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ABSTRACT

ESTIMATION THEORETIC ANALYSES OF LOCATION
SECRECY AND RIS-AIDED LOCALIZATION UNDER

HARDWARE IMPAIRMENTS

Cüneyd Öztürk

Ph.D. in Electrical and Electronics Engineering

Advisor: Sinan Gezici

June 2022

In this thesis, we present estimation theoretic analyses of location secrecy and reconfig-

urable intelligent surface (RIS) aided localization under hardware impairments. First, we

consider a wireless source localization network in which a target node emits localization

signals that are used by anchor nodes to estimate the target node position. In addition to

target and anchor nodes, there can also exist eavesdropper nodes and jammer nodes which

aim to estimate the position of the target node and to degrade the accuracy of localization,

respectively. We propose the problem of eavesdropper selection with the goal of optimally

placing a given number of eavesdropper nodes to a subset of possible positions in the net-

work to estimate the target node position as accurately as possible. As the performance

metric, the Cramér-Rao lower bound (CRLB) related to the estimation of the target node

position by eavesdropper nodes is derived, and its convexity and monotonicity properties

are investigated. By relaxing the integer constraints, the eavesdropper selection problem

is approximated by a convex optimization problem and algorithms are proposed for eaves-

dropper selection. Moreover, in the presence of parameter uncertainty, a robust version of

the eavesdropper selection problem is developed. Then, the problem of jammer selection is

proposed where the aim is to optimally place a given number of jammer nodes to a subset of

possible positions for degrading the localization accuracy of the network as much as possible.

A CRLB expression from the literature is used as the performance metric, and its concav-

ity and monotonicity properties are derived. Also, a convex optimization problem and its

robust version are derived after relaxation. Moreover, the joint eavesdropper and jammer

selection problem is proposed with the goal of placing certain numbers of eavesdropper and

jammer nodes to a subset of possible positions. Simulation results are presented to illustrate

performance of the proposed algorithms.

Second, a wireless source localization network consisting of synchronized target and anchor

nodes is considered. An anchor placement problem is formulated to minimize the CRLB on

estimation of target node positions by anchor nodes. It is shown that the anchor placement
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problem can be approximated as a minimization problem of the ratio of two supermodular

functions. Due to the lack of a polynomial time algorithm for such problems, an anchor se-

lection problem is proposed to solve the anchor placement problem. Via relaxation of integer

constraints, the anchor selection problem is approximated by a convex optimization problem,

which is used to propose two algorithms for anchor selection. Furthermore, extensions to

quasi-synchronous wireless localization networks are discussed. To examine the performance

of the proposed algorithms, various simulation results are presented.

Third, we investigate the problem of RIS-aided near-field localization of a user equip-

ment (UE) served by a base station (BS) under phase-dependent amplitude variations at

each RIS element. Through a misspecified Cramér-Rao bound (MCRB) analysis and a

resulting lower bound (LB) on localization, we show that when the UE is unaware of ampli-

tude variations (i.e., assumes unit-amplitude responses), severe performance penalties can

arise, especially at high signal-to-noise ratios (SNRs). Leveraging Jacobi-Anger expansion

to decouple range-azimuth-elevation dimensions, we develop a low-complexity approximated

mismatched maximum likelihood (AMML) estimator, which is asymptotically tight to the

LB. To mitigate performance loss due to model mismatch, we propose to jointly estimate

the UE location and the RIS amplitude model parameters. The corresponding Cramér-Rao

bound (CRB) is derived, as well as an iterative refinement algorithm, which employs the

AMML method as a subroutine and alternatingly updates individual parameters of the RIS

amplitude model. Simulation results indicate fast convergence and performance close to the

CRB. The proposed method can successfully recover the performance loss of the AMML

under a wide range of RIS parameters and effectively calibrate the RIS amplitude model

online with the help of a user that has an a-priori unknown location.

Fourth, we consider RIS-aided localization scenarios with RIS pixel failures, where in-

dividual RIS elements can become faulty due to hardware imperfections. We explore the

impact of such failures on the localization performance. To that aim, an MCRB analysis

is conducted and numerical results indicate that performance loss for estimating the UE

position can be significant in the presence of pixel failures. To remedy this issue, we develop

two different diagnosis strategies to determine which pixels are failing, and design robust

methods to perform localization in the presence of faulty elements. One strategy is based

on the `1-regularization method, and the second one employs a successive approach. Both

methods significantly reduce the performance loss due to pixel failures. The successive one

performs very close to the theoretical bounds at high SNRs even though it has a higher

computational cost than the `1-regularization based method.

In the final part of the dissertation, the optimal encoding strategy of a scalar parameter

is performed in the presence of jamming based on an estimation theoretic criterion. Namely,
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the aim is to obtain the optimal encoding function at the transmitter that minimizes the

expectation of the conditional Cramér-Rao bound (ECRB) at the receiver when the jammer

has access to the parameter and alters the received signal by sending an encoded version of

the parameter. Via calculus of variations, the optimal encoding function at the transmitter

is characterized explicitly, and an algorithm is proposed to calculate it. Numerical examples

demonstrate benefits of the proposed optimal encoding approach.

Keywords: Anchor placement, calculus of variations, Cramér-Rao lower bound (CRLB),

eavesdropping, hardware impairments, jamming, maximum likelihood estimator, misspeci-

fied Cramér-Rao bound (MCRB), localization, optimization, parameter estimation, recon-

figurable intelligent surfaces (RIS), secrecy.
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ÖZET

KONUM GİZLİLİĞİNİN VE DONANIMSAL HATALAR
ALTINDA YYAY DESTEKLİ KONUMLANDIRMANIN

KESTİRİM KURAMSAL ANALİZLERİ

Cüneyd Öztürk

Elektrik ve Elektronik Mühendisliği, Doktora

Tez Danışmanı: Sinan Gezici

Haziran 2022

Bu tezde, donanımsal hatalar altında yeniden yapılandırılabilir akıllı yüzey (YYAY) destekli

konumlandırma ve konum gizliliğinin kestirim kuramsal analizleri sunulmaktadır. İlk olarak,

hedef düğümlerinin çapa düğümlerine sinyaller gönderdiği ve çapa düğümlerinin bu sinyalleri

kullanarak hedef düğümlerinin konumunu kestirdiği bir kablosuz kaynak konumlandırma ağı

düşünülmektedir. Kablosuz kaynak konumlandırma ağlarında, hedef ve çapa düğümlerinin

yanı sıra, hedef düğümlerinin konumunu kestirmeye çalışan gizli dinleyici düğümleri ve çapa

düğümlerinin konumlandırma performansını düşürmeyi hedefleyen karıştırıcı düğümler de

bulunabilir. Gizli dinleyici düğümlerin hedef düğümlerin konumunu olabildiğince doğru

bir şekilde kestirmesi için, gizli dinleyici düğümü seçme problemi tanımlanmaktadır. Gi-

zli dinleyici düğümlerinin hedef düğümlerinin konumunu kestirmesiyle alakalı olan Cramér-

Rao alt sınırı (CRAS) performans metriği olarak seçilmekte ve bu CRAS’nin gizli dinleyici

düğümü seçme vektörüne göre olan dışbükeyliği ve monotonluğu incelenmektedir. Tam

sayı kısıtlamaları gevşetildiğinde, gizli dinleyici seçme problemine dışbükey optimizasyon

problemi olarak yaklaşılmakta ve bu problemi çözmek için bazı algoritmalar önerilmektedir.

Bunun yanı sıra, parametrelerin belirsizliği altında, gizli dinleyici seçme probleminin gürbüz

versiyonu geliştirilmektedir. Daha sonra, karıştırıcı düğümlerinin çapa düğümlerinin kon-

umlandırma performansını olabildiğince düşürmesi için karıştırıcı düğümlerini seçme prob-

lemi önerilmektedir. Literatürde bulunan bir CRAS ifadesi performans metriği olarak kul-

lanılmakta ve bu ifadenin karıştırıcı düğümü seçme vektörüne göre içbükeyliği ve mono-

tonluğu incelenmektedir. Tam sayı sınırlarının gevşetilmesinden sonra, dışbükey optimiza-

syon problemi elde edilmekte ve gürbüz versiyonu da çözülmektedir. Ayrıca, gizli dinleyici ve

karıştırıcı düğümü seçme problemleri ortak olarak önerilmektedir. Önerilen algoritmaların

performanslarını göstermek için benzetim sonuçları sunulmaktadır.

İkinci olarak, senkronize olmuş hedef ve çapa düğümlerini içeren bir kablosuz kay-

nak konumlandırma ağı düşünülmektedir. Çapa düğümleri tarafından kestirilen hedef

düğümlerinin konumu ile alakalı olan CRAS’nin minimize edilmesi için çapa düğümlerinin
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yerleştirilmesi problemi formüle edilmektedir. Çapa düğümlerinin yerleştirilmesi problem-

ine iki süper modüler fonksiyonunun birbirine olan oranının minimize edilmesi problemi ile

yaklaşılabileceği gösterilmektedir. Bu problemlerin çözümü için polinomsal zamanda algo-

ritma eksikliğinden dolayı, çapa düğümü yerleştirme problemine çapa düğümü seçme prob-

lemi olarak yaklaşılmaktadır. Tam sayı kısıtlamaları gevşetildiğinde, çapa düğümü seçme

problemine dışbükey optimizasyon problemi olarak yaklaşılmaktadır. Bu problemin çözümü

için iki farklı algoritma önerilmektedir. Daha sonra, yarı senkronize olan kablosuz konum-

landırma ağları için analizler genişletilmektedir. Önerilen algoritmaların performanslarını

incelemek için, benzetim sonuçları sunulmaktadır.

Üçüncü olarak, baz istasyonu servisi ve faza bağlı genlik değişimleri altında, YYAY

destekli yakın alanda konumlandırma problemi incelenmektedir. Yanlış tanımlanmış Cramér-

Rao sınırı (YTCRS) analizi ve sonucunda konumlandırma ile ilgili çıkan alt sınır (AS) kul-

lanılarak, özellikle yüksek sinyal gürültü oranlarında, genlik değişimlerinin bilinmediği ve

genliklerin bire eşit olduğunu varsayıldığında, konumlandırma açısından ciddi performans

kayıplarının oluşabileceği gösterilmektedir. Jacobi-Anger açılımı kullanılarak, asimptotik

olarak AS ile sıkı olan, düşük karmaşıklığa sahip, yaklaşık yanlış tanımlanmış maksimum

olabilirlik (YYTMO) kestiricisi geliştirilmektedir. Modeli yanlış bilmekten kaynaklanan

performans kaybını önlemek için, kullanıcının konumu ve YYAY genlik modeli parame-

treleri beraber kestirilmeye çalışılmaktadır. Buna karşılık gelen Cramér-Rao sınırı (CRS)

ve YYAY genlik model parametrelerini dönüşümlü bir biçimde güncelleyen YYTMO kestri-

cisini alt program olarak kullanan yinelemeli bir algoritma elde edilmektedir. Benzetim

sonuçlarına göre, bu algoritma hızlı bir şekilde yakınsamaktadır ve performansı CRS’ye yakın

çıkmaktadır. Önerilen yöntem geniş bir aralıktaki YYAY parametreleri için YYTMO’nun

performans kayıplarını başarılı bir şekilde azaltmaktadır.

Dördüncü olarak, YYAY pikselleri donanımsal kusurlar nedeniyle bozulmalar yaşadığında,

YYAY destekli konumlandırma problemleri incelenmektedir. Bu kusurların konumlandırma

performansı üzerine etkisi çalışılmaktadır. Bu amaçla, YTCRS analizi yürütülmekte ve

benzetim sonuçlarına göre piksel bozulmalarının konumlandırma performansı üzerindeki

etkisinin ciddi olabileceği gözlemlenmektedir. Buna çare olmak için, hangi piksellerin

bozulduğunu anlamak ve piksel bozulmaları altında gürbüz konumlandırma yöntemleri

geliştirmek anacıyla, iki farklı strateji önerilmektedir. İlk strateji `1-düzenleme metodu

tabanlı iken, ikinci strateji ise ardışık bir yaklaşım kullanmaktadır. İki strateji de pik-

sel arızalarından kaynaklanan performans kayıplarını önemli ölçüde düşürmektedir. İkinci

strateji, ilk stratejiye göre daha yüksek hesaplama maliyetine sahip olsa da yüksek sinyal

gürültü oranlarında kuramsal sınırlara çok yakın performans göstermektedir.

Tezin son kısmında, karıştırıcı varlığı altında, kestirim kuramsal kriter tabanlı skaler
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bir parametrenin en iyi kodlama stratejisi incelenmektedir. Bir başka deyişle, karıştırıcı

gönderilecek olan skaler parametreye ulaşabildiğinde ve bu parametreyi kodlayıp alıcıdaki

sinyali bozabildiğinde, gönderici tarafından kullanılabilecek kodlama fonksiyonları arasından

alıcıdaki koşullu CRS’nin ortalamasını minimize edilen kodlama fonksiyonu seçilmektedir.

Varyasyonlar hesabı kullanılarak, göndericinin en iyi kodlama fonksiyonu tam olarak karak-

terize edilmekte ve bu kodlama fonksiyonunu elde etmek için bir algoritma önerilmektedir.

Sayısal örnekler önerilen kodlama stratejisinin faydalarını göstermektedir.

Anahtar sözcükler : Çapa yerleşimi, varyasyonlar hesabı, Cramér-Rao alt sınırı (CRAS), gizli

dinleyici, donanımsal hatalar, karıştırma, maksimum olabilirlik kestirimi, yanlış tanımlanmış

Cramér-Rao sınırı (YTCRS), konumlandırma, optimizasyon, parametre kestirimi, yeniden

yapılandıralbilir akıllı yüzeyler (YYAY), gizlilik.
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Chapter 1

Introduction

In wireless localization networks, position information is commonly extracted based on sig-

nal exchanges between anchor nodes with known positions and target (source) nodes whose

position are to be estimated [1, 2]. Based on the signaling procedure, wireless localization

networks are classified into two groups as self localization and source (network-centric) local-

ization networks [1]. In the self localization scenario, target nodes estimate their positions

via signals transmitted from anchor nodes whereas in source localization networks, anchor

nodes estimate positions of target nodes from signals emitted by target nodes.

Wireless localization networks can be vulnerable to various attacks such as eavesdropping,

jamming, sybil, and wormhole attacks [3–6]. For example, eavesdropper nodes may listen to

signals transmitted from target nodes and estimate their positions, which breaches location

secrecy [4, 5]. In wireless localization networks, location secrecy cannot be guaranteed via

encryption since location related information can be gathered by eavesdropper nodes by just

listening to signal exchanges rather than intercepting packets [5]. As another type of attack,

jammer nodes can degrade the localization accuracy of a network by transmitting jamming

signals [6]. If jamming levels exceed certain limits, location information can be useless for

specific applications due to its inaccuracy.

In Chapter 2, the focus is on eavesdropping and jamming attacks in wireless source local-

ization networks. We investigate the optimal eavesdropper and jammer selection strategies
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in wireless localization networks in order to quantify the adverserial capabilities of eaves-

dropper and jammer nodes. Where to locate anchor nodes for achieving high localization

accuracy is another crucial issue in wireless localization networks. In Chapter 3, the problem

of anchor placement for TOA based wireless localization networks is considered.

Moreover, among the envisioned technological enablers for 6G, three stand out as be-

ing truly disruptive: the transition from 30 GHz to beyond 100 GHz (the so-called higher

mmWave and lower THz bands) [7–9], the convergence of communication, localization, and

sensing (referred to as integrated sensing and communication (ISAC) or integrated sensing,

localization, and communication (ISLAC)) [10–14], and the introduction of reconfigurable

intelligent surfaces (RISs) [15–17]. RISs can enhance the localization performance. In Chap-

ter 4, the problem of RIS-aided localization under imperfect knowledge of RIS amplitudes is

considered. Furthermore, due to its hardware characteristics, RIS elements can fail [18, 19].

In Chapter 5, we examine how these failures can affect localization accuracy.

Furthermore, communication systems can be vulnerable to various types of malicious at-

tacks such as eavesdropping and jamming [20] (and references therein). While eavesdroppers

aim to infer messages between transmitters and receivers, jammers try to disrupt communi-

cations among devices in a given network. In Chapter 6, in the presence of a jammer, the

optimal encoding of a scalar parameter is examined. In the following sections, we provide a

literature review and summarize our main contributions.

1.1 Eavesdropper and Jammer Selection Strategies in

Wireless Localization Networks

1.1.1 Literature Review

In the literature, there exist a few studies related to physical-layer location secrecy or eaves-

dropping in wireless localization networks [4, 5, 21]. In [4], a location secrecy metric (LSM)

is proposed by considering only the position of a target node and the measurement model

of an eavesdropper node. The aim of the eavesdropper node is to obtain an estimate of the
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target node position based on its measurement model, where the estimate can be either a

point or a set of points. The definition of the LSM is based on the escaping probability of

the target node from the eavesdropper node, i.e., the probability that the position of the

target node is not an element of the set of estimated positions by the eavesdropper node.

In practice, the measurement model of an eavesdropper node depends on several parameters

in addition to the position of the target node [21]. For example, an eavesdropper node can

extract location information based on signal exchanges between target and anchor nodes by

using time difference of arrival (TDOA) approaches. In that case, the time offset becomes

another unknown parameter. Hence, the definition of the LSM is extended in [21] by also

taking channel conditions and time offsets into account. For some specific scenarios, LSM is

calculated and algorithms are proposed to protect location secrecy by diminishing the esti-

mation capability of an eavesdropper node [21]. In [5], considering round-trip-measurements

in a network, an eavesdropping model is presented by using TDOA approaches. Also, power

allocation frameworks for anchor and target nodes are presented to degrade the estimation

performance of an eavesdropper node while maintaining the localization accuracy of the

network [5].

Related to jamming and anti-jamming techniques in wireless localization networks, a

great amount of research has been conducted in the literature [6, 22–35]. Placement of

jammer nodes in wireless localization networks can serve for different purposes [23]. Namely,

the aim of placing jammer nodes can be either to reduce the localization accuracy of the

network (i.e., adversarial) [6, 24, 25, 35, 36], or to protect the network from eavesdropper

attacks [22, 26–31, 33]. In [6], optimal power allocation schemes are developed for jammer

nodes under peak and total power limits by maximizing the average or minimum Cramér-Rao

lower bounds (CRLBs) in self localization networks. The same problem is considered in [25]

for source localization networks. In [35], the average CRLB of target nodes is maximized

while keeping their minimum CRLB above a certain threshold for self-localization networks.

In [6,25,35], it is assumed that positions and the number of jammer nodes are fixed. When

positions of jammer nodes can be changed, their optimal placement can be considered for

achieving the best jamming performance. In [24], the optimal jammer placement problem is

investigated for wireless self-localization networks in the presence of constraints on possible

locations of jammer nodes. On the other hand, in [33], jammer nodes are placed to reduce

the received signal quality of eavesdropper nodes while not preventing the operation of the
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actual network.

Game theoretic approaches are also utilized for determining jamming strategies [23,34]. In

[23], an attacker tries to maximize the damage on network activity while the aim of a defender

is to secure a multi-hop multi-channel network. The action of the attacker is determined

by the selection of jammer node positions and a channel hopping strategy whereas the

action of the defender is based on the channel hopping strategy. In [34], two different power

control games between anchor nodes and jammer nodes are formulated for self-localization

networks based on the average CRLB and the worst-case CRLB criteria. Nash equilibria

of the proposed games are analyzed and it is shown that both games have at least one

pure-strategy Nash equilibrium.

In the literature, eavesdropping and jamming attacks have not been considered jointly for

wireless localization networks. However, for communications networks, [37–39] investigate

effects of jamming and eavesdropping together. In [37], a secure transmission scheme is

proposed for a wiretap channel when a source communicates with a legitimate unmanned

aerial vehicle (UAV) in the presence of eavesdroppers. Full duplex active eavesdropping

is assumed, i.e., wiretappers can perform eavesdropping and jamming simultaneously. In

[38], a multiple-input multiple-output communication system with a transmitter, a receiver

and an adversarial wiretapper is considered. The wiretapper is able to act as either an

eavesdropper or a jammer. The transmitter makes a decision between allocating all the

power to information signals or broadcasting some artificial interference signals to jam the

wiretapper. A game theoretic formulation of this problem is also given in [38], and its Nash

equilibria are analyzed. In [39], the considered wireless network contains wireless users, relay

stations, base station (BS), and an attacker who has the ability to act as an eavesdropper

and as a jammer. The aim of the attacker is to degrade the secrecy rate of the network and

the transmission rate of the users. Each user connects to one of the relay stations so that

the amount of potential interference from other users is reduced and the expected level of

security for the transmission is increased. This problem is formulated as an (N + 1) person

noncooperative game where N is the number of users and existence of mixed-strategy Nash

equilibria is shown.

Although a location secrecy metric is developed in [4, 21] and the problem of protecting

location secrecy is investigated in [5], there exist no studies that consider the problem of
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eavesdropper selection. In Chapter 2, we propose the eavesdropper selection problem, in

which the aim is to optimally place a given number of eavesdropper nodes to a subset

of possible positions such that the location secrecy of target nodes is reduced as much as

possible. The optimal eavesdropper selection problem is studied from the perspective of

eavesdropper nodes for determining performance limits of eavesdropping. The CRLB for

estimation of target node positions by eavesdroppers is employed as the performance metric.

The eavesdropper selection problem also carries similarities to the anchor placement problem

(e.g., [40–43]), in which the aim is to determine the optimal positions of anchor (reference)

nodes for optimizing accuracy of target localization. While the optimization is performed

over positions of anchor nodes in the anchor placement problem, the aim is to choose the

best positions from a finite set of possible positions in the eavesdropper selection problem.

(Hence, different theoretical approaches are utilized in Chapter 2.)

In addition, even though jamming and anti-jamming strategies are investigated extensively

under various scenarios in [6,22–35], there has been no consideration about jammer selection.

In Chapter 2, we propose the jammer selection problem. The goal is to place a given number

of jammer nodes to a subset of possible positions to degrade the localization accuracy of a

wireless network where the CRLB related to estimation of target node positions by anchor

nodes is used as the performance metric.

Moreover, despite the work in [37–39], which consider both jamming and eavesdropping

for wireless communication networks based on performance metrics such as outage proba-

bility, transmission rate and secrecy rate, the presence of jammer and eavesdropper nodes

together has not been investigated for wireless localization networks. In Chapter 2, we focus

on a wireless localization network with multiple eavesdropper and jammer nodes, and for-

mulate the joint eavesdropper and jammer selection problem by employing the CRLB as an

estimation theoretic performance metric. The goal is to place certain numbers of eavesdrop-

per and jammer nodes to a subset of possible positions in order to degrade the accuracy of

the localization network while keeping the eavesdropping capability above a threshold. In

particular, eavesdropper nodes aim to minimize the average CRLB related to their estima-

tion of target node positions whereas jammer nodes seek to maximize the average CRLB for

estimating target node positions by anchor nodes via emitting noise signals.
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1.1.2 Contributions

In Chapter 2, eavesdropper and jammer selection strategies in wireless localization networks

are investigated [44,45]. The main contributions of this chapter can be specified as follows:

� We formulate the eavesdropper selection, jammer selection, and joint eavesdropper and

jammer selection problems in a wireless source localization network for the first time in

the literature.

� For the eavesdropper selection problem, a novel CRLB expression (used as a performance

metric for location secrecy) is derived related to the estimation of target node positions

by eavesdropper nodes.

� We prove that the CRLB expression derived for the eavesdropper selection problem is

convex and non-increasing with respect to the selection vector, which specifies the selection

of positions for placing eavesdropper nodes.

� For the jammer selection problem, we utilize a CRLB expression from the literature and

prove that it is concave and non-decreasing with respect to the selection vector.

� We express the eavesdropper selection, jammer selection, and joint eavesdropper and jam-

mer selection problems as convex optimization problems after relaxation.

� We propose algorithms to solve the proposed problems by considering both perfect and

imperfect knowledge of system parameters, and develop robust approaches in the presence

of imperfect knowledge.
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1.2 Anchor Placement in TOA based Wireless Local-

ization Networks via Convex Relaxation

1.2.1 Literature Review

For both self localization and source localization networks, the main goal is to maintain high

localization accuracy [1]. Determining where to place anchor nodes and how to allocate power

among them are crucial issues to address for achieving high localization accuracy. There exist

a vast amount of studies on these issues such as [40,42,46–53]. For example, in [49], anchor

positions are assumed to be known, and optimization problems for optimal power allocation

among anchor nodes, anchor selection, and anchor deployment are proposed to minimize the

estimation error for target position considering a time-of-arrival (TOA) based approach. The

problem of anchor placement is also investigated in [42], and a near-optimal node placement

algorithm is proposed. In addition to anchor and target nodes, assisting nodes are placed in

the network to improve localization accuracy, and an upper bound on the gap between the

near-optimal node placement algorithm and the optimal placement strategy is provided [42].

Apart from the TOA based approach, there also exist some studies that consider the optimal

anchor placement problem for time-difference-of-arrival (TDOA) and angle-of-arrival (AOA)

based wireless localization networks [40,53].

1.2.2 Contributions

In Chapter 3, we consider a wireless source localization network consisting of anchor and

target nodes, and propose an anchor selection problem to solve the anchor placement problem

[43]. The main contributions of this chapter can be summarized as follows:

� We formulate the anchor placement problem for TOA based source localization net-

works by considering the Cramér-Rao lower bound (CRLB) as a performance metric,

and we discretize the problem due to its non-convexity.
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� After discretization, we prove the equivalence of this problem to the problem of min-

imizing the ratio of two supermodular functions. Due to the lack of a polynomial

time algorithm for such problems [54], we express the resulting problem as an anchor

selection problem.

� Even though the problem of anchor selection is considered in [49], its convexity prop-

erties are not investigated and specific algorithms are not proposed to solve it. We

prove that the objective function of this problem is convex with respect to the anchor

selection vector. After relaxing the integer constraints, we come up with a convex

optimization problem, which is related to the solution of the anchor selection problem.

� We propose two algorithms to solve the proposed anchor selection problem and present

simulation results for both two and three dimensional wireless localization networks.

� We also show that this analysis can easily be extended to TDOA and received signal

strength (RSS) based wireless localization networks.

1.3 RIS-aided Near-Field Localization under Phase-

Dependent Amplitude Variations

1.3.1 Literature Review

RISs are large passive metasurfaces, comprising arrays of programmable reflective unit cells,

and have the ability to shape the propagation environment by judiciously adjusting the

phase shifts at each reflecting element, thus locally boosting the signal-to-noise ratio (SNR)

to improve communication quality [55–58]. This is especially relevant in beyond 100 GHz

to overcome sudden drops in rate caused by temporary blockage of the line-of-sight (LoS)

path [57, 59]. In order to provide enhanced performance in downlink single- and multi-user

systems, passive reflect beamforming at the RIS can be optimized, potentially together with

active beamforming at the base station (BS), to maximize energy efficiency [58, 60], sum-

rate [61–63] and mutual information [64], as well as to minimize total transmit power at the

BS [65,66].
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In parallel with the benefits for communications, RISs can similarly improve localization

performance [67]. Stronger even, RISs with known position and orientation enjoy the ability

to enable localization in scenarios where it would otherwise be impossible [68]. In this respect,

the large aperture of the RIS has several interesting properties. First of all, the SNR-boosting

provides accurate delay measurements when wideband signals are used [8, 69]. Secondly,

the large number of elements provides high resolution in angle-of-arrival (AoA) (for uplink

localization) or angle-of-departure (AoD) (for downlink localization) [8]. Third, when the

user equipment (UE) is close to the RIS (in the sense that the distance to the RIS is of similar

order as the physical size of the RIS), wavefront curvature effects (so-called geometric near-

field) can be harnessed to localize the user [59, 67, 70–74], even when the LoS path between

the BS and UE is blocked, irrespective of whether wideband or narrowband signals are used.

