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Approved for the Graduate School of Engineering and Science:

Ezhan Karaşan
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ABSTRACT

QUANTUM MONTE CARLO SIMULATIONS OF
ULTRACOLD ATOMIC SYSTEMS

Emre Akatürk

Ph.D. in Physics

Advisor: Bilal Tanatar

July 2019

Here, we present our work and findings on ultracold atomic systems. We first

present a semi-analytical work on density wave instability (DWI) and collective

modes of a bilayer dipolar system of bosons and fermions. We then show our

results for quantum Monte Carlo (QMC) simulations on a bosonic system with an

impurity in two-dimensions (2D). We investigate DWI on two parallel layers with

antiparallel dipoles that have little to no pairing between interlayer particles. We

observe that for both fermionic and bosonic bilayers, below a threshold intralayer

coupling strength, no density wave instability emerges. At higher couplings, DWI

forms below a critical layer spacing. We also investigate collective modes in this

system. For the second problem, we present our investigations of a 2D Bose

polaron, which is a system with bosonic particles and a mobile impurity. We use

diffusion Monte Carlo (DMC) simulations to calculate physical quantities such as

polaron energy and effective mass of the polaron as well as quantities that give

insight to structural properties of the system such as pair correlation function

and density profile. We model the boson-boson and boson-impurity interaction

with hard spheres.

Keywords: antiparallel dipolar bilayers, density-wave instability, collective modes,

Bose polaron, impurity-boson interactions, two-dimensions..
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ÖZET

AŞIRI SOĞUK ATOMİK SİSTEMLERİN KUVANTUM
MONTE CARLO SİMULASYONLARI

Emre Akatürk

Fizik, Doktora

Tez Danışmanı: Bilal Tanatar

Temmuz 2019

Burada, aşırı soğuk atom sistemleri hakkındaki çalışmalarımızı sunmaktayız.

Öncelikle, iki katmanlı iki kutuplu sistemin Yoğunluk Dalgası Dengesizliği ve

kollektif modları ile ilgili yarı analitik işimizi sunuyoruz. Sonra, iki boyutlu

(2B) saf olmayan bozonik bir sistemin Kuvantum Monte Carlo simülasyonları

ile ilgili işlerimizi sunuyoruz. Yoğunluk Dalgası Dengesizliğini anti paralel iki

katmanlı bir sistemde, iki katman arasında çiftleşme olmadığı durumda incele-

mekteyiz. Hem bozon hem de fermiyonları araştırmaktayız. İki durumda da

belli bir etkileşim gücünün altında yoğunluk dalgası dengesizliği gözükmediğini

gözlemledik. Daha yüksek çiftleşmelerde, belli bir katmanlar arası uzaklıkta

Yoğunluk Dalgası Dengesizliği oluşmakta. Ayrıca bu sistemin kollektif modlarını

incelemekteyiz. Bunun dışında iki boyutlu Bozon polaron problemi konusundaki

araştırmalarımızı sunmaktayız. Bu sistemde bir hareketli saf olmayan parçacık

ve bozonik parçacıklar bulunmaktadır. Diffüzyon Monte Carlo yöntemi kulla-

narak polaron enerjisi, effektif kütle gibi fiziksel değerleri hesaplamaktayız. Aynı

zamanda çift korelasyonu fonksiyonu ve yoğunluk profili gibi yapısal özellikleri de

hesaplıyoruz. Bozon-bozon ve bozon-saf olmayan parçacık etkileşimini sert küre

potansiyeli kullanarak modelledik.

Anahtar sözcükler : anti paralel iki kutuplu çift katman, yoğunluk dalga dengesi-

zliği, kollektif modlar, bozon polaron, saf olmayan-bozon etkileşimi, iki boyut.
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Chapter 1

Introduction

This thesis introduces our work and findings on ultracold atomic systems. There

are two major works included in the thesis, one is regarding the Density Wave

Instability(DWI) of a bilayer dipole system and the other consists of Quantum

Monte Carlo(QMC) simulations on a bosonic system with an impurity in 2D, also

called Bose polaron in the literature.

First part of the thesis deals with the DWI instability on equal number of

dipoles that are placed on a symmetric two layer structure. The moments of

dipoles are aligned perpendicular to the layers. All dipoles in one layer point at

the same direction and opposite to the dipoles in the other layer. We investigate

both bosonic and fermionic particles in our work and assume that there is little

to no pairing between the particles in different layers. We investigate formation

of an inhomogeneous fluid (Density Wave) from a homogeneous superfluid by

looking at the poles of the static density-density response function.

In the second part, we investigate a 2D system with bosonic particles and

an impurity in an ultracold setting. The impurity acts as a polaron in this

system, due to the strong interaction between itself and the bosons. We model

the boson-boson interactions and impurity-boson interaction using a hard sphere

potentials. We use different scattering lengths for the impurity-boson interaction

1



to investigate the effect of the interaction strength on the system. We use diffusion

Monte Carlo(DMC) simulations to calculate physical quantities such as polaron

energy and effective mass of the polaron as well as functions that give insight to

structural properties of the system such as pair correlation function and density

profile.

Rest of the thesis is structured as follows:

The second chapter contains information about our work in DWI in which

we briefly introduce the concept to the reader, inform the reader about density-

density response function and the effective interactions used in the work. Then,

we present our findings about DWI and collective modes of the system followed

by a brief summary of the work.

In the third chapter we present our work in 2D Bose polaron problem. First, we

introduce the Variational Monte Carlo(VMC) and diffusion Monte Carlo(DMC)

method. Then, we introduce the system under investigation and our model.

Finally, we present our results followed by a summary section.
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Chapter 2

Density-wave instability and

collective modes in a bilayer

system of antiparallel dipoles

2.1 Introduction

In this chapter we discuss our work on Density-wave instability and collective

modes in a bilayer system of antiparallel dipoles [1]. Layered structures combine

interesting physics of the low-dimensional systems with the additional tunability

coming from the interlayer interactions and tunneling. In condensed matter sys-

tems, several unique phenomenon such as Coulomb-drag effect [2], formation of

indirect excitons and their eventual condensation [3], density wave instabilities

and Wigner crystallization [4] and fractional quantum Hall effect [5, 6] in layered

structures have been the subject of an immense interest in the past few decades.

The isolation of graphene and other layered van der Waals materials [7] in recent

years have enormously raised this enthusiasm.

Ultracold atomic and molecular systems, on the other hand, with their im-

pressive controllability have become natural simulators of the condensed matter
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and many-body theories. In particular experimental progress in trapping and

cooling atoms with large magnetic moments and polar molecules, opened up a

new and interesting area of exploring quantum many-body systems with large

and anisotropic dipole-dipole interactions [8, 9, 10]. Bose-Einstein condensation

(BEC) of polar molecules [11, 12, 13, 14], and atoms with large permanent mag-

netic moments [15, 16, 17] has been observed. Very recently, the droplet crystal

phase of atomic dysprosium Bose-Einstein condensate have been directly observed

by Kadau et al. [18] Dipolar fermionic gases have been cooled down near to their

ground-state as well [19, 20].

In bulk geometries, the attractive part of the dipole-dipole interaction could

in principle lead to instabilities, as in BEC collapse [21] or chemical reactions

between particles [10]. Therefore, it is usually favorable to confine the dipolar

gases into quasi-two or one-dimensional geometries, and use an external electric

or magnetic field (depending on the nature of dipoles) to polarize all dipoles in

the same direction. As might be expected, layered structures are also a configu-

ration of great interest which one can tune the attractive interactions and pairing

between different layers without the fear of having chemical reactions.

While the stripe or density-wave phase is naturally expected in an isolated

two-dimensional (2D) system of tilted dipolar bosons [22, 23] and fermions [24,

25, 26, 27, 28, 29, 30] due to the anisotropy of the dipole-dipole interaction,

this instability has been the subject of much dispute in the limit of perpendic-

ular dipoles, where the inter-particle interaction is isotropic. While mean-field

approximation [24] as well as density-functional theory (DFT) [31] and Singwi-

Tosi-Land-Sjölander (STLS) [26] calculations all predict stripe phase formation at

relatively low interaction strength for two-dimensional dipolar fermions, quantum

Monte Carlo (QMC) simulations suggest that the stripe phase never becomes en-

ergetically favorable, up to the liquid-to-solid phase transition for perpendicular

bosons [23] and fermions [32].

