in case τ(u,α) < H.

3.2 MRMFQ Model

0 l-11 absl

    

Figure 3.1: l-level Erlangization of the horizon H.

Erlangization refers to approximating a deterministic quantity by an Erlang

distribution of sufficiently high order for analytical tractability; see for example

[50] that employs Erlangization to approximate the deterministic time horizon in

the risk theory context. In this thesis, we employ l-stage Erlangization to model

the deterministic horizon H as depicted in Figure 3.1 for various values of the

parameter l. The state labeled as abs refers to the absorbing state representing
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the horizon expiration and η = l/H is the transition rate from one Erlang stage

to the next one. Starting operation at the first stage at time zero, the time to

reach the abs stage is then Erlang-l distributed with mean H. Clearly, as l→∞,

the Erlang-l distribution converges to a Dirac delta function located at H. We

define the following Erlang-l sub-generator TH and the vector T 0
H to be used in

the MRMFQ model we propose:

TH =



−η η

−η η
. . . . . .

−η η

−η


, T 0

H = −TH1.

The state-space of our MRMFQ model is now described. First, we need l replicas

of each harvester state, which are represented by the pair (i, j) for 0 ≤ i ≤ N − 1

and 1 ≤ j ≤ l, resulting in a total number of Nl so-called idle states, since there is

no data transmission in these states. As packets being transmitted, there should

be a reduction in the battery level. For this purpose, we need a transmission-

mode replica of the idle state (i, j) denoted by (i, j)* and these Nl replicas will be

referred as the transmitting states. We introduce three auxiliary states, namely

Outage (O), Reset (R), and Good (G) states, in order to calculate ψ(u,α, H).

Note that within H, either of the two events would occur:

� No battery outage: For this event, time expires before the horizon without

the battery level hitting zero. We introduce the G and R states to de-

scribe the behavior of the battery level in this case. As the horizon expires,

the battery level is decreased down to zero (during the G state) and then

increased up to the initial level u (in the R state); see Figure 3.2(a).

� Battery outage: The battery level hits zero before the horizon. In this case,

O state is used to initialize the battery level by increasing it up to u after

the battery hits zero; see Figure 3.2(b).

In either case, with the battery level set to u, the system transits into one of the
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Figure 3.2: Sample paths for (a) no outage, and (b) outage case.

first Erlang states (i, 1), 0 ≤ i ≤ N − 1 according to the initial probability vector

α and the cycle starts over. These two cases are illustrated in Figure 3.2. In this

figure, abrupt falls of the battery level represent data transmission and battery

leakage (energy harvesting) is shown by a negative (positive) slope.

In our MRMFQ formulation and for numerical accuracy purposes, the energy

level is reduced at a finite rate of pT as opposed to abrupt drops. For this pur-

pose, we choose scalar parameters pT and β such that the mean dissipated energy

for one packet transmission E[S] equals the product pT/β. Consequently, each

time a packet gets to be transmitted, the battery level is allowed to reduce at

a rate of pT for an exponentially distributed amount of time with parameter β

leading to an exponentially distributed eventual energy drop with mean E[S].

However, this model does not lead to any inaccuracy as will be shown in the

sequel. Next, we order the states as (i) O state, (ii) R state, (iii) G state, (iv)
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Nl idle states enumerated lexicographically, (v) Nl transmission states enumer-

ated lexicographically. With this state space, we are now ready to describe the

MRMFQ model which is a translation of the sample paths provided in Figure 3.2

into an MRMFQ that uses the regime boundaries T (k), 0 ≤ k ≤ K. Therefore, in

the proposed MRMFQ model, the regime-k generator matrix is written as

Q(k) =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1⊗ T 0
H I⊗ TH + (Q− Λ(k))⊗ I Λ(k)⊗ I

0 0 0 βI −βI


. (3.3)