Moreover, closed-form RIS phase profile designs taking into account the spherical wavefront

can be employed to improve localization accuracy under near-field conditions [69, 75]. As

a step further, joint benefits in ISLAC applications can be reaped via RIS phase profile

adjustment by simultaneous optimization of localization and communications metrics [76].

In ISLAC scenarios, critical to the effective utilization of RIS is the control of individual

RIS elements, commonly through phase shifters, which provide element-by-element control

with a certain resolution and allow coherent combination of paths to/from the RIS [56, 63].

For localization, in contrast to communication, the receiver should be equipped with the

knowledge of the RIS phase profiles to apply suitable high-accuracy processing methods [17].

The ability to modulate the RIS phase profiles brings additional benefits, such as separating

the controlled and uncontrolled multipath through temporal coding [77]. Hence, the ability

to control the RIS in a precise and known manner is essential for ISLAC applications, which

necessitates the availability of accurate and simple RIS phase control models. Such models

should ideally account for the per-element response [78], the finite quantization of the control

[56, 79], mutual coupling [80], calibration effects, and power losses. Most studies on RIS

localization have considered ideal phase shifters (e.g. [59, 68–71, 73, 81]), omitting the listed

impairments. How these proposed localization approaches fare under these impairments is

both unknown and important.
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1.3.2 Contributions

In Chapter 4, a RIS-aided near-field localization problem is analyzed when the amplitude

information of the RIS elements is imperfect [82,83]. The main contributions and novelty of

this chapter can be summarized as follows:

� MCRB Analysis of Near-Field Localization under RIS Non-Idealities: Employing the

misspecified Cramér-Rao bound (MCRB) [84, 85] as a tool to assess the accuracy loss

under model mismatch, we provide a simple expression to find the pseudo-true param-

eter for the considered scenario and derive the MCRB of the pseudo-true parameter

and the lower bound (LB) of the true parameter. The MCRB analysis over a wide

range of RIS model parameters reveals an order-of-magnitude localization performance

degradation due to model misspecification at high SNRs, both in terms of the LB and

the mismatched maximum-likelihood (MML) estimator [85]. In contrast, when the

true phase control model is available, localization performance is relatively stable, for

all considered model parameter settings.

� Low-Complexity Near-Field Localization via Jacobi-Anger Expansion: Building upon

the ideas in [70, 82], we develop a novel low-complexity near-field localization algo-

rithm using Jacobi-Anger expansion, which enables decoupling of range, azimuth and

elevation dimensions. The resulting algorithm, named approximated MML (AMML),

avoids the costly 3-D search over the UE position by performing three 1-D searches

and attains the corresponding theoretical limits.

� Joint Localization and Online RIS Calibration: Under the assumption of known RIS

amplitude model with unknown parameters, we propose an efficient approximate

maximum-likelihood (ML) (AML) algorithm for joint localization and online RIS cal-

ibration. The proposed approach iteratively updates the RIS model parameters based

on an initial UE location estimate from the output of the model-unaware AMML

method, and refines the UE location using the updated RIS model. The AML algo-

rithm is shown to significantly outperform the AMML estimator at high SNRs (where

degradation due to model mismatch is most evident), closing the performance gap

with respect to the case with known model parameters, and converges quickly to the

corresponding model-aware CRB in few iterations.
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1.4 RIS-aided Localization under Pixel Failures

1.4.1 Literature Review

In [86], antenna array diagnosis is studied in a standard mmWave setup without a RIS and

several compressive sensing based techniques are proposed to identify the faulty antenna

elements and the resulting amplitude and phase distortions. The AoA estimation problem

under element failures is considered in [87], where the diagnosis of faulty elements is formu-

lated as a Toeplitz matrix reconstruction problem. Recently, several papers investigate RIS

element failures in mmWave communications [18, 19]. In [18], the authors present different

types of pixel errors (e.g., stuck at state, out of state) and their spatial distribution (inde-

pendent, clustered, etc.). The paper also explores the effect of pixel errors on the radiation

pattern through simulations.

The study in [19] establishes a failure model to specify the amplitude and phase shift

of faulty elements and proposes diagnostic methods by exploiting the sparsity property of

failures. In addition to element failures resulting from internal hardware imperfections, RIS

element blockages due to external environmental effects such as dust, rain and ice are studied

in recent works [88, 89]. In [88], blockages at both the BS and RIS are considered and an

iterative algorithm is proposed to jointly estimate the blockage coefficients of the BS and

RIS. In [89], the authors propose a two-stage algorithm for joint RIS diagnosis and channel

estimation in a RIS-aided mmWave MIMO system.

1.4.2 Contributions

In Chapter 5, the problem of RIS-aided localization under pixel failures is studided. The

main contributions can be listed as follows:

� We analyze how detrimental RIS pixel failures can be for RIS-aided localization. To

quantify the effect of these failures, we present some fundamental limits based on the

theoretical bounds provided in Chapter 4.
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� We propose an `1-regularization based algorithm to jointly estimate pixel failures and

the UE position.

� In addition to the `1-regularization based algorithm, we propose a successive joint

localization and failure diagnosis algorithm.

� Via simulations, it is shown that the successive joint localization and failure diagnosis

algorithm achieves the theoretical performance bounds in the high SNR regime.

1.5 Parameter Encoding for ECRB Minimization in

the Presence of Jamming

1.5.1 Literature Review

In the presence of eavesdropping, secure transmission of scalar and vector parameters is

investigated in an estimation theoretic framework in [90–92]. In particular, the optimal en-

coding strategy for a scalar parameter is investigated in [90] by minimizing the expectation

of the conditional Cramér-Rao bound (ECRB) at the intended receiver under a constraint on

the mean-squared error (MSE) at the eavesdropper. In [92], the optimal encoding strategy

for estimation theoretic security is analyzed, where the transmitter is allowed to perform

randomization between two one-to-one and continuous encoding functions and the eaves-

dropper is fully aware of the encoding strategy at the transmitter. In addition, the work

in [90] is extended to the case of vector parameters in [91].

Among various studies on jamming of communication systems, [93–97] formulate the

problem of transmitting a parameter to a receiver under jamming attacks as a zero-sum game,

and analyze optimal policies of the transmitter, receiver and jammer under various scenarios.

Specifically, [93] investigates the problem of transmitting a sequence of independent and

identically distributed Gaussian random variables through a Gaussian memoryless channel

in the presence of an intelligent jammer. The optimal policies of the receiver and the jammer

are determined, and the uniqueness of the solution is proved. In [94], by relaxing the Gaussian

source and channel assumptions, optimal policies of the transmitter, jammer and receiver
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are obtained. The work in [94] is extended to the zero-delay jamming setting in [95].

1.5.2 Contributions

In Chapter 6, an optimal parameter encoding problem is proposed for ECRB minimization

in the presence of a jammer. A scalar parameter is transmitted over a noisy and flat-fading

channel to a receiver, and the jammer, which has access to the parameter as in [97], sends

an encoded version of the parameter to the receiver for degrading estimation performance.

Our contributions can be listed as follows:

� Considering a generic prior distribution for the parameter, we formulate the problem

of determining the optimal encoding strategy at the transmitter that minimizes the

ECRB at the receiver in the presence of jamming for the first time in the literature.

� The optimal encoding function of the transmitter is determined among the class of

differentiable and monotone increasing functions based on variational analyses, which

leads to nonlinear encoding functions in general (cf. [94]).

� To determine the optimal encoding function based on the theoretical results, an algo-

rithm is proposed. (This approach can also be used when the encoding function of the

transmitter is restricted to be monotone decreasing.)

� In addition, the problem is analyzed for the general case by removing the monotonicity

assumption over the encoding function of the transmitter. Numerical examples are

presented to illustrate the benefits of the proposed optimal encoding approach in the

presence of jamming.

1.6 Organization of the Dissertation

The organization of the thesis is as follows. In Chapter 2, we investigate the eavesdropper and

jammer selection strategies in wireless localization networks. In Chapter 3, anchor placement
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in TOA based wireless localization networks is studied. In Chapter 4, the problem of RIS-

aided localization under hardware impairments is examined. Then, in Chapter 5, when some

of the pixels of the RIS fail, the problem of joint localization and diagnosis of pixel failures is

studied. Then, in Chapter 6, we investigate the optimal scalar parameter encoding strategy

of the transmitter in the presence of jamming attacks.
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Chapter 2

Eavesdropper and Jammer Selection

Strategies in Wireless Localization

Networks

In this chapter, we formulate and study the eavesdropper selection, jammer selection and

joint eavesdropper and jammer selection problems. For the eavesdropper selection problem,

the CRLB for estimating the positions of the target nodes by the eavesdropper nodes is de-

rived. For both the eavesdropper and the jammer selection problems, analytical properties

of the corresponding CRLB expressions are presented. By relaxing the integer constraints in

the proposed selection problems, we are able to express all the problems as convex optimiza-

tion problems. By using convex optimization techniques, we propose algorithms for solving

the considered problems.

2.1 Motivation

The investigation of the eavesdropper selection, jammer selection, and joint eavesdropper

and jammer selection problems is important to identify the adversarial capabilities of eaves-

dropper and/or jammer nodes.
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As a motivating example of an application scenario for the eavesdropper selection problem,

consider a restricted environment such as a military facility or a factory (e.g., imagine an area

in Figure 2.1 covering blue squares and cross signs). In this environment, target nodes can

represent the personnel or important equipment, which send signals to anchors nodes so that

their locations can be tracked by the wireless localization network. A fixed number of eaves-

dropper nodes can be placed at some of feasible locations outside the restricted environment

(red triangles in Figure 2.1), e.g., under some camouflage. The aim of eavesdropper nodes

is to gather accurate location information about target nodes (i.e., personnel or equipment)

for leaking critical information. To this aim, they need to be placed at optimal locations

among the feasible locations, leading to the proposed eavesdropper selection problem.

Considering the same setting, jammer nodes can be placed at some of feasible locations

for the purpose of reducing the accuracy of the localization network so that the network

will not be able to track critical equipment or personnel with sufficient localization accuracy.

This scenario can also be encountered in a battle-field in order to disrupt the localization

capability of an enemy network. Similarly, the joint eavesdropper and jammer selection

problem can be considered for both gathering location information about target nodes and

reducing the accuracy of the localization network.

2.2 Notation

Throughout this chapter, X � Y denotes that X−Y is a positive semi-definite matrix, x � y

means that xi ≥ yi for all i = 1, 2, . . . , n, where x = [x1 x2 . . . xn]ᵀ and y = [y1 y2 . . . yn]ᵀ,

and tr{·} represents the trace of a square matrix. Also, the following definitions are used:

(i) Let f(·) be a real-valued function of z ∈ Rn. f(z) being non-increasing in z means that

if z and w satisfy z � w, f(z) ≤ f(w) holds. (ii) Let g(·) be a real-valued of function of

X ∈ Sn+, where Sn+ is the set of positive semi-definite matrices in Rn×n. Then, g(X) being

non-increasing in X means that if X and Y satisfy X � Y, g(X) ≤ g(Y) holds.
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Figure 2.1: Illustration of the wireless source localization network.

2.3 System Model

Consider a two-dimensional wireless source localization network in which a target node

(source) transmits signals that are used by anchor nodes to estimate its location. The num-

ber of anchor nodes is denoted by NA and they are located at yj ∈ R2 for j = 1, 2, . . . , NA.

Also, there exists some prior information about the location of the target node such that

it is located at xi ∈ R2 with probability wi ≥ 0 for i = 1, 2, . . . , NT , where NT is the

number of possible locations for the target node, and
∑NT

i=1wi = 1. Let Ai represent the

set of locations of anchor nodes that are connected to the ith target position (i.e., location

xi) for i = 1, 2, . . . , NT . Moreover, let A(i)
L and A(i)

NL denote, respectively, the locations of

anchor nodes having line-of-sight (LOS) and non-line-of-sight (NLOS) connections to the

target node located at xi.

In the wireless localization network, there also exist N different locations specified by the

set N = {p1,p2, . . . ,pN}, at which either jammer or eavesdropper nodes can be placed.

Eavesdropper nodes listen to the signals transmitted from the target node to the anchor
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nodes and aim to estimate the location of the target node. On the other hand, jammer

nodes degrade the localization performance of the anchor nodes by transmitting zero-mean

white Gaussian noise [6, 98]. It is assumed that at any given time, at most NE locations in

N can be used for eavesdropping purposes, whereas at most NJ of them can be used for

jamming purposes, where NE+NJ ≤ N . In other words, there exist at most NE eavesdropper

nodes and NJ jammer nodes that can be placed at some of the N possible locations. Let

NE and NJ denote the set of locations in N at which eavesdropper nodes and jammer nodes

are placed, respectively.

Considering a wideband wireless localization network as in [99], the signal transmitted

from the ith target position (i.e., xi) that is intended for the anchor node located at yj is

denoted by sij(t). If an eavesdropper node is placed at pk (i.e., if pk ∈ NE), the received

signal at that eavesdropper node due to the transmission of sij(t) is represented by rEijk(t).

This signal is expressed as

rEijk(t) =

LE
ijk∑
l=1

α
(E,l)
ijk sij

(
t− τ (E,l)

ijk

)
+ nijk(t) (2.1)

for t ∈ [T
(E,k)
1 , T

(E,k)
2 ) and (i, j) ∈ Sk, where T

(E,k)
1 and T

(E,k)
2 specify the observation interval

for the eavesdropper node located at pk, Sk = {(i, j) | pk ∈ NE, yj ∈ Ai}, LEijk represents the

number of paths between the target node located at xi and the eavesdropper node located

at pk (due to the transmission of sij(t)), α
(E,l)
ijk and τ

(E,l)
ijk denote, respectively, the amplitude

and the delay of the lth multipath component, and nijk(t) is zero-mean white Gaussian noise

with a power spectral density level of σ2
k. Considering orthogonal channels between target

and anchor nodes, nijk(t) is modeled as independent for all i, j, k [24,25,100]. The delays of

the paths are characterized by the following expression:

τ
(E,l)
ijk =

1

c

(
‖xi − pk‖+ b

(E,l)
ijk + ∆i

)
(2.2)

where c is the propagation speed, b
(E,l)
ijk ≥ 0 is the range bias (b

(E,1)
ijk = 0 for LOS propagation

and b
(E,1)
ijk > 0 for NLOS), and ∆i characterizes the time offset between the clocks of the

target node located at xi and the eavesdropper nodes. It is assumed that the eavesdropper

nodes are perfectly synchronized among themselves and there exist no clock drifts. (Please

see [101, 102] for clock drift mitigation mechanisms.) However, there is no synchronization

between the target node and the eavesdropper nodes. Furthermore, for any i = 1, 2, . . . , NT ,
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we define N (i)
L , {(j, k) | b

(E,1)
ijk = 0} and N (i)

NL , {(j, k) | b
(E,1)
ijk 6= 0}, which are the

set of anchor and eavesdropper node indices corresponding, respectively, to LOS and NLOS

connections between the eavesdropper nodes and the target node located at xi. (For example,

if b
(E,1)
i32 = 0, it means that the eavesdropper node at position p2 and the target node at

position xi are in LOS during the transmission of the signal from that target node to the

anchor node at position y3 (i.e., during the transmission of si3(t)).)

On the other hand, due to the existence of jammer nodes, the signal received at the anchor

node located at yj coming from the target node located at xi can be expressed as

rAij(t) =

LA
ij∑

l=1

α
(A,l)
ij sij

(
t− τ (A,l)

ij

)
+

∑
{l:pl∈NJ}

γlj

√
P J
l vlij(t) + ηij(t) (2.3)

for the observation interval [T
(A,j)
1 , T

(A,j)
2 ) and for yj ∈ Ai, where α

(A,l)
ij and τ

(A,l)
ij denote,

respectively, the amplitude and the delay of the lth multipath component between the tar-

get node at location xi and the anchor node at location yj, L
A
ij represents the number of

multipaths between the target node at location xi and anchor node at location yj, γlj is the

channel coefficient between the anchor node at location yj and the jammer node located at

pl, and P J
l is the transmit power of the jammer node at position pl. Moreover,

√
P J
l vlij(t)

and ηij(t) are the jammer noise and the measurement noise, respectively. It is assumed

that both of them are independent zero-mean white Gaussian random processes, where the

average power of vlij(t) is equal to one and that of ηij(t) is equal to σ̃j
2. It is modeled that

vlij(t) is independent for all l, i, j and ηij(t) is independent for all i, j due to the presence of

orthogonal channels between target and anchor nodes [25]. Furthermore, the delays of the

paths are characterized by

τ
(A,l)
ij =

1

c

(
‖yj − xi‖2 + b

(A,l)
ij

)
(2.4)

where b
(A,l)
ij ≥ 0 is the range bias of the lth path between the target node located at xi and

the anchor node located at yj. (b
(A,1)
ij = 0 for LOS propagation and b

(A,1)
ij > 0 for NLOS.)

Unlike the expression in (2.2), no clock offsets are considered in (2.4) since target and anchor

nodes are assumed to be synchronized.
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2.4 Eavesdropper Selection Problem

In this section, we assume that there exist only eavesdropper nodes in the environment, i.e.,

NJ = 0, and focus on the eavesdropper selection problem. In this case, the aim is to choose

at most NE locations from set N for eavesdropping purposes so that the location of the

target node is estimated as accurately as possible in the mean-square sense.

For quantifying the location estimation accuracy, the CRLB is used as a performance

metric since the mean-squared error of the maximum likelihood (ML) estimator is asymp-

totically tight to the CRLB in the high SNR regime [103]. Based on the CRLB metric,

the eavesdropper selection problem is investigated in the presence of perfect and imperfect

knowledge of system parameters in the following sections.

2.4.1 Problem Formulation

To formulate the eavesdropper selection problem, we introduce a selection vector zE =

[zE1 zE2 . . . z
E
N ]ᵀ, specified as

zEk =

1, if pk ∈ NE

0, otherwise
(2.5)

where
∑N

k=1 z
E
k ≤ NE. In addition, for the target position i, θi is defined as follows:

θi , [xᵀi ∆i κ
ᵀ
i1 κ

ᵀ
i2 . . .κ

ᵀ
iN ]ᵀ (2.6)

where κik is the vector obtained by concatenating the elements of κ̃ijk vertically, κik =

[κ̃ᵀijk]
ᵀ
j∈Ai

, with

κ̃ijk =


[
α

(E,1)
ijk b

(E,2)
ijk . . . b

(E,LE
ijk)

ijk α
(E,LE

ijk)

ijk

]ᵀ
, if b

(E,1)
ijk = 0,[

b
(E,2)
ijk α

(E,2)
ijk . . . b

(E,LE
ijk)

ijk α
(E,LE

ijk)

ijk

]ᵀ
, otherwise.

for any i, j, k.

It is known that the estimation error vector satisfies [103]:

Eθi
{

(θi − θ̂i)(θi − θ̂i)ᵀ
}
� J−1

θi
(2.7)
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where θ̂i is any unbiased estimate of θi, and Jθi is the Fisher information matrix (FIM) for

the parameter vector θi. From (2.7), the CRLB for estimating the position of the target

node located at xi is obtained as

Eθi
{
‖x̂i − xi‖2

2

}
≥ tr{[J−1

θi
]2×2} (2.8)

where x̂i is any unbiased estimate of xi. It is noted from (2.8) that, for the CRLB calculation,

we should focus on the equivalent Fisher information matrix (EFIM) for xi, which is a 2× 2

matrix denoted by J
(i)
e (xi) such that [J−1

θi
]2×2 =

(
J

(i)
e (xi)

)−1
[99]. Since [Jθi ]2×2 is a function

of both xi and zE, it is convenient to write [Jθi ]2×2 , J
(i)
e (xi, z

E). Hence, we formulate the

proposed eavesdropper selection problem as follows:

min
zE

NT∑
i=1

wi tr
{(

J(i)
e (xi, z

E)
)−1
}

(2.9a)

subject to
N∑
k=1

zEk ≤ NE, (2.9b)

zEk ∈ {0, 1} for k = 1, 2, . . . , N. (2.9c)

Namely, the aim is to select the best locations for eavesdropper nodes for achieving the mini-

mum average CRLB by considering possible target node positions (xi) and their probabilities

(wi).

2.4.2 Theoretical Results and Algorithms

To simplify the notation, let f(zE) represent the objective function in (2.9); that is,

f(zE) ,
NT∑
i=1

wi tr
{(

J(i)
e (xi, z

E)
)−1
}
. (2.10)

In the rest of this section, we first obtain a closed form expression of tr

{(
J

(i)
e (xi, z

E)
)−1
}

for any target location i, and then analyze monotonicity and convexity properties of f(zE)

with respect to zE.

Proposition 2.1: For a given eavesdropper selection vector zE, the CRLB for estimating
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the position of the target node located at xi is given by

tr
{(

J(i)
e (xi, z

E)
)−1
}

=
p̃i(z

E)

r̃i(zE)
(2.11)

where

p̃i(z
E) = 3

∑
(u,k)∈N (i)

L

∑
(v,l)∈N (i)

L

zEk z
E
l λ

(i)
ukλ

(i)
vl p

(i)
k,l, (2.12)

r̃i(z
E) = 4

∑
(u,k)∈N (i)

L

∑
(v,l)∈N (i)

L

∑
(s,m)∈N (i)

L

zEk z
E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
smp

(i)
k,lp

(i)
l,mp

(i)
m,k, (2.13)

λ
(i)
jk =

8πβ2
ij

c2
(1− χ(i)

jk )SNR
(1)
ijk, (2.14)

β2
ij =

∫∞
−∞ f

2|Sij(f)|2 df∫∞
−∞ |Sij(f)|2 df

, (2.15)

SNR
(1)
ijk =

|α(E,1)
ijk |2

∫∞
−∞ |Sij(f)|2 df
2σ2

k

, (2.16)

p
(i)
k,l = sin2

(
φik − φil

2

)
(2.17)

with Sij(f) denoting the Fourier transform of sij(t), χ
(i)
jk being the path overlap coefficient

with 0 ≤ χ
(i)
jk ≤ 1 [99], and φik representing the angle from the ith target location to pk, i.e.,

φik = arctan xi2−pk2
xi1−pk1

(xi = [xi1 xi2]ᵀ, pk = [pk1 pk2]ᵀ).

Proof: In [99, Thm. 1], the EFIM for estimating the location of a single target node is

obtained for synchronized target and anchor nodes. Even though our network model is quite

different from the system model described in Section II of [99], we benefit from the proof

of [99, Thm. 1] in the first part of this proof.

In the proof of [99, Thm.1], vector qk is defined as qk = [cosφk sinφk]
ᵀ. We follow

the same steps as in that proof by replacing vector qk with vector qik, which is defined

as qik = [cosφik sinφik 1]ᵀ.1 Then, we can obtain the EFIM for [xi ∆i]
ᵀ, denoted by

1The reason for using qik instead of qk stems from the fact that in our system model, the number of the
possible target locations is more than one. Also, the additional term 1 in qik compared to qk is due to the
time offset between the target node and the eavesdropper nodes; i.e., due to the ∆i term.
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J
(i)
e (xi,∆i, z

E), as follows:

J(i)
e (xi,∆i, z

E) =


Ki(z

E) Di(z
E) Ci(z

E)

Di(z
E) Ei(z

E) Si(z
E)

Ci(z
E) Si(z

E) Ti(z
E)

 (2.18)

where

Ki(z
E) ,

∑
(j,k)∈N (i)

L

zEk λ
(i)
jk cos2 φik, (2.19)

Ei(z
E) ,

∑
(j,k)∈N (i)

L

zEk λ
(i)
jk sin2 φik, (2.20)

Ci(z
E) ,

∑
(j,k)∈N (i)

L

zEk λ
(i)
jk cosφik, (2.21)

Si(z
E) ,

∑
(j,k)∈N (i)

L

zEk λ
(i)
jk sinφik, (2.22)

Di(z
E) ,

∑
(j,k)∈N (i)

L

zEk λ
(i)
jk sinφik cosφik, (2.23)

Ti(z
E) ,

∑
(j,k)∈N (i)

L

zEk λ
(i)
jk . (2.24)

By applying the Schur complement formula to (2.18), the following expression is obtained:

J(i)
e (xi, z

E) =

[
Ki(z

E) Di(z
E)

Di(z
E) Ei(z

E)

]

−

[
C2
i (zE) Ci(z

E)Si(z
E)

Ci(z
E)Si(z

E) S2
i (z

E)

]
Ti(zE)

(2.25)

Let J
(i)
1 (xi, z

E) and J
(i)
2 (xi, z

E) be defined as the first and second terms in (2.25), i.e.,

J
(i)
1 (xi, z

E) ,

[
Ki(z

E) Di(z
E)

Di(z
E) Ei(z

E)

]
(2.26)

J
(i)
2 (xi, z

E) ,

[
C2
i (zE) Ci(z

E)Si(z
E)

Ci(z
E)Si(z

E) S2
i (z

E)

]
Ti(zE)

(2.27)
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After some algebra, we derive the following expression from (2.25):

tr
{(

J(i)
e (xi, z

E)
)−1
}

=
2
∑

(u,k)∈N (i)
L

∑
(v,l)∈N (i)

L
p

(i)
k,lz

E
k z

E
l λ

(i)
ukλ

(i)
vl∑

(u,k)∈N (i)
L

∑
(v,l)∈N (i)

L

∑
(s,m)∈N (i)

L

q
(i)
k,l,mz

E
k z

E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
sm

(2.28)

where

q
(i)
k,l,m = cosφik sinφil sin(φil − φik)− cosφik sinφim sin(φil − φik)

− cosφik cosφil sinφim(sinφim − sinφik). (2.29)

Based on the trigonometric identity,

sin a+ sin b− sin(a+ b) = 4 sin

(
a

2

)
sin

(
b

2

)
sin

(
a+ b

2

)
we obtain the following relation:

q
(i)
k,l,m + q

(i)
k,m,l + q

(i)
l,k,m + q

(i)
l,m,k + q

(i)
m,l,k + q

(i)
m,k,l = 16p

(i)
k,lp

(i)
l,mp

(i)
m,k . (2.30)

Then, we can rearrange the denominator of (2.28) as follows:∑
(u,k)∈N (i)

L

∑
(v,l)∈N (i)

L

∑
(s,m)∈N (i)

L

q
(i)
k,l,mz

E
k z

E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
sm

(a)
=

16
∑

(u,k)∈N (i)
L

∑
(v,l)∈N (i)

L

l>k

∑
(s,m)∈N (i)

L

m>l

p
(i)
k,lp

(i)
l,mp

(i)
m,kz

E
k z

E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
sm

(b)
=

8

3

∑
(u,k)∈N (i)

L

∑
(v,l)∈N (i)

L

∑
(s,m)∈N (i)

L

p
(i)
k,lp

(i)
l,mp

(i)
m,kz

E
k z

E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
sm (2.31)

where (a) follows from (2.30), and (b) is due to the symmetry in the summand term,

p
(i)
k,lp

(i)
l,mp

(i)
m,kz

E
k z

E
l z

E
mλ

(i)
ukλ

(i)
vl λ

(i)
sm. By replacing the denominator of (2.28) with the final ex-

pression in (2.31), the CRLB expression in (2.11)–(2.13) is obtained. �

In Proposition 2.1, the CRLB is expressed in closed-form as a ratio of two polynomials in

terms of the eavesdropper selection vector, which brings benefits in terms of computational

cost. For example, it facilitates the calculation of the solution of (2.9) via an exhaustive

search over all possible zE vectors when N is sufficiently small. Also, it is noted that the

proposed CRLB expression in Proposition 2.1 depends only on the LOS signals (see (2.11)–

(2.13)), which is in accordance with the results in the literature (e.g., [99, Prop. 1] and [104]).
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Remark 2.1: It is observed from the CRLB expression in (2.11)–(2.13) that if all λ
(i)
jk ’s are

scaled by the same nonnegative real number ξ, tr

{(
J

(i)
e (xi, z

E)
)−1
}

is scaled by 1/ξ for all

i = 1, 2, . . . , NT . Therefore, the optimal eavesdropper selection strategy (i.e., the solution of

(2.9)) remains the same in such cases.