In double-layer structures, both bosonic and fermionic systems have attracted

a lot of attention so far. The ground state properties and instabilities of fermionic

bilayers have been studied within the Hartree-Fock [33, 34, 35] as well as STLS
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Figure 2.1: Schematic illustration of a bilayer system of dipoles with the antipar-
allel polarization of dipolar moments in two layers. d refers to the layer spacing
between two layers.

methods [36]. The QMC simulations [37], as well as DFT calculations [38], have

been employed to study the crossover from BEC to Bardeen-Cooper-Schrieffer

(BCS) state too. For bosonic bilayers, on the other hand, Hufnagl and Zillich [39]

have used the hypernetted-chain approximation to calculate the ground-state

quantities of a bilayer system of tilted dipolar bosons. Then using the correlated

basis function (CBF) method they obtained its dynamical properties. It has been

also suggested that a bilayer system of dipolar bosons becomes a self-bound fluid

when the polarization of dipoles in two layers is opposite [40]. More recently,

the competition between single-dipole and dimer condensation in a bilayer of

perpendicular dipolar bosons with parallel polarization, i.e. the same direction

of polarization in both layers, have been investigated using QMC method by

Macia et al. [41] They have observed that the pair superfluidity dominates over

the single-particle superfluidity at very strong interlayer couplings, i.e. when

the separation between two layers is much smaller than the average intralayer

distance between two dipoles. The dynamical properties of the dipolar bosonic

bilayer in the atomic and pair superfluid regimes have been looked at using QMC

and CBF techniques [42]. The correlation effects in a bosonic bilayer have been

extensively studied using QMC simulation for the ground state properties as

well as the stochastic reconstruction method and method of moments for the

dynamical properties by Filinov [43]

Our aim in this work is to study symmetric bilayers with the equal number

of identical dipoles in each layer, whose moments are aligned perpendicular to

5



the 2D-planes, over a wide range of the inter-layer and intra-layer couplings. We

investigate bosonic and fermionic dipolar systems on equal footing, but consider

only antiparallel polarization of dipoles in two layers (see, Fig. 2.1 for a schematic

illustration). Perpendicular alignment of dipoles makes both the intralayer and

interlayer interactions isotropic. While the bare intralayer interaction is purely

repulsive, the bare interlayer interaction could be either repulsive or attractive,

depending on the in-plane separation of two dipoles. In our antiparallel config-

uration, the interlayer interaction is repulsive at small in-plane separations and

becomes weakly attractive at large separations [see, Eqs. (2.1) and (2.2), below].

We should note that in bilayers with a parallel polarization of dipoles in two

layers, the dominant interlayer interaction is attractive. At small layer spacings,

this in principle leads to the pairing between dipoles of two adjacent layers. This

problem has been extensively studied for both bosonic [41, 42] and fermionic sys-

tems [37, 44]. In this work, instead, our focus is on bilayers with the antiparallel

polarization of dipoles. In this configuration the pairing is either absent or ex-

tremely weak [45, 46] and therefore is not expected to affect the strong interlayer

screening at small layer spacings [47]. We investigate the possibility of the insta-

bility of a homogeneous fluid towards the formation of inhomogeneous densities,

i.e. density waves. For this purpose, we look at the poles of the static density-

density response function. The effective intralayer interactions are obtained from

an accurate hypernetted-chain (HNC) and Fermi hypernetted-chain (FHNC) re-

sults for the static structure factor of an isolated 2D layer of bosons [48] and

fermions [49], respectively, combined with the fluctuation-dissipation theorem.

We have treated the interlayer interactions within the random-phase approxima-

tion (RPA) [50]. A similar study of the instability of a homogeneous liquid with

respect to the inhomogeneous phase of charge density wave has been studied in a

variety of quantum charged systems ranging from single-layer electron gas [51] to

electron-electron and electron-hole double-layers [52, 53, 54, 55] to charged Bose

systems [56] and superlattices [57, 58].

We also find semi-analytic expressions for the full dispersions of in-phase and

6



out-of-phase collective modes (i.e. zero-sound modes) from the poles of the dy-

namical density-density response function. For both bosonic and fermionic bilay-

ers, the signatures of the emergence of DWI show up in the dispersions of these

collective modes.

The rest of this chapter is organized as follows. In Section 2.2, we introduce

the density-density response function of our system and explain how effective

intralayer interaction could be obtained from the static structure factor. In Sec-

tion 2.3, we look at the density wave instability for bilayer systems of dipolar

bosons and dipolar fermions. In Section 2.4 we calculate the collective modes

of these bilayer structures and investigate their dispersions in the vicinity of the

DWI.

2.2 Density-density response function and the

effective interactions

We consider two identical two-dimensional planes of dipoles, separated by the

distance d. No tunneling is allowed between two layers. Therefore, layers are

coupled together only through the dipole-dipole interaction. All dipoles are as-

sumed to be polarized perpendicular to the planes, but the relative direction of

this polarization is assumed to be antiparallel in two layers (see, Fig. 2.1). The

bare intralayer and interlayer interactions respectively read [40]

Vs(r) =
Cdd

4π

1

r3
, (2.1)

and

Vd(r) = −Cdd

4π

r2 − 2d2

(r2 + d2)5/2
, (2.2)

where Cdd is the dipole-dipole coupling constant, r is the in-plane distance be-

tween two dipoles. After Fourier transformation one finds [59, 34]

Vs(q) =
Cdd

4

[
8

3
√

2πw
− 2qeq

2w2/2erfc

(
qw√

2

)]
, (2.3)
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and

Vd(q) =
Cdd

2
qe−qd . (2.4)

Here erfc(x) is the complementary error function and w is the short distance

cut-off introduced to heal the divergence of Fourier transform of the intralayer

interaction.

In this work we are interested in the density-wave instabilities and collective

density modes of this double layer structure. For this we begin with the following

matrix equation for the density fluctuations [50]

δni(q, ω) =
∑
j

χij(q, ω)V ext
j (q, ω) , (2.5)

where δni(q, ω) is the density fluctuation in layer i (i = 1, 2), V ext
j (q, ω) is the

external potential applied to layer j and χij(q, ω) is the density-density response

function, whose matrix form reads

χ̂−1(q, ω) = Π̂−1(q, ω)− Ŵ eff(q, ω) . (2.6)

Here Πij(q, ω) = δijΠi(q, ω) is the non-interacting density-density response func-

tion, and W eff
ij (q, ω) is the dynamical effective potential. For symmetric bi-

layers we have Πi(q, ω) = Π(q, ω) (same for both layers), and W eff
ij (q, ω) =

δijWs(q, ω) + (1 − δij)Wd(q, ω), where Ws(q, ω) [Wd(q, ω)] is the effective inter-

action between dipoles in the same [different] layers.

Eigenvalues of the density-density response matrix χ̂(q, ω) are

χ±(q, ω) =
Π(q, ω)

1− Π(q, ω)W±(q, ω)
, (2.7)

where W±(q, ω) = Ws(q, ω) ± Wd(q, ω) are the symmetric and antisymmetric

components of the effective potentials.

The non-interacting density-density response function Π(q, ω) of a two dimen-

sional system is analytically well known. In the case of 2D bosons, it reads

ΠB(q, ω) =
2nεq

(~ω + i0+)2 − ε2
q

, (2.8)
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where n is the particle density in each layer and εq = ~2q2/(2m) is the single-

particle energy of dipoles of mass m. The full analytic form of Π(q, ω) for fermions

is slightly more complicated and could be found e.g., in Ref. [50].

The exact form of the effective potentials are not known, and one has to resort

to some approximations. In the celebrated random phase approximation [50],

the effective potentials are replaced with their bare values. But as the effects

of exchange and correlation become more significant with increasing interaction

strength, naturally the RPA which entirely discards these effects needs to be im-

proved at strong couplings. On top of this, as the bare intralayer potential in

q-space (2.3), has an artificial cut-off dependence, a simple application of RPA ap-

pears to be not very appropriate for dipolar systems even at weak couplings [35].