The boundary-k generator matrix Q̃(k) = Q(k) for k ∈ {1, 2, . . . , J − 1, J +

1, . . . , K}. However, the boundary-0 and boundary-J generators require more

work. In particular

Q̃(J) =



−1 0 0 α⊗ e1 0

0 −1 0 α⊗ e1 0

0 0 0 0 0

0 0 1⊗ T 0
H I⊗ TH + (Q− Λ(J))⊗ I Λ(J)⊗ I

0 0 0 βI −βI


(3.4)

and

Q̃(0) =



0 0 0 0 0

0 0 0 0 0

0 1 −1 0 0

1 0 0 −I 0

1 0 0 0 −I


. (3.5)

The regime-k and boundary-k drift matrices of the proposed MRMFQ are given
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as follows:

R(k) =

diag(1, 1,−1, D ⊗ I,−pT I), 1 ≤ k ≤ J,

diag(−1,−1,−1, D ⊗ I,−pT I), J < k ≤ K.
(3.6)

R̃(k) =



R(k), k 6∈ {0, J,K},

max(0, R(1)), k = 0,

diag(0, 0,−1, D ⊗ I,−pT I), k = J,

min(0, R(K)), k = K,

(3.7)

where the max and min are element-wise operators. Under this choice, note

that the amount of time spent in the O and R states during each visit to these

two states possess the same distribution. This observation holds also for the time

spent in these two states restricted to x = u. Therefore, the finite-horizon battery

outage probability ψ(u,α, H) can be written as

ψ(u,α, H) =
c

(J)
O

c
(J)
O + c

(J)
R

, (3.8)

where c
(J)
R and c

(J)
O

1 as the probability mass accumulations of the proposed

MRMFQ at the boundary J in states R and O, respectively.

3.3 Engineering Framework

By solving the mathematical model described above, we now derive an expression

to calculate the average sensing rate λavg. Subsequently, we study various adap-

tive sensing rate policies to maximize the average sensing rate where the system

requirement is the finite-horizon outage probability given in (3.8) being less than

a given desired probability ψT . According to the battery level, the sensing rate

1Note that since c
(J)
R = c

(0)
G where c

(0)
G is the probability mass accumulation at the boundary

0 in state G, c
(J)
R and c

(0)
G can be used in Eqn. (3.8) interchangeably.
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λi(k) is allowed to take either a minimum or a maximum value, denoted by λmin

and λmax, respectively. The optimization problem we deal with can be written

as:
maximize

λi(k)
λavg

subject to ψ(u,α, H) < ψT ,

λi(k) = λmin, λmax

(3.9)

for 1 ≤ k ≤ K. Intuitively, when the battery level is close to zero, the rate

should be set to λmin to avoid battery outage. Similarly, the SN should sense the

environment with rate λmax when the battery is almost fully charged to provide

enough space in the battery for new energy arrivals. This leads us to investigate

a threshold-based structure for λi(k). In this thesis, we assume a two-state EHP

with two harvester states 0 and 1 and the thresholds for these states are denoted

by B0 and B1, respectively. The value of λi(k) in each regime can be written as

follows:

λi(k) =

λmin, X(t) ≤ Bi,

λmax, X(t) > Bi.

Since we let each state have its own threshold, we refer to this policy as the

State-Dependent Threshold Policy (SDTP). SDTP being employed for a two-

state energy harvesting process results in a 4-regime MFQ. Together with the

boundary points at T (0) = 0, T (J) = u and T (K) = T (4) = B, we have two more

boundary points each of which corresponds to the threshold of one harvester

state. For instance, if B1 < u < B0, we have T (1) = B1, T (2) = u and T (3) = B0.

Similarly, if B1 < B0 < u, the boundary points can be written as T (1) = B1,

T (2) = B0 and T (3) = u, and so on. As an example, the SDTP policy for the

case B1 < u < B0 < B is illustrated in Figure 3.3. Note that two or more

boundary points may coincide, which will not have any adverse effect on the

solution methodology. Similar to the power-save mode proposed in [52], we also

define the Single Threshold Policy (STP) for which there is a single threshold for

the battery level regardless of the harvester state, i.e., B0 = B1. Clearly, STP

can be modeled with a 3-regime MRMFQ.
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Figure 3.3: Sensing rate λi(k) of SDTP for the case B1 < u < B0 < B.