Remark 2.2: For the eavesdropper selection problem, the probability distribution of the

target node positions is assumed to be known. Also, it is assumed that LOS/NLOS conditions

for possible target-eavesdropper positions and λ
(i)
jk ’s are known. Although these assumptions

may not hold in some practical scenarios, they facilitate calculation of theoretical limits on

the best achievable performance of eavesdropper nodes [6]. If eavesdropper nodes are smart

and can learn all the environmental parameters, the localization accuracy derived in this work

can be achieved; otherwise, the localization accuracy (hence the eavesdropping capability)

is bounded by the obtained results.2 In addition, when the λ
(i)
jk terms and LOS/NLOS

conditions are not known perfectly, the robust formulation of the eavesdropper selection

problem in Section 2.4.3 can be employed to provide a more practical formulation (please

also see Remark 2.6).

The following lemma characterizes the monotonicity of f(zE) in (2.10) (i.e., the objective

function in (2.9)) with respect to zE, which is also utilized in the analysis in Section 2.4.3

(Lemma 2.2).

Lemma 2.1: f(zE) is non-increasing in zE.

Proof: As wi ≥ 0 in (2.10), the aim is to show that tr

{(
J

(i)
e (xi, z

E)
)−1
}

is non-increasing

in zE. Since tr

{(
J

(i)
e (xi, z

E)
)−1
}

is non-increasing with respect to J
(i)
e (xi, z

E), it is sufficient

to prove the following implication:

zE � w =⇒ J(i)
e (xi, z

E) � J(i)
e (xi,w) (2.32)

In other words, from (2.25), we must prove that

J
(i)
1 (xi, z

E)− J
(i)
1 (xi,w)− J

(i)
2 (xi, z

E) + J
(i)
2 (xi,w) � 0

2The tightness of the provided bounds in the presence of imperfect information about the distribution of
the target node location is evaluated in Section 2.7.2.
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It is noted that for any y = [y1 y2]ᵀ ∈ R2, the following equalities hold:

yᵀJ
(i)
1 (xi, z

E)y = y2
1Ki(z

E) + 2y1y2Di(z
E) + y2

2Ei(z
E), (2.33)

yᵀJ
(i)
2 (xi, z

E)y =

(
y1Ci(z

E) + y2Si(z
E)
)2

Ti(zE)
· (2.34)

Therefore, by combining (2.33) and (2.34), the following relation can be obtained:

yᵀ(J(i)
e (xi, z

E)− J(i)
e (xi,w))y = hi(z

E)− hi(w) (2.35)

where

hi(z
E) , y2

1Ki(z
E) + 2y1y2Di(z

E) + y2
2Ei(z

E)−
(
y1Ci(z

E) + y2Si(z
E)
)2

Ti(zE)
· (2.36)

Hence, it is sufficient to show that hi(z
E) is a non-decreasing function of zE. It is noted that

∂hi(z
E)

∂zEk
= λ̄

(i)
k (y1 cosφik + y2 sinφik)

2 − λ̄(i)
k

2(y1Ci(z
E) + y2Si(z

E))(y1 cosφik + y2 sinφik)

Ti(zE)

+ λ̄
(i)
k

(y1Ci(z
E) + y2Si(z

E))2

Ti(zE)2
(2.37)

where λ̄
(i)
k is given by λ̄

(i)
k =

∑
j:(j,k)∈N (i)

L
λ

(i)
jk ≥ 0. Then, via the arithmetic mean-geometric

mean inequality, it is seen that
∂hi(z

E)

∂zEk
≥ 0 (2.38)

for any k = 1, 2, . . . , N . Therefore, we have the desired conclusion that f(zE) is non-

increasing in zE. �

This result is actually quite intuitive as one expects improved performance for estimating

the location of a target node as the number of eavesdropper nodes increases. Next, we prove

the convexity of the objective function in (2.9) with respect to zE.

Proposition 2.2: f(zE) in (2.10) is a convex function of zE.

Proof:As wi ≥ 0 for i = 1, 2, . . . , NT in (2.10), it is sufficient to prove that

tr

{(
J

(i)
e (xi, z

E)
)−1
}

is a convex function of zE. It is known that tr{X−1} is a convex

function of X for any positive semi-definite X [105]. Also, tr{X−1} is non-increasing in X.

Therefore, it is sufficient to prove that J
(i)
e (xi, z

E) is a concave function of zE.
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To explain why this is sufficient, we define function g as g(X) , tr{X−1}. Then, we are

interested in the convexity of g(J
(i)
e (xi, z

E)) with respect to zE. In other words, we should

prove that for any ν ∈ [0, 1], and zE,w ∈ RN ,

g(J(i)
e (xi, νz

E + (1− ν)w)) ≤ νg(J(i)
e (xi, z

E)) + (1− ν)g(J(i)
e (xi,w)). (2.39)

If J
(i)
e (xi, z

E) is a concave function of zE, then J
(i)
e (xi, νz

E + (1− ν)w) ≥ νJ
(i)
e (xi, z

E) + (1−
ν)J

(i)
e (xi,w) holds. Since g(·) is non-increasing and convex in its argument, it then leads to

(2.39).

In order to prove that J
(i)
e (xi, z

E) is a concave function of zE, we should show that for

any γ ∈ [0, 1] and zE,w ∈ RN , the following relation is true:

J(i)
e (xi, γzE + (1− γ)w) � γJ(i)

e (xi, z
E) + (1− γ)J(i)

e (xi,w). (2.40)

Based on the relations in (2.25)–(2.27), the inequality in (2.40) can be reduced to the fol-

lowing:

γJ
(i)
2 (xi, z

E) + (1− γ)J
(i)
2 (xi,w) � J

(i)
2 (xi, γzE + (1− γ)w) (2.41)

since J
(i)
1 (xi, z

E) is linear in zE.

It is deduced from (2.34) that for proving (2.40), it is sufficient to show that

γ

(
y1Ci(z

E) + y2Si(z
E)
)2

Ti(zE)
+ (1− γ)

(
y1Ci(w) + y2Si(w)

)2

Ti(w)

≥
(
y1Ci(s) + y2Si(s)

)2

Ti(s)
(2.42)

where s = γzE + (1−γ)w. By applying the Cauchy-Schwarz inequality to the left-hand-side

of (2.42), the following inequality is obtained:

γ

(
y1Ci(z

E) + y2Si(z
E)
)2

Ti(zE)
+ (1− γ)

(
y1Ci(w) + y2Si(w)

)2

Ti(w)
≥(

γ
(
y1Ci(z

E) + y2Si(z
E)
)

+ (1− γ)
(
y1Ci(w) + y2Si(w)

))2(
γTi(zE) + (1− γ)Ti(w)

) (2.43)

As Ci(·), Si(·), and Ti(·) are linear in their arguments, (2.43) is actually the same as (2.42),

which was to be proved. Hence, the desired conclusion in reached. �
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As a consequence of Proposition 2.2, the optimization problem in (2.9) becomes a convex

optimization problem by relaxing the last constraint in (2.9c). Furthermore, it is deduced

from Lemma 2.1 that if z∗ = [z∗1 z
∗
2 . . . z

∗
N ]ᵀ is a solution of (2.9), then (2.9b) must be satisfied

with equality, i.e.,
∑N

j=1 z
∗
j = NE must hold. Therefore, the relaxed version of (2.9) can be

formulated as follows:

min
zE

NT∑
i=1

witr
{(

J(i)
e (xi, z

E)
)−1
}

(2.44a)

subject to
N∑
k=1

zEk = NE, (2.44b)

0 ≤ zEk ≤ 1 for k = 1, 2, . . . , N. (2.44c)

As (2.44) is a convex problem, its solution can be obtained via convex optimization tools

[105] (called the relaxed algorithm in Section 2.7). After finding the solution of (2.44), we

propose the following two algorithms to obtain a solution of the original problem in (2.9).

First, we can simply set the largest NE components of the solution of (2.44) to one, and the

others to zero (called the largest-NE algorithm in Section 2.7). Second, starting from this

solution, we can use a modified version of the Local Optimization algorithm discussed in [106]

and obtain the solution of (2.9) (called the proposed swap algorithm in Section 2.7). The

details of the proposed swap algorithm is provided in Algorithm 1, where z∗ and z∗largest-NE

denote the optimal selection vectors obtained by the relaxed algorithm and the largest-NE

algorithm, respectively, Nmax
swap is the upper limit for the number of swap operations, and

µ determines the stopping criterion. While performing one swap operation, one checks

whether there is a decrease in the objective function by simply swapping one of the NE

selected positions with one of the N −NE positions that are not selected.
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Algorithm 1 Proposed Swap Algorithm
Input: z∗, z∗largest-NE

, µ,Nmax
swap

Output: z∗swap.

1: Set boolean b ← true, c←0

2: if |f(z∗)− f(z∗largest-NE
)| ≤ µf(z∗) then

3: b ← false, z∗swap ← z∗largest-NE

4: else

5: ztemp ← z∗largest-NE

6: end if

7: while b is true do

8: c ← c + 1

9: Obtain all NE(N −NE) possible selection vectors by applying one swap operation to

ztemp, and compute the corresponding objectives. Let ztemp-2 be the selection vector

among those vectors which yields the minimum objective.

10: if |f(ztemp)− f(ztemp-2)| ≤ µf(ztemp) & c < Nmax
swap then

11: b ← false, z∗swap ← ztemp-2.

12: else if c = Nmax
swap then

13: b ← false, z∗swap ← ztemp-2.

14: else

15: ztemp ← ztemp-2

16: end if

17: end while

Remark 2.3: It should be noted that the proposed swap algorithm presented in Algo-

rithm 1 reduces to the proposed largest-NE algorithm if (i) the objective value achieved

by the largest-NE algorithm is sufficiently close to the bound specified by the relaxed al-

gorithm, or (ii) the objective value achieved by the proposed swap algorithm after the first

swap operation is the same as that achieved by the largest-NE algorithm.

29



2.4.3 Robust Eavesdropper Selection Problem

In the previous section, it is assumed that the eavesdropper nodes have the perfect knowl-

edge of {λ(i)
jk} (see (2.11) and (2.14)). In this section, we propose a robust eavesdropper

selection problem in the presence of imperfect knowledge about the system parameters

by introducing some uncertainty in {λ(i)
jk}. For simplicity of notation, we assume that

Ai = {y1,y2, . . . ,yNA
}, i.e., all the anchor nodes are connected to the ith target position for

any i. (The proposed approach can easily be extended to scenarios in which this assumption

does not hold.)

To formulate a robust version of the eavesdropper selection problem, we first define ΛE

as follows:

ΛE ,
[
λ

(1)
E λ

(2)
E . . .λ

(NT )
E

]
,

where

λ
(i)
E ,

[
λ

(i)
11 . . . λ

(i)
1N λ

(i)
21 . . . λ

(i)
2N . . . λ

(i)
NA1 . . . λ

(i)
NAN

]ᵀ
.

We also introduce the estimated versions of λ
(i)
E as λ̂

(i)
E for i = 1, 2, . . . , NT , which are given

by

λ̂
(i)
E ,

[
λ̂

(i)
11 . . . λ̂

(i)
1N λ̂

(i)
21 . . . λ̂

(i)
2N . . . λ̂

(i)
NA1 . . . λ̂

(i)
NAN

]ᵀ
(2.45)

with λ̂
(i)
jk denoting the estimate of λ

(i)
jk for j = 1, . . . , NA and k = 1, . . . , N . These estimated

values represent the imperfect knowledge of the λ
(i)
jk parameters at the eavesdropper nodes.

Let ∆λ
(i)
E denote the error vector that generates the uncertainty; that is,

λ̂
(i)
E = λ

(i)
E + ∆λ

(i)
E (2.46)

with

∆λ
(i)
E ,

[
∆λ

(i)
11 . . . ∆λ

(i)
1N ∆λ

(i)
21 . . . ∆λ

(i)
2N

. . .∆λ
(i)
NA1 . . . ∆λ

(i)
NAN

]ᵀ
(2.47)

for i = 1, 2, . . . , NT . Also, let ∆ΛE and Λ̂E be the matrices containing the error vectors and

the estimation vectors, respectively, as follows:

∆ΛE ,
[
∆λ

(1)
E ∆λ

(2)
E . . .∆λ

(NT )
E

]
(2.48)
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Λ̂E ,
[
λ̂

(1)
E λ̂

(2)
E . . . λ̂

(NT )
E

]
. (2.49)

In this scenario, the notation for the objective function f(zE) is modified as f(zE,ΛE) to

emphasize the dependence on Λ (since ∆ΛE becomes another parameter of interest in the

presence of uncertainty).

As in [107–109], we employ a bounded error model for the uncertainty. In particular, for

the eavesdropper selection problem in the presence of parameter uncertainty, the following

model is assumed for the error matrix ∆ΛE:

∆ΛE ∈ E ,
{
∆λ(i) ∈ RN×NA : |∆λ(i)

jk | ≤ δ
(i)
jk ,∀i, j, k

}
(2.50)

where {δ(i)
jk }

NT ,NA,N
i=1,j=1,k=1 determine the size of the uncertainty region E with δ

(i)
jk ≥ 0 for all i, j,

and k.

The aim is to minimize the worst-case CRLB as in [6] and [109]. Therefore, under this

setup, the proposed optimization problem can be formulated as

min
zE

max
∆ΛE∈E

f(zE,ΛE) (2.51a)

subject to
N∑
k=1

zEk = NE, (2.51b)

0 ≤ zEk ≤ 1 for k = 1, 2, . . . , N, (2.51c)

ΛE = Λ̂E −∆ΛE. (2.51d)

To solve the optimization problem in (2.51), the following lemma is utilized.

Lemma 2.2: f(zE,ΛE) is non-increasing in λ(i) for all i = 1, 2, . . . , NT .

Proof: It is sufficient to show that tr

{(
J

(i)
e (xi, z

E)
)−1
}

is non-increasing in λ
(i)
E for

any i = 1, 2, . . . , NT (see (2.10)). As a consequence of Proposition 2.1, we can immediately

observe that tr

{(
J

(i)
e (xi, z

E)
)−1
}

is non-increasing in λ
(i)
E if and only if tr

{(
J

(i)
e (xi, z

E)
)−1}

is non-increasing in zE due to the symmetric expression in (2.11). (That is, the elements of

λ
(i)
E and zE affect the expression in (2.11) in the same manner.) Therefore, via Lemma 2.1,

we obtain the desired result. �
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Let the value of ∆ΛE that maximizes f(zE,ΛE) over set E be denoted as ∆Λ∗E and let

{∆λ(i),∗
jk }i,j,k represent the elements of ∆Λ∗E (see (2.47) and (2.48)). Based on Lemma 2.2,

it is obtained that

∆λ
(i),∗
jk = δ

(i)
jk . (2.52)

Therefore, solving (2.51) is equivalent to solving the following optimization problem:

min
zE

f(zE, Λ̂E −∆Λ∗E) (2.53a)

subject to
N∑
k=1

zEk = NE, (2.53b)

0 ≤ zEk ≤ 1 for k = 1, 2, . . . , N. (2.53c)

It is noted that (2.53) is in the form of (2.44). Thus, the solution approaches discussed

for the eavesdropper selection problem in the previous section can also be applied to this

problem.

2.5 Jammer Selection Problem

In this section, we focus on the jammer selection problem under the assumption that there

exist only jammer nodes in the environment, i.e., NE = 0. The aim is to choose at most NJ

locations from the set N for jamming purposes so that the target localization performance of

the anchor nodes is degraded as much as possible. By using the CRLB of the anchor nodes

related to the estimation of target node positions as the performance metric, the jammer

selection problem is investigated in the presence and absence of perfect knowledge about the

system parameters.

2.5.1 Problem Formulation

Let zJ = [zJ1 . . . zJN ]ᵀ denote a selection vector defined as

zJk =

1, if pk ∈ NJ

0, otherwise
(2.54)
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where
∑N

k=1 z
J
k ≤ NJ . Via similar steps to those in [6, 25, 99], the EFIM related to the

positioning of the target node located at xi by the anchor nodes can be obtained as follows:

J̃(i)
e (xi, z

J) =
∑
j∈A(i)

L

λ̃
(i)
j

σ̃2
j +

∑N
k=1 z

J
kP

J
k |γkj|

2
ϕijϕ

ᵀ
ij (2.55)

In (2.55), λ̃
(i)
j corresponds to λij in [25, Eq. 3], ϕij = [cosϕij sinϕij]

ᵀ, and ϕij is the angle

from the ith target location to yj, i.e., ϕij = arctan
xi2−yj2
xi1−yj1 , where yj , [yj1 yj2]ᵀ.

Based on (2.55), we formulate the proposed jammer selection problem as follows:

max
zJ

NT∑
i=1

wi tr

{(
J̃(i)
e (xi, z

J)
)−1
}

(2.56a)

subject to
N∑
k=1

zJk ≤ NJ ,
N∑
k=1

zJkP
J
k ≤ PT , (2.56b)

zJk ∈ {0, 1} for k = 1, 2, . . . , N (2.56c)

where PT is total power budget.

For the jammer selection problem in (2.56), the distribution of the target node positions

is assumed to be known. It is also assumed that the anchor node positions, LOS/NLOS

conditions for possible target-anchor positions, and λ̃
(i)
j ’s are known. Similar statements to

those in Remark 2.2 can be made for the jammer selection problem, as well. As stated

in [24], jammer nodes can obtain information about the localization parameters by vari-

ous means such as using cameras to learn the locations of anchor nodes, performing prior

measurements in the environment to form a database for the channel parameters, and lis-

tening to signals between anchor and target nodes. When this information is inaccurate,

the robust formulation of the jammer selection problem in Section 2.5.3 can be employed

by considering uncertainty in the knowledge of λ̃
(i)
j ’s and LOS/NLOS conditions (please also

see Remark 2.6). In addition, the effects of uncertainty in the anchor node positions and in

the distribution of the target node position can be evaluated as in Section 2.7.2.
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2.5.2 Theoretical Results

To simplify the notation, let f̃(zJ) and {gij(zJ)}NT ,NA
i=1,j=1 be defined as

f̃(zJ) ,
NT∑
i=1

wi tr

{(
J̃(i)
e (xi, z

J)
)−1
}
, (2.57)

gij(z
J) ,

λ̃
(i)
j

σ̃2
j +

∑N
k=1 z

J
kP

J
k |γkj|

2
· (2.58)

In the rest of this section, we analyze the convexity and monotonicity properties of f̃ with

respect to zJ .

Lemma 2.3: f̃(zJ) is non-decreasing in zJ .

Proof: It is observed from the expression in (2.55) that if zJ � w̃, then J̃
(i)
e (xi, w̃) �

J̃
(i)
e (xi, z

J) holds for any i = 1, 2, . . . , NT . Since the function tr{(·)−1} is non-increasing in

its argument and wi ≥ 0 for any i, it is concluded that f̃(zJ) in (2.57) is non-decreasing in

zJ . �

Lemma 2.4: gij(z
J) is a convex function of zJ for any i, j.

Proof: From (2.58), the second-order derivatives are calculated as

∂2gij(z
J)

∂zJk ∂z
J
l

=
2λ̃

(i)
j P

J
k P

J
l |γkj|

2 |γlj|2

(σ̃2
j +

∑N
l=1 z

J
l P

J
l |γlj|

2)3
· (2.59)

Define a vector as vj , [P J
1 |γ1j|2 . . . P J

N |γNj|
2]ᵀ for j = 1, 2, . . . , NA. Then, for any y ∈ RN ,

it follows from (2.59) that

yᵀ∇2gij(z
J)y =

2λ̃
(i)
j

(σ̃2
j +

∑N
l=1 z

J
l P

J
l |γlj|

2)3
yᵀvjv

ᵀ
jy ≥ 0. (2.60)

Therefore, ∇2gij(z
J) is a positive semi-definite matrix; hence, gij(z

J) is a convex function of

zJ . �

Proposition 2.3: f̃(zJ) is a concave function zJ .

Proof: As wi ≥ 0 for i = 1, 2, . . . , NT , it is sufficient to prove that tr

{(
J̃

(i)
e (xi, z

J)
)−1
}
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is a concave function of zJ for any i. We know that tr

{(
J̃

(i)
e (xi, z

J)
)−1
}

is concave with

respect to zJ if and only if tr

{
−
(
J̃

(i)
e (xi, z

J)
)−1
}

convex with respect to zJ . Hence, two

auxiliary functions are defined as follows:

c̃ : R2×2 → R such that c̃(X) = tr
{
X−1

}
(2.61)

ci : RN → R2×2 such that ci(z
J) = −J̃(i)

e (xi, z
J). (2.62)

Based on the preceding definitions, tr

{
−
(
J̃

(i)
e (xi, z

J)
)−1
}

= c̃(ci(z
J)). It is known that

c̃(·) is convex and non-increasing in its argument [105]. Thus, it is sufficient to prove that

ci(z
J) is concave with respect to zJ , or equivalently, J̃

(i)
e (xi, z

J) is convex with respect to zJ .

To that aim, we should prove that for any zJ , w̃ ∈ RN and γ̃ ∈ [0, 1], the following relation

holds:

γ̃J̃(i)
e (xi, z

J) + (1− γ̃)J̃(i)
e (xi, w̃) � J̃(i)

e (xi, γ̃zJ + (1− γ̃)w̃). (2.63)

For any y = [y1 y2]ᵀ, it follows from (2.55) and (2.58) that

yᵀJ̃(i)
e (xi, z

J)y =
∑
j∈AL

i

gij(z
J)(y1 cosϕij + y2 sinϕij)

2. (2.64)

By combining Lemma 2.4 and (2.64), the desired conclusion is reached. �

From Lemma 2.3, we can conclude that if z∗ = [z∗1 z
∗
2 . . . z

∗
N ]ᵀ is a solution of (2.56), then

(2.56b) must be satisfied with equality, i.e.,
∑N

k=1 z
∗
k = NJ must hold. By relaxing the last

constraint in (2.56c), the following optimization problem is obtained:

max
zJ

NT∑
i=1

wi tr

{(
J̃(i)
e (xi, z

J)
)−1
}

(2.65a)

subject to
N∑
k=1

zJk = NJ ,
N∑
k=1

zJkP
J
k ≤ PT , (2.65b)

0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N. (2.65c)

Since the objective function in (2.65a) is concave due to Proposition 2.3 and all the con-

straints in (2.65b) and (2.65c) are affine, we reach the conclusion that (2.65) is a convex

optimization problem. Thus, it can be solved via convex optimization tools for finding its

globally optimal solution.

35



After finding the solution of (2.65), the largest-NJ algorithm and the proposed swap

algorithm can be used for finding the solution of (2.56) as in the eavesdropper selection

problem. However, in this case, we set the largest NJ components of the solution obtained

from (2.65) to one, and while implementing the proposed swap algorithm, we check whether

there is an increase in the objective function by simply swapping one of the NJ selected

positions with one of the N − NJ positions that are not selected. This discussion will lead

us to the following remark.

Remark 2.4: For the formulation of (2.65), it is assumed that the transmit powers of

the jammer nodes are given (fixed). If {P J
k }Nk=1 are considered as optimization variables as

well, the following problem can be formulated (cf. (2.65)):

max
zJ ,q̃

NT∑
i=1

wi tr

{( ∑
j∈A(i)

L

g̃ij(q̃)ϕijϕ
ᵀ
ij

)−1}
(2.66a)

subject to
N∑
k=1

zJk = NJ ,
N∑
l=1

q̃l ≤ PT , (2.66b)

0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N, (2.66c)

0 ≤ q̃l ≤ zJl P
peak
l for l = 1, 2, . . . , N (2.66d)

where q̃l = zJl P
J
l , q̃ = [q̃1 . . . q̃N ]ᵀ, g̃ij(q̃) is defined as (see (2.55))

g̃ij(q̃) ,
λ̃

(i)
j

σ̃2
j +

∑N
l=1 q̃l |γlj|

2
, (2.67)

and P peak
l is the peak power limit for the jammer node located at pl. It is observed that all

the constraints are linear with respect to q̃ and zJ in (2.66). Furthermore, as a corollary

of Proposition 2.3, one can conclude that the objective function in (2.66a) is a concave

function of q̃. (This holds since there are no assumptions about {P J
l }Nl=1 in Proposition 2.3

while proving the concavity of the objective function f̃(zJ) with respect to zJ .) Therefore,

it is concluded that the optimization problem in (2.66) is convex, as well. This implies that

the joint jammer selection and jammer power optimization problem can be solved via the

convex problem in (2.66) (after relaxing the selection vector).

Remark 2.5: As a special case of (2.66), it can be shown that the following problem is
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also convex.

max
q̃

NT∑
i=1

wi tr

{( ∑
j∈A(i)

L

λ̃
(i)
j

σ̃2
j +

∑N
l=1 q̃l |γlj|

2
ϕijϕ

ᵀ
ij

)−1}

s.t.
N∑
j=1

q̃j ≤ PT , 0 ≤ q̃l ≤ P peak
l for l = 1, 2, . . . , N. (2.68)

It is noted that this problem is in the same form as the problem discussed in [25, Eq. 9].

In [25], the convexity of this problem is not taken into account. Instead, a series of geometric

programming approximations are proposed in order to solve the optimization problem. Since

the problem [25, Eq. 9] is in fact convex, it can also be solved via convex optimization tools.

2.5.3 Robust Jammer Selection Problem

In the previous section, the jammer nodes are assumed to have the perfect knowledge of

{λ̃(i)
j }

NT ,NA
i=1,j=1 in (2.55). Similar to Section 2.4.3, some uncertainty in {λ̃(i)

j }
NT ,NA
i=1,j=1 is introduced

for a robust formulation. (No uncertainty is considered for |γkj|2’s in (2.55) since they mainly

depend on the known positions of the jammer and anchor nodes.) For simplicity, it is assumed

that Ai = {y1,y2, . . . ,yNA
}, i.e., all the anchor nodes are connected to the ith target position

for any i.

To formulate the robust jammer selection problem, we first define ΛJ ,

[λ
(1)
J λ

(2)
J . . .λ

(NT )
J ], where λ

(i)
J , [λ̃

(i)
1 λ̃

(i)
2 . . . λ̃

(i)
NA

]ᵀ for i = 1, . . . , NT .