In order to overcome both of these problems, we use the fluctuation-dissipation

theorem to find an approximate expression for the effective interlayer poten-

tial [49]. At zero temperature the fluctuation-dissipation theorem reads [50]

S(q) = −~π
n

∫ ∞
0

dω Imm

[
Π(q, ω)

1−Ws(q, ω)Π(q, ω)

]
. (2.9)

Here, S(q) is the static structure factor of an isolated 2D dipolar liquid, which

can be obtained very accurately both for bosons and fermions e.g., from QMC

simulations [60, 61, 62, 32] or HNC [48] and FHNC [49] calculations. Therefore,

the idea here would be to invert Eq. (2.9), and find an approximate expression

for the static effective interaction in terms of the static structure factor S(q).

This is in principle possible if one ignores the dynamical effects, i.e. replaces

Ws(q, ω) with a static and real function Ws(q). As the effects of exchange and

correlation are already included in the static structure factors, these effects will

be transferred into the effective intralayer potentials, at least at the static level.

For bosons the integral over ω in Eq. (2.9) could be performed analytically, to

result in

WB,s(q) =
εq
2n

[
1

S2(q)
− 1

]
. (2.10)
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Figure 2.2: Top: static structure factor S(q) of a single layer of dipolar bosons
(left) and fermions (right), calculated within the HNC and FHNC formalisms,
respectively. Bottom: the effective intralayer interaction of a single layer of dipo-
lar bosons (left) and fermions (right), obtained from static structure factors and
Eqs. (2.10) and (2.12), respectively.
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Whereas in the fermionic case, the complicated form of the exact Π(q, ω) pre-

vents an analytic solution to Eq. (2.9), however resorting to the so called “mean-

spherical approximation” (MSA) for the density-density response function

Π
(MSA)
F (q, ω) =

2nεq

(~ω + i0+)2 − [εq/S0(q)]2
, (2.11)

where S0(q) is the non-interacting static structure factor of a spin polarized 2D

system of fermions [50], again an analytic solution of the frequency integral in

the fluctuation-dissipation relation gives

W
(MSA)
F,s (q) =

εq
2n

[
1

S2(q)
− 1

S2
0(q)

]
. (2.12)

Note that, the MSA expressions for the non-interacting density-density response

function (2.11), and the effective interaction of the fermionic system (2.12), reduce

to the corresponding ones of the bosonic system with S0(q)→ 1, which is indeed

the correct static structure factor for non-interacting bosons.

As already mentioned, the effects of exchange and correlation, entirely ignored

in the RPA, are partly included in Eqs. (2.10) and (2.12) through the interacting

static structure factor S(q). In Fig. 2.2 the HNC and FHNC results for the static

structure factor of a single layer of dipolar bosons and fermions together with the

effective intralayer interactions obtained from Eqs. (2.10) and (2.12) are illus-

trated for several interaction strengths λ. In the following, we set the interlayer

part of the effective interaction to the bare interlayer interaction Wd(q) = Vd(q),

as an accurate knowledge of the interlayer static structure factors over a wide

range of parameters for both bosons and fermions, is not yet available in the

literature. Such an approximation is equivalent to RPA and we surmise it will be

adequate for large enough layer separations.

We should note that all the properties of these bilayer systems are governed

by two dimensionless parameters, namely the intralayer coupling constant λ =

k0r0, and the dimensionless layer spacing k0 d. Here r0 = mCdd/(4π~2) is the

characteristic length scale for dipoles, and k0 =
√

4πn. Note that k0 is indeed

the Fermi wave vector kF of each layer for fermionic bilayers, but it is simply a

measure of the density for bosonic bilayers.
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2.3 Density-Wave Instabilities

Density-wave instabilities could be obtained from the poles of the density-density

response function given in Eq. (2.7) in the static limit, or equivalently from the

solution of

1− Π(q)W±(q) = 0 . (2.13)

In fact, for a given system parameters such as the particle density n and layer

spacing d, if Eq. (2.13) satisfies a solution with a specific wavevector qc, then the

homogenous fluid becomes unstable towards the spontaneous formation of density

modulations with the wavelength λc = 2π/qc. In the following, we investigate such

an instability first for a bilayer system of dipolar bosons and then for a bilayer

system of dipolar fermions.

2.3.1 Bosonic bilayers

In the static limit, the non-interacting density-density response of Eq. (2.8) re-

duces to

ΠB(q) = −2n

εq
, (2.14)

which together with Eq. (2.13), gives

1 +
2n

εq
WB,±(q) = 0 . (2.15)

Now, using the bare interlayer potential (2.4) and the effective intralayer potential

of (2.10) in Eq. (2.15) we find

q ± 8πnr0S
2(q)e−qd = 0 . (2.16)

As the static structure factor is positive by definition, the above expression with

positive sign will not have any solution which means that no density-wave sin-

gularity in the in-phase channel (i.e., χ+) appears. On the other hand, in the

out-of-phase channel (i.e., χ−) one can find instabilities for suitable values of the

interaction strength and layer spacing from the solutions of Eq. (2.16) with the
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Figure 2.3: The critical layer separation dc (in units of 1/k0) versus the coupling
constant λ for bilayer dipolar bosons. The pink region shows the homogeneous
superfluid (SF) phase and the khaki one is the region with density-wave (DW)
instability.

negative sign. This means that the maxima and minima of the modulated density

in two layers would be shifted by λc/2 with respect to each other.

Numerical investigation of Eq. (2.16) reveals that (see, Fig. 2.3) for λ & 1 the

density wave instability at a finite wave vector develops below a critical layer

spacing dc. At smaller intralayer couplings, the homogenous superfluid phase

remains stable up to zero layer separations.

We note that for an isolated single layer, one has Wd(q) = 0, and the criteria

for the density wave instability becomes

1−Ws(q)Π(q) =
1

S2(q)
= 0 , (2.17)

which evidently has no solution at any finite q. Therefore, within the approxima-

tions we use here, no density wave instability is expected to happen in an isolated

two-dimensional system with purely repulsive dipolar interaction. In agreement

with the QMC findings [23].
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the critical spacing dc, a singularity at finite q emerges in the antisymmetric
component of the static density-density response function. Right: Same as the
left panel but for the symmetric component of the static density-density response
function χ+(q).

The behavior of static density-density response functions

χ±(q) = −ν0
2k2

0

q2/S2(q)± 2λk0qe−qd
, (2.18)

of dipolar bosons, where ν0 = m/(2π~2) is the density of states per unit area of

a single component 2D system, are also illustrated in Fig. 2.4 for a fixed value of

the coupling constant λ and for several values of the layer spacing d. As the layer

separation is lowered to the critical distance, a singularity in χ−(q) emerges, but

the symmetric component of the density-density response function χ+(q), remains

finite.

2.3.2 Fermionic bilayers

The non-interacting density-density response function of a 2D system of fermions

in the static limit is [50]

ΠF(q) = −ν0

1−Θ(q − 2kF)

√
1−

(
2kF

q

)2
 , (2.19)
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where kF = k0 is the Fermi wave vector of a single layer. Now the density-wave

instabilities could be obtained from the solutions of

εq
2n

[
1

S2(q)
− 1

S2
0(q)

]
± Vd(q)−

1

ΠF(q)
= 0 . (2.20)

The phase diagram in Fig. 2.5 illustrates our numerical solution of Eq. (2.20).

Similar to the bosonic bilayer, instability emerges only in the out-of-phase chan-

nel. The main observation here is that at a fixed density, the critical layer spacing

for the formation of density waves in fermionic bilayers is slightly larger than the

bosonic ones, and no DWI develops at λ . 0.5.

Figure 2.6 shows the static density-density response functions of a bilayer sys-

tem of fermions

χ±(q) =
1

Π−1
F (q)−WF,s(q)∓ Vd(q)

. (2.21)

A similar behavior to the bosonic system is observed also here. The antisym-

metric component signals the emergence of DWI as the layer spacing approaches

its critical value.
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2.4 Collective modes

In this section, we turn to the discussion of the collective modes of dipolar bilayers.