We denote the steady-state joint pdf and probability mass accumulations of

idle state (i,m) in regime k by f
(k)
(i,m)(x) and c

(k)
(i,m), respectively. To calculate the

average sensing rate λavg, we also denote the normalized steady-state joint pdf and

probability mass accumulations f̂
(k)
(i,m)(x) and ĉ

(k)
(i,m) for idle states. Since O, R, and

G are auxiliary states which are defined to calculate the outage probability, we

censor out these states in the calculation of the average sensing rate. Transmitting

states also need to be censored out since transmissions are modeled as abrupt falls

of the instantaneous battery level. Finally, since probability mass accumulations

at zero occur due to battery outage, we also censor them out. Subsequently, we

write the normalized the steady-state joint pdf f̂
(k)
(i,m)(x) as

f̂
(k)
(i,m)(x) =

f
(k)
(i,m)(x)

N−1∑
i=0

l∑
m=1

K∑
k=1

(
T (k)−∫

T (k−1)+

f
(k)
(i,m)(x)dx+

K∑
k=1

c
(k)
(i,m)

) · (3.10)

The quantities ĉ
(k)
(i,m) can be obtained similarly. With these normalized quantities,
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one can calculate the average sensing rate as follows:

λavg =
N−1∑
i=0

λmin Pr{Z(t) = i,X(t) ≤ Bi}+ λmax Pr{Z(t) = i,X(t) > Bi}

=
N−1∑
i=0

l∑
m=1

λmin Ki∑
k=1

 T (k)−∫
T (k−1)+

f̂
(k)
(i,m)(x)dx+ ĉ

(k)
(i,m)




+
N−1∑
i=0

l∑
m=1

λmax K∑
k=Ki

 T (k)−∫
T (k−1)+

f̂
(k)
(i,m)(x)dx+ ĉ

(k)
(i,m)


 (3.11)

where Ki (Ki) is the value of k such that T (k) = Bi (T (k−1) = Bi). With the

expressions derived for the battery outage probability and average sensing rate

in terms of the steady-state solution of a certain MRMFQ with 2Nl + 3 states,

one can solve for the outage probabilities as a function of the pair (B0, B1). The

particular values of this pair that yield the largest average sensing rate among

those that yield ψ(u,α, H) < ψT are to be chosen as the optimal pair of thresh-

old parameters. A numerical example that describes the step-by-step solution

procedure for a two-state CTMC is given in the Appendix.
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Chapter 4

Numerical Examples

In this section, we first validate the accuracy of the proposed analytical method

by comparing the analytical results with the ones obtained by the simulations.

Then, we examine threshold-based policies and evaluate the performance of a

so-called State Dependent Threshold Policy (SDTP) by comparing it with two

other policies for an exhaustive set of parameters.

4.1 Model Parameters

In this section, we identify the system parameters including the parameters of

the rechargeable battery, transmission scenario and energy harvester model.

4.1.1 Rechargeable Battery Model

As candidate power supplies for energy harvesting SNs, properties of five different

rechargeable battery technologies, namely Sealed Lead Acid (SLA), Nickel Cad-

mium (NiCd), Nickel Metal Hydride (NiMH), Lithium Ion (Li-ion) and Lithium

Polymer (Li-polymer) are investigated in [18]. Two of the most commonly used
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rechargeable battery types are Li-based and NiMH. Li-based batteries outper-

form NiMH batteries in several axes such as higher energy-power densities and

charging efficiency and lower self-discharge rate. However, recharging Li-based

batteries requires considerably complicated charging circuits. On the other hand,

NiMH batteries do not require any charging circuits while achieving reasonable

performance in terms of the aforementioned parameters. Hence, we propose in

this thesis to use NiMH batteries as the power supply of an SN. Important prop-

erties of this particular type of battery which are used in the numerical analysis

are tabulated in Table 4.1 [18]. The last column of Table 4.1 shows the self dis-

charge rate of the battery, which is the percentage loss of the battery per month

without any connections. In the numerical examples, the unit of time is taken to

be hours. 30 %/month self-discharge rate results in 1.25 mWh lost energy in one

hour for a 3000 mWh battery. We use a constant-power battery leakage model

by fixing lb = 1.25 mW.