The estimated versions of λ
(i)
J are defined as λ̂

(i)
J for i = 1, 2, . . . , NT , where λ̂

(i)
J denotes

the estimate of λ
(i)
J . Let ∆λ

(i)
J represent the error vector that generates uncertainty, that is,

λ̂
(i)
J = λ

(i)
J + ∆λ

(i)
J with

∆λ
(i)
J , [∆λ̃

(i)
1 ∆λ̃

(i)
2 . . .∆λ̃

(i)
NA

]ᵀ (2.69)

for i = 1, 2, . . . , NT . Also, ∆ΛJ and Λ̂J are defined as

∆ΛJ , [∆λ
(1)
J ∆λ

(2)
J . . .∆λ

(NT )
J ], (2.70)

Λ̂J , [λ̂
(1)
J λ̂

(2)
J . . . λ̂

(NT )
J ]. (2.71)
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In this scenario, the notation for the objective function f̃(zJ) is modified as f̃(zJ ,ΛJ) in

order to emphasize the dependence on ΛJ . We use the same bounded error model as in

Section 2.4.3 for the error matrix ∆ΛJ :

∆ΛJ ∈ Ẽ ,
{
∆λ

(i)
J ∈ RNA : |∆λ̃(i)

j | ≤ δ̃
(i)
j ,

∀i = 1, 2, . . . , NT and ∀j = 1, 2, . . . , NA

}
(2.72)

where {δ̃(i)
j }

NT ,NA
i=1,j=1 determine the size of the uncertainty region Ẽ with δ̃

(i)
j ≥ 0 for all i =

1, 2, . . . , NT and j = 1, 2, . . . , NA. The aim is to maximize the minimum CRLB that can

be achieved in Ẽ . Therefore, under this setup, the proposed optimization problem can be

formulated as

max
zJ

min
∆ΛJ∈Ẽ

f̃(zJ ,ΛJ) (2.73a)

subject to
N∑
k=1

zJk = NJ ,
N∑
k=1

zJkP
J
k ≤ PT , (2.73b)

0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N, (2.73c)

ΛJ = Λ̂J −∆ΛJ . (2.73d)

To solve the optimization problem in (2.73), the following lemma is utilized. To solve the

optimization problem in (2.73), the following lemma is utilized.

Lemma 2.5: f̃(zJ ,ΛJ) is non-increasing in λ
(i)
J for all i = 1, 2, . . . , NT .

Proof: It suffices to show that tr

{(
J̃

(i)
e (xi, z

J)
)−1
}

is non-increasing in λ
(i)
J for any

i = 1, 2, . . . , NT , which is evident from (2.55). �

Let the value of ∆ΛJ that minimizes f̃(zJ ,ΛJ) over set Ẽ be denoted as ∆Λ∗J and let

{∆λ̃(i),∗
j }i,j represent the elements of ∆Λ∗J (see (2.69) and (2.70)). Based on Lemma 2.5, it

is obtained that Therefore, solving (2.73) is equivalent to solving the following optimization

problem:

max
zJ

f̃(zJ , Λ̂J −∆Λ∗J) (2.74a)

subject to
N∑
k=1

zJk = NJ ,

N∑
k=1

zJkP
J
k ≤ PT , (2.74b)

0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N. (2.74c)
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This problem is exactly in the same form as the problem in (2.65), hence, it is a convex

optimization problem. Therefore, the solution methods proposed for the jammer selection

problem can also be used for the problem in (2.74).

Remark 2.6: The imperfect knowledge of LOS/NLOS conditions can be incorporated

into the λ
(i)
jk and λ̃

(i)
j parameters in Sections 2.4 and 2.5. (In the case of a NLOS link, the

corresponding λ
(i)
jk and λ̃

(i)
j parameters become zero; i.e., no position related information

is gathered from that link.) Hence, the cases with imperfect knowledge of LOS/NLOS

conditions can be treated in the robust eavesdropper and jammer selection approaches in

Sections 2.4.3 and 2.5.3.

2.6 Joint Eavesdropper and Jammer Selection

In this section, we consider the eavesdropper and jammer selection problems jointly and

place jammer and eavesdropper nodes by considering both the localization performance of

the anchor nodes (which is to be degraded) and the accuracy of the eavesdropper nodes

for estimating the location of the target node (which is to be enhanced). In this part, it is

assumed that the jammer nodes do not cause any interference at the eavesdropper nodes;

e.g., by using directional antennas towards the anchor nodes. In addition, we make the same

assumptions as in the eavesdropper selection problem and the jammer selection problem.

Based on the selection vectors zE and zJ , the joint eavesdropper and jammer selection

problem can be formulated as

max
zJ ,zE

f̃(zJ) (2.75a)

subject to f(zE) ≤ ρ,
N∑
k=1

zEk = NE, (2.75b)

N∑
k=1

zJk = NJ ,
N∑
k=1

zJkP
J
k ≤ PT , (2.75c)

zEk ∈ {0, 1} for k = 1, 2, . . . , N (2.75d)

zJk ∈ {0, 1} for k = 1, 2, . . . , N (2.75e)

zEk z
J
k = 0 for k = 1, 2, . . . , N (2.75f)
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where f̃(zJ) is as in (2.57), f(zE) is given by (2.10), and ρ is a given accuracy threshold

related to eavesdropping. The last constraint (2.75f) guarantees that a node can be selected

either as an eavesdropper or as a jammer. By relaxing the constraints in (2.75d) and (2.75e),

and modifying (2.75f), we obtain the following optimization problem:

max
zJ ,zE

f̃(zJ) (2.76a)

subject to f(zE) ≤ ρ,

N∑
k=1

zEk = NE, (2.76b)

N∑
k=1

zJk = NJ ,

N∑
k=1

zJkP
J
k ≤ PT , (2.76c)

0 ≤ zEk ≤ 1 for k = 1, 2, . . . , N (2.76d)

0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N (2.76e)

0 ≤ zEk + zJk ≤ 1 for k = 1, 2, . . . , N. (2.76f)

As consequences of Proposition 2.2 and 2.3, it is noted that the optimization problem (2.76)

is a convex optimization problem. The selection of ρ depends on the requirements in a

given scenario. For instance, if learning the positions of the target nodes is more important

than jamming the localization network, ρ should be small. Alternatively, one can try to

minimize f(zE) while keeping f̃(zJ) above a certain threshold. From Proposition 2.2 and

2.3 it can be argued that the resulting problem would also be convex. Hence, by using convex

optimization tools, the solution of (2.76) or its alternative version can be obtained. Then,

starting from that solution, the largest-NJ (or, largest-NE) and swap algorithms can be used

to obtain the solution of (2.75) or its alternative version.

Remark 2.7: In this chapter, the eavesdropper selection, the jammer selection, the joint

eavesdropper and jammer selection problems and their robust versions are formulated based

on the CRLB expressions. Since the CRLB expressions provide tight lower bounds in the

high SNR regime, by optimizing the CRLB expressions we also optimize the corresponding

estimators for each problem for high SNRs. In the low-SNR regime, since the localization

accuracy is low, the optimal selection problems do not have practical importance. This is

the main reasoning behind optimizing the CRLB expressions.
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2.7 Simulation Results

In this section, simulations are conducted to investigate the performance of the pro-

posed approaches. We consider a wireless source localization network, in which the tar-

get node is located at one of the 121 possible positions with equal probabilities (i.e.,

1/121). In particular, the set of possible target positions is given by {xi}121
i=1 = {[2m, 2n] |

−5 ≤ m,n ≤ 5,m, n ∈ Z} meters. Also, there are 10 anchor nodes at locations

{yj}10
j=1 ={[18 cos(ψj), 18 sin(ψj)] | ψj = 2π(j − 1)/10, j = 1, 2, . . . , 10} meters. In addi-

tion, there exists 100 possible positions for the eavesdropper and jammer nodes which are

selected uniformly from the region R = ([20, 50]× [−50, 50])∪ ([−50,−20]× [−50, 50]) ∪
([−20, 20]× [−50,−30])∪([−20, 20]× [30, 50]) meters. Such a region is selected in order to

keep eavesdropper/jammer nodes away from the localization network by considering a prac-

tical application scenario as in Section 2.1. Figure 2.1 illustrates the positions of the target

and anchor nodes, as well as the possible positions for the eavesdropper and jammer nodes.

In the simulations, we consider the eavesdropper selection problem, the jammer selection

problem, and the joint eavesdropper and jammer selection problem, given by (2.9), (2.56),

and (2.75), respectively. For the problem in (2.75), we assume that NE +NJ = N . In other

words, we have zEk = 1 − zJk for any k, for the joint eavesdropper and jammer selection

problem.

The following algorithms are investigated for performance comparisons:

� Relaxed Algorithm: The relaxed versions of (2.9), (2.56), and (2.75) (see (2.44), (2.65),

and (2.76)) are solved via the fmincon(·) command of MATLAB by using the interior

point algorithm, which has polynomial-time complexity in the worst case, and is very fast

in practice. The solution of (2.44) provides a lower bound for (2.9), whereas the solutions

of (2.65) and (2.75) provide upper bounds for (2.56) and (2.75), respectively.

� Largest-NE Algorithm: We set the largest NE components of the solution of (2.44) to one

and the others to zero, and we evaluate the performance of this resulting selection vector

using the expression in (2.11).

� Largest-NJ Algorithm: In this algorithm, we set the largest NJ components of the solution
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of (2.65) to one, and the others to zero. For the problem in (2.75), if the relaxed solution

pair obtained from (2.76) is denoted as (zErelaxed, z
J
relaxed), we simply set the largest NJ

components of zJrelaxed to one and the others to zero. The resulting vector is denoted as

zJlargest, and zElargest is defined as 1−zJlargest, where 1 is the vector of ones. (The solution pair

(zElargest, z
J
largest) may not be feasible for (2.75) unless the threshold value, ρ, is sufficiently

large.)

� Proposed Swap Algorithm: In this algorithm, we start from the solutions obtained from the

largest-NE or the largest-NJ algorithms. The swap operation is performed as explained in

Sections 2.4 and 2.5, the details of which are given in Algorithm 1. In all the simulations,

µ in Algorithm 1 is selected as 0.01. During one swap operation, the number of objective

function evaluations is given by NE(N−NE). In other words, the total number of objective

evaluations is upper bounded by Nmax
swap(N − NE)NE (similarly for the jammer selection

problem).

� Swap Algorithm with Random Initialization: This algorithm is considered for comparison

purposes similar to the local optimization algorithm in [110]. In this algorithm, we use the

proposed swap algorithm (Algorithm 1) with arbitrarily generated initial selection vectors

(inputs) for the eavesdropper selection problem or the jammer selection problem. While

generating the random initial vectors, we randomly choose NE or NJ positions from N pos-

sible eavesdropper/jammer positions by using the randperm(N ,NE) or randperm(N ,NJ)

command of MATLAB with different seeds.

For the eavesdropper selection problem, we assume that σ2
k = σ2 for each k. Moreover,

α
(E,1)
ijk and χ

(i)
jk are modeled as

∣∣α(E,1)
ijk

∣∣2 = ‖xi − pk‖−2 and χ
(i)
jk = 0. Hence, λ

(i)
jk is expressed

as λ
(i)
jk = 4πβ2

ijEij/(c
2 ‖xi − pk‖2 σ2), where Eij =

∫∞
−∞ |Sij(f)|2 df is the energy of the signal

sij(t) (see Proposition 2.1). Then, the signal parameters are selected such that λ
(i)
jk is given

by λ
(i)
jk = 1/(‖xi − pk‖2 σ2) [25].

For the jammer selection problem, it is assumed that σ̃2
j = σ̃2 for each j, λ̃

(i)
j =

1/(‖xi − yj‖2), and |γkj|2 = ‖pk − yj‖−2. Regarding the transmit powers of the jam-

mer nodes, P J
k = 10 for each k and PT is selected as 10N , i.e., the constraint given by∑

k z
J
kP

J
k ≤ PT becomes ineffective.
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Figure 2.2: Average CRLB versus NE when σ2 = 0.1, Nmax
swap = 5, and the seeds of the random

initial selection vectors are 1, 2, 3 for the eavesdropper selection problem.

In order to perform simulations considering the shadowing effect, λ̃
(i)
j ’s and λ

(i)
jk ’s are mul-

tiplied with log-normal random variables with mean parameter −2 and variance parameter

1. Similarly, |γkj|2’s are multiplied with log-normal random variables with mean parameter

−2 and variance parameter 2.

In the simulations, for each problem, the square roots of the objectives are plotted, i.e.,

the average and the worst-case CRLB values are presented in terms of meters. The simula-

tions are performed on an Intel Core i7 4.0 GHz PC with 16 GB of physical memory using

MATLAB R2020b on a Windows 10 operating system.

2.7.1 Simulation Results with Perfect Knowledge of Parameters

In Figure 2.2, the eavesdropper selection problem is considered and the average CRLB per-

formance of each algorithm is plotted versus NE for the noise level σ2 = 0.1 and Nmax
swap = 5.

For the same setting, Figure 2.3 presents the average CRLB performance of each algorithm
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Figure 2.3: Average CRLB versus 1/σ2 when NE = 8, NE = 30, Nmax
swap = 5, and the seeds of

the random initial selection vectors are 1, 2, 3 for the eavesdropper selection problem.

versus 1/σ2 for Nmax
swap = 5 and two different levels of NE’s: NE = 8 and NE = 30. From

Figures 2.2 and 2.3, it is observed that the solution of the relaxed problem provides a per-

formance lower bound, as expected, and the largest-NE algorithm and the proposed swap

algorithm perform very similarly in this scenario. On the other hand, when the swap algo-

rithm is executed based on three different random initial selection vectors (with seeds 1, 2,

and 3), significant performance degradation is observed in comparison with the other algo-

rithms. This implies that solving the relaxed problem and then obtaining the solution of the

largest-NE algorithm or the proposed swap algorithm is critical in achieving high localization

accuracy.

As σ2
k = σ2 for all k = 1, 2, . . . , N , it is noted that by changing σ2, we in fact scale all

λ
(i)
jk ’s with the same factor. Therefore, by Remark 2.1, it is concluded that the objective

function is also scaled, as can be observed from Figure 2.3. Moreover, from Remark 2.1, it

is known that the solution of the optimal eavesdropper selection problem (hence, that of the

largest-NE algorithm) remains the same for all σ2’s when NE is fixed. For instance, when

there are 8 eavesdroppers in the network, the 24, 33, 38, 39, 51, 77, 88, 92th components of
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Figure 2.4: Average CRLB versus Nmax
swap when NE = 15, σ2 = 0.1, and the seeds of the

random initial selection vectors are 1, 2, 3 for the eavesdropper selection problem.

zElargest are equal to 1 for both σ2 = 0.1 and σ2 = 10.

The average CRLB performance and run time of each algorithm are evaluated versus

Nmax
swap in Figure 2.4 and Figure 2.5, respectively, for σ2 = 0.1 and NE = 15. The results

indicate that it requires around 13 swap operations for the swap algorithm with random

initialization (with seed 1) to converge to the performance of the proposed swap algorithm.

Namely, the average CRLB of the swap algorithm with random initialization is 11.4 m at

Nmax
swap = 1 and reduces to that of the proposed swap algorithm (i.e., 6.27 m) at Nmax

swap = 13.

On the other hand, the starting point obtained by the proposed largest-NE algorithm (6.27

m) is not improved by the proposed swap algorithm, i.e., the largest-NE algorithm provides

the best selection vector in this scenario (please see Algorithm 1). When the corresponding

run times in are compared, the benefits of the proposed swap and largest-NE algorithms are

observed. While the run time of the proposed swap algorithm is 0.9 sec. for each Nmax
swap, that

of the swap algorithm with random initialization is 10.11 sec. for Nmax
swap = 13. Thanks to the

relaxed algorithm, the proposed swap algorithm starts with a selection vector which is very
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Figure 2.5: Run time versus Nmax
swap when NE = 15, σ2 = 0.1, and the seed of the random

initial selection vector is 1 for the eavesdropper selection problem.

close to the optimal selection vector; hence, it obtains the solution quickly. On the other

hand, with random initial selection vectors, high localization accuracy cannot be obtained

without performing a time-consuming search based on swap operations.

In Figure 2.6, the jammer selection problem is considered and the average CRLB per-

formance of each algorithm is plotted versus NJ for the noise level σ̃2 = 0.1. For the same

setting, Figure 2.7 presents the average CRLB performance of each algorithm versus 1/σ̃2 for

NJ = 15. From Figures 2.6 and 2.7, it is observed that the solution of the relaxed problem

provides a performance upper bound, as expected, and the proposed largest-NJ algorithm

and the proposed swap algorithm perform similarly. However, when the proposed swap

algorithm is implemented based on three different random initial jammer selection vectors

(instead of the solution of the largest-NJ algorithm), the obtained CRLB values reduce sig-

nificantly. This indicates the advantage of the proposed approaches over the swap algorithm

with random initialization.

The CRLB performance and run time of each algorithm are evaluated versus Nmax
swap for
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Figure 2.6: Average CRLB versus NJ when σ̃2 = 0.1, Nmax
swap = 5, and the seeds of the random

initial selection vectors are 1, 2, 3 for the jammer selection problem.

σ̃2 = 0.1 and NJ = 15 in Figures 2.8 and 2.9. The results indicate that after around

13 swap operations, the average CRLB of the swap algorithm with random initialization

(which is initially 10.67 m.) converges that of the proposed swap algorithm (i.e., 16.98 m).

(In this scenario, the starting point obtained by the proposed largest-NJ algorithm already

corresponds to the best selection vector.) While the run time of the proposed swap algorithm

is 0.2 sec., it takes around 5.24 sec. for the swap algorithm with random initialization (with

seed 1) to converge to the proposed swap algorithm. Hence, the proposed swap and largest-

NJ algorithms have significantly lower execution times than the swap algorithm with random

initialization considering the same CRLB performance. This indicates that the proposed

approach of solving the relaxed algorithm and using its solution as a basis for the largest-

NJ and the swap algorithms provides significant benefits in obtaining the solution of the

optimal jammer selection problem. In other words, the swap algorithm cannot achieve close

to optimal performance in a short amount of time by starting from a random selection vector.

In Figure 2.10, the joint eavesdropper and jammer selection problem is investigated, and

the average CRLB performances corresponding to the objective functions f(zE) and f̃(zJ)
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Figure 2.7: Average CRLB versus 1/σ̃2 when NJ = 15, Nmax
swap = 5, and the seeds of the

random initial selection vectors are 1, 2, 3 for the jammer selection problem.
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Figure 2.8: Average CRLB versus Nmax
swap when σ̃2 = 0.1, NJ = 15, and the seeds of the

random initial selection vectors are 1, 2, 3 for the jammer selection problem.
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swap when σ̃2 = 0.1, NJ = 15, and the seed of the random

initial vector is 1 for the jammer selection problem.

are plotted for each algorithm when ρ = 50 (see (2.75) and (2.76)). It is calculated that for

NJ = 60, 70, 90, or equivalently NE = 40, 30, 10, the solution of the largest-NE algorithm is

not a feasible solution for (2.75). For example, when NJ = 60, the average CRLB for the

largest-NE algorithm is 54.06, which is higher than ρ = 50. Also, even though the solutions

of the largest-NE algorithm are infeasible for NJ = 60, 70, starting from these solutions, via

the proposed swap algorithm, it is possible obtain feasible selection vectors without reducing

the value of f̃(zJ). However, when NJ = 90, via the proposed swap algorithm, it is not

possible to obtain a feasible selection vector.

Moreover, a decrease is observed in the optimal value of f(zE) from NJ = 60 to NJ = 70,

or equivalently from NE = 40 to NE = 30. In other words, it is not possible to claim any

monotonic behavior in f(zE) with respect to NE due to the constraint given by f(zE) ≤ ρ

for the problem in (2.75). Furthermore, the relaxed problem does not necessarily provide

a lower bound on f(zE) as noted from the results at NJ = 60 and NJ = 70 (equivalently,

NE = 40 and NE = 30).
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Figure 2.10: Average CRLB versus NJ when σ̃2 = σ2 = 0.1 and ρ = 50 for the joint eaves-
dropper and jammer selection problem.

2.7.2 Effects of Uncertainty in Knowledge of Target and/or An-

chor Locations

In this part, we introduce some uncertainty to the knowledge related to the locations of

the anchor and target nodes, and obtain the optimal selection strategies (using the relaxed

formulations) for the cases of imperfect and perfect knowledge. Then, we apply the largest-

NE/NJ and proposed swap algorithms and evaluate their performance based on the actual

system parameters. For the eavesdropper selection problem, we consider a scenario in which

the eavesdropper nodes do not know the probability distribution of the target node location

perfectly. (The knowledge of anchor node locations is not required for the eavesdropper

selection problem.) In particular, for i = 1, 2, . . . , NT , the actual distribution of the target

node location is given by

w̃i = A exp

(
−(xi1 − x01)2

2ν2
− (xi2 − x02)2

2ν2

)
(2.77)
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where w̃i = Pr{Target node is located at xi}, xi = [xi1 xi2]ᵀ, x̄ = [x01 x02]ᵀ is the mean of

the target node location, and A is a normalization constant such that

NT∑
i=1

A exp

(
−(xi1 − x01)2

2ν2
− (xi2 − x02)2

2ν2

)
= 1. (2.78)

On the other hand, the eavesdropper nodes assume that Pr{Target node is located at xi} =

1/NT for i = 1, 2, . . . , NT . It is noted that as ν tends to infinity, w̃i approaches to 1/NT

for each i. In other words, as ν increases, the mismatch between the true distribution and

the assumed one decreases. On the other extreme, when ν goes to zero, the target node is

located at x̄ with probability one; hence, the uniform distribution assumption becomes quite

inaccurate.

In the simulations, we assume that x01 = x02 = 0 and Nmax
swap = 5. In Figure 2.11, the

average CRLB performance of each algorithm is plotted versus ν (in dB) for NE = 20,

σ2 = 0.1, and µ = 0.01. It is observed that as long as the information about the distribution

of the target node location is not very inaccurate, the proposed approach does not have a

significant performance loss. Also, as the mismatch between the true distribution and the

assumed one decreases (i.e., as ν increases), the proposed swap algorithm performs very

similarly for both the true model and the assumed one.

For the jammer selection problem, we assume that the jammer nodes do not know the

locations of the anchor nodes perfectly. It is assumed that for any yj = [yj1 yj2]ᵀ, the jammer

nodes have the knowledge of an erroneous version of yj. Let ỹj be the assumed location

of the jth anchor node by the jammer nodes. We model that ỹj is uniformly chosen from

a set {y | y = [y1 y2]ᵀ, |y1 − yj1| ≤ r& |y2 − yj2| ≤ r}. In Figure 2.12, when σ̃2 = 0.1,

ν = 1, r = 1, and µ = 0.01, the average CRLB performance of each algorithm is plotted

versus NJ . It is observed that the proposed swap algorithm is quite robust to errors in the

knowledge of anchor and target node locations. Even though the anchor node locations and

the distribution of the target node location are not known perfectly, as NJ increases, the

proposed swap algorithm performs very similarly for both the true model and the assumed

one.
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5 10 15 20 25

11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

A
v
e

ra
g

e
 C

R
L

B
 [

m
]

Relaxed (True Model)

Largest-N
J
 (True Model)

Proposed Swap (True Model)

Relaxed (Imperfect)

Largest-N
J
 (Imperfect)

Proposed Swap (Imperfect)

Figure 2.12: Average CRLB versus NJ when σ̃2 = 0.1, ν = 1, r = 1, and µ = 0.01.

52



2.7.3 Simulation Results for Robust Approaches

In this part, the robust eavesdropper selection problem in Section 2.4.3 and the robust jam-

mer selection problem in Section 2.5.3 are considered. The worst-case CRLB performances of

the algorithms are compared for both the robust and non-robust approaches. In the robust

approach, the problems given by (2.53) and (2.74) are considered for the robust eavesdropper

and the robust jammer selection problems, respectively. However, in the non-robust case, the

following optimization problems are considered: minzE f(zE, Λ̂E) subject to
∑N

k=1 z
E
k = NE,

0 ≤ zEk ≤ 1 for k = 1, 2, . . . , N , which is the non-robust version of the eavesdropper selection

problem, and maxzJ f̃(zJ , Λ̂J) subject to
∑N

k=1 z
J
k = NJ , 0 ≤ zJk ≤ 1 for k = 1, 2, . . . , N ,

which is the non-robust version of the jammer selection problem.

For the eavesdropper selection problem, both the robust and non-robust approaches are

considered, and two different selection vectors denoted as zER and zENR (corresponding to

robust and non-robust, respectively) are obtained for each algorithm. Then, for zER and

zENR, the corresponding worst-case CRLBs are computed, which are given by f(zER, Λ̂E −
∆Λ∗E) and f(zENR, Λ̂E −∆Λ∗E), respectively. Similarly, for the jammer selection problem,

we define two different selection vectors as zJR and zJNR, and evaluate f̃(zJR, Λ̂J −∆Λ∗J) and

f̃(zJNR, Λ̂J −∆Λ∗J).

For the uncertainty region E , each λ
(i)
jk is modeled as λ

(i)
jk ∈ [(1 − ε(i))λ̂(i)

jk , (1 + ε(i))λ̂
(i)
jk ]

for some ε(i) ∈ [0, 1]. Therefore, the eavesdropper selection is based on (1− ε(i))λ̂(i)
jk ’s for the

robust approach whereas λ̂
(i)
jk ’s are used for the non-robust approach. It is noted that δ

(i)
jk

in (2.50) can be expressed as δ
(i)
jk = ε(i)λ̂

(i)
jk . If all ε(i)’s are not identical (which is commonly

the case in practice), we expect performance difference between the robust and non-robust

approaches. To that aim, we generate NT = 121 realizations of independent uniform random

variables distributed in [0, 1] for ε(i)’s by using MATLAB (the seed is equal to 1).

For the jammer selection problem, we use a similar setup. For the uncertainty region Ẽ ,

we generate NT = 121 realizations of independent uniform random variables distributed in

[0, 1], denoted as κ(i), by using MATLAB (the seed is equal to 2). In this case, the jammer

selection is based on the estimate of λ̃
(i)
j multiplied with (1 + κ(i)).

In Figures 2.13 and 2.14, the worst-case CRLB performances are presented respectively for
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Figure 2.13: Worst-case CRLB versus NE when σ2 = 0.1 and Nmax
swap = 5 for the robust

eavesdropper selection problem.

the eavesdropper selection and the jammer selection problems, considering both the robust

and non-robust approaches. In Figure 2.13, as expected, the robust approaches yield lower

worst-case CRLBs than the non-robust ones. On the other hand, the robust approach and

the non-robust approach perform very similarly in Figure 2.14. In other words, for this

system setup, without having the perfect knowledge of λ̃
(i)
j ’s, one can achieve similar CRLB

values to those achieved by the robust approach.

2.8 Concluding Remarks

For wireless source localization networks, the eavesdropper selection, jammer selection, and

joint eavesdropper and jammer selection problems have been proposed. Related to the eaves-

dropper selection problem, a novel CRLB expression has been derived as the performance

metric, and its convexity and monotonicity properties have been proved. After relaxing

the integer constraints, a convex optimization problem has been obtained and eavesdropper
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selection algorithms have been proposed. Also, a robust approach has been developed in

the presence of uncertainty about system parameters. For the jammer selection problem, a

CRLB expression from the literature has been utilized, and its concavity and monotonicity

properties have been derived. Similarly, a convex relaxation approach and a robust approach

have also been developed for jammer selection. Moreover, the joint eavesdropper and jam-

mer selection problem has been proposed and its relaxed version has been shown to reduce

to a convex problem. Various simulation results have illustrated the benefits of the proposed

algorithms in terms of performance and run time. In particular, the performance achieved

by the proposed algorithms is very close to the performance bound specified by the relaxed

problems, and the corresponding run times are significantly lower than the other alternatives

such as the swap algorithm with random initialization and the exhaustive search. The results

in this chapter reveal the capabilities of jammer and eavesdropper nodes, which can be useful

for designing wireless source localization networks and taking appropriate precautions.
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Chapter 3

Anchor Placement in TOA based

Wireless Localization Networks via

Convex Relaxation

In this chapter, we study the anchor placement problem by approximating it with an anchor

selection problem for TOA based wireless localization networks. After studying the proposed

eavesdropper selection and the jammer selection problems in Chapter 2, one can realize

that the analyses in Chapter 2 can be utilized also for the anchor selection problem. By

exploiting the ideas in Chapter 2, we prove that the anchor selection problem becomes a

convex problem after relaxing the integer constraints. Moreover, we use similar algorithms

proposed in Chapter 2 for the anchor selection problem. We also show that the analyses are

valid also for TDOA or RSS based wireless localization networks.