In symmetric bilayers and in the absence of tunneling between two layers, two

collective density modes are simply the in-phase and out-of-phase oscillations

of the particle density in two layers. The dispersion of these collective modes

could be obtained from the singularities of the density-density response functions

χ±(q, ω) at finite frequencies, or equivalently from the zeros of

1− Π(q, ω)W±(q, ω) = 0 . (2.22)

2.4.1 Bosonic bilayers

Similar to what we did in the discussion of DWI, if we approximate the dynamical

effective interaction with a static and real function, and replace the expression

(2.8) for ΠB(q, ω) in Eq. (2.22), we will find

~2ω2
±(q) = ε2

q + 2nεqWB,±(q) . (2.23)
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Again, replacing the effective interlayer potential Wd(q) with the bare interaction

Vd(q), and the effective intralayer potential WB,s(q) from Eq. (2.10), the dispersion

of collective modes read

ω2
±(q) =

εq
~2

[
εq

S2(q)
± nCddqe−qd

]
. (2.24)

Note that the first term on the right-hand-side of this equation is the Bijl-

Feynman excitation spectrum of a single layer dipolar Bose liquid [48]. In the

long-wavelength limit, as the static structure factor vanishes linearly [S(q → 0) ∝
q], we find

ω±(q → 0) ≈ vB,sq +O(q2) , (2.25)

where vB,s = ~/[2mS ′(0)] is the sound velocity of bosonic system with S ′(0) =

dS(q)/dq|q=0. Unlike the charged boson bilayer [63], both collective modes of a

bilayer system of dipolar bosons have acoustic nature. The reason we find same

sound velocity for both collective modes relies on the fact that we are using the

bare interlayer potential which vanishes linearly at small q and hence does not

contribute to the sound velocity [see the second term inside the bracket in Eq.

(2.24)]. One would expect deviations from this simple picture at small d, where

the interlayer coupling is strong, but at larger layer spacings both sound velocities

should approach the same value. Indeed, this has been verified in Ref. [40] for a

bilayer of dipolar bosons with antiparallel polarization.

Using the numerical results for the static structure factor from Ref. [48] in

Eq. (2.24), the full dispersions of the collective modes could be readily obtained.

The results for ω±(q) and single-layer collective mode ωsl(q) = εq/[~S(q)] are

presented in Fig. 2.7 for a fixed value of the coupling constant λ and for different

values of the layer separation d. We find that as the layer separation approaches

the critical spacing for the density wave instability, the antisymmetric mode ω−(q)

touches zero and becomes soft. This occurs at the same q-value that the static

density-density response function χ−(q) diverges (c.f. Fig. 2.4). The energy

of antisymmetric collective mode at smaller layer separations becomes negative,

which is an indication of homogenous liquid phase becoming unstable.
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Figure 2.7: Dispersion of symmetric ω+ and antisymmetric ω− modes of a bilayer
of dipolar bosons [in units of E0 = ~2k2

0/(2m)], at a fixed value of the coupling
constant λ = 10.03, and for different values of the layer separation: d = 1.6/k0

(left), d = 1.484/k0 (middle), and d = 1.4/k0 (right). The dashed line represents
single-layer’s collective mode ωsl(q). Note that d k0 = 1.484 is the critical value
of the layer separation for the formation of density-wave instability at λ = 10.03.

2.4.2 Fermionic bilayers

In finding the collective modes of the fermionic system, one should solve the

complex equation

1−W±(q, ω)ΠF(q, ω) = 0 . (2.26)

Again considering static effective potentials, one should search for the solutions

of

1−W±(q) Re e [ΠF(q, ω)] = 0 , (2.27)

outside the particle-hole continuum (PHC) i.e., where Imm [ΠF(q, ω)] = 0. Using

the analytic form of ΠF(q, ω) [50], this could be done analytically

ω±(q) = vFq

[
1 +

1

ν0W±(q)

]√(
q

2kF

)2

+
ν2

0W
2
±(q)

1 + 2ν0W±(q)
. (2.28)

Here vF = ~kF/m is the Fermi velocity, and this solution is valid as long as

dispersions lie outside the PHC i.e, ω±(q) > ~q2/(2m) + vFq or 0 < ω±(q) <

~q2/(2m) − vFq. In the long wavelength limit, using the fact that the fermionic

static structure factors are also linear at long wavelength, and therefore the in-

tralayer effective interaction Ws(q) is finite at q = 0, we find

ω±(q → 0) = vF,sq +O(q2) , (2.29)
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Figure 2.8: Dispersions of symmetric ω+ and antisymmetric ω− modes of a bilayer
of dipolar fermions [in units of E0 = ~2k2

F/(2m)] at a fixed value of the coupling
constant λ = 8, and for different values of the layer separation: d = 3.0/kF (left),
d = 2.0/kF (middle), and d = 1.5/kF (right). The filled areas represent the single
particle excitation continuum. Note that d = 1.82/kF is the critical value of the
layer separation for the formation of density-wave instability at λ = 8.

where

vF,s = vF
1 + ν0WF,s(0)√
1 + 2ν0WF,s(0)

, (2.30)

is the fermionic sound velocity, and is related to the slopes of both interacting

and noninteracting structure factors at the origin through Eq. (2.12). As vF,s is

always larger than the Fermi velocity vF, the zero sound waves are undamped at

the long wavelength for any coupling constant and layer spacing. Interestingly,

similar to the dipolar bosonic bilayers, in-phase and out-of-phase collective modes

are both linear at long wavelength. Again, the degeneracy of both modes at

small q should be valid only at large layer spacings. At smaller separations, the

exchange-correlation effects in the effective interlayer interaction will split these

two modes. Whether the lower branch will still survive the Landau damping

at long wavelengths or not, requires further investigations with a more careful

treatment of both intralayer an interlayer correlations.

In Fig. 2.8 we show the behavior of collective modes of the fermionic bilayer

system ω±(q) at a fixed coupling parameter λ and for different values of the layer

separation. The PHC is also shown in these figures. Collective excitations are well

defined only outside this continuum. Note that as the layer separation becomes

smaller than the critical value (see, the right panel in Fig. 2.8), an unphysical low

energy branch at q > 2kF appears below the PHC.
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Chapter 3

Quantum Monte Carlo

3.1 Variational Monte Carlo

3.1.1 Variational Monte Carlo

Before explaining diffusion Monte Carlo, a general outline of the Variational

Monte Carlo (VMC) system is to be given. This is necessary since the former

requires the usage of the latter. For the equations and the explanation related to

VMC and DMC throughout this and next sections, study of Pang [64] was used

as reference.

Variational Monte Carlo is a way of approximating the ground state wavefunc-

tion using the variational principle. If we consider a quantum system with N par-

ticles, and let the positions of these particles be given by R = (r1, r2, ...rN), where

ri, i = 1, 2, ..., N are the particle positions. The time independent Schrödinger

equation can be written for this system as:

HΨn(R) = EnΨn(R) (3.1)

where Ψn(R) are the energy eigenstates and En are the energy eigenvalues. Now,
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variational principle gives,

E[αi] =
〈Φ|H|Φ〉
〈Φ〉 ≥ E0 (3.2)

for a trial wavefunction Φ. Here, E0 is the ground state energy and αi are any

number of variational parameters. Now, the expectation value of energy can be

written as,

E[αi] =

∫
Φ†(R)HΦ(R)dR∫
|Φ(R′)|2dR′

=

∫
W (R)E(R)dR (3.3)

and

W (R) =
|Φ(R)|2∫
|Φ(R′)|2dR′

, (3.4)

E(R) =
HΦ(R)

Φ(R)
. (3.5)

Here, E(R) is the local energy. It corresponds to the energy of configuration

R. W (E(R)) can be viewed as a distribution function. In the VMC scheme,

one tries to variationally approximate the ground state energy by evaluating the

energy of the system using (3.3) for different trial wavefunctions. In order to do

achieve that, one uses the metropolis algorithm.

3.1.2 Metropolis Algorithm

Before explaining Metropolis algorithm, we first explain the detailed balance.

Detailed balance is the condition that values in equilibrium satisfies the following

conditions,

W (R′)T (R→ R′) = W (R′)T (R′ → R) (3.6)

where T (R→ R′) is the transition rate from R to R′.

In the metropolis algorithm, one starts with an initial state, and then performs

random walks. The resulting state after the random walk is accepted if the

condition,
W (R′)

W (R)
> η (3.7)
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where η ∈ [0, 1] is a random number is satisfied, otherwise it is rejected. The

accepted configurations are sampled and these samples contribute to the expec-

tation value of the physical quantity that is calculated. This scheme, allows us

to sample the system according to W (R) and after a large number of walks we

get a good enough approximation of variational energy (3.3).

3.1.3 VMC Algorithm

In this section, we explain the VMC algorithm. First, we explain the parameters

of the algorithm and clarify a few points and then, we give the algorithm.