Table 4.1: Properties of NiMH batteries.
Nominal Capacity Capacity Charging Self Discharge

Voltage (V) (mAh) (mWh) Efficiency (%) (%/month)
1.2 2500 3000 66 30

4.1.2 Transmission Model

We use the first order radio model given in [62], with assuming a d4 energy loss

as a function of distance d. According to this model, SN consumes:

ETx(k, d) = Eeleck + εampkd
4 (4.1)

of energy to transmit a k-bit packet over a distance d. Eelec and εamp are the

amounts of energy that the transmitter circuitry and amplifier consume per bit,

respectively. In the examples, we set Eelec = 50 nJ/bit, εamp = 100 pJ/bit/m4,

d = 100 m and assume exponentially distributed packet sizes with mean 1000

bytes. We also assume a bit rate of 1 Mbps. This means SN expends k(Eelec +

εampd
4) = k(5·10−8+10−2) ≈ k ·10−2 J to transmit one bit. Considering the mean
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packet size of 1000 bytes, it requires E[S] = 80 J ≈ 22.222 mWh to transmit one

packet on average. Accordingly, we set pT = 10 and β = 0.45, which results in

E[S] = pT/β = 22.222.

4.1.3 Energy Harvester Model

The sensor node considered in the numerical examples is equipped with a solar

cell of size 37×33 mm2. First, we assume a two-state (“on” and “off”) CTMC

as the EHP. As discussed in [18], for 100 mW/cm2 of available power, solar

cells can provide an output power of 15 mW/cm2 with 15% conversion efficiency.

Considering a constant output power of 15 mW/cm2 for a 37×33 mm2 solar

cell, approximately 183 mWh of energy can be obtained in one hour. Since the

charging efficiency of the NiMH battery is 66%, 120 mWh of this energy can be

stored in the battery. In order to use a realistic EHP model which also complies

with the real world data, several studies have been investigated including [37] and

[44]. In [37], two types of quantizers, coarse (two-state) and fine (twenty-state),

are experimented to fit a first-order Markovian model to empirically measured

data. For simplicity, we choose a two-state background process to model the

harvested energy. The authors in [44] use a similar two-state process and report

simulations results for 4 combinations of transition rates for on and off states as

(ordered as on-off) 1-1, 1-12, 12-1 and 12-12 hour−1, in order to obtain results for

both fast and slow switching between the states. Moreover, annual data records

of the solar irradiance measured in Washington, Oregon, Idaho, Montana and

Wyoming reveal that the average solar radiation is approximately 4 kWh/m2,

which is equal to 4884 mWh of available energy per day [63]. Since we assume

a conversion efficiency of 15%, this results in approximately 732 mWh of daily

harvested energy. By taking all this information into account, we consider the

following energy harvesting model: Solar cell outputs either 120 mW (h1) or 0

mW (h2) for exponentially distributed time intervals with means 1 and 5 hours,

respectively, according to the state of the EHP. This means on average, 20 ×
0 + 4 × 120 = 480 mWh (727 mWh) energy is stored (harvested) daily at 66%

charging efficiency, which complies with the measurements in [63].
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4.2 Example I - Validation

In the first example, we verify the accuracy of the outage probability and average

sensing rate expressions derived in Chapter 3. For this purpose, the system is

simulated for 105 time cycles where a time cycle refers to a single horizon for each

of which we keep track of whether outage has occurred or not, and additionally

the number of overall transmitted packets. As the system parameters, we set

H = 1, λmax = 4, B1 = 1500, and B0 = 2500, and vary λmin from 0.4 to 1.3

and compare the resulting outage probabilities and average sensing rates with the

simulation results in Figures 4.1, 4.2 and 4.3 for u = 750, 2000, 2750, respectively.

For all of the following examples, we set α =
[
5/6 1/6

]
unless otherwise stated.