3.1 System Model

Consider a two-dimensional wireless source localization network in which a target (source)

node sends signals to anchor (reference) nodes for estimation of the target node location by

anchor nodes. It is known that the target node is located at xi ∈ R2 with probability wi ≥ 0
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for i = 1, 2, . . . , NT , where NT is the number of possible target locations and
∑NT

i=1 wi = 1.

Anchor nodes are located at {yj}NA
j=1 ⊂ R2, where NA is the number of anchor nodes in

the network. φij is the angle between jth anchor node and ith target node, i.e., φij =

arctan
xi2−yj2
xi1−yj1 , where xi = [xi1 xi2]ᵀ and yj = [yj1 yj2]ᵀ.

In the following sections, we provide the signal model and formulate the corresponding

anchor placement problems for TOA, TDOA and RSS based wireless localization networks.

3.2 TOA Based Anchor Placement Problem

3.2.1 Signal Model

Consider a scenario in which the clocks of the anchor and target nodes are perfectly syn-

chronized. For the signal emitted from the target node located at xi, the signal received at

the anchor node at location yj is given by

rij(t) =

Lij∑
l=1

α
(l)
ij si
(
t− τ (l)

ij

)
+ ηij(t) (3.1)

where si(t) is a known signal transmitted from the ith target node, Lij is the number of

multipath components between the jth anchor node and the ith target node, α
(l)
ij , and τ

(l)
ij

denote, respectively, the amplitude and the delay of the lth multipath component between

the jth anchor node and the ith target node, and ηij(t) is the measurement noise modeled

as zero-mean white Gaussian noise with a power spectral density level of N0/2. The delays

of the paths are given by

τ
(l)
ij =

‖yj − xi‖2 + b
(l)
ij

c
(3.2)

where c is the speed of the light and b
(l)
ij is the range-bias term (b

(l)
ij = 0 for line-of-sight

(LOS) propagation and b
(l)
ij > 0 for non-line-of-sight (NLOS) propagation).
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3.2.2 Problem Formulation

In the considered wireless localization network, the aim is to determine the best NA locations

to place the anchor nodes in order to estimate the location of the target node as accurately

as possible in the mean-square sense. In other words, yj’s are the optimization variables

in the anchor placement problem. In order to emphasize that, we introduce a matrix Y as

follows: Y , [y1 y2 . . . yNA
]. It is assumed that each anchor node can be placed in some

bounded region R ⊂ R2, that is, yj ∈ R for j = 1, . . . , NA.

After defining the anchor positions as optimization variables, the number, amplitudes and

delays of the multipath components, and the angles between the anchor and target nodes

become functions of the anchor positions. In order to emphasize the dependence on Y, we

replace Lij, α
(l)
ij , τ

(l)
ij , and φij with Li(yj), α

(l)
i (yj), τ

(l)
i (yj), and φi(yj), respectively, in the

remainder of this chapter.

Via similar steps to those in [99], the equivalent Fisher information matrix (EFIM),

JTOA
i (Y), corresponding to the target location xi can be expressed as a function of the

anchor locations {yj}NA
j=1 as

JTOA
i (Y) =

∑
j∈AL

i (Y)

λi(yj)ϕi(yj)ϕi(yj)
ᵀ, (3.3)

λi(yj) ,
8π2β2

i

c2
(1− ξi(yj))

|α(1)
i (yj)|2

∫∞
−∞ |Si(f)|2 df
N0

, (3.4)

β2
i ,

∫∞
−∞ f

2|Si(f)|2 df∫∞
−∞ |Si(f)|2 df

, ϕi(yj) , [cos(φi(yj)) sin(φi(yj))]
ᵀ (3.5)

where ALi (Y) is the set of indices of anchor nodes that are in LOS with the target node

at location xi for the anchor positions given by matrix Y, Si(f) is the Fourier transform

of si(t), and ξi(yj) is the path-overlap coefficient for the anchor location yj and the target

location xi satisfying 0 ≤ ξi(yj) ≤ 1 [99].

It is known that for any unbiased estimator x̂i of xi, the error vector satisfies [103]:

E{‖x̂i − xi‖2
2} ≥ tr

{
JTOA
i (Y)−1

}
(3.6)

where the expression on the right-hand-side corresponds to the CRLB. Then, by consid-

ering the CRLB as a performance metric, the proposed anchor placement problem can be
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formulated as

min
Y

NT∑
i=1

wi tr
{
JTOA
i (Y)−1

}
(3.7a)

subject to yj ∈ R, j = 1, 2, . . . , NA. (3.7b)

3.2.3 Theoretical Results and Algorithms

From (3.3) and (3.5), tr
{
JTOA
i (Y)−1

}
can be expressed after some algebraic manipulations

as

tr
{
JTOA
i (Y)−1

}
=

2
∑

k∈AL
i (Y) λi(yk)∑

k∈AL
i (Y)

∑
l∈AL

i (Y) λi(yk)λi(yl) sin2(φi(yk)− φi(yl))
(3.8)

It is noted from (3.8) that the optimal anchor placement problem in (3.7) is quite chal-

lenging since the number of multipath components, the amplitudes, the delays, the angles

between the anchor and target nodes, and the path-overlap coefficients become functions of

the anchor locations (see (3.3)–(3.5)). Moreover, this problem is not convex in general. For

example, the set R may not necessarily be a convex set.

In order to solve the anchor placement problem, we first discretize set R in (3.7b). Let

R̃ be a finite subset of R, and consider the problem in (3.7) for set R̃ by replacing the

constraint in (3.7b) by yj ∈ R̃ for j = 1, . . . , NA. Since the objective function in (3.7a) is

continuous with respect to the anchor locations, the optimal value of the discretized version

of (3.7) gets closer to the optimal value of (3.7) as the number of elements in R̃ increases.

Therefore, it is possible to achieve an accurate approximation to the original problem in

(3.7) via discretization.

In the discretized version of (3.7), the aim is to identify a subset of R̃ with a cardinality

of NA. As R̃ is finite, we can represent its elements as R̃ = (y(k))k. Furthermore, we define

λ
(k)
i , λi(y

(k)), φ
(k)
i , φi(y

(k)), and ϕ
(k)
i , ϕi(y

(k)) for any i and k. Moreover, let the set

of indices of anchor nodes in R̃ which are in LOS with the target node at location xi be

denoted as ÃLi for any i. For any set S, we define SLi , S ∩ ÃLi . Then, the discretized
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version of (3.7) is expressed as

min
S⊂N

NT∑
i=1

wi f
TOA
i (S) (3.9a)

subject to |S| = NA (3.9b)

where N denotes the set of natural numbers and fTOA
i (S) is given by

fTOA
i (S) ,

2
∑

k∈SLi
λ

(k)
i∑

k∈SLi

∑
l∈SLi

λ
(k)
i λ

(l)
i sin2

(
φ

(k)
i − φ

(l)
i

) (3.10)

The following lemma proves that solving (3.9) is equivalent to minimizing the ratio of

non-decreasing supermodular functions subject to a cardinality constraint.

Lemma 3.1: The objective function in (3.9) is a ratio of two non-decreasing supermodular

functions.

Proof: Define

pTOA
i (S) , 2

∑
k∈SLi

λ
(k)
i , and qTOA

i (S) ,
∑
kSLi

∑
l∈SLi

λ
(k)
i λ

(l)
i sin2

(
φ

(k)
i − φ

(l)
i

)
. (3.11)

If S ⊂ W , then pTOA
i (S) ≤ pTOA

i (W) and qTOA
i (S) ≤ qTOA

i (W). In other words, both

pTOA
i (·) and qTOA

i (·) are non-decreasing functions.

Take any e /∈ W . If e /∈ ÃLi , then it is clear that pTOA
i (W ∪ {e}) − pTOA

i (W) =

pTOA
i (S ∪ {e})−pTOA

i (S) = 0, and qTOA
i (W ∪ {e})−qTOA

i (W) = qTOA
i (S ∪ {e})−qTOA

i (S) =

0. If e ∈ ÃLi , it is observed that

pTOA
i (W ∪ {e})− pTOA

i (W) = pTOA
i (S ∪ {e})− pTOA

i (S)

qTOA
i (W ∪ {e})− qTOA

i (W) = 2λ
(e)
i

∑
k∈W

λ
(k)
i sin2

(
φ

(k)
i − φ

(e)
i

)
≥ 2λ

(e)
i

∑
k∈S

λ
(k)
i sin2

(
φ

(k)
i − φ

(e)
i

)
= qTOA

i (S ∪ {e})− qTOA
i (S)
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Therefore, both pTOA
i (·) and qTOA

i (·) are non-decreasing supermodular functions [111].

Since the product of two non-decreasing, non-negative and supermodular functions is super-

modular, it is concluded that pTOA
i (S)

∏
j 6=i q

TOA
j (S) and

∏
j qj(S) are supermodular func-

tions as pTOA
i (·) and qTOA

i (·) are supermodular, non-negative and non-decreasing. Based on

the definitions at the beginning of the proof, the objective function in (3.9), which is specified

via (3.10), can be expressed as

NT∑
i=1

wif
TOA
i (S) =

∑NT

i=1wip
TOA
i (S)

∏
j 6=i q

TOA
j (S)∏

j q
TOA
j (S)

· (3.12)

Since supermodularity is preserved under non-negative weighted summation,
∑NT

i=1wip
TOA
i (S)∏

j 6=i q
TOA
j (S) is also supermodular. Therefore, both the numerator and the denominator of

the objective function are supermodular. �

In [54], it is stated that whether optimizing the ratio of monotone supermodular functions

admits any polynomial time algorithm with bounded approximations is an open problem.

Therefore, instead of employing integer programming approaches, we aim to transform (3.9)

into an anchor selection problem that can be solved via convex optimization tools. To this

aim, we introduce a selection vector z = [z1 z2 . . . z|R̃|]
ᵀ as follows:

zk =

1, if an anchor node is placed at y(k)

0, otherwise
. (3.13)

It is noted that (3.9) is equivalent to the following problem:

min
z∈R|R̃|

NT∑
i=1

wi f̃
TOA
i (z) (3.14a)

subject to

|R̃|∑
k=1

zk = NA (3.14b)

zk ∈ {0, 1} , k = 1, 2, . . . ,
∣∣∣R̃∣∣∣ (3.14c)

where f̃TOA
i (z) is given by

f̃TOA
i (z) ,

2
∑

k∈ÃL
i

zkλ
(k)
i∑

k∈ÃL
i

∑
l∈ÃL

i

zkzlλ
(k)
i λ

(l)
i sin2

(
φ

(k)
i − φ

(l)
i

) (3.15)
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The following proposition proves that the objective function in (3.14) is a convex function

of the selection vector z.

Proposition 3.1: The objective function in (3.14) is convex with respect to the selection

vector z.

Proof: It can be shown that f̃TOA
i (z) in (3.14) is equal to tr

{
J̃TOA
i (z)−1

}
, where

J̃TOA
i (z) ,

∑
k∈ÃL

i

zkλ
(k)
i ϕ

(k)
i

(
ϕ

(k)
i

)ᵀ
. (3.16)

First, it is clear that J̃TOA
i (z) is a linear function of z. Moreover, it is known that tr{A−1}

is a non-increasing convex function of the positive semi-definite matrix A [105]. Due to the

concavity of J̃TOA
i (z), we can argue, based on the chain rule, that f̃TOA

i (z) is convex with

respect to z for any i. As wi’s in (3.14a) are non-negative, we have the desired conclusion

about the convexity of the objective function in (3.14). �

Since the objective function is convex with respect to z, by relaxing the integer constraints

in (3.14c), we obtain a convex optimization problem as follows:

min
z∈R|S|

NT∑
i=1

wi f̃
TOA
i (z) (3.17a)

subject to

|R̃|∑
k=1

zk = NA (3.17b)

0 ≤ zk ≤ 1 , k = 1, 2, . . . , |S| (3.17c)

To summarize the main approach, we first formulate the anchor placement problem as a

continuous and non-convex optimization problem as in (3.7). Then, we take finitely many

points from the region R to discretize the problem as in (3.9). Next, we prove that this

problem is equivalent to minimizing the ratio of two supermodular functions, for which

there exists no polynomial time algorithms with bounded approximations in the literature.

Therefore, we express this problem as an anchor selection problem as in (3.14), and by

relaxing the integer constraints, it is proven that a convex formulation can be achieved as in

(3.17). Thus, we propose the anchor selection problem in (3.17) as a convex approximation

of the anchor placement problem in (3.7). After solving (3.17) via convex optimization tools
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(such as CVX [112]), we propose the following two algorithms to obtain a solution of the

original problem in (3.7). First, we can simply set the largest NA components of the solution

of (3.17) to one, and the others to zero (called largest-NA algorithm). Second, starting from

this solution, we can use the swap algorithm [44, 45]. In this algorithm, for each run, one

checks whether there is a decrease in the objective function by simply swapping one of the

NA selected locations with one of the
∣∣∣R̃∣∣∣−NA locations that are not selected. The overall

procedure starting from R and NA is outlined in Algorithm 2, where zrelaxed, zlargest and zswap

denote the optimal selection vectors obtained from (3.17) (e.g., via CVX), the largest-NA

algorithm and the swap algorithm, respectively.

Algorithm 2 Proposed Anchor Placement Algorithm

Input: R, NA

Output: {y(k)}k∈I .
1: Discretize set R as R̃.
2: Find optimal selection vector zrelaxed by solving (3.17) (via CVX) for set R̃.
3: Obtain zlargest from zrelaxed by setting largest NA components of zrelaxed to one, and others

to zero.
4: Run swap algorithm starting from zlargest to obtain zswap.
5: I ← {i | zswap(i) = 1}
6: Place anchors to {y(k)}k∈I .

3.2.4 Extension to Three-Dimensional Anchor Placement

Similar to the analysis in [99], our results can easily be extended to three dimensional sce-

narios. In that case, ϕi(yj) in (3.5) becomes

ϕi(yj) = [sin θi(yj) cosφi(yj) sin θi(yj) sinφi(yj) cos θi(yj)]
ᵀ

where θi(yj) and φi(yj) denote, respectively, the azimuth and polar angles in the direction

from the target node at location xi to the anchor node located at yj.

It is observed that after discretization and approximating the anchor placement problem

as the anchor selection problem, Proposition 3.1 holds also for the three dimensional case

as the FIM is a linear function of the selection vector z (cf. (3.16)). Hence, the proposed

algorithms can be used for the three dimensional anchor placement problem, as well.
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3.3 TDOA Based Anchor Placement Problem

In the TDOA based approach, the anchor nodes are synchronized among themselves but

they are not synchronized with the target node. Therefore, there are additional unknown

parameters {∆i}NT
i=1, where ∆i characterizes the time offset between the clocks of the target

node located at xi and the anchor nodes. Hence, (3.2) changes as follows:

τ
(l)
ij =

1

c

(
‖yj − xi‖2 + b

(l)
ij + ∆i

)
(3.18)

As in the previous section, due to the difficulty of the continuous optimization problem (see

(3.7)), we discretize the set R as R̃. After the discretization, via similar steps to those

in [44,45], one can show that the CRLB related to the estimation of the ith target location,

xi, by anchor nodes is given by

fTDOA
i (S) ,

3
∑

k∈SLi

∑
l∈SLi

λ
(k)
i λ

(l)
i a

(k,l)
i

4
∑

k∈SLi

∑
l∈SLi

∑
m∈SLi

λ
(k)
i λ

(l)
i λ

(m)
i ã

(k,l,m)
i

, (3.19)

a
(k,l)
i , sin2

(
φ

(k)
i − φ

(l)
i

2

)
, ã

(k,l,m)
i , a

(k,l)
i a

(l,m)
i a

(m,k)
i .

Similar to Lemma 3.1, it can be proven that the objective function
∑NT

i=1 wif
TDOA
i (S) can

be written as a ratio of two non-decreasing supermodular functions. In addition, after

relaxation, from Proposition 2 in [44], the anchor selection problem for the TDOA based

approach can be shown to be convex, as well. Hence, the algorithms proposed for the TOA

based approach in the previous section can also be used for TDOA based wireless localization

networks.

3.4 RSS Based Anchor Placement Problem

In this section, after calculating the power of the received signal according to the model in

(3.1), anchor nodes estimate the position of the target node. We adopt the model given

in [104].

The received signal power at the anchor node located at yj due to the transmission of
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si(t), P
(r)
i (yj), is given by

P
(r)
i (yj) = P

(s)
i (yj) + P

(n)
i , (3.20)

where P
(s)
i (yj) and P

(n)
i are the signal and the noise powers, respectively. P

(s)
i (yj) is ex-

pressed as follows:

P
(s)
i (yj) = ki(yj)Pi

gi(yj)
2γi(yj)(

di(yj)
)ε (3.21)

where Pi is the (known) transmitted power, gi(yj) and γi(yj) are variables that conform to

Rayleigh and log-normal distributions, di(yj) = ‖yj − xi‖2, ε is the path loss factor, and

ki(yj) is the known constant given by

ki(yj) =
G

(i)
t G

(i)
r (yj)

4π
(3.22)

with G
(i)
t and G

(i)
r (yj) being the antenna gains at the target node xi and the anchor node

located at yj, respectively.

By taking the steps in [104], the equivalent Fisher information matrix (EFIM), JRSS
i (Y)

corresponding to the target position i, as a function of anchor positions {yj}NA
j=1 is given by

JRSS
i (Y) = Hi(Y)Xi(Y)Hi(Y)ᵀ (3.23)

where

Hi(Y) =
10ε

c ln 10

[
cos(φi(y1)) . . . cos(φi(yNA

))

sin(φi(y1)) . . . sin(φi(yNA
))

]
[diag (di(y1), . . . , di(yNA

))]−1 , (3.24)

Xi(Y) =
[
diag(κi(y1), . . . , κi(yNA

))
]−1

, (3.25)

κi(yj) =
100

(ln 10)2

Ni(yj)∑
m=1

var(ln γi(yj)) (3.26)

and Ni(yj) is the number of path elements concatenated in tandem between target xi and

anchor yj. Via some algebraic manipulations, the CRLB related to the position of the target

node i based on the RSS approach can be computed as follows:

tr
{
JRSS
i (Y)−1

}
=

2c2 ln(10)2

(100ε2)

∑NA

k=1 µi(yk)∑NA

k=1

∑NA

l=1 µi(yk)µi(yl) sin2 (φi(yk)− φi(yl))
(3.27)

where µi(yk) = 1/
(
κi(yNk

)di(yk)
2
)
.
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As in the previous sections, due to the difficulty of the continuous optimization problem,

we discretize the set R as R̃ = (y(k))k. Let µ
(k)
i , µi(y

(k)) for any k = 1, 2, . . . , NA.

It is noted that the expression in (3.27) is quite similar to (3.8). Hence, after the dis-

cretization, we can express
∑NT

i=1 wif
RSS
i (S) as a ratio of two non-decreasing supermodular

functions, where

fRSS
i (S) =

2c2 ln(10)2

(100ε2)

∑
k∈S µ

(k)
i∑

k∈S
∑

l∈S µ
(k)
i µ

(l)
i sin2

(
φ

(k)
i − φ

(l)
i

) . (3.28)

Furthermore, by applying the steps in Proposition 3.1, one can prove that, after relaxing

the integer constraints, the anchor selection problem based on the RSS approach is convex.

Thus, Algorithm 2 is applicable for the RSS based anchor placement problem as well.

Remark 3.1: Throughout this chapter, a source localization network is considered. How-

ever, due to the similarity of the expressions for the FIMs, all the preceding analyses and

the proposed algorithms are also valid for self localization networks (for TOA, TDOA and

RSS approaches).

Remark 3.2: In this chapter, we rely on the perfect knowledge of λ
(k)
i ’s. In fact, due to

the monotonic behavior of the CRLB with respect to λ
(k)
i ’s, it is straightforward to extend

the analyses if we have some uncertainty region for each λ
(k)
i ’s as in [44,45].

3.5 Simulation Results and Conclusions

In this section, numerical examples are presented to evaluate the proposed approaches in Sec-

tion 3.2. Examples are provided for two different setups in which two and three dimensional

source localization networks are considered. In both setups, we evaluate the performance

of two algorithms, namely, the largest-NA and the swap algorithms. We also compare their

performance with the lower bound provided by the solution of the relaxed problem in (3.17).
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3.5.1 Example of Two Dimensional Wireless Network

Consider a wireless source localization network as shown in Figure 3.1 (all locations are in

meters). In particular, the anchor nodes are placed in the region R = R1 ∪ R2, where

R1 = [0, 3] × ([0, 3] ∪ [8, 11]) and R2 = [8, 11] × ([0, 3] ∪ [8, 11]). We provide two different

discretizations of R by taking 196 and 676 points from R. (We take points from R for

each 0.5 and 0.25 meters along both x and y directions for the first and second setups,

respectively.) Moreover, the number of possible locations for the target node, NT , is equal

to 129 as illustrated in Figure 3.1.

In the simulations, the same parameters as in [25, 44] are used. In particular, α
(l)
i (yj)

and ξi(yj) are modeled as α
(l)
i (yj) = ‖xi − yj‖−2

2 and ξi(yj) = 0. Hence, λ
(k)
i is expressed

as λ
(k)
i = 8πβ2

iEi/
(
c2
∥∥xi − y(k)

∥∥2

2
N0

)
. Also, the signal parameters are selected such that

λ
(k)
i = 1/

(∥∥xi − y(k)
∥∥2

2
N0

)
as in [25]. Also we set wi = 1/NT for i = 1, . . . , NT . The average

CRLBs are presented in terms of meters, i.e., we take the square roots of the objectives.

Figure 3.1 shows the cases of
∣∣∣R̃∣∣∣ = 196 and

∣∣∣R̃∣∣∣ = 676, together with the optimal anchor

locations obtained from the swap algorithm when NA = 10 and N0 = 1. It is noted that

even though the number of points in R̃ increases, the optimal placement strategy does not

change effectively. Hence, it is expected that the resulting CRLBs do not differ significantly

with respect to discretization once a sufficiently dense grid is employed. Therefore, in the

remaining examples, we use the first setup and take 196 points from R̃, i.e.,
∣∣∣R̃∣∣∣ = 196.

Figure 3.2 presents the average CRLB performance of each algorithm versus NA for two

different noise levels: N0 = 1 and N0 = 10. For the same setting, in Figure 3.3, the average

CRLB performance of each algorithm is plotted versus 1/N0 for NA = 3 and 5. It is observed

that the solution of the relaxed problem is very close to the other two algorithms in both

Figures 3.2 and 3.3. Therefore, the optimal solution of the discretized anchor placement

problem in (3.9) is practically achieved in this scenario. Another important observation is

that the optimal placement strategy does not change with the noise power, N0 since by

changing N0, we scale all λ
(k)
i ’s with the same factor. For example, in Figure 3.2, the curve

corresponding to N0 = 10 is just the scaled version of the curve for N0 = 1.
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3.5.2 Example of Three Dimensional Wireless Network

In this part, we consider a wireless localization network as in Figure 3.4. In particular, the

anchor nodes are placed in R = {[x, y, z] | 0 ≤ x, y ≤ 10, z = 10} and for the discretization

we take points from R for each 0.5 meter along both x and y directions such that the number

of all points in R̃ is equal to 441. Furthermore, the number of possible target positions is

equal to 121 as illustrated in Figure 3.4. We use the same simulation parameters as in the

two dimensional example except that to realize the shadowing effect, λ
(k)
i ’s are multiplied

by independent log-normal random variables with a mean parameter of −3 and a variance

parameter of 3. For this purpose, we generate a matrix with dimensions 121× 441 by using

MATLAB (the seed is equal to 1), where the (i, k)th element of this matrix corresponds to

the log-normal random variable for the channel between xi and y(k) as in [44].

Figure 3.5 presents the average CRLB performance of each algorithm versus NA for two

different noise levels: N0 = 1 and N0 = 10. We see that when NA = 3, starting from the

solution of the largest-NA, via the swap algorithm, we obtain a solution very close to that of

the relaxed algorithm. In other words, in this scenario, we benefit from the swap algorithm.

Moreover, in Figure 3.5 we again observe that by changing the noise power, we only scale

the objective value. For the same setting, in Figure 3.6, the average CRLB performance of

each algorithm is plotted versus 1/N0 for NA = 3 and 5. Again the same observations can

be made as those for NA = 3.

Overall, the proposed approach provides an effective solution to the anchor placement

problem via discretization and convex relaxation. The performance loss due to discretization

can be remedied by using a dense grid, and the suboptimality due to convex relaxation can

be mitigated via the swap algorithm, as seen in the numerical examples.
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Figure 3.1: Illustration of possible locations of target and anchor nodes, together with op-
timal anchor locations (obtained from the swap algorithm) when NA = 10 and N0 = 1 for

two different cases: (a)
∣∣∣R̃∣∣∣ = 196 and (b)

∣∣∣R̃∣∣∣ = 676.
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Figure 3.2: Average CRLB versus NA for different algorithms when N0 = 1 and 10.
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Figure 3.3: Average CRLB versus 1/N0 for different algorithms when NA = 3 and 5.
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Figure 3.4: Illustration of possible locations of target and anchor nodes, together with the
optimal anchor locations (obtained from the swap algorithm) when NA = 10 and N0 = 1.
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Figure 3.5: Average CRLB versus NA for different algorithms when N0 = 1 and 10.
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Figure 3.6: Average CRLB versus 1/N0 for different algorithms when NA = 3 and 5.
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Chapter 4

RIS-aided Near-Field Localization

under Phase-Dependent Amplitude

Variations

In this chapter, we investigate the problem of RIS-aided geometric near-field localization

of a single-antenna UE served by a single-antenna BS under LoS blockage [59, 71, 73, 113],

considering a realistic RIS amplitude model [78], which relies on equivalent circuit models of

individual reflecting elements. Specifically, we quantify degradation in localization perfor-

mance due to mismatch between an ideal model with unit-amplitude RIS element responses

and a realistic model with phase-dependent amplitude variations [78,114], by resorting to the

MCRB analysis [85, 115]. In addition, we develop novel localization and online RIS calibra-

tion algorithms for cases with and without the knowledge of the underlying RIS amplitude

model.

4.1 System Model

In this section, we describe the system geometry, present the signal model and the RIS

model, and formulate the problem of interest.
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BS UE

LoS Path

wt,m = β(θt,m)ejθt,m

Figure 4.1: Configuration of a RIS-aided localization system with LoS blockage.

4.1.1 Geometry and Signal Model

We consider an RIS-aided localization system (see Figure 4.1) with a single-antenna BS, an

M -element RIS, and a single-antenna UE having the following three-dimensional locations:

pBS denotes the known BS location, pRIS = [xR yR zR]T is the known center of the RIS,

pm = [xm ym zm]T represents the known location of the mth RIS element for 1 ≤ m ≤ M ,

and p = [x y z]T is the unknown UE location. For convenience, following the notation given

in [85, 116], we use (·) for the true values of the parameters of interest throughout this

chapter.

In the considered setting, the BS broadcasts a narrowband signal st over T transmissions

under the constraint of E{|st|2} = Es. For simplicity, we assume that st =
√
Es for any t.

Assuming LoS blockage [59,71] and the absence of uncontrolled multipath, the signal received

by the UE involves only reflections from the RIS and can be expressed at transmission t as

yt = αaT(p)diag(wt)a(pBS)︸ ︷︷ ︸
,bT(p)wt

st + nt , (4.1)

where α is the unknown channel gain, wt = [wt,1 . . . wt,M ]T is the RIS profile at transmission
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t, and nt is uncorrelated zero-mean additive Gaussian noise with variance N0/2 per real

dimension.