A VMC run is composed of two parts. First part is the so called thermaliza-

tion part and the second part is the sampling. Number of thermalization and

sampling steps are up to the user of the code, but they must be large numbers

to have healthy results. We denote total number of thermalization steps as MT

and number of sampling steps as MS. In a VMC step, each particle is applied a

random walk where the particle is moved randomly in a range l. Then the new

configuration is accepted or rejected according to equation 3.7. If the new config-

uration is accepted, then it is sampled. After the acceptance/rejection, random

walk range l is adjusted so that the acceptance rate is close to %50.

1. Create N particles randomly placed in a d dimensional box.

2. For i from 0 to MT +MS,

(2.1) For each particle,

i. Move the particle using a uniformly distributed random number

in range l in each dimension.

ii. Calculate probability of the new configuration with the moved

particle according to Equation 3.4.

iii. Accept/reject the new configuration according to the condition in

Equation 3.7.
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iv. If i > MT and the tried configuration was accepted,

A. Calculate and sample the desired observables of the configu-

ration.

v. Adjust l so that acceptance rate is closer to %50.

3.1.4 Applications

As VMC is a variational method, it can be used when the two body wavefunction

is known exactly. In this case, VMC simulation gives exact results. As this is

usually not the case, one of the common uses of VMC is to calculate the optimal

values of variables that is included in a trial jastrow factor before a DMC or Fixed

Node Monte Carlo is performed. This is vital for DMC and FN MC simulations

since the trial wavefunction used in these simulations must have an overlap with

the exact wavefunction of the system for the simulation to give good results.

3.1.5 Calculation of Observables

An observable A in a physical system under VMC simulation can be calculated

as the average

〈A〉 =
1

M

M∑
i=1

A(Ri) (3.8)

where M is the number of walkers in the current state of VMC simulation and

Ri are the particle positions. typically at each step of the VMC simulation, the

above expression is used to calculate the value of the observable.
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3.2 Diffusion Monte Carlo

3.2.1 Theoretical Background for Diffusion Monte Carlo

Our aim is to develop a DMC implementation for our investigations on ultracold

atomic systems. Diffusion Monte Carlo is a method for calculating the exact

ground state energy of a system. The method, briefly explained, provides a

method of solving the Schrödinger equation by mapping it to a diffusion equation

under imaginary time transformation [64]. Now, theoretical background of DMC

method will be explained.

First an imaginary time transformation is performed on many body

Schrödinger equation (3.9).

∂Ψ(R, τ)

∂τ
= −(H − ER)Ψ(R, τ) (3.9)

where

τ =
it

~
(3.10)

is imaginary time.

When solved, (3.9) gives,

Ψ(R, τ) = e−(H−ER)τΨ(R, 0) (3.11)

where Ψ(R, 0) is the initial state. For the initial state we can choose the resulting

variational wavefunction from the VMC simulation: Ψ(R, 0) = Φ(R). From this

it follows,

Ψ(R, τ) =
∑
n

e−(En−ER)τanΨn(R) (3.12)

where Ψn(R) are the energy eigenstates and En are the corresponding energies.

From (3.12) we see that the excited states decay faster than the ground state. At

large τ , wavefunction is finite only if ER = E0.

The substitution Ψ(R, τ) = f(R, τ)/Φ(R) enables us to express the imaginary

time Schrödinger equation as a diffusion equation:

∂f(R, τ)

∂τ
=

~2

2m
∇2f(R, τ)−∇[V(R)f(R, τ)]− [E(R)− ER]f(R, τ) (3.13)
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where f(R, τ) = Φ(R)Ψ(R, τ) and E(R) is the local energy, which denotes the

current energy of the configuration R, and

V(R) =
~2

2m
∇ ln |Φ(R)| (3.14)

is a term that can be interpreted as a drift velocity of the distribution in the

configuration space. Time evolution of f(R, τ) is given as,

f(R′, τ + ∆τ) =

∫
G(R′,R; ∆τ)f(R, τ)dR (3.15)

where,

G(R′,R; ∆τ) =

(
1

2πχ2

)dN/2

e−[R′−R−∆τV(R)]2/2χ2−∆τ [E(R)−ER] (3.16)

is the propagator that carries the system from R at time τ to R′ at time τ + ∆τ .

DMC algorithm makes f(R, τ) evolve through τ using to the propagator given

in (3.16). When the configurations are updated during the walks for the DMC

simulation, three contributions from the propagator are considered.

The first and second contributions are given as,

R′ = R + ξ

R′′ = ∆τV(R′)
(3.17)

the first line applies a random walk to all particles with variance χ2 = ~2∆τ/m

and the second line includes a drift process that moves the mean value of the

random walk applied configuration by ∆τV(R′). ξ is a dN dimensional Gaus-

sian random number with χ2 variance, where d is the number of dimensions the

physical system has.

The third contribution is a term that lowers or raises the population of con-

figurations in the ensemble according to birth/death rate given by,

WB(R) ∝ e−∆τ [E(R)−ER]. (3.18)

This contribution is called a branching process, in which MB ∝ WB(R) copies

of the configuration is added to the ensemble. If MB is zero, the walker is de-

stroyed. To control the overall number of configurations in the ensemble, reference
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energy is adjusted according to the following scheme:

ER → E(τ) + κ ln
NP

NE

(3.19)

where NP is the preferred population, NE is the current population. E(τ) is the

average energy of the walkers at that instant of simulation. κ is used to control

the speed of adjustment.

During a DMC simulation, the trial wavefunction from the VMC simulation

Φ(R), evolves to the ground state of the system using the diffusion process de-

scribed above. The ground state energy of the system is calculated using,

E(τ) =

NE∑
i=1

E(Ri)WB(Ri)

NE∑
i=1

WB(Ri)

(3.20)

where Ri are the sample configurations in the ensemble.

3.2.2 Second Order Approximation

The drift applied in Eq. 3.17 is linear in ∆τ . We can further improve the

algorithm by using a second order approximation. The improvement is made by

replacing R′ in the second line in Eq. 3.17 by the following expression [64]:

R′′′ = R +
∆τ

4

{
V(R′) + V

[
R +

∆τ

2
V(R)

]}
(3.21)

3.2.3 DMC Algorithm

In the DMC algorithm we start with an initial configuration that we acquire

as a result of the VMC simulation. Using the propagator (3.16) given in the

previous chapter, we change the configuration. The configuration then evolves

through imaginary time, τ and after a sufficiently large number of time steps, it
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evolves into the ground state. The algorithm stops when the fluctuations in the

expected value of the physical quantity being calculated get small enough. The

DMC algorithm is given as follows:

1. Create M configurations called ‘walkers’, each containing N number of

particles.

2. For each walker,

(2.1) Apply Gaussian random walk to all particles in the walker,

(2.2) Apply the drift force to the walker,

(2.3) Calculate the branching factor MB and do the branching,

(2.4) Adjust the reference energy.

3. Repeat step 2 until the desired statistical accuracy reached.

3.2.4 Parallelization

Our simulations for the homogeneous hard sphere bosons and Bose polaron sys-

tems have typically 200 walkers and 256 particles in each walker for high density

and 512 particles for lower densities. As a result, simulations are computation-

ally costly, especially for lower densities. Time required for the simulations to

complete may reach up to weeks for 512 particle size.

In order to shorten the time requirements for the simulation, one may paral-

lelize DMC steps to process and utilize more than one core at the same time.

DMC can be parallelized by dividing the walkers as equally as possible into avail-

able cores. Each core will then perform the random walk, drift and then calculate

the local energy of the walkers that are assigned to it. Then the processes must

wait to be merged until all the processes are finished. The merging is necessary

since adjustment of the reference energy requires knowledge of the number of

walkers at the end of the DMC step. After all processes finish, branching is done

for each walker. Branching can also be done in parallel for each process before
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Figure 3.1: DMC is parallelized according to above scheme. First, walkers in the
system are divided into number of available processes. Then random walk and
drift is applied to walkers sequentially in each process. After random walk and
drift is done and the energy is calculated for each process, walkers are merged
and branching is done.
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the merging which was not preferred in our implementation. After the branching,

adjustment of the reference energy is performed.