We observe that as the number of Erlangization levels l increases, analytical

results of ψ(u,α, H) converge to the simulation results, while the average sensing

rate seems to be less sensitive to l. A notable accuracy is obtained with the choice

of l = 50 (requires a computation time of approximately 0.6 seconds for one

problem instance with MATLAB running on a notebook using an Intel Core i5-

3210M Processor and a RAM of 8 GB) for both performance metrics. Therefore,

we set l to 50 for the remaining examples.

The outage probability is depicted as a function of B1 for B0 being fixed to

1500 and H = 1, 3, 12 in Figure 4.4. Other parameters are set to u = 3000,

λmin = 0.4, λmax = 10. In all the cases shown in Figure 4.4, the findings of

the analytical method overlap with the simulation results. We also compare the

analytical results with simulations for various values of the initial probability

vector α and u = 100, 200, 300, 400, 500. We set λmin = 0.5, λmax = 4, H = 1,

B0 = 2000, B1 = 1000, α = [(1− α1) α1] and vary α1 from 0 to 1. As illustrated

in Figure 4.5, the initial harvester state is more important for relatively lower

values of the initial battery level u. Again, we observe that the analytical results

are in line with simulations.

For validation purposes, we also investigate the case in which a moderate

sensing rate, denoted by λmod, is introduced which results in two thresholds for
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Figure 4.1: (a) Battery outage probability ψ(u,α, H) and (b) average sensing
rate λavg, as functions of λmin for H = 1, λmax = 4, B1 = 1500, B0 = 2500 and
u = 750.
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Figure 4.2: (a) Battery outage probability ψ(u,α, H) and (b) average sensing
rate λavg, as functions of λmin for H = 1, λmax = 4, B1 = 1500, B0 = 2500 and
u = 2000.
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Figure 4.3: (a) Battery outage probability ψ(u,α, H) and (b) average sensing
rate λavg, as functions of λmin for H = 1, λmax = 4, B1 = 1500, B0 = 2500 and
u = 2750.
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Figure 4.4: Battery outage probability as a function of B1 for H = 1, 3, 12 and
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Figure 4.5: Battery outage probability as a function of α = [(1 − α1) α1] for
u = 100, 200, 300, 400, 500 and λmin = 0.5, λmax = 4, H = 1, B0 = 2000,
B1 = 1000.

each state and four thresholds in total. We denote the thresholds of state i by

Bi,1 and Bi,2 for i = 1, 2 such that the sensing rate λi(k) is given by the following

expressions:

λi(k) =


λmin, X(t) ≤ Bi,1,

λmod, Bi,1 < X(t) ≤ Bi,2,

λmax, X(t) > Bi,2.

As the other system parameters, we set λmin = 0.4, λmax = 2, λmax = 10,

B0,1 = 1500, B0,2 = 2250, B1,1 = 500, B1,2 = 1250, u = B = 3000, α = [5/6 1/6]

and tabulate the analytical and simulation results for the finite-horizon battery

outage probability ψ(u,α, H) and average sensing rate λavg for H = 1, 3, 6, 9, 12

in Table 4.2. We also provide 98% confidence intervals for ψ(u,α, H) in the

simulations results. We observe that the simulation and analytical results comply

with each other also for a four-threshold model. These results reveal that the

analytical method is capable of analyzing similar multi-threshold systems and its

extension to cases in which there are more numbers of possible sensing rates is

straightforward.
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Table 4.2: Comparison of analytical and simulation results for λmin = 0.4, λmod =
2, λmax = 10, B0,1 = 1500, B0,2 = 2250, B1,1 = 500, B1,2 = 1250, u = B = 3000,
α = [5/6 1/6] and H = 1, 3, 6, 9, 12.