Moreover, b(p) = a(p) � a(pBS), where a(p) is the near-field RIS steering vector for a

given position p, defined as

[a(p)]m = exp

(
−j 2π

λ
(‖p− pm‖2 − ‖p− pRIS‖2)

)
(4.2)

for m ∈ {1, . . . ,M}, in which λ denotes the signal wavelength.

4.1.2 Model for RIS Elements

Following the practical model in [78], we consider phase-dependent amplitude variations of

the RIS elements given by

wt,m = β(θt,m)ejθt,m , (4.3)

with θt,m ∈ [−π, π) and β(θt,m) ∈ [0, 1] denoting the phase shift and the corresponding

amplitude, respectively. In particular, β(θt,m) is expressed as

β(θt,m) = (1− βmin)

(
sin(θt,m − φ) + 1

2

)κ
+ βmin, (4.4)

where βmin ≥ 0, φ ≥ 0, and κ ≥ 0 are the constants related to the specific circuit implemen-

tation [78]. To illustrate amplitude variations in (4.4), Figure 4.2 plots β(θ) as a function

of the applied phase shift θ for various values of βmin when κ = 1.5 and φ = 0. As seen

from the figure, larger amplitude fluctuations occur as βmin approaches 0. The resulting

performance penalties in location estimation will be quantified through the MCRB analysis

in Section 4.2.

4.1.3 Problem Description

Given the observations yt in (4.1) over T transmission instances, our goal is to derive theoreti-

cal performance bounds and develop low-complexity algorithms for estimating the position of
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Figure 4.2: β(θ) in (4.4) for three different values of βmin, when κ = 1.5 and φ = 0.

the UE p (and the channel gain α as an unknown nuisance parameter) under three different

scenarios:

� Scenario-I : There is a mismatch between the assumption and the reality in this sce-

nario. It is assumed that the amplitudes of the RIS elements are equal to 1 (which is

equivalent to assuming βmin = 1 or κ = 0); however, the true model is as in (4.3).

� Scenario-II : The true model in (4.3) is known, but the RIS related parameters, βmin, κ,

and φ, are assumed to be unknown.

� Scenario-III : Both the true model in (4.3) and the RIS related parameters, βmin, κ,

and φ, are known.

To handle the different scenarios, the remainder of the chapter is organized as follows. In

Section 4.2, the MCRB analysis of near-field localization under Scenario I is performed while

Section 4.3 focuses on the estimator design for Scenario I. Then, the localization algorithms

and the theoretical bounds for Scenario II and Scenario III are presented in Section 4.4.

Finally, numerical examples for all the three scenarios are provided in Section 4.5.
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4.2 Scenario-I: Misspecified Cramér-Rao Bound (MCRB)

Analysis

In this scenario, we aim to quantify the localization performance loss due to the model

mismatch resulting from the phase-dependent amplitude variations specified in (4.3). To

that end, we will resort to the MCRB analysis [85, 115–118]. In the following, we first

describe the true model, which corresponds to the realistic RIS response model in (4.3), and

the assumed model, which is the ideal unit-amplitude RIS model commonly employed in the

literature. Then, we provide theoretical background on the MCRB, propose a method to

find the pseudo-true parameter, and derive the MCRB and the corresponding LB.

4.2.1 True and Assumed RIS Amplitude Models

4.2.1.1 True Model

The true parameter vector η is given by η , [Re(α) Im(α)pT]T. We define µt as

µt , α
M∑
m=1

[b(p)]mwt,mst (4.5)

for t = 1, . . . , T . Then, the probability density function (pdf) of the true observation,

p(y), can be expressed as

p(y) =

(
1

πN0

)T
exp

(
− 1

N0

‖y − µ‖2
2

)
, (4.6)

where y , [y1 . . . yT ]T and µ , [µ1 . . . µT ]T.

4.2.1.2 Assumed Model

In practice, the knowledge of the exact amplitude model in (4.4), which is hardware depen-

dent, may not be available. In that case, the ideal model of β(θt,m) = 1 can be used. For
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this assumed model, we represent wt,m as w̃t,m, which is given by

w̃t,m = ejθt,m (4.7)

for any t and m. Therefore, the misspecified parametric pdf for η , [Re(α) Im(α)pT]T under

the assumed model, denoted by p̃(y|η), can be expressed as

p̃(y|η) =

(
1

πN0

)T
exp

(
− 1

N0

‖y − µ̃(η)‖2
2

)
, (4.8)

where µ̃(η) , [µ̃1(η) . . . µ̃T (η)]T, and

µ̃t(η) , α

M∑
m=1

[b(p)]mw̃t,mst (4.9)

for t = 1, . . . , T . It is noted that when βmin = 1 or κ = 0, p(y) and p̃(y|η) coincide with

each other for any y.

4.2.2 MCRB Definition

We introduce the pseudo-true parameter [85, 115], which minimizes the Kullback-Leibler

(KL) divergence between the true pdf in (4.6) and the misspecified parametric pdf in (4.8);

namely,

η0 = arg min
η∈R5

D (p(y)‖p̃(y|η)) , (4.10)

where D (p(y)‖p̃(y|η)) denotes the KL divergence between the densities p(y) and p̃(y|η).

Next, let η̂(y) be a misspecified-unbiased (MS-unbiased) estimator of η, i.e., the mean of

the estimator η̂(y) under the true model is equal to η0. The MCRB is a lower bound for

the covariance matrix of any MS-unbiased estimator of η, η̂(y) [84, 85,115,116]:

Ep{(η̂(y)− η0)(η̂(y)− η0)T} � MCRB(η0), (4.11)

where Ep{·} denotes the expectation operator under the true model p(y) and

MCRB(η0) , A−1
η0
Bη0A

−1
η0
, (4.12)

in which the (i, j)-th elements of the matrices Aη0 and Bη0 are calculated as

[Aη0 ]ij = Ep
{

∂2

∂ηi∂ηj
log p̃(y|η)

∣∣∣
η=η0

}
, (4.13)
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[Bη0 ]ij = Ep
{
∂

∂ηi
log p̃(y|η)

∂

∂ηj
log p̃(y|η)

∣∣∣
η=η0

}
, (4.14)

for 1 ≤ i, j ≤ 5, with ηi denoting the ith element of η. Note that without model mismatch,

Aη0 = Aη = −Bη0 = −Bη so that the MCRB reverts to the classical Cramér-Rao bound

(CRB) [116].

Since the value of the pseudo-true parameter is generally not of interest, the MCRB is

used to establish the LB of any MS-unbiased estimator with respect to the true parameter

value [85]

Ep{(η̂(y)− η)(η̂(y)− η)T} � LB(η0), (4.15)

where LB(η0) , MCRB(η0) + (η − η0)(η − η0)T. The last term is a bias term; that is,

Bias(η0) , (η − η0)(η − η0)T, and it is independent of the SNR. Hence, as the SNR tends

to infinity, the MCRB term goes to zero, and the bias term becomes a tight bound for the

MSE of any MS-unbiased estimator.

4.2.3 MCRB Derivation for RIS-aided Localization

4.2.3.1 Determining the Pseudo-True Parameter

To derive the MCRB for estimating the UE position under mismatch between the amplitude

models for the RIS elements, we should first calculate the η0 parameter in (4.10) for the sys-

tem model described in Section 4.1; that is, we should find the value of η that minimizes the

KL divergence between p(y) in (4.6) and p̃(y|η) in (4.8). The following lemma characterizes

η0 for the considered system model.

Lemma 4.1: The value of η that minimizes the KL divergence between p(y) in (4.6) and

p̃(y|η), which is a parameterized version of (4.8), can be expressed as

η0 = arg min
η∈R5

‖ε(η)‖2 (4.16)

where ε(η) , [ε1(η) . . . εT (η)]T and εt(η) , µt − µ̃t(η) for t = 1, . . . , T .
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Proof: Based on the definition of the KL divergence and the system model in Section 4.1,

(4.10) can be expressed as

η0 = arg min
η∈R5

∫
p(y) log

(
p(y)

p̃(y|η)

)
dy (4.17)

= arg min
η∈R5

−
∫
p(y) log p̃(y|η) dy (4.18)

= arg min
η∈R5

∫
p(y) ‖y − µ̃(η)‖2

2 dy (4.19)

where the second equality is due to the independence of p(y) from η, and the last equality

is obtained from (4.8). Then, it can be shown that the following equations hold:∫
p(y) ‖y − µ̃(η)‖2

2 dy =
T∑
t=1

∫
p(y) |yt − µ̃t(η)|2 dy

=
T∑
t=1

(∏
t′ 6=t

∫
p(yt′) dyt′

)
︸ ︷︷ ︸

=1

(∫
p(yt) |yt − µ̃t(η)|2 dyt

)

=
T∑
t=1

∫
p(yt) |yt − µ̃t(η)|2 dyt. (4.20)

We now introduce εt(η) = µt − µ̃t(η), so that |yt − µ̃t(η)|2 = |yt − µt + εt(η)|2, and the

integral expression in (4.20) can be manipulated as follows:∫
p(yt) |yt − µ̃t(η)|2 dyt =

∫
p(yt) |yt − µt|2 dyt

+ |εt(η)|2
∫
p(yt) dyt + 2

∫
p(yt)Re ((yt − µt)∗εt(η)) dyt. (4.21)

Since yt ∼ CN (µt, N0) and
∫
p(yt) dyt = 1, the expression in (4.21) can be simplified as∫
p(yt) |yt − µ̃t(η)|2 dyt = N0 + |εt(η)|2 . (4.22)

By combining (4.19), (4.20) and (4.22), we finally obtain that

η̄ = arg min
η∈R5

T∑
t=1

(
N0 + |εt(η)|2

)
= arg min

η∈R5

T∑
t=1

|εt(η)|2 ,

which completes the proof. �
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Lemma 4.1 states that the pseudo-true parameter minimizes the Euclidean distance be-

tween the noise-free observations under the true and assumed models.

Let γ(η) , ‖ε(η)‖2 = ‖µ− µ̃(η)‖2. It is noted from (4.5) and (4.9) that γ(η) is non-

convex with respect to η; hence, it is challenging to solve (4.16) in its current form. Based

on (4.8) and (4.9), we can re-write (4.16) as

(α0,p0) = arg min
(α,p)

‖µ− α c(p)‖2 , (4.23)

where [c(p)]t ,
∑M

m=1[b(p)]mw̃t,mst. The optimal complex-valued α for any given p can be

expressed as

α =
cH(p)µ

cH(p)c(p)
· (4.24)

Inserting (4.24) into (4.23), the minimization problem can be reduced to a three-dimensional

search as follows:

p0 = arg max
p

µHΠc(p)µ , (4.25)

where Πx , xxH/xHx. Therefore, η0 = [αT
0 p

T
0 ]T can be found by first performing a three-

dimensional optimization as in (4.25), and then calculating α0 via (4.24) and obtaining α0

as α0 = [Re(α0) Im(α0)]T.

Remark 4.1: In order to determine the pseudo-true parameter or equivalently to find p0

in (4.25), the true location p can be used for initialization, which reduces the computational

complexity of MCRB calculation significantly.

Remark 4.2: It is noted that the proof of Lemma 4.1 does not rely on the amplitude

model given in (4.3). Thus, Lemma 4.1 is not only valid for (4.3). That is, for any kind of

phase-dependent amplitude variations, Lemma 4.1 can be used.
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4.2.3.2 Deriving the MCRB

After finding η0, we compute the matricesAη0 from (4.13) andBη0 from (4.14) for evaluating

the MCRB in (4.11). Based on the pdf expressions in (4.6)–(4.8), (4.13) becomes

[Aη0 ]ij = − 1

N0

(∫
∂2

∂ηi∂ηj
‖y − µ̃(η)‖2

2 p(y) dy

) ∣∣∣∣∣
η=η0

(4.26)

= − 1

N0

(
T∑
t=1

∫
∂2

∂ηi∂ηj
|yt − µ̃t(η)|2 p(y) dy

)∣∣∣∣∣
η=η0

(4.27)

= − 1

N0

(
T∑
t=1

∫
∂2

∂ηi∂ηj
|yt − µ̃t(η)|2 p(yt) dyt

)∣∣∣∣∣
η=η0

(4.28)

=
2

N0

Re

{
T∑
t=1

εt(η)∗
∂2µ̃t(η)

∂ηiηj
− ∂µ̃∗t (η)

∂ηi

∂µ̃t(η)

∂ηj

}∣∣∣∣∣
η=η0

(4.29)

In addition, after some algebraic manipulation, the (i, j)th entry of matrix Bη0 in (4.14) can

be written as the sum of four terms as [Bη0 ]ij = T1 + T2 + T3 + T4, where

T1 =
1

N2
0

(
T∑
t=1

∂µ̃t(η)

∂ηi
εt(η)∗

)(
T∑
l=1

∂µ̃l(η)

∂ηj
εl(η)∗

)∣∣∣∣∣
η=η0

(4.30)

T2 =

[
1

N2
0

(
T∑
t=1

∂µ̃t(η)

∂ηi
εt(η)∗

)(
T∑
l=1

∂µ̃∗l (η)

∂ηj
εl(η)

)
+

1

N0

T∑
t=1

∂µ̃t(η)

∂ηi

∂µ̃∗t (η)

∂ηj

]∣∣∣∣∣
η=η0

(4.31)

T3 =
1

N2
0

(
T∑
t=1

∂µ̃∗t (η)

∂ηi
εt(η)

)(
T∑
t=1

∂µ̃∗l (η)

∂ηj
εl(η)

)∣∣∣∣∣
η=η0

(4.32)

T4 =

[
1

N2
0

(
T∑
t=1

∂µ̃∗t (η)

∂ηi
εt(η)

)(
T∑
l=1

∂µ̃l(η)

∂ηj
εl(η)∗

)
+

1

N0

T∑
t=1

∂µ̃∗t (η)

∂ηi

∂µ̃t(η)

∂ηj

]∣∣∣∣∣
η=η0

(4.33)

Hence, [Aη0 ]ij and [Bη0 ]ij can be written in more compact forms as follows:

[Aη0 ]ij =
2

N0

Re

{
ε(η)H

∂2µ̃(η)

∂ηi∂ηj
−
(∂µ̃(η)

∂ηi

)H∂µ̃(η)

∂ηj

} ∣∣∣∣∣
η=η0

(4.34)

[Bη0 ]ij =
2

N0

[
2

N0

Re

{
ε(η)H

∂µ̃(η)

∂ηi

}
Re

{
ε(η)H

∂µ̃(η)

∂ηj

}
+ Re

{(
∂µ̃(η)

∂ηi

)H
∂µ̃(η)

∂ηj

}]∣∣∣∣∣
η=η0

.

(4.35)

where
∂2µ̃(η)

∂ηi∂ηj
,

[
∂2µ̃1(η)

∂ηi∂ηj
. . .

∂2µ̃T (η)

∂ηi∂ηj

]T
. (4.36)
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Therefore, once we compute the first and the second derivatives of µ̃t(η) with respect to η,

we can easily compute the matrices Aη0 and Bη0 as specified above. Based on Aη0 and Bη0 ,

the MCRB in (4.11) and the lower bound in (4.15) can be evaluated in a straightforward

manner. Next, we present the derivatives of µ̃t(η) as follows.

Derivatives of µ̃t(η):

Let η be given by η = [αr αi x y z]T. Also, define p , [x y z]T, bm , [b(p)]m, and α ,

αr + jαi. We also introduce u = p−pRIS

‖p−pRIS‖2
and for any 1 ≤ m ≤ M , um = p−pm

‖p−pm‖2
, where

u = [ux uy uz]
T and um = [um,x um,y um,z]

T.Then, the first and second derivatives of µ̃t(η)

with respect to η are given as follows:

∂µ̃t(η)

∂αr
=

M∑
m=1

bmw̃t,mst,
∂µ̃t(η)

∂αi
= j

M∑
m=1

bmw̃t,mst.

For ν ∈ {x y z}, we can write

∂µ̃t(η)

∂ν
= −j 2π

λ
α

M∑
m=1

bm (um,ν − ux) w̃t,mst,

∂2µ̃t(η)

∂αr∂ν
= −j 2π

λ

M∑
m=1

bm (um,ν − uν) w̃t,mst,

∂2µ̃t(η)

∂αi∂ν
= j

∂2µ̃t(η)

∂αr∂ν
,

∂2µ̃t(η)

∂ν∂ν
= −α4π2

λ2

M∑
m=1

bm (um,ν − uν)2 w̃t,mst − j
2π

λ
α

M∑
m=1

bm

(
1− u2

m,ν

‖p− pm‖2

− 1− u2
ν

‖p− pRIS‖2

)
w̃t,mst.

Moreover, if ν1, ν2 ∈ {x y z} and they correspond to different coordinates, it is possible to

express

∂2µ̃t(η)

∂ν1∂ν2

= −α4π2

λ2

M∑
m=1

bm (um,ν1 − uν1) (um,ν2 − uν2) w̃t,mst

+ j
2π

λ
α

M∑
m=1

bm

(
um,ν1um,ν2
‖p− pm‖2

− uν1uν2
‖p− pRIS‖2

)
w̃t,mst.
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4.3 Scenario-I: Mismatched Estimator

In this section, we focus on estimator design for Scenario-I. First, we derive the plain MML

estimator, which entails computationally prohibitive high-dimensional non-convex optimiza-

tion. To circumvent this, we then propose a low-complexity estimator capitalizing on the

Jacobi-Anger expansion, which reduces the problem to a series of line searches over range,

azimuth, and elevation domains.

4.3.1 Mismatched Maximum Likelihood (MML) Estimator

The MML estimator is given by [85]

η̂MML(y) = arg max
η∈R5

log p̃(y|η). (4.37)

Under some regularity conditions, it can be shown that η̂MML(y) is asymptotically MS-

unbiased and its error covariance matrix is asymptotically equal to the MCRB(η0) [85, Thm.

2]. Hence, the covariance matrix of the MML estimator is asymptotically tight to the MCRB.

From (4.8) and (4.37), the MML estimator based on the received signal y in (4.1) can be

expressed as

η̂MML(y) = arg max
η∈R5

log p̃(y|η) = arg min
η∈R5

‖y − µ̃(η)‖2 . (4.38)

Since this problem is in the same form as in (4.16), it can be reduced to a three-dimensional

optimization problem as discussed in Section 4.2.3. In order to solve the resulting problem,

initialization can be very critical as we are faced with a non-convex optimization problem.

During the estimation process, we do not have access to the true position p. Hence, we

cannot use the true position vector p for the initialization. If an arbitrarily chosen position

vector is used for the initialization, the global optimal solution of (4.37) cannot always be

obtained. To find a remedy for this issue, we next propose an approximated version of

the MML estimator, namely, the approximate mismatched maximum likelihood (AMML)

estimator, based on the Jacobi-Anger expansion approach [70,82].
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4.3.2 AMML Estimator Structure

Let ϑ ∈ [0, π/2] denote the angle between the Z axis and p, and ϕ ∈ [0, 2π] represent the

angle between the projection of p on the X-Y plane and the X axis, measured counter-

clockwise. Hence, we can write p = d [sinϑ cosϕ sinϑ sinϕ cosϑ]T, where d = ‖p‖2. When

d � ‖pm‖2, the near-field steering vector [a(p)]m in (4.2) reverts to its standard far-field

counterpart as follows [70]:

[a(p)]m = exp

(
j

2π

λ
pT
mk(ϑ, ϕ)

)
. (4.39)

By employing the Jacobi-Anger expansion to (4.39), a(p) can be expanded as [119]

[a(p)]m =
∞∑

n=−∞

jnJn

(
2π

λ
‖pm‖2 sinϑ

)
ejn(ϕ−ψm) , (4.40)

where pm = ‖pm‖2 [cos(ψm) sin(ψm) 0]T and Jn(·) is the nth order Bessel function of the

first kind. As |Jn(·)| decays to 0 as |n| increases, by neglecting the terms with |n| > N , for

some N ∈ N, a(p) in (4.39) can be approximated by

[a(p)]m ≈
N∑

n=−N

jnJn

(
2π

λ
‖pm‖2 sinϑ

)
ejn(ϕ−ψm). (4.41)

We define [gm(ϑ)]n and [h(ϕ)]n for n ∈ {−N, . . . , N} as follows:

[gm(ϑ)]n = jnJn

(
2π

λ
‖pm‖2 sinϑ

)
e−jnψm , (4.42)

[h(ϕ)]n = ejnϕ . (4.43)

Then, inserting (4.42) and (4.43) into (4.41) yields

a(p) ≈ GT(ϑ)h(ϕ), (4.44)

where

G(ϑ) = [g1(ϑ) . . . gM(ϑ)] ∈ C(2N+1)×M . (4.45)

Next, we define a matrix Q ∈ CT×M with the elements [Q]t,m = w̃t,m[a(pBS)]m for any t,m.

Hence, (4.9) can be approximated as

µ̃(η) ≈ αQGT(ϑ)h(ϕ)
√
Es (4.46)
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where st =
√
Es for any t. That is, for the assumed model, we can write the observations as

y ≈ αQGT(ϑ)h(ϕ)
√
Es + n , (4.47)

where n , [n1 . . . nT ]T. By using the three-step simple line searches given in [70, Eqs. (31),

(32), (33)], the estimates of ϕ, ϑ and d are obtained as follows:

ϑ̂ = arg min
ϑ∈[0, π/2]

∥∥∥y −QGT(ϑ)
(
QGT(ϑ)

)†
y
∥∥∥

2
, (4.48)

ϕ̂ = arg min
ϕ∈[0, 2π]

∥∥∥y −√Esα̂ (ϕ)QGT(ϑ̂)h(ϕ)
∥∥∥

2
, (4.49)

d̂ = arg min
d∈(0,∞)

∥∥∥y −√Esα̂ (p(d))Qa(p(d))
∥∥∥

2
, (4.50)

where (·)† denotes pseudo-inverse,

p(d) , d[sin(ϑ̂) cos(ϕ̂) sin(ϑ̂) sin(ϕ̂) cos(ϑ̂)]T , (4.51)

α̂(ϕ) ,

√
Es

(
QGT(ϑ̂)h(ϕ)

)H
y(

QGT(ϑ̂)h(ϕ)
)H
QGT(ϑ̂)h(ϕ)

, (4.52)

α̂(p(d)) ,

√
Es (Qa(p(d)))H y

(Qa(p(d)))HQa(p(d))
. (4.53)

After obtaining the estimates of ϑ, ϕ, and d, we use p(d̂) as the AMML estimate for the UE

location. The entire algorithm is summarized in Algorithm 3. As discussed in [70], these

three-step simple line searches have a low computational complexity. Based on the AMML

estimate for the UE location, the search intervals in (4.48)-(4.50) can be made narrower, and

we run the AMML estimator again.

Next, we analyze how the performance bounds and the estimator structures are affected

when the true RIS amplitude model given in (4.3) is known.
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Algorithm 3 AMML Algorithm for RIS-aided Near-Field Localization via Jacobi-Anger
Expansion

Input: Observation y in (4.1).
Output: Location estimate p̂.

(a) Find an estimate of azimuth ϑ̂ by solving (4.48).

(b) Using ϑ̂, find an estimate of elevation ϕ̂ by solving (4.49).

(c) Using ϑ̂ and ϕ̂, find an estimate of distance d̂ by solving (4.50).

(d) Compute the location estimate via (4.51).

4.4 Scenario-II & Scenario-III: RIS-aided Localization

Under Known RIS Amplitude Model

In this section, we investigate RIS-aided localization under Scenario-II and Scenario-III,

where the UE is assumed to be aware of the RIS amplitude model in (4.3).

4.4.1 Scenario-II: Known RIS Amplitude Model with Unknown

Parameters

In this scenario, in order to parameterize the unknown system parameters, we will use

η = [Re(α) Im(α)pT βmin κφ]T, which consists of both the channel parameters and the RIS

model parameters. Then, by [70, Eq. 9], the Fisher Information matrix (FIM), J(η) ∈ R8×8,

can be expressed as

J(η) =
2

N0

Re

{(
∂µ

∂η

)H
∂µ

∂η

}
. (4.54)

In order to compute the derivatives of µ with respect to the first five entries of η, we can use

the derivatives given in Chapter 4.2.3.2 by replacing the w̃t,m terms with wt,m. For the last

three entries of η, i.e., for the RIS related parameters, the FIM entries are given as follows:

∂µt(η)

∂βmin

= α
√
Es

M∑
m=1

[b(p)]me
jθt,m

(
1−

(
sin(θt,m − φ) + 1

2

)κ)
,
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∂µt(η)

∂κ
= α

√
Es

M∑
m=1

[b(p)]me
jθt,m(1− βmin)

(
sin(θt,m − φ) + 1

2

)κ
log

(
sin(θt,m − φ) + 1

2

)
,

∂µt(η)

∂φ
=− α

√
Es

M∑
m=1

[b(p)]me
jθt,m(1− βmin)κ

(
sin(θt,m − φ) + 1

2

)κ−1(
cos(θt,m − φ)

2

)
.

After obtaining the FIM, by computing Tr{J−1(η)}3:5,3:5, we can obtain the CRB for

estimating the UE position. Moreover, the ML estimator can be stated as

η̂ML(y) = arg max
η∈R8

log p(y). (4.55)

As discussed in Section 4.2.3, the estimate for α can uniquely be determined for given

estimates of p, βmin, κ, and φ. That is, this problem can be reduced to a 6-dimensional

optimization problem. Similar to the mismatched scenario (Scenario-I), the initialization

is an important issue for this scenario, as well. For practical implementations, we propose

an approximate version of the ML estimator, called the approximate maximum likelihood

(AML) estimator, in the next section.

4.4.2 Scenario-II: AML Estimator

In this part, our goal is to solve the problem of joint localization and online RIS calibration

in (4.55), which involves estimating the UE location p and the RIS model parameters βmin,

κ, and φ simultaneously. To accomplish this in an efficient manner, we propose a low-

complexity estimator as an alternative to the high-dimensional non-convex optimization in

(4.55).

Let us write the observations in (4.1) in a vector form as

y = ᾱWT(ζ)b(p)
√
Es + n, (4.56)

where W(ζ) = [w1(ζ) . . . wT (ζ)] ∈ CM×T is the matrix of RIS profiles as a function of

the parameters ζ = [βmin κ φ]T of the RIS amplitude model in (4.3) and (4.4), and n =

[n1 . . . nT ]T is the additive noise vector. From (4.3) and (4.4), W(ζ) can be expressed as

W(ζ) =
(
βminΓ1(κ, φ) + Γ2(κ, φ)

)
� ejΘ, (4.57)
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where Θ ∈ RM×T denotes the RIS phase shifts with [Θ]m,t = θm,t,

Γ1(κ, φ) , 1M1T
T −

(
sin(Θ− φ) + 1

2

)κ
, (4.58)

Γ2(κ, φ) ,

(
sin(Θ− φ) + 1

2

)κ
, (4.59)

1M is an all-ones vector of size M , and sin(·) and (·)κ operations are element-wise. Plugging

b(p) = a(p)� a(pBS) and (4.57) into (4.56) yields

y = α
(
βminΓ̃1(κ, φ) + Γ̃2(κ, φ)

)T
a(p)

√
Es + n, (4.60)

where

Γ̃1(κ, φ) , Γ1(κ, φ)� ejΘ � a(pBS)1T
T , (4.61)

Γ̃2(κ, φ) , Γ2(κ, φ)� ejΘ � a(pBS)1T
T .

The ML estimator corresponding to the observation model in (4.60) is given by

min
α,p,ζ

∥∥∥∥y − α(βminΓ̃1(κ, φ) + Γ̃2(κ, φ)
)T
a(p)

√
Es

∥∥∥∥2

2

. (4.62)

To solve the ML optimization problem in (4.62), we now propose a three-step procedure

consisting of location initialization, online RIS calibration and location refinement.