The walkers are assigned to different processes as equally as possible. For this

purpose, we divide the number of walkers in the system to number of available

processes. Number of walkers assigned to each process is equal to the integer part

of the result. Remaining walkers are divided into the processes until all walkers

are assigned. As the number of remaining walkers is always smaller than the

number of processes, each process has at most one additional walker.

3.2.5 Measured Quantities

A DMC simulation allows calculation of several different physical observables.

The general idea behind the calculations is to calculate the quantity for every

sample and make the necessary averaging. Some but not all the calculables are:

Total energy of the system, pair correlation function, effective mass and density

profile. In our work, we performed these calculations for different parameters of

the system under examination.

3.2.5.1 Energy

Energy in a DMC simulation is given by,

E(τ) =

NE∑
i=1

E(Ri)WB(Ri)

NE∑
i=1

WB(Ri)

(3.22)

where Ri are the sample configurations in the ensemble and WB(R) =

e−∆τ [E(R)−ER] is the weight of the configuration. Here, NE is the number of

walkers at that instant of the simulation. The final energy value is the average

of many (typically 1000 in our calculations) energy values at different imaginary
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time steps calculated using the formula above. E(R) here, is the local energy

and is calculated using,

E(R) =
Ĥψ(R)

ψ(R)
. (3.23)

for each walker.

To calculate the binding energy of the polaron, we calculate the system’s energy

with and without the polaron and take the difference as was done in Ardila et

al.’s work [65]. The binding energy is given as,

EP = E(N, 1)− E(N). (3.24)

Here E(N) is the resulting energy of the DMC simulation for bosons without

the polaron and E(N, 1) is the energy with the polaron.

3.2.5.2 Effective Mass

Effective mass of the impurity can be found by calculating the long term slope

of the impurity displacement in imaginary time [66, 67]. It is calculated for 3D

systems using the following expression:

m

m∗ = lim
τ→∞

〈|∆ra(τ)|2〉
6Dτ

(3.25)

where D = ~2/2m is the diffusion constant of a free particle and 〈|∆rα(τ)|2〉 =

〈|rα(τ)− rα(0)|2〉 is the mean square displacement of the impurity in imaginary

time.

For a 2D system, above expression must be modified slightly. The expression

for effective mass calculation in 2D is given as below:
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m

m∗ = lim
τ→∞

〈|∆ra(τ)|2〉
4Dτ

(3.26)

which uses exactly the same variables defined for the 3D system.

3.2.5.3 Pair Correlation Function

Pair correlation function gives the probability of finding a particle at a given

distance. It is defined as [68]

g(|r2 − r1|) =
N(N − 1)

n2

∫
|ψ(R)|2dr3...drN∫
|ψ(R)|2dR

. (3.27)

In order to calculate the pair correlation function in a DMC simulation, we

use the method explained in Astrakharchik’s work [68],

g2D(z) =
1

πzhnN

∑
i<j

νh(|zij − z|) (3.28)

where vh(z) is 1 if z < h and zero otherwise.

We also calculate the probability of finding a particle at a distance r away from

an impurity. The following formula is used:

g2D
IB (z) =

1

πzhn

∑
i<j

νh(|zij − z|) (3.29)

where vh(z) is 1 if z < h and zero otherwise. This is same as gBB(r) except a

factor of N .

3.2.5.4 Density Profile

Density profile is calculated by the following integral [65],
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n(r) = n

r∫
0

dr′r′gIB(r′)

r2/2
. (3.30)

Additionally average number of particles around the impurity is found by [65],

NB = 2πn

r∫
0

dr′r′gIB(r′). (3.31)

Calculation of the above integrals are performed numerically using results of

gIB calculation from DMC.
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Chapter 4

2D Bose Polaron Problem

4.1 Introduction

The chapter is organized as follows: The second section is devoted to the Bose

polaron problem. Here, we briefly mention the concept of polaron and Bose

polaron then move on to experimental and theoretical work in this field. In the

third section, we present the model we used in our work and we formulate the 2D

Bose polaron problem. In the third chapter, we provide the results of our work.

The final chapter consists of our comments and remarks about our work.

4.2 Bose Polaron Problem

4.2.1 Early History

A polaron is a quasiparticle that distorts its environment as it moves through

a medium and this distortion generally causes a significant modification in its

motion. Earliest studies on this concept was from Landau and Pekar [69, 70],

Fröhlich [71] and Holstein [72, 73]. They showed that an electron can distort
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the ionic lattice around it; causes its motion to be modified and changes its

effective mass. This effect can be understood, qualitatively by considering an

electron moving with a cloud of phonons [74]. About 30 years ago polarons and

bipolarons came to the fore in the context of high critical temperature (high-Tc)

superconductivity [75, 76, 77] and they were instrumental in our understanding of

various many-body systems such as organic superconductors and heavy-fermion

superconductors.

We are interested in the Bose polaron problem, where a mobile impurity is

immersed in a BEC and acts as a polaron. Earlier works studied the Fermi

polaron in detail which is an impurity surrounded by fermionic atoms. [78] New

experiments (our main motivation for this work) used Bose condensed gases and

an impurity atom therefore the quasiparticles forming in these new systems are

called Bose polarons. In order to familiarize the reader with the subject and the

current literature, we will briefly mention several experimental and theoretical

works in this field in the rest of this section.

4.2.2 Experimental Realizations of the Bose Polaron

Problem

There has been some experimental realizations of impurities interacting with

BEC. Ospelkaus et al. observed a localized phase of bosonic atoms by fermionic

impurities in a 3D optical lattice [79]. Schmid et al. studied the dynamics of a

trapped ion (Ba+ or Rb+) with an optically trapped BEC of 87Rb atoms [80].

Zipkes et al. prepared a single trapped ion (174Yb+) in a trapped BEC of 87Rb

atoms [81]. Spethmann et al. doped single Cs atoms in an ultracold uncondensed

Rb gas [82]. Balewski et al. study a single electron localized by a single charged

ionic core immersed in a BEC of 87Rb atoms [83]. Scelle et al. use fermionic 6Li

confined in a 1D lattice potential immersed in a BEC of 23Na atoms [84]. Marti et

al. studied properties of magnons in a ferromagnetic spinor BEC of 87Rb atoms

[85]. These realizations investigated different properties of impurities interacting

with the BEC but they didn’t achieve a complete realization of the Bose polaron
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system.

In 2016, two groups made experimental observations on mobile impurities im-

mersed in a BEC, realizing the Bose polaron. These groups achieved the task by

employing two different methods. Jorgensen et al. [86] prepared a trapped BEC

of 39K atoms and used a radio frequency (rf) pulse, which changed the spin state

of a small fraction of atoms from |1,−1〉 to |1, 0〉. These atoms acted as mobile

impurities in the condensate. They measured the energy of the impurity using rf

spectroscopy for different interaction strengths which was tuned using a Feshbach

resonance.

Hu et al., on the other hand, used fermionic 40K atoms as impurities inside

trapped BEC of 87Rb atoms [87]. They too, used Feshbach resonance to tune the

impurity-boson interaction strength and rf spectroscopy to measure the energy

spectrum. These works are the first realizations of Bose polarons in the strong

interaction regime.

Additional to works mentioned above, there has been experimental work on

1D systems. Dynamics of the Bose polaron was studied in 1D Bose gas by Catani

et al. [88] and on a 1D lattice by Fukuhara et al. [89].

Although to our knowledge there is no realization of the Bose polaron in 2D,

recently Grusdt et al. suggested an experimental setup to test the problem in a

quasi-2D BEC system [74].

4.2.3 Theoretical Investigations

On the theoretical side, there has been several investigations addressing the prob-

lem. Astrakharchik et al. studied motion of a point-like impurity by solving

Gross-Pitaevskii (GP) equation in a perturbative manner [90]. Self-localization

was studied by Kalas et al. [91], Cucchietti et al. [92], Bruderer et al. [93],

Santamore et al. [94], Blinova et al. [95] using mean field treatment and Tem-

pere et al. [96], Novikov et al. [97] using Feynman’s variational approach. Other
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works further investigate the properties of the quasiparticle. T-matrix approach

is used by Rath et al. [98] to calculate various quasiparticle properties and by

Volosniev et al. [99] to study the behavior of a harmonically trapped system.