H
ψ(u,α, H) λavg

Analytical Simulation Analytical Simulation
Result Result 98% Conf. Int. Result Result

1 0.0135 0.0134 ± 0.0007 0.9677 0.9677
3 0.0499 0.0503 ± 0.0014 0.8867 0.8869
6 0.1019 0.1021 ± 0.0019 0.8664 0.8665
9 0.1510 0.1514 ± 0.0022 0.8597 0.8597
12 0.1974 0.1977 ± 0.0025 0.8563 0.8565

4.3 Example II - Fixed Sensing Rate Policy

(FSRP)

Let us now assume a Fixed Sensing Rate Policy (FSRP) for which the sensing rate

λ(X(t), Z(t)) does not depend on X(t) or Z(t) and equals λ. For a given desired

outage probability ψT , we define the maximum attainable fixed sensing rate λ*

called the limit-sensing rate which meets the outage probability constraint. In

this case, the MRMFQ possesses two regimes with T (0) = 0 < T (1) = u ≤ T (2) =

B. For this example, we assume that the battery is initially fully charged, i.e.,

u = B = 3000, and the horizon H is varied from 1 to 24 months. For other

parameters being fixed, one can easily obtain the value of λ* by binary search.

The limit sensing rate λ* is depicted in Figure 4.6 as a function of the horizon H

for four different values of ψT , namely 0.01, 0.025, 0.05 and 0.1. We observe that

λ* decreases as H increases. Moreover, as the outage probability constraint is

relaxed and ψT is increased, higher sensing rates can be achieved while meeting

the lifetime constraint. For the threshold-based policies, one should make sure

that λmin < λ* so that the system is functional and the battery level remains

positive throughout the specified horizon for a given ψT . Moreover, λmax may

be selected as large as the application requires in order to utilize the harvested

energy.
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Figure 4.6: The limit sensing rate λ* as a function of the horizon H for four
different values of ψT .

4.4 Example III - State-Dependent Threshold

Policy (SDTP)

In this example, we set H = 12, λmin = 0.4, λmax = 10 and u = 3000, which

means the battery is initially fully charged. We first show how ψ(u,α, H) and

λavg change as thresholds B0 and B1 vary between [0, 3000] in Figures 4.7 and

4.8 from which one can obtain the values of B0 and B1 that maximize λavg while

satisfying ψ(u,α, H) < ψT for a given ψT . We denote these particular values

by B*
0 and B*

1 . In Figure 4.9, we demonstrate how the optimal thresholds B*
0

and B*
1 behave as a function of H when ψT = 0.1, along with B* the optimal

threshold for STP. For all values of H, B* appears to lie between B*
0 and B*

1 but

for this example, all optimal thresholds appear to be close. For the same example,

the average sensing rates λavg obtained by SDTP, and STP, and the limit sensing

rate λ* is depicted in Figure 4.10 as a function of the horizon parameter H.

We observe that adaptive sensing increases substantially the average sensing rate

if the adaptation is performed optimally. Moreover, the average sensing rate

obtained by SDTP is slightly better than that of STP.
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Figure 4.7: Battery outage probability ψ(u,α, H) as a function of B0 and B1 for
u = 3000, H = 12, λmin = 0.4 and λmax = 10.
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Figure 4.8: Average sensing rate λavg as a function of B0 and B1 for u = 3000,
H = 12, λmin = 0.4 and λmax = 10.
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Figure 4.9: optimal thresholds B*
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1 , and B* as functions of the horizon H for
ψT = 0.1, u = 3000, α = [5/6 1/6], λmin = 0.4 and λmax = 10.

We now consider a 100-times slower EHP whose transition rates out of har-

vester states 1 and 0 are 1/500 and 1/100, respectively. For the following scenario,

we set α =
[
1 0

]
, which means that the initial harvester state is always 0. We

also set λmin = 0.9λ* for all values of H. The other parameters are the same

as in the previous scenario. We again plot the optimal thresholds and average

sensing rates in Figures 4.11 and 4.12, respectively. B* still lies between B*
0 and

B*
1 which are quite apart from each other. Moreover, STP is substantially out-

performed by SDTP in terms of the average sensing rate. Similar to the relatively

faster EHP, both SDTP and STP outperform FSRP for this example as well.
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Figure 4.10: Average sensing rates λavg and limit sensing rate λ* as functions of
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Chapter 5

Conclusions

We propose in this thesis a risk-theoretic multi-regime Markov fluid queue-based

method for computing the finite-horizon battery outage probabilities in energy

harvesting sensor nodes with energy management. For energy management, we

focus on threshold-based energy management policies in which a high (low) sens-

ing rate is applied when the battery level is above (below) a certain threshold.