4.4.2.1 Step 0: Initialization of UE Location

First, by assuming βmin = 1, the initial location estimate p̂ is obtained by using the Jacobi-

Anger expansion based algorithm in Algorithm 3. Inserting p̂ into the ML estimator in

(4.62), the optimization problem becomes

min
α,ζ

∥∥∥∥y − α(βminΓ̃1(κ, φ) + Γ̃2(κ, φ)
)T
a(p̂)

√
Es

∥∥∥∥2

2

. (4.63)

4.4.2.2 Step 1: Online RIS Calibration

As noted from (4.63), α and βmin can now be estimated in closed-from as a function of

the remaining unknown parameters, while the estimates of κ and φ can be found via a 2-D
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search. This motivates an alternating optimization algorithm where we alternate among

updates of α, βmin, and (κ, φ):

� Update α: Given ζ, a closed-form estimate of α in (4.63) is given by

α̂ =
(
ΥH(ζ)Υ(ζ)

)−1
ΥH(ζ)y, (4.64)

where

Υ(ζ) ,
(
βminΓ̃1(κ, φ) + Γ̃2(κ, φ)

)T
a(p̂)

√
Es. (4.65)

� Update βmin: Given α, κ, and φ, under the constraint of 0 ≤ βmin ≤ 1, the Lagrangian

can be expressed as follows:

L(βmin, λ1, λ2) = ‖z− βminω‖2
2 + λ1(βmin − 1)− λ2βmin

where z = y−αΓ̃2(κ, φ)Ta(p̂)
√
Es and ω = αΓ̃1(κ, φ)Ta(p̂)

√
Es. From Karush-Kuhn-

Tucker conditions, the closed-form estimate of βmin in (4.63) can be obtained from the

following set of equations:

λ1 − λ2 + 2β̂minω
Hω = zHω + ωHz (4.66)

λ1(β̂min − 1) = 0, λ2β̂min = 0. (4.67)

Hence, we can conclude that β̂min admits one of the three alternative forms: β̂min = 1,

β̂min = 0, or β̂min = Re{zHω}/(ωHω). Among these three solutions, the one which

yields the smallest objective is chosen.

� Update κ and φ: Given α and βmin, we can estimate κ and φ via a 2-D search:

(κ̂, φ̂) = arg min
κ∈[0,∞)
φ∈[0,2π)

∥∥∥∥y − α(βminΓ̃1(κ, φ) + Γ̃2(κ, φ)
)T
a(p̂)

√
Es

∥∥∥∥
2

(4.68)

4.4.2.3 Step 2: Refinement of UE Location

As the output of this alternating procedure, we obtain the estimates of α, βmin, κ, and φ.

By plugging the estimates of βmin, κ, and φ (representing the calibrated RIS parameters)
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Algorithm 4 AML Algorithm for Joint UE Localization and Online RIS Calibration

Input: Observation y in (4.60).
Output: Location estimate p̂, channel gain estimate α̂ and estimates of RIS amplitude

model parameters ζ̂ = [β̂min, κ̂, φ̂]T.
1: Step 0: Initialization of UE Location

(a) Set βmin = 1.

(b) Compute the initial location estimate p̂ using Algorithm 3.

2: Step 1: Alternating Iterations for Online RIS Calibration
3: while the objective function in (4.63) does not converge

(a) Update the channel estimate α̂ via (4.64).

(b) Update β̂min via (4.66).

(c) Update κ̂ and φ̂ via (4.68).

4: end while
5: Step 2: Refinement of UE Location with Calibrated RIS Model

(a) Use Algorithm 3 to estimate the UE location, p̂, and the channel gain, α̂, from

(4.62) by plugging the estimates β̂min, κ̂ and φ̂ obtained at the output of Step 1.

back into the ML estimator in (4.62), the estimate of the UE location p can be refined via

Algorithm 3. The overall algorithm for joint UE localization and online RIS calibration is

summarized in Algorithm 4.

Remark 4.3 : If we skip Step 1 of Algorithm 4 (i.e., online RIS calibration) and choose

β̂min = 1 (i.e., uncalibrated, unit-amplitude RIS model in (4.7)), the AML algorithm gives

the same estimate as the AMML algorithm.

4.4.3 Scenario-III: Known RIS Amplitude Model with Known

Parameters

In this scenario, the unknown system parameters are given by η = [Re(α) Im(α)pT ]T and

the values of the RIS related parameters are perfectly known. For this scenario, the FIM,
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J(η) ∈ R5×5, can be computed as in (4.54). In addition, the derivatives presented in

Chapter 4.2.3.2 can be used by replacing w̃t,m’s with wt,m’s.

To estimate the UE location, we can employ the same AML algorithm, Algorithm 4, as

used in Scenario-II. As the values of βmin, κ, and φ are available, we can skip Step 0 and

Step 1 of Algorithm 4 and run Step 2 with the known values of the RIS amplitude model

parameters.

4.5 Numerical Results

In this section, we first present numerical examples for evaluating the theoretical bounds

in three different scenarios, and then compare the performance of the AMML and AML

estimators against the theoretical bounds.

4.5.1 Simulation Setup

We consider an RIS with M = 50 × 50 elements, where the inter-element spacing is λ/2

and the area of each element is A = λ2/4 [70]. The carrier frequency is equal to fc = 28

GHz. The RIS is modeled to lie in the X-Y plane with pRIS = [0 0 0]T. Moreover, for the

RIS elements, the θt,m values are generated uniformly and independently between −π and π.

The BS is located at pBS = 5.77× [−1 1 1]T meters. For given distance d to the RIS, the UE

is located at d × [1 1 1]T/‖[1 1 1]‖2 meters. We set the number of transmission to T = 200.

For simplicity, we assume that st =
√
Es for any t. Also, the SNR is defined as

SNR =
Es |α|2

TN0

T∑
t=1

∣∣bT(p)wt

∣∣2 . (4.69)

To solve (4.25) for the LB computation, we employ the GlobalSearch algorithm of MATLAB

by providing p as the initial vector. In addition, N in (4.41) is taken as 50 for using the

Jacobi-Anger expansion approach.
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Figure 4.3: Theoretical bounds versus βmin for SNR = 20 dB, 30 dB and 40 dB when the UE
distance is 5 meters, κ = 1.5 and φ = 0.

4.5.2 Results and Discussions

4.5.2.1 Theoretical Limits vs. RIS Model Parameters

In Figure 4.3, for all the three scenarios, we show the theoretical bounds as a function of

βmin for SNRs of 20, 30, and 40 dB when the UE distance is 5 meters from the center of

the RIS, κ = 1.5, and φ = 0. We observe from the figure that as βmin decreases, i.e., as the

mismatch between the true and the assumed models increases, the LB increases and raising

the SNR level does not improve the LB values significantly. In addition, the sensitivity to

the model mismatch is more pronounced at higher SNRs, while for an SNR of 20 dB, the

performance is relatively insensitive for βmin > 0.7. This shows that being unaware of the

true RIS amplitude model can constitute a crucial limiting factor for RIS-aided localization

at high SNRs. Interestingly, we note that when the true model and the true values of βmin,

κ and φ are known, the value of βmin does not influence the CRB values notably. In fact, as

the CRB values for the Scenario-II and Scenario-III are almost the same, it can be inferred

that once we know the true model, knowing the true values of βmin, κ and φ is not critical.
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Figure 4.4: Theoretical bounds versus κ for SNR = 20 dB, 30 dB and 40 dB when the UE
distance is 5 meters, βmin = 0.7 and φ = 0.

In Figure 4.4, for all the three scenarios, the theoretical bounds are plotted versus κ for

SNRs of 20, 30, and 40 dB when the UE distance is 5 meters from the center of the RIS,

βmin = 0.7, and φ = 0. Similar to Figure 4.3, the CRB values for Scenario-II and Scenario-III

are almost the same. We also observe that as κ approaches 0, i.e., as the mismatch between

the true and assumed models decreases, the LB and the CRB values for Scenario-II and

Scenario-III become closer to each other similarly to Figure 4.3. In addition, as the SNR

increases, the performance loss due to the mismatch becomes more significant. Moreover,

increasing κ beyond κ = 0.4 does not have any notable impacts on the LB values.

4.5.2.2 Effect of RIS Size

To investigate the effects of the number of RIS elements, the average LB and CRB values

are plotted versus the RIS size in Figure 4.5 for all the three scenarios by averaging over

200 different random phase profiles for the RIS elements, where the SNR is 20 dB, the UE

distance is 5 meters, βmin ∈ {0.3, 0.7}, κ = 1.5, and φ = 0. We observe that as the RIS size

or βmin increases, we obtain lower LB values in general. In addition, the curves for different
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Figure 4.5: Theoretical bounds versus number of RIS elements and for βmin ∈ {0.3, 0.7}
when the UE distance is 5 meters, SNR = 20 dB, κ = 1.5 and φ = 0.

βmin values are almost parallel. We also note the significant price paid due to the model

mismatch: With the perfect knowledge of the RIS model and with 1000 elements, a similar

performance can only be attained using a RIS with 4225 elements when βmin = 0.3 under

the model mismatch.

4.5.2.3 Performance of Algorithm 3 and Algorithm 4 vs. SNR

To provide a comparative analysis of the three scenarios, in Figure 4.6, the performances of

the AMML algorithm in Algorithm 3 and the AML algorithm in Algorithm 4 are plotted

versus SNR, and compared with the corresponding LB and CRB values when βmin = 0.5.

It is noted that the AMML and AML algorithms achieve the theoretical bounds in the

high SNR regime in all the three scenarios. This indicates that the proposed Jacobi-Anger

expansion based low-complexity approach in Algorithm 3 can successfully provide near-

optimal solutions to the near-field localization problem in (4.38). Moreover, by comparing the

AMML and the AML curves at high SNRs, we observe that the AML algorithm completely

recovers the performance loss due to model misspecification, which verifies the effectiveness of
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Figure 4.6: Performance of the AMML and the AML algorithms along with the corresponding
theoretical bounds versus SNR (dB) when the UE distance is 5 meters, κ = 1.5, βmin = 0.5
and φ = 0.

the online RIS calibration in Step 1 and the UE location refinement in Step 2 of Algorithm 4.

To explore the asymptotic behavior of the AMML algorithm in Scenario I, its performance

with respect to SNR is illustrated in Figure 4.7 for βmin = 0.5 and 0.7 when the UE distance

is 5 meters. In addition to the performance of the AMML estimator, the LB, the MCRB,

and the bias term values are also plotted. We observe that the AMML estimator exhibits

three distinct regimes: a low-SNR regime where the AMML is limited by noise peaks and

thus far away from the LB; a medium-SNR regime where the AMML is close to the LB,

which itself is dominated by the MCRB; and a high-SNR regime, where the AMML and LB

are limited by the bias term Bias(η0).

4.5.2.4 Performance of Algorithm 3 and Algorithm 4 vs. RIS Model Parameters

To investigate the performance of the proposed localization methods under varying values

of RIS model parameters, in Figure 4.8, the RMSEs of the AMML and AML algorithms are
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and φ = 0.

evaluated versus κ when SNR = 30 dB, βmin = 0.7, φ = 0, and the UE distance is 5 meters.

Similarly, in Figure 4.9, the performances of the AMML and AML algorithms versus βmin

are shown when SNR = 30 dB, κ = 1.5, φ = 0, and the UE distance is 5 meters. From

Figures 4.8 and 4.9, it is noted that for Scenario-II and Scenario-III, the AML algorithm

achieves the CRB, which is insensitive to the values of κ and βmin. In addition, a combined

evaluation of Figure 4.6, Figure 4.8 and Figure 4.9 demonstrates that both of the proposed

algorithms can attain the corresponding bounds under a wide variety of settings concerning

different SNR levels and RIS model parameters.

4.5.2.5 Convergence Behavior of Algorithm 4

Finally, for a single realization, Figure 4.10 illustrates the errors of the position estimates at

each alternating iteration in Step 1 of Algorithm 2. In the figure, p̂(k) denotes the estimate

of the position p obtained from the Jacobi-Anger approach by using the estimate of ζ at the

kth iteration.
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Figure 4.10: Errors of estimates of p at each iteration in Step 1 of Algorithm 2 when
βmin = 0.5, κ = 1.5, φ = 0, SNR = 30 dB, and UE distance is 5 meters.

We observe that, starting from the initial location estimate given by Algorithm 3, Al-

gorithm 4 provides significant performance gains through the iterations of the online RIS

calibration in Step 1. In particular, at an SNR of 40 dB, Algorithm 4 achieves the error

value of 0.0058 m, while the error corresponding to Algorithm 3 is 0.1241 m.

4.6 Concluding Remarks

We have studied the problem of RIS-aided near-field localization under amplitude variations

of individual RIS elements as a function of the applied phase shifts, which is a practical

model based on equivalent RIS circuit models of reflecting elements [78]. First, through the

MCRB analysis, we have quantified localization performance losses due to model misspeci-

fication when the UE is unaware of the RIS amplitude model, and developed an algorithm

that achieves the corresponding LB. Second, under a known RIS amplitude model, we have

derived the corresponding CRB and proposed a low-complexity algorithm for joint UE local-

ization and online calibration of RIS model parameters. Extensive simulations over a broad
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range of operating conditions demonstrate the following key results:

� Significance of the Knowledge of RIS Amplitude Model: Being unaware of the true

RIS amplitude model and assuming conventional unit-amplitude RIS responses can

severely degrade the localization accuracy, with the losses being more pronounced at

higher SNRs and higher amplitude fluctuations (small βmin and large κ in (4.4)).

� Localization under Model Mismatch: Under the unknown RIS amplitude model, the

proposed Jacobi-Anger expansion based low-complexity method in Algorithm 3 can

provide near-optimal localization performance very close to the corresponding LB.

� Joint Localization and RIS Calibration: Under the known RIS amplitude model, it

is possible to recover the performance losses incurred by model misspecification using

the proposed algorithm in Algorithm 4, which can calibrate the RIS model online with

the aid of an unknown-location UE and subsequently refine the UE location with an

accuracy that asymptotically attains the CRB.

Based on these outcomes, future research will focus on localization-optimal passive beam-

forming at the RIS under the realistic RIS amplitude model in (4.4), considering wideband

signals and unobstructed LoS scenarios.
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Chapter 5

RIS-aided Localization under Pixel

Failures

In this chapter, the aim is to perform RIS-aided localization when some of RIS elements

(pixels) fail.

5.1 System Model

In this section, we present the system geometry and the signal model, describe RIS failure

models, and formulate the problems of interest under pixel failures.

5.1.1 Geometry and Signal Model

We consider a RIS-aided localization system with a single-antenna BS, an N -element RIS,

and a single-antenna UE having the following three-dimensional locations: pBS ∈ R3 denotes

the known BS location, pRIS ∈ R3 is the known center of the RIS, pn ∈ R3 represents the

known location of the n-th RIS element for 1 ≤ n ≤ N , and p ∈ R3 is the unknown UE

location.
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Without loss of generality, the BS broadcasts a narrowband signal st over T transmissions

under the constraint of E
{
|st|2

}
= Es. Assuming LoS blockage and the absence of uncon-

trolled multipath, the signal received by the UE involves only reflections from the RIS and

can be expressed at transmission t as

yt = ᾱaT(p)diag(γt)a(pBS)st + nt , (5.1)

where α is the unknown channel gain, γt ∈ CN×1 is the RIS phase profile at transmission

t, and nt is uncorrelated zero-mean additive Gaussian noise with variance N0/2 per real

dimension. Moreover, a(p) ∈ CN×1 is the near-field RIS steering vector for a given position

p, defined as

[a(p)]n = exp

(
−j 2π

λ
(‖p− pn‖2 − ‖p− pRIS‖2)

)
(5.2)

for n ∈ {1, . . . , N}, where λ denotes the signal wavelength.

5.1.2 RIS Pixel Failure Model

Based on [18], we consider the biased type of failure. The element switches to a valid, biased

state with a certain distance from the desired state due to bit-flipping or external biases.

Under such element failures, the RIS phase profile γt in (5.1) can be modeled as

γt = φt �m , (5.3)

where φt ∈ CN×1 represents the configurable RIS weights under the designer’s control, and

m ∈ CN×1 denotes the unknown failure masks quantifying the effect of faulty elements,

which can be defined as [19,86]

mn =

ζn, if the n-th RIS element is faulty (biased)

1, if the n-th RIS element is properly functioning
. (5.4)

Based on (5.3), the RIS phase profile takes the following values in the presence of failures:

[γt]n =

[φt]n, if the n-th RIS element is functioning

[φt]nmn, if the n-th RIS element is biased
(5.5)
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In (5.4), ζn = κne
jψn denotes the failure related complex response of the n-th element,

with 0 < κn ≤ 1 and 0 ≤ ψn < 2π representing the resulting attenuation and phase shift,

respectively.

We model that each RIS element fails independent and identically with given probability

pfail. Also, if pixel n fails, we assume that κn ∼ U(0, 1) and ψn ∼ U(−π, π).

5.1.3 Problem Description

Given the observations {yt}Tt=1 in (5.1) over T transmission instances, the problems under

RIS pixel failures specified in (5.4) can be described as follows:

1. To what extent are RIS pixel failures detrimental for RIS-aided localization of the UE?

How is the performance degradation affected by the percentage of failing elements?

2. How can we identify which pixels are failing and recover the failure mask m in order

to find the position of the UE?

5.2 Problem 1: Theoretical Performance Evaluation

Under Pixel Failures

In this section, we tackle Problem 1 in Sec. 5.1.3 by resorting to the MCRB [85] as a tool for

assessing degradation in localization performance due to model misspecification. We employ

a similar approach to that in [82,83].

5.2.1 True and Assumed Models

We describe the true and assumed models in the presence of pixel failures specified through

the failure mask m in (5.3) as follows:
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� True Model: m 6= 1.

� Assumed Model: m = 1 (no pixel failures)

Both models have the perfect knowledge of φt in (5.5). Under the true model, the noiseless

part of the received signal at transmission t can be expressed as follows

µt = αaT(p)diag(γt)a(pBS)st. (5.6)

On the other hand, under the assumed model, for the misspecification parameter η, the

noiseless part of the received signal at transmission t is given by

µ̃t(η) = αaT(p)diag(φt)a(pBS)st, (5.7)

where

η ,
[
Re{α} Im{α}pT

]T
. (5.8)

If there is no mismatch between the assumption and the reality, i.e., if m = 1, we have

µ̃t(η) = µt for the true set of parameters, η ,
[
Re{α} Im{α}pT

]T
. Next, based on the

MCRB definition in Chapter 4.2.2, we provide how to compute the theoretical performance

bounds for estimating the UE position under the mismatch between the reality and the

assumption as described above.

5.2.2 MCRB derivation

For the considered setup, we can use the methodology in Chapter 4 to determine the corre-

sponding MCRB and LB values. Based on Lemma 4.1 in Chapter 4, it is possible to observe

that pseudotrue parameter, η0, which minimizes the KL divergence between the true pdf

and the misspecified parametric pdfs, can be expressed as

η0 = arg min
η∈R5

‖ε(η)‖2 (5.9)

where ε(η) , [ε1(η) . . . εT (η)]T and εt(η) , µt − µ̃t(η) for t = 1, . . . , T . The corresponding

MCRB and LB values can be computed in a similar fashion to that in Chapter 4.2.3. Next,

we discuss how to jointly recover the unknown failure mask m and estimate the position of

the UE.
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5.3 Problem 2: Joint Localization and Recovery of

Failure Masks

Let y = [y1 . . . yT ]T, n = [n1 . . . nT ]T, b(p) = a(p) � a(pBS), Γ = [γ1 . . .γT ] ∈ CN×T and

S = diag(s1, . . . , sT ). Then, the observations in (5.1) can be written compactly as

y = αSΓTb(p) + n . (5.10)

Here, using (5.3), Γ can be expressed as

Γ = Φ�m1T , (5.11)

where Φ = [φ1 . . .φT ] ∈ CN×T . Our aim is to recover m from (5.10) while simultaneously

estimating p (as usual, α can be estimated in closed-form as a function of p and m). Since

T < N in practice due to large RIS sizes, we need to make certain assumptions on the

structure of m for joint estimation of p, m from y. A common approach in the literature is

to make a sparsity assumption that the number of faulty elements is small compared to the

RIS size [19] or the array size [86]. Following a similar approach, we assume that m − 1 is

a sparse vector.

Under the sparsity assumption, we first propose an `1 regularization based joint localiza-

tion and failure diagnosis method. Then, we try to accomplish joint localization and failure

diagnosis via recovering the unknown mask vector m with a successive approach.

5.3.1 `1-regularization based Joint Localization and Failure Diag-

nosis

To perform joint localization and failure diagnosis, we can update estimates of m, p and α

in an alternating manner. To that aim, we estimate p and α for a given estimate of m via

the Jacobi-Anger method described in Chapter 4.3.2. For given estimates of p and α, the

estimate of m is found by the `1-regularization approach.

More specifically, let us analyze what happens in the ith iteration. Let m(i) be the estimate

of m that we have at the beginning of the ith iteration. Then, the estimates of p and α, p(i)
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Algorithm 5 `1 regularization based Joint Localization and Failure Diagnosis Algorithm

1: Input: Observation y, RIS phase profiles Φ, convergence threshold ε and maximum
number of iterations M .

2: Output: UE location p̂, failure mask m̂ and channel gain α̂.
3: Initialization: Set i = 0. Initialize the failure mask to be the all-ones vector, i.e.,

m(0) = 1.
4: Iterations:
5: while i < I do
6: Estimate p(i) and α(i) by using Jacobi-Anger expansion for the mask m(i).
7: Estimate m(i+1) by using `1−regularized mask-recover approach for p(i) and α(i).
8: if (i ≥ 1 and

∥∥p(i) − p(i−1)
∥∥

2
≤ ε) or i = M then

9: Set m̂ = m(i)

10: break
11: end if
12: Set i = i+ 1.
13: end while
14: Localization: Estimate the UE location and channel gain for the failure mask m̂, by

using Jacobi-Anger approach and establishing finer search around p(i).

and α(i), can be found via the Jacobi-Anger method by using the mask estimate m(i). By

denoting h(i) , α(i)b(p(i)), the estimate of m can be updated as

m(i+1) = arg min
m

∥∥y − S(ΦT � 1mT)h(i)
∥∥2

2
+ λ ‖m− 1‖1 . (5.12)

The details are summarized in Algorithm 5. Moreover, one can write the following identity:

S(ΦT � 1mT)h(i) = S
(
ΦT � 1(h(i))T

)
m. (5.13)

For simplicity, we define U (i) , S(ΦT � 1hT). Then, we can re-write (5.12) as follows:

m(i+1) = arg min
m

∥∥y −U (i)m
∥∥2

2
+ λ ‖m− 1‖1 . (5.14)

5.3.2 Successive Joint Localization and Failure Diagnosis

In this algorithm, we successively determine which pixel fails and capture the mask vector,

and estimate the position of the UE and the channel gain in an alternating manner. In each

iteration, we update the set of failing pixels by assuming there is at most one failure. In the

following, the details of the algorithm are explained starting from the first iteration.
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Algorithm 6 First Iteration of the Successive Joint Localization and Failure Diagnosis
Algorithm

1: Input: Observation y, RIS phase profiles Φ, convergence threshold ε and maximum
number of alternating steps C, initial position and channel gain estimates p(0), α(0).

2: Output: p(1),α(1), m(1), I(1)

3: Set bool = 1, l = 0, p(1,0) = p(0), α(1,0) = α(0), and m(1,0) = 1
4: while bool do
5: Set l = l + 1.
6: Given p(1,l), α(1,l), find (k̂, κ̂k, θ̂k) = arg maxk,κ̂k,θ̂k f(y|Hk) Pr{Hk|There is at most one failure}

7: if k̂ = 0 then
8: bool = 0. Set p(1) = p(1,l), α(1) = α(1,l), and m(1) = m(1,l)

9: Set I(1) = ∅.
10: else
11: Update the mask m(1,l) accordingly.
12: For that mask, update p(1,l) and α(1,l) via Jacobi-Anger expansion.
13: if l ≥ C or

∥∥p(1,l) − p(1,l−1)
∥∥

2
≤ ε then

14: Set bool = 0. Set p(1) = p(1,l), α(1) = α(1,l), and m(1) = m(1,l)

15: Set I(1) = {k̂}.
16: end if
17: end if
18: end while

5.3.2.1 First Iteration:

We have the position and channel gain estimates p(0), α(0) obtained by the Jacobi-Anger

algorithm for m(0) = 1. In the first iteration, we have N + 1 different hypotheses. That is,

H0 : no failure,

Hk : kth pixel fails for 1 ≤ k ≤ N.

Or, equivalently,

H0 : y = U (0)m̃(0) + n,

Hk : y = U (0)m̃(k) + n for 1 ≤ k ≤ N,

where U (0) = S
(
ΦT � 1(h(0))T

)
for h(0) = α(0)b(p(0)). Moreover, m̃(0) = 1, and

[
m̃(k)

]
n

=

1, if n 6= k,

κke
jθk if n = k.
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The prior probabilities of hypotheses H0 and {Hk}Nk=1 can be computed as follows:

Pr{H0|There is at most one failure} =
(1− pfail)

N

(1− pfail)N + Npfail(1− pfail)N−1
=

1− pfail

1− pfail + Npfail

(5.15)

Pr{Hk|There is at most one failure} =
(1− pfail)

N−1pfail

(1− pfail)N + Npfail(1− pfail)N−1
=

pfail

1− pfail + Npfail

(5.16)

For k ≥ 1, we determine κ̂k and θ̂k which maximize f(y|Hk), where f(·|Hk) is the likelihood

function under the hypothesis Hk. In other words, we need to determine

(κ̂k, θ̂k) = arg max
κ,θ

f(y|Hk) = arg max
κ,θ

exp

(
−
∥∥y −U (0)m̃(k)

∥∥2

2

N0

)
(5.17)

The following lemma characterizes the solution of (5.17).

Lemma 5.1: The solution of (5.17) can be speficied as follows:

θ̂k = ∠

(
T∑
t=1

(
[U (0)]t,k

)∗
vt,k

)
(5.18)

κ̂k =

∣∣∣(∑T
t=1

(
[U (0)]t,k

)∗
vt,k

)∣∣∣∑T
t=1 |[U (0)]t,k|2

(5.19)

where vt,k is defined as

vt,k , yt −
N∑

l=1,l 6=k

[U (0)]t,l (5.20)

Proof: One can note that the following chain of equations must hold:

(κ̂k, θ̂k) = arg min
κ,θ

∥∥y −U (0)m̃(k)
∥∥2

2
= arg min

κ,θ

T∑
t=1

∣∣∣∣∣yt −
N∑
l=1

[U (0)]t,l[m̃
(k)]l

∣∣∣∣∣
2

(5.21)

= arg min
κ,θ

T∑
t=1

∣∣∣∣∣yt −
N∑

l=1,l 6=k

[U (0)]t,l − [U (0)]t,kκe
jθ

∣∣∣∣∣
2

(5.22)

= arg min
κ,θ

T∑
t=1

∣∣vt,k − [U (0)]t,kκe
jθ
∣∣2 (5.23)

= arg min
κ,θ

T∑
t=1

κ2
∣∣[U (0)]t,k

∣∣2 − v∗t,k[U (0)]t,kκe
jθ − vt,k

(
[U (0)]t,k

)∗
κe−jθ (5.24)
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Let g(k)(κ, θ) be defined as the objective in (5.24). First, by taking the derivative of g(k)(κ, θ)

with respect to θ, we obtain that

∂g(k)(κ, θ)

∂θ
= jκe−jθ

T∑
t=1

vt,k
(
[U (0)]t,k

)∗ − jκejθ T∑
t=1

v∗t,k[U
(0)]t,k

∣∣∣∣∣
θ=θ̂k

= 0 (5.25)

if and only if

ejθ̂k
T∑
t=1

v∗t,k[U
(0)]t,k = e−jθ̂k

T∑
t=1

vt,k
(
[U (0)]t,k

)∗
(5.26)

Since the RHS of (5.26) is the conjugate of the LHS of (5.26), (5.26) is possible only if both

sides of (5.26) is real. This implies that

θ̂k = ∠

(
T∑
t=1

(
[U (0)]t,k

)∗
vt,k

)
(5.27)

Now, taking the derivative of g(k)(κ, θ̂k) with respect to κ, we obtain that

∂g(k)(κ, θ̂k)

∂κ
=

T∑
t=1

2κ
∣∣[U (0)]t,k

∣∣2 − v∗t,k[U (0)]t,ke
jθ̂k − vt,k

(
[U (0)]t,k

)∗
e−jθ̂k

∣∣∣∣
κ=κ̂k

= 0 (5.28)

if and only if

2κ̂k

T∑
t=1

∣∣[U (0)]t,k
∣∣2 =

T∑
t=1

v∗t,k[U
(0)]t,ke

jθ̂k + vt,k
(
[U (0)]t,k

)∗
e−jθ̂k (5.29)

By using (5.27), one can see that the RHS of (5.29) is equal to 2
∣∣∣∑T

t=1 vt,k
(
[U (0)]t,k

)∗∣∣∣.
Thus, κ̂k is can be written as

κ̂k =

∣∣∣(∑T
t=1

(
[U (0)]t,k

)∗
vt,k

)∣∣∣∑T
t=1 |[U (0)]t,k|2

(5.30)

Now, to show that θ̂k and κ̂k in (5.27) and (5.30) are the minimizers of g(k)(κ, θ) we check

the second order conditions. To that aim, we compute the Hessian matrix.