Li et al. developed a variational approach by generalizing Chevy ansatz that is

introduced for the Fermi polaron problem to study the properties of the polaron

[100]. Using a perturbative approach, Christensen et al. investigated several

quasiparticle properties up to third order [101]. Three body effects (i.e. Efimov

effect) is studied by Levinsen et al. and shown that it lowers the energy signifi-

cantly [102]. Grusdt et al. used Renormalization Group approach to analyze the

problem [103]. Recently, Pastukhov investigated the properties of a Bose polaron

in a dilute 2D system at low temperatures [104].

On the numerical side, Ardila et al. studied the Bose polaron system us-

ing diffusion Monte Carlo (DMC) method [65], which is a numerical calculation

method that gives the exact ground state of the system. They performed DMC

simulations on bosonic systems which contains one and many number of polarons

to calculate quantities such as the polaron energy, effective mass and the density

profile (a function that gives probability of finding a bosonic particle at a distance

from the impurity) [65]. They used repulsive hard sphere potential and attractive

soft well potential for impurity-boson interaction and hard sphere interaction for

boson-boson interaction. Their calculations contradict other works that predict

self-localization.

Further expanding the scope of their investigations, Ardila et al. performed

DMC calculations on the same system with varying impurity mass values, study-

ing the effect of mass imbalance between the impurity and the bosons on the

binding energy [105].

In the case of lower dimensions, there has been a Quantum Monte Carlo study

of the Bose polaron system in 1D by Parisi et al. [106]. Other theoretical work in

lower dimensions includes study of self-localization in a quasi-1D BEC by Sacha

et al. [107] and investigation of a driven impurity in a 1D Bose Gas by Castelnovo

et al. [108].
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4.3 2D Bose Polaron Problem

4.3.1 Model

The interest in the Bose polaron problem in recent years received a big impetus

after its experimental realization by two groups [87, 86]. However, the problem

is not so well explored in lower dimensions, especially in 2D. We are interested in

the 2D Bose polaron problem hoping to find interesting physics. We use diffusion

Monte Carlo simulations to investigate this system.

The same problem in 3D was studied by Ardila et al. [65]. In their work, two

different kinds of impurity-boson interaction is investigated. They use repulsive

hard disk (HD) and attractive soft well (SW) interaction. Hamiltonian of such a

system is given below:

H = − ~2

2mB

N∑
i=1

∆i +
∑
i<j

V (ri − rj)

− ~2

2mI

∆α +
∑
i<j

V (ri − rα).

(4.1)

where the first and third term are kinetic energy of bosons and impurity respec-

tively and second and fourth terms are potential energy terms for boson-boson

and boson impurity interactions. mI is the mass of the impurity and mB is the

mass of bosons.

2D versions of the boson-boson interaction, repulsive impurity-boson interac-

tion and attractive impurity-boson interaction potentials would be as follows:

VB(r) =

{
+∞, r ≤ a2D

0, r > a2D

(4.2)

V R
I (r) =

{
+∞, r ≤ b2D

0, r > b2D

(4.3)

where, a2D is the 2D scattering length for boson-boson interaction, b2D is the scat-

tering length for impurity-boson interaction and R is the radius of the attractive

soft well potential.
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We are using hard disk repulsive interaction as the first step of our investiga-

tion. Our trial wavefunction is of Jastrow type with the jastrow factor given by

the two body scattering solution in 2D. This form of trial wavefunction was used

in Pilati et al.’s work, where the author investigates 2D homogeneous bosonic

system utilizing diffusion Monte Carlo [109]. Their inquiry involves different in-

teraction potentials. We, at least in this stage, only employ the hard disk potential

solution for the two body scattering problem.

The trial wave function for the bosonic system with impury is given by [65]:

ΨT (r1, ..., rN) =
N∏
i=1

fI(|ri − rα|)
N∏
j<k

fB(|rj − rk|) (4.4)

here, fI(r) describes the impurity-boson interaction and fB(r) describes the

boson-boson interaction and rα is the position of the impurity. For both in-

teractions we use Jastrow factors of the same form. The only difference between

the two Jastrow factors is the scattering length (which is used to fix the constants)

as the boson-boson interaction and impurity-boson interaction has different scat-

tering lengths. The Jastrow factor is given by,

fB,I(r) =

{ 0, 0 < r ≤ a, b

AJ0(kr) +BY0(kr), a, b < r < d

1, r ≥ d

(4.5)

which is the solution to the two body problem in 2D for HD potential for r > 0

[109]. Here, J0 and Y0 are Bessel functions. The constants can be fixed by

imposing the boundary conditions: f(r≤a2D) = 0 (for boson-boson interaction),

f(r≤b2D) = 0 (for impurity-boson interaction), f(r≥d) = 1, f ′(r≥d) = 0 where

d is left as a variational parameter and is claimed to give an optimal result when

d = L/2 [109]. The last constraint for the jastrow factor is that only one node

is allowed for a2D≤r≤d (or b2D≤r≤d for impurity-boson interaction). We have

also employed the following Jastrow factor

fB,I(r) =

{ 0, 0 < r ≤ a, b

C ln (r/(a or b), a, b < r < d

1, r ≥ d

(4.6)
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Figure 4.1: Jastrow factors for two models of hard-core interaction used in sim-
ulations as a function of r/a for r ≤ L/2 and na2 = 10−5.

in which C is a constant determined by similar conditions above. This latter

form is motivated by the recent proposal of Petrov and Astrakharchick [110]. We

display in Fig. 4.1 the two Jastrow factors used in this work at na2 = 10−5 as a

function of r for r < L/2.

4.3.2 Perturbation Theory

We follow the treatment in Ardila et al.’s work [65] and start with the Bogoliubov

Hamiltonian,

HB = EB +
∑
k

εkα
†
kαk. (4.7)

where EB is the ground state energy of bosonic particles,

EB =
~2

2mB

4πn

ln(1/na2)
N (4.8)

and operators α†k, αk are given by the Bogoliubov transformations,
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αk = ukak − vka†−k,
α†k = ukak − vka†−k,

(4.9)

with uk
2 = 1 + vk

2 = εk
0+gn0+εk

2εk
and ukvk = −gn0

2εk
. εk is the Bogoliubov spectrum

εk =

√
(εk0)2 + 2gn0εk

0 (4.10)

where εk
0 = ~2k2

2mB
, g is the boson coupling constant given as g = 4π

mB ln(1/na2)
and

n0 is the density of condensed particles.

Interaction energy of the impurity at position rα with the bath at mean field

level is given by,

Hint = gBI

∫
dr n(r)δ(r− rα) (4.11)

where gBI = − 2π
mred ln(1/nb2)

[111] is the coupling between the impurity and bosons

with mred the reduced mass (i.e., 1/mred = 1/mI + 1/mB).

Above Hamiltonian can be written in momentum space using Bougoliubov

approximation
∑
k

a†kak+q =
√
n0V (uq + vq)(αq + α†−q),

Hint = gBI +
gBI√
V

∑
q 6=0

eiqrα
√
n0(uq + vq)(αq + α†−q). (4.12)

Applying perturbation theory to HB + Hint, ground state energy of system

with N bosons and one impurity is found:

E0 = EB + gBIn = EB +
2πn~2

mred ln
(

1
na2

a2

b2

) . (4.13)

Polaron energy is given by,
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EP = E0 − EB = − 2πn~2

mred ln
(

1
na2

a2

b2

) . (4.14)

Recent work of Pastukhov[104] extended the above expression to a higher order

in perturbation theory

EP =
2πn~2

mred| ln(nb2)|

[
1− ln | ln(na2)|

| ln(nb2)| +
2γ + ln π + 2α

α−1
ln 2α

α+1

| ln(nb2)|

]
, (4.15)

in which γ = 0.57721 . . . is the Euler-Mascheroni constant and α = mI/mB.

4.4 Results and Discussion

We have carried out DMC simulations of systems of N bosons and a single im-

purity using periodic boundary conditions with a square simulation box whose

size L is fixed by the density n and by the total number of atoms n = N/L2. We

performed calculations for the density parameter na2 = 10−5 and various values

of the ratio of boson-boson and impurity-boson scattering lengths a/b. Typically

the number of bosons were N = 512, but simulations for boson numbers up to

N = 1024 were also performed to test the finite-size effects.