We propose to use Erlangization to cope with the deterministic finite time hori-

zon. We validate the accuracy of the proposed method by comparing the results

with simulations for an exhaustive set of system parameters. We show that as

the Erlangization level of the horizon increases, the analytical results converge

to those obtained by simulations. Considering the computational inefficiency

of simulations which requires hours to execute (or even days for large horizon

values), the validation section put emphasis the computational efficiency of the

proposed method. Subsequently, we use this method as the engine of an op-

timization framework by which we determine the optimal operational parame-

ters of a so-called State-Dependent Threshold Policy (SDTP) which maximizes

the average sensing rate while satisfying finite-horizon battery outage probability

constraints and for which there is a separate threshold for each state of the under-

lying EHP. As shown in the final example, threshold-based policies significantly

increase the average sensing rate for a given lifetime constraint compared to the
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benchmark policy Fixed Sensing Rate Policy (FSRP); whereas selecting state-

dependent thresholds may further enhance the system performance, depending

on the energy harvesting scenario. For relatively faster EHPs, which is more com-

mon in energy harvesting environments, Single Threshold Policy (STP) may be

preferred over SDTP as the energy management policy since it employs a single

threshold for all the states of the EHP which is simpler and faster to compute.

Extensions of this work will consist of more sophisticated models where sensing

and packet transmission may be uncoupled leading to two queues; one queue for

energy and the other for data. Another future work will be related to obtaining

optimal sensing rate policies more general than the double-valued policies (λmin

or λmax) studied in this work. Although we focus on the case where one threshold

is employed for each state and analyze it comprehensively, we validate that the

proposed methodology also works for multiple threshold scenarios which makes

it a useful tool to analyze other threshold-based sensing policies.

For simplicity of the demonstration of the proposed method, the energy dis-

sipated for one data packet is assumed to be exponentially distributed in this

thesis. However, future work will cover more other statistical distributions such

as PH (Phase Type) since the proposed solution framework is extensible for more

general distributions.
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Appendix A

Appendix

A.1 Numerical Example

We consider a two-state EHP with λmin = 1, λmax = 2, u = B = 3000, B0 = B1 =

1500, α =
[
5/6 1/6

]
, l = 1, H = 1 months (720 hours), η = l/H ≈ 0.0014,

lb = 1.25, pT = 10, β = 0.45, p0 = 0, p1 = 120 and

Q =

[
−1/5 1/5

1 −1

]

which is the infinitesimal generator matrix of the EHP. Since the thresholds B0

and B1 are equal, this set of parameters gives rise to a two-regime MFQ with

regime boundaries T (0) = 0, T (1) = 1500 and T (2) = 3000. From the expressions

in (3.3), (3.4) and (3.5), one can write the infinitesimal generators Q(1), Q(2),

Q̃(0), Q̃(1) and Q̃(J) = Q̃(2) as follows:
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Q(1) = Q̃(1) =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0.0014 −1.2014 0.2 1 0

0 0 0.0014 1 −2.0014 0 1

0 0 0 0.45 0 −0.45 0

0 0 0 0 0.45 0 −0.45


,

Q(2) =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0.0014 −2.2014 0.2 2 0

0 0 0.0014 1 −3.0014 0 2

0 0 0 0.45 0 −0.45 0

0 0 0 0 0.45 0 −0.45


,

Q̃(0) =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 −1 0 0 0 0

1 0 0 −1 0 0 0

1 0 0 0 −1 0 0

1 0 0 0 0 −1 0

1 0 0 0 0 0 −1


,

Q̃(J) = Q̃(2) =



−1 0 0 0.8333 0.1667 0 0

0 −1 0 0.8333 0.1667 0 0

0 0 0 0 0 0 0

0 0 0.0014 −2.2014 0.2 2 0

0 0 0.0014 1 −3.0014 0 2

0 0 0 0.45 0 −0.45 0

0 0 0 0 0.45 0 −0.45


.
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Similarly, regime and boundary drift matrices can be written from (3.6) and (3.7)

as follows:

R(1) = R(2) = R̃(1) =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 −1.25 0 0 0

0 0 0 0 118.75 0 0

0 0 0 0 0 −10 0

0 0 0 0 0 0 −10


,

R̃(0) =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 118.75 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


,

R̃(2) =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 −1 0 0 0 0

0 0 0 −1.25 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −10 0

0 0 0 0 0 0 −10


.

Then, by following the procedure described in Section 2.3, one can obtain A
(k)
− ,

A
(k)
+ , L

(k)
0 , L

(k)
− and L

(k)
+ for k = 1, 2 as follows:

A
(1)
− = −0.0018, A

(1)
+ =


0.9976 −0.3190 −0.0067

0 0.0003 −0.0003

0 0 0.0381

,
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A
(2)
− = −0.0074, A

(2)
+ =


1.8014 −0.1913 −0.0176

0 0.0001 0.0005

0 0 0.0318

,

L
(1)
0 =


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

 ,
L

(1)
− =

[
0 0 −19.8380 −20.6974 −5.0108 −44.2253 −10.7068

]
,

L
(1)
+ =


0 0 −0.6375 −0.9162 0.0233 0.3956 0.0599

0 0 −1.9974 0.4005 0.0770 0.8979 0.1656

0 0 −0.0020 −0.0124 0.0672 −0.1812 0.9811

 ,

L
(2)
0 =


1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

 ,
L

(2)
− =

[
0 0 −1.1706 −4.1730 −2.0563 −15.9304 −7.8500

]
,

L
(2)
+ =


0 0 −0.7066 −0.9765 0.0044 0.2130 0.0316

0 0 −6.6622 0.2149 0.0437 0.9539 0.2049

0 0 −0.0022 −0.0138 0.0644 −0.2094 0.9756

 ,

which are required to solve for the unknowns in Eqn. (2.27).

At this point, we have all the matrices required to write the boundary condi-

tions (2.8)-(2.17) in the matrix form zH = b which is to be solved for the vector

of unknowns z where matrix H is obtained by using the boundary conditions. If

we solve for vector z for this particular example, we find the probability mass
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accumulations at boundary points T (0) = 0, T (1) = 1500 and T (2) = 3000 as

c(0) = 10−3
[
0 0 0.0939 0.0050 0 0.1052 0.0039

]
,

c(1) =
[
0 0 0 0 0 0 0

]
,

c(2) = 10−3
[
0.1141 0.0939 0 0 0.1200 0 0

]
.

From Eqn. (3.8), we calculate the finite horizon battery outage probability as

ψ(u,α, H) = c
(2)
O /(c

(2)
O + c

(2)
R ) = 0.1141/(0.1141 + 0.0939) = 0.5486. Similarly, we

obtain the unknowns in Eqn. (2.27) a(k) = [a
(k)
0 a

(k)
− a

(k)
+ ] for k = 1, 2 as

a(1) = 10−3
[
0.1141 0.0939 0.2080 0.0008 0.0162 0.0911 0.0176

]
,

a(2) = 10−3
[
0.1141 0.0939 0.2080 −0.0035 −0.2284 0.0554 0.0203

]
,

from which steady-state joint pdf vector f (k)(x), k = 1, 2 is obtained from Eqn.

(2.27). By using expression (3.10), we then calculate the following probabilities

in each regime for each state:

Pr{Z(t) = 0, X(t) ≤ B0} = 0.7057,

Pr{Z(t) = 0, X(t) > B0} = 0.1275,

Pr{Z(t) = 1, X(t) ≤ B1} = 0.1309,

Pr{Z(t) = 1, X(t) > B1} = 0.0359.

Finally, multiplying these probabilities with the corresponding sensing rate values

(as in Eqn. (3.11)) gives the average sensing rate as follows:

λavg = Pr{Z(t) = 0, X(t) ≤ B0}λmin + Pr{Z(t) = 0, X(t) > B0}λmax
+ Pr{Z(t) = 1, X(t) ≤ B1}λmin + Pr{Z(t) = 1, X(t) > B1}λmax
= (0.7057 + 0.1309)λmin + (0.1275 + 0.0359)λmax

= 1.1634.
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