As the polaron energy is calculated by the difference in the energy of a sys-

tem with N bosons with and without an impurity, we have first reproduced the

ground-state energy results for a uniform 2D system of bosons. [109]

Our results for the polaron energy EP are shown in Fig. 4.2 as a function of

− ln (a/b) the ratio of boson-boson and impurity-boson scattering lengths for the

density parameter na2 = 10−5. For simplicity we have taken the boson and im-

purity masses to be the same. We have employed two forms of the hard-core

Jastrow factor discussed above and found that the resulting polaron energy is

largely independent of our choice. The influence of strong impurity-boson inter-

action is evident at small values of a/b resulting in an enhanced polaron energy.

We find that both the leading order perturbation theory and the recent expression
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Figure 4.2: Polaron energy EP as a function of − ln (a/b) for the density param-
eter na2 = 10−5. Error bars indicate statistical errors in the DMC simulations.
Dashed and solid lines are the perturbation theory results from Eq. (7) and Eq. (8)
(Ref. 31), respectively.

of Pastukhov [104] for EP agrees with simulation results at this low value of the

density parameter. However, as the density parameter na2 is increased deviation

from DMC results would become significant.

Effective mass of the impurity (polaron mass) can be found by calculating

the long term slope of the mean square displacement of impurity in imaginary

time [66, 67]. We have used the expression given by Eq. 3.26 for effective mass

calculations of the 2D Bose polaron system.

We start the DMC simulation for effective mass calculation with 10 walkers, the

same number we use for the other calculations. These 10 walkers, due to nature of

the DMC algorithm multiply in size and reach around 1000 walkers. Number of

time steps needed for the walker size to reach around the desired value is around

100. This value changes according to the different physical parameters of the

DMC simulation (for example density, impurity-boson interaction strength, etc.)

but not drastically. We make sure that this period is short relative to the total

simulation time. Our simulations for this kind of procedure usually takes 1000

time steps. The convergence of the DMC algorithm is monitored by checking the
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Figure 4.3: A typical mean square displacement of the impurity atom as a function
of time step in arbitrary units at na2 = 10−5 and b/a = 16.

root mean square of the impurity position in imaginary time. After large enough

imaginary time steps, we calculate the effective mass using the accumulated data.

A data set comprises of around 1000 walkers each containing a copy of the physical

system (with one impurity and usually 512 bosons) which has been subject to

DMC algorithm for at least 1000 imaginary time steps. We display in Fig. 4.3

a typical time evolution of mean square displacement of the impurity atom as a

function of the time step ∆τ .

We have calculated the polaron effective mass at na2 = 10−5 as a function of

− ln (a/b). The results of our calculations are shown in Fig. 4.4. We find that

m∗/m displays the influence of strong impurity-boson interaction at large values

of b. The perturbation theory expression of Pastukhov [104]

m

m∗
= 1− 1

2α

ln (na2)

ln2 (nb2)
(4.16)

adequately describes the trend of our simulation results.

Ardila and Giorgini[65] in their simulations of a 3D Bose gas with impurity

found that m∗/m remains finite approaching the resonant point a/b = 0 implying

the absence of self-localization. We also find an enhancement in m∗/m as a/b→ 0
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Figure 4.4: Polaron effective mass m∗/m as a function of − ln (a/b) for the density
parameter na2 = 10−5.

but the maximum value reached depends on the density. Furthermore, for a given

density parameter na2 it becomes difficult to obtain converging results below a

certain value of a/b (not shown). Whether this indicates an instability in the

system or self-localization of the impurity should be investigated further.

We now turn our attention to the structural properties of the system at hand.

Our first calculation is the impurity-boson pair correlation function, which gives

the probability of finding a bosonic particle at a distance r from the impurity.

We calculate the impurity-boson pair correlation function using Eq. 3.28.

Pair-correlation function gIB(r) is displayed in Fig. 4.5 for na2 = 10−5 and

various values of b/a. Here we use the healing length in 2D ξ =
√

ln (na2)/n

[111] to scale the distance r. We find that the effect of strong impurity-boson

interaction is reflected in a larger depletion at small r and a peak structure

developing around r/ξ ∼ 0.8.

The density profile of the bosons surrounding the impurity can be calculated

using the expression given in Eq. 3.30.

We have calculated the integral given in Eq. 3.30 numerically using the pair
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Figure 4.5: Impurity-boson pair correlation function gIB(r) as a function of r/ξ
for na2 = 10−5 and different b/a values. gIB(r) gives the probability of finding a
boson a distance r away from impurity.

correlation function gIB(r) from DMC simulations. Our results of n(r) are shown

in Fig. 4.6 as a function of r/ξ for na2 = 10−5 and various values of b/a. For large

values of r, n(r) tends to the boson density n. For small r, the strong impurity-

boson repulsive interaction creates a “correlation hole” around the impurity much

like the behavior in gIB(r). The small r behavior of n(r) in 2D is different from

the results of Ardila and Giorgini[65] who have found a diverging behavior for n(r)

as r → 0 in a 3D system. The reason for this is that they use a soft-well potential

with an attractive part to model the impurity-boson interaction. In our case the

interaction is purely repulsive. The average number of bosons NB surrounding

the impurity is calculated by integrating the local density, NB = 2π
∫ r

0
dr′ r′ n(r′)

and shown in Fig. 4.7. We find that NB increases with r/ξ, but the small r

behavior is largely determined by the ratio b/a. For a given density na2, as the

impurity-boson interaction increases (large b) the value of one particle (NB = 1)

is reached at larger values of r/ξ.
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Figure 4.6: Ratio of local to uniform density of bosons n(r)/n as a function of
r/ξ for na2 = 10−5 and different b/a values.

Figure 4.7: Average number of bosons NB surrounding the impurity as a function
of r/ξ for na2 = 10−5 and different b/a values.
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Chapter 5

Conclusion

In this thesis, we discussed two different works. In the first one, we have inves-

tigated the instability of a homogenous bilayer system of perpendicular dipolar

bosons and dipolar fermions with the antiparallel polarization of two layers to-

wards density waves. Accurate HNC results for the intralayer static structure

factor of bosons and FHNC results for the intralayer static structure factor of

fermions are used together with the fluctuation-dissipation theorem to extract

the static intralayer effective potentials and the random phase approximation is

employed for the interlayer interaction. We have observed that for both fermionic

and bosonic bilayers, below a threshold intralayer coupling strength λ, no den-

sity wave instability emerges. At higher couplings, DWI forms below a critical

layer spacing dc. In a given λ the DWI in fermionic bilayers sets in at a larger

layer spacing in comparison with the bosonic bilayers. We have predicted that

a homogenous bilayer with antiparallel polarization of dipoles in two layers is

unstable towards the formation of density waves when the layer separation d be-

comes comparable or smaller than the average in-plane distance between particles

1/k0, and both of these length scales are much smaller than the dipolar length

scale r0. We would expect this regime to be readily accessible experimentally

with polar molecules whose dipolar length could easily exceed several thousands

of nanometers [10].
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The full dispersions of the in-phase and out-of-phase zero-sound modes of the

bilayer system have been calculated too. We observed that both modes are linear

at the long-wavelength limit, independent of the statistics of the particles.

Finally, we should note that in the limit of closely separated layers, improve-

ments beyond the RPA in the effective interlayer potential, like the inclusion of

exchange-correlation effects might be necessary. Dynamical effects and frequency

dependence of the effective potentials would become important in the strongly

correlated regime too.

In the second work, we have considered a mobile impurity in a system of

bosons in 2D, all interacting repulsively, and performed QMC simulations at a

very small value of the density parameter na2 and for various values of the ratio of

boson-boson and impurity-boson scattering lengths a/b. We have found that at

low densities and weak impurity-boson interactions strengths perturbation theory

adequately describes the polaron energy and effective mass. Our calculations

discussed here may be extended in several directions. First, many impurities

may be included in the simulations to study complete phase separation between

the bosons and impurities, among other physical properties. Second, external

trapping potentials may easily be taken into account in the simulations with

appropriately chosen trial wavefunctions and Jastrow factors. Third, introducing

a soft-well potential for the impurity-boson interaction may also be of interest

since it would allow studying the excited states. The effects of mass difference

between the impurity and bosons may also be probed. We hope our results

reported here stimulates further work on Bose polarons, particularly experiments

in lower dimensions.
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de Miranda, J. L. Bohn, J. Ye, and D. S. Jin, “Dipolar collisions of polar

molecules in the quantum regime,” Nature, vol. 464, pp. 1324–1328, apr

2010.

[14] J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange,
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