∂2g(k)(κ, θ)

∂κ2
= 2

T∑
t=1

∣∣[U (0)]t,k
∣∣2∣∣∣∣∣

κ=κ̂k,θ=θ̂k

= 2
T∑
t=1

∣∣[U (0)]t,k
∣∣2 ≥ 0. (5.31)

∂2g(k)(κ, θ)

∂κ∂θ
= je−jθ

T∑
t=1

vt,k
(
[U (0)]t,k

)∗ − jejθ T∑
t=1

v∗t,k[U
(0)]t,k

∣∣∣∣∣
κ=κ̂k,θ=θ̂k

= 0. (5.32)
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∂2g(k)(κ, θ)

∂θ2
= κe−jθ

T∑
t=1

vt,k
(
[U (0)]t,k

)∗
+ κejθ

T∑
t=1

v∗t,k[U
(0)]t,k

∣∣∣∣∣
κ=κ̂k,θ=θ̂k

(5.33)

= 2κ̂k

∣∣∣∣∣
(

T∑
t=1

(
[U (0)]t,k

)∗
vt,k

)∣∣∣∣∣ ≥ 0. (5.34)

From (5.31), (5.32), and (5.34), we conclude that the Hessian matrix is positive definite,

hence θ̂k and κ̂k in (5.27) and (5.30) are the minimizers of g(k)(κ, θ). �

After calculating κ̂k and θ̂k for all hypotheses {Hk}Nk=1, we compare the posterior probabil-

ity of each hypothesis. Then, we choose the hypothesis which yields the maximum posterior

probability. More specifically, we choose

k̂ = arg max
k

Pr{Hk|There is at most one failure} exp

(
− 1

N0

∥∥∥∥y −U (0) ̂̃m(k)
∥∥∥∥2

2

)
(5.35)

where ̂̃m(0)
= m̃(0), and for k ≥ 1, ̂̃m(k)

is defined as[ ̂̃m(k)
]
n

=

1, if n 6= k,

κ̂ke
jθ̂k if n = k.

If k̂ in (5.35) is equal to 0, we declare that there is no pixel failure and we do not proceed

to the second iteration. If k̂ 6= 0, then for ̂̃m(k̂)
, we update the position and the channel

gain estimates. For that estimated position and the channel gain, we update U (0) and

we again compute the posterior probabilities and update the mask estimate. We perform

these alternating steps until the number of allowed alternating steps is exceeded or the

change in the position estimates becomes negligible. At the end of the first iteration, we

have the position, channel gain, mask and the failing pixel estimates as p(1),α(1), m(1), I(1),

respectively. The details of this step are summarized in Algorithm 6. Next, we discuss what

happens in the ith iteration.

5.3.2.2 ith Iteration:

In the ith iteration, we basically perform the same operations as in the first iteration with

some changes. This time, the number of hypotheses reduces to N + 1−
∣∣I(i−1)

∣∣, which can
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be expressed as

H0 : y = U (i−1)m̃(0) + n,

Hk : y = U (i−1)m̃(k) + n for k 6∈ I(i−1)

where U (i−1) = S
(
ΦT � 1(h(i−1))T

)
for h(i−1) = α(i−1)b(p(i−1)). Moreover, m̃(0) = m(i−1),

and for k 6∈ I(i−1),

[
m̃(k)

]
n

=


1, if n 6= k, and n 6∈ I(i−1),[
m(i−1)

]
n

if n 6= k, and n ∈ I(i−1),

κke
jθk if n = k.

The prior probabilities of hypotheses H0 and {Hk}k 6∈I(i−1) are updated as

Pr{H0|There is at most one failure except for I(i−1)} =
1− pfail

1− pfail + (N− |I(i−1)|) pfail

(5.36)

Pr{Hk|There is at most one failure except for I(i−1)} =
pfail

1− pfail + (N− |I(i−1)|) pfail

(5.37)

Moreover, for the statement in Lemma 5.1, U (0) is replaced by U (i−1), and vt,k is modified

as

vt,k = yt −
N∑

l 6=k,l=1

[U (i−1)]t,l
[
m(i−1)

]
l

(5.38)

After determining k̂, i.e., the hypothesis with the highest posterior, for the given set J (i) ,

I(i−1) ∪ k̂, we determine the optimal values of {κ̂k, θ̂k}k∈J (i) by formulating this problem as

a convex problem. Now, we discuss how we end up with a convex problem for obtaining the

estimates {κ̂k, θ̂k}k∈J (i) .

We need to solve the following problem:

{κ̂k, θ̂k}k∈J (i) = arg min
{κk,θk}k∈J (i)

∥∥y −U (i−1)m
∥∥2

2
(5.39)

= arg min
{κk,θk}k∈J (i)

T∑
t=1

∣∣∣∣∣∣∣∣∣∣∣
yt −

∑
k 6∈J (i)

[U (i−1)]t,k︸ ︷︷ ︸
qt

−
∑
k∈J (i)

[U (i−1)]t,kκke
jθk

∣∣∣∣∣∣∣∣∣∣∣

2

(5.40)
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= arg min
{κk,θk}k∈J (i)

T∑
t=1

∣∣∣∣∣∣qt −
∑
k∈J (i)

[U (i−1)]t,kκke
jθk

∣∣∣∣∣∣
2

(5.41)

Since 0 ≤ κk ≤ 1, we can re-formulate this problem as follows:

min
{xk}k∈J (i)

T∑
t=1

∣∣∣∣∣∣qt −
∑
k∈J (i)

[U (i−1)]t,kxk

∣∣∣∣∣∣
2

(5.42)

such that |xk| ≤ 1 for any k. (5.43)

Clearly, (5.42) is a convex problem with respect to {xk}k∈J (i) . Hence, by solving this problem

via convex programming techniques, we obtain our estimates {κ̂k, θ̂k}k∈J (i) . One should note

that, as I(i−1) ⊆ J (i), by solving (5.42), we also refine our previous estimates.

Again, based on this resulting mask vector, we update the position and the channel gain

estimates. For that estimated position and the channel gain, we update U (i−1) and we

again compute the posterior probabilities and update the mask estimate. We perform these

alternating steps until the number of allowed alternating steps is exceeded or the change

in the position estimates becomes negligible, as we do in the first iteration. The whole

algorithm is summarized in Algorithm 7. To determine the stopping time of this algorithm,

we put a bound on the number of iterations. If the number of successive iterations exceeds

I, then the algorithm stops.

To compare the performances of the proposed algorithms, we use two types of CRBs as

explained below.

� CRB-perfect: This corresponds to the CRB when the perfect knowledge of the mask

vector is available. This CRB is exactly in the same form as the CRB presented in

Chapter 4.4.3.

� CRB-known-loc: This corresponds to the CRB when the failure locations are known,

but κk and θk values are taken as unknowns. That is, in addition to the derivatives

we use for calculating CRB-perfect, we need to determine the derivatives of µt with

respect to κk and θk when there is a failure in the kth pixel.

If we denote U , S(ΦT� 1h̄T), where h̄ = αb(p), for given set of failure indices I, it

112



is possible to express that

µt =
∑
k 6∈I

[
U
]
t,k

+
∑
k∈I

[
U
]
t,k
κke

jθk (5.44)

Hence, we can write

∂µt
∂κk

=
[
U
]
t,k
ejθk , and

∂µt
∂θk

= j
[
U
]
t,k
κke

jθk . (5.45)

5.4 Numerical Results

In this section, we first present numerical examples for evaluating the theoretical bounds,

and then compare the performance of the `1-regularization based algorithm and successive

algorithm against the theoretical bounds.

5.4.1 Simulation Setup

We consider an RIS with N = 20× 20 elements, where the inter-element spacing is λ/2 and

the area of each element is A = λ2/4 [70]. The carrier frequency is equal to fc = 28 GHz.

The RIS is modeled to lie in the X-Y plane with pRIS = [0 0 0]T. Moreover, for the RIS

elements, the entries of φt are generated uniformly and independently between −π and π.

The BS is located at pBS = 5.77×[−1 1 1]T meters. The UE is located at 5×[1 1 1]T/‖[1 1 1]‖2

meters. We set the number of transmissions to T = 200. For simplicity, we assume that

st =
√
Es for any t. Also, the SNR is defined as

SNR =

∥∥αSΓTb(p)
∥∥2

2

TN0

. (5.46)

To solve (5.9) for the LB computation, we employ the GlobalSearch algorithm of MATLAB

by providing p as the initial vector. In addition, N in (4.41) is taken as 50 for using the

Jacobi-Anger expansion approach.

While implementing Algorithm 7, the number of maximum allowed iterations, I, is se-

lected as 2Npfail. The reasoning behind this selection can be explained as follows. Since
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the number of pixel failures estimated by Algorithm 7, is upper bounded by I, we need to

choose I such that Pr{Number of failures > I} ≤ ε, where ε > 0 is a small number. Or

equivalently,

Pr{Number of failures > I} = 1−
I∑

m=0

(pfail)
m(1− pfail)

N−m

(
N

m

)
(5.47)

should be small. In our simulations, we consider pfail ∈ {0.01, 0.02, 0.03, 0.04, 0.05}. For

these values of pfail, for I = 2Npfail, Pr{Number of failures > I} ≤ 0.02.

Also, we set C = 15 in Algorithm 7. Moreover, for the `1-regularization based algorithm,

we set λ = 0.05
√

SNR and M = 15. For both algorithms, ε is set to be 0.001. The

simulations are performed on an Intel Core i7 4.0 GHz PC with 16 GB of physical memory

using MATLAB R2020b on a Windows 10 operating system.

5.4.2 Results and Discussions

5.4.2.1 Theoretical Performance Bounds

In Figure 5.1, we present the theoretical bounds as a function of pfail for SNRs 10, 20, and

30 dB when the UE distance is 5 meters from the center of the RIS. In this figure, both

CRB-perfect and CRB-known-loc bounds are presentend. It can be noted that CRB-perfect

and CRB-known-loc values are very close to each other. This observation suggests that once

the failure locations are known, knowing the values of κk, θk is not essential.

The gap between the blue and red or green curves shows the effect of the pixel failures

on the position estimates. We observe from the figure that as pfail increases, i.e., as the

mismatch between the true and the assumed models increases, the LB increases. We also

observe that after pfail = 0.04, raising the SNR level from 20 to 30 dB does not improve the

LB values, significantly.

In Figure 5.2, we show the theoretical bounds as a function of SNR for pfail values 0.01,

0.03, and 0.05 when the UE distance is 5 meters from the center of the RIS. In parallel

to Figure 5.1, we observe that CRB-perfect and CRB-known-loc behave very similarly. We
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Figure 5.1: Theoretical bounds versus pfail for SNR = 10, 20, 30 dB, when the UE distance
is 5 meters from the center of the RIS.

also see that for pfail ≥ 0.03, raising the SNR after 30 dB does not improve the LB values

notably. In both Figures 5.1 and 5.2 , we conclude that failures can degrade the estimation

performance significantly. We note that when pfail ≥ 0.02, the degradation is significant in

both high and low SNR regimes. Moreover, even for pfail = 0.01, the degradation becomes

notable in the high SNR regime.

5.4.2.2 Performances of Algorithm 5 and Algorithm 7

In this part, we investigate the performances of Algorithm 5 and Algorithm 7. While gener-

ating the failure mask vector, we set κk = 1 and ψk is generated uniformly between −π and

π, if the kth pixel fails. In addition to the performances of Algorithm 5 and Algorithm 7,

we also plot the performance of the AMML estimator discussed in Chapter 4.3.2, in which

localization is performed by assuming that there is no pixel failure even though the reality

is different.

115



0 5 10 15 20 25 30 35 40

10
-1

10
0

10
1

10
2

Figure 5.2: Theoretical bounds versus SNR for pfail = 0.01, 0.03 and 0.05, when the UE
distance is 5 meters from the center of the RIS.

In Figure 5.3, when the UE distance is 5 meters from the center of the RIS and pfail = 0.02,

the performances of the AMML algorithm, the `1 regularization based joint localization

and failure diagnosis algorithm, and the succesive joint localization and failure diagnosis

algorithm are shown versus SNR, together with the theoretical bounds. For this setting, in

Figure 5.4, the mask-recovery performances of Algorithm 5 and Algorithm 7 versus SNR

are also shown. To define the mask recovery performance, we use the square root of the

normalized mean squared error (NMSE), i.e., for the mask vector estimate m̂, we use

NMSE =
‖m̂−m‖2

2

‖m‖2
2

=
‖m̂−m‖2

2

N
(5.48)

We can observe from Figure 5.3 that via both successive and `1 regularization based ap-

proaches, localization error is greatly reduced compared to the AMML algorithm. Moreover,

it can be noted that after SNR = 20 dB, the successive algorithm performs very similarly

to the theoretical bounds. On the other hand, as the SNR increases, the performance of

the `1 regularization based approach does not improve as much as the successive approach,

and it deviates from the theoretical bounds. The main reason behind this observation can
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Figure 5.3: Localization performances of the AMML algorithm, Algorithm 5 and Algorithm 7
together with the theoretical bounds versus SNR, when the UE distance is 5 meters from
the center of the RIS and pfail = 0.02.

be explained from Figure 5.4. In this figure, it is observed that via the successive approach,

the failure mask is captured better than the `1-regularization approach, hence the resulting

positioning errors in Figure 5.3 become lower than those in the `1-regularization approach.

In Figure 5.5, when the UE distance is 5 meters from the center of the RIS and SNR

= 40 dB, the performances of the AMML algorithm, `1-regularization based approach and

successive approach versus pfail are shown. For this setting, in Figure 5.6, the mask-recovery

performances of Algorithm 5 and Algorithm 7 versus pfail are also plotted. We again observe

that by using Algorithm 5 and Algorithm 7, the positioning error is greatly reduced with

respect to the AMML algorithm. Moreover, from Figure 5.5, it can be inferred that as pfail

increases, the performance difference between the `1-regularizaton based approach and the

successive approach becomes more evident since via Algorithm 7, the unknown failure mask

vector is recovered more effectively as observed in Figure 5.6.
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Figure 5.4: Mask recovery performances of Algorithm 5 and Algorithm 7 versus SNR, when
the UE distance is 5 meters from the center of the RIS and pfail = 0.02.

5.4.3 Run Time Comparison of Algorithm 5 and Algorithm 7

In terms of localization and mask recovery performances, the successive algorithm is better

than the `1-regularization based algorithm. In this part, we compare the corresponding

run times of Algorithm 5 and Algorithm 7. At an SNR of 40 dB, the average run time

performances of Algorithm 5 and Algorithm 7 are given in Table 5.1. From these results,

it can be noted that as pfail ≤ 0.03, the average run times of Algorithm 5 and Algorithm 7

are very close to each other. As pfail > 0.03, in terms of average run time performance, the

`1-regularization based algorithm is more efficient than the successive one. This result is

quite expected since the required number of successive iterations increases as pfail increases.

However, even for pfail > 0.03, the run time performances of Algorithm 5 and Algorithm 7

are comparable. That is, considering the localization and mask recovery performance of

Algorithm 7, the additional run time cost that Algorithm 7 brings can be considered as

acceptable.
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Figure 5.5: Localization performances of the AMML algorithm, Algorithm 5 and Algorithm 7
together with the theoretical bounds versus pfail, when the UE distance is 5 meters from the
center of the RIS and SNR = 40dB.

Table 5.1: Average Run Times of Algorithm 5 and Algorithm 7 in seconds

Algo. pfail = 0.01 pfail = 0.02 pfail = 0.03 pfail = 0.04 pfail = 0.05

`1 19.5 44.9 42.6 40.9 50.8
Successive 23.27 41.7 58.5 92.2 116.4

5.5 Concluding Remarks and Extensions

In this chapter, we have formulated the problem of RIS-aided localization under pixel failures

and analyzed how detrimental pixel failures can be for localization by deriving correspond-

ing theoretical performance bounds. We have also proposed Algorithms 5 and 7 for joint

localization and mask recovery. Via simulation results, it has been shown that degradation

in localization due to pixel failures can be significant. By using the proposed algorithms,

positioning errors have been greatly reduced significantly. Especially, for the successive ap-

proach, estimation errors have been very close to the theoretical bounds in the high SNR

regime.
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Figure 5.6: Mask recovery performances of Algorithm 5 and Algorithm 7 versus pfail, when
the UE distance is 5 meters from the center of the RIS and SNR = 40dB.

We can extend some of the results in this chapter as follows: While formulating the

problem of RIS-aided localization under pixel failures, we have considered only-biased type

of failures. As mentioned in [19, 86], disconnectedness is another type of failure. Under the

disconnectedness case, the RIS profile γt, and m can be expressed as

γt = φt �m + c , (5.49)

where c ∈ CN×1 denotes the unknown failure mask quantifying the effect of disconnected

pixels, which can be defined as [19,86]

mn =


0, if the n-th RIS element is faulty (disconnected)

ζn, if the n-th RIS element is faulty (biased)

1, if the n-th RIS element is properly functioning

, (5.50)

cn =

ζn, if the n-th RIS element is faulty (disconnected)

0, otherwise
. (5.51)

Based on (5.49)–(5.51), the RIS phase profile takes the following values in the presence of
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disconnected- and biased-type failures:

[γt]n =


[φt]n, if the n-th RIS element is functioning

[φt]nmn, if the n-th RIS element is biased

cn, if the n-th RIS element is disconnected

(5.52)

For the case of m = 1, i.e., for the disconnected-only scenario, both Algorithm 5 and

Algorithm 7 can be used with minor modifications. However, for the case of m 6= 1 and

c 6= 0, `1-regularization based methods could be ineffective. The reason is that, based on

(5.49)-(5.51), we should enforce that mncn = 0 for any 1 ≤ n ≤ N . Due to the non-convexity

of this constraint, `1-regularization based methods could be inefficient. However, even for

this difficult scenario, the successive approach could be effective. For the considered problem,

in the first iteration, we can consider that there are 2N + 1 hypotheses as follows:

H0 : no failure,

H(b)
k : kth pixel is biased for 1 ≤ k ≤ N.

H(d)
k : kth pixel is disconnected for 1 ≤ k ≤ N.

We can again compute the posterior probabilities of the hypotheses and determine the one

that yields the maximum one. For instance if H(b)
k has the highest posterior probability,

then we consider that pixel k is biased, and not consider hypothesis H(d)
k in the remaining

iterations. In the remaining iterations, we continue by assuming that pixel k is biased.
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Algorithm 7 Successive Joint Localization and Failure Diagnosis Algorithm

1: Input: Observation y, RIS phase profiles Φ, convergence threshold ε and maximum
number of alternating steps C, maximum number of successive iterations I.

2: Output: p̂, α̂ and m̂.
3: Obtain the initial position and channel gain estimates by Jacobi-Anger algorithm for

m(0) = 1.
4: Set bool-out = 1, i = 0, I(0) = ∅.
5: while bool-out do
6: Set l = 0, i = i+ 1. p(i,0) = p(i−1), α(i,0) = α(i−1), and m(i,0) = m(i−1).
7: while bool-in do
8: Given p(i,l), α(i,l) and m(i,l),for k 6∈ I(i−1) solve

(k̂, κ̂k, θ̂k) = arg maxk,κk,θk f(y|Hk) Pr{Hk|There is at most one failure except for I(i−1)}.

9: Set l = l + 1.
10: if k̂ = 0 then
11: Set bool-in = 0, bool-out = 0. Set p(i) = p(i,l), α(i) = α(i,l), and m(i) = m(i,l)

12: Set I(i) = I(i−1).
13: else
14: For given set of failure indices I(i−1) ∪ {k̂}, find the κ̂k, θ̂k’s by using (5.42), and

update the mask accordingly.
15: For the updated mask, update p(i,l) and α(i,l) via Jacobi-Anger algorithm.
16: if l ≥ C or

∥∥p(i,l) − p(i,l−1)
∥∥

2
≤ ε then

17: Set bool-in = 0. Set p(i) = p(i,l), α(i) = α(i,l), and m(i) = m(i,l)

18: Set I(i) = I(i−1) ∪ {k̂}.
19: end if
20: end if
21: end while
22: if i ≥ I or k̂ = 0 then
23: Set bool-out = 0, p̂ = p(i), α̂ = α(i) and m̂ = m(i).
24: end if
25: end while
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Chapter 6

Parameter Encoding for ECRB

Minimization in the Presence of

Jamming

In this chapter, the optimal encoding strategy of a transmitter is investigated in the presence

of a jammer from an estimation theoretic perspective [120]. In the considered problem, the

ECRB at an intended receiver is used as the performance metric. The optimal encoding

strategy is determined first by restricting the set of possible encoding functions of the trans-

mitter to the set of monotone increasing functions. Then, by removing the monotonicity

assumption on the encoding function of the transmitter, the optimal encoding strategy is

analyzed.

6.1 System Model and Problem Formulation

A transmitter sends a scalar parameter θ ∈ Λ to a receiver over a noisy and flat-fading

channel in the presence of a jammer, as shown in Figure 6.1. The jammer has access to

parameter θ (as in [97]), encodes it via a differentiable, real valued function g : Λ→ Γ, and

sends the encoded parameter to the receiver. The aim is to perform accurate estimation of
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parameter θ at the receiver in the presence of jamming. To this aim, parameter θ is encoded

by a differentiable, real valued function f : Λ → Υ at the transmitter. Accordingly, the

received signal Y can be expressed as

Y = hTf(θ) + hJg(θ) +N, (6.1)

where hT and hJ denote the channel fading coefficients between the transmitter and the

receiver and between the jammer and the receiver, respectively, N is the noise term, which

is modeled as a zero-mean Gaussian random variable with a known variance denoted by σ2,

and N and θ are assumed to be independent.

Transmitter ×

Jammer ×

+

hJ

Receiver
θ f(θ)

g(θ)

hT N

Y

Figure 6.1: System model for parameter encoding in the presence of jamming.

The prior information on parameter θ is represented by a probability density function

(PDF) denoted by w(θ) for θ ∈ Λ. Also, the channel coefficients are supposed to be known

by the transmitter and the receiver. In addition, it is assumed that the receiver knows both

mappings f(·) and g(·), and the transmitter has the knowledge of g(·). The motivation and

justification for these assumptions are as follows: (i) In a sensor network in which jamming

is caused by another transmitter in the same network unintentionally, these assumptions can

hold. (ii) Under these assumptions, we obtain an upper bound on the estimation performance

at the receiver in the presence of jamming. (This bound becomes tight when the transmitter

is smart and the jammer is dummy.) (iii) The analysis under these assumptions leads to

the best response strategy of the transmitter for a given jammer strategy, which forms an

important step towards a game theoretic analysis.

To quantify the estimation accuracy at the receiver, the ECRB is employed as a perfor-

mance metric since it converges to the MSE of the maximum a-posteriori probability (MAP)

estimator in the high SNR regime [121], does not depend on specific estimator structures,

and facilitates theoretical analyses (leading to explicit expressions for the optimal encoder
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function at the transmitter). The ECRB is defined as the expectation of the conditional

Cramér-Rao bound [121] and calculated as follows:

Eθ
{
I(θ)−1

}
=

∫
Λ

w(θ)
1

I(θ)
dθ (6.2)

where I(θ) denotes the Fisher information, i.e.,

I(θ) =

∫ (
∂ log pY |θ(y)

∂θ

)2

pY |θ(y) dy (6.3)

with pY |θ(y) representing the conditional PDF of Y for a given value of θ. For the considered

system model in (6.1), pY |θ(y) is expressed as

pY |θ(y) =
1√

2πσ2
exp

(
−(y − hTf(θ)− hJg(θ))2

2σ2

)
. (6.4)

by taking logarithm of both sides in (6.4), we would obtain

log pY |θ(y) = log

(
1√

2πσ2

)
− (y − hTf(θ)− hJg(θ))2

2σ2
. (6.5)

By some algebraic manipulations, it is possible to show that the Fisher information, I(θ), is

given by

I(θ) = (hTf
′(θ) + hJg

′(θ))
2
/σ2 (6.6)

where f ′(θ) and g′(θ) denotes the derivatives of f(θ) and g(θ), respectively. Intuitively, the

jammer would like to cancel the transmitted signal to set the Fisher information to zero.

However, it does not know the encoder at the transmitter and can design its encoder based

on previous experience. When the transmitter employs a differential encoding strategy for

ease of implementation, the jammer can also be modeled to employ a different encoding

strategy for cancellation purposes.

Based on a reasoning similar to that in [90], the ranges of θ, g(θ), and f(θ) are modeled as

Λ = [a, b], Γ = [k, l], and Υ = [c, d], respectively, for some a, b, c, d, k, l ∈ R. In particular, for

θ ∈ [a, b], f(·) must be a differentiable function that satisfies c ≤ f(θ) ≤ d. By setting lower

and upper limits on f(θ), we effectively impose a peak power constraint on the transmitted

signal, which in turn limits the average transmit power, as well. Hence, for given g(·), we

propose the following optimization problem for parameter encoding at the transmitter:

min
f

∫ b

a

w(θ)
σ2

(hTf ′(θ) + hJg′(θ))
2 dθ (6.7a)
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subject to c ≤ f(θ) ≤ d , ∀ θ ∈ [a, b] (6.7b)

That is, the aim is to obtain the optimal encoding function at the transmitter that minimizes

the ECRB at the receiver ((6.2) and (6.6)) for a given jammer and under the constraint in

(6.7b). In order to solve this problem, we need some theoretical background of variational

calculus, which will be given in the next section.

6.2 Preliminaries for Calculus of Variations

First, we should clarify the distinction between two types of extremals: the weak and the

strong minimizer/maximizer. Throughout this chapter, we will concentrate on minimizers,

especially on the weak minimizer. Similar conclusions can easily be made for maximizers, as

well.

6.2.1 Weak and Strong Minimizers/Maximizers

In order to explain weak and strong minimizers, we need to define norms ‖·‖0 and ‖·‖1.

Let Ck([a, b],Rn) be a space of k-times continuously differentiable functions (here, k ≥ 0 is

an integer and k = 0 corresponds to functions that are just continuous), mapping the closed

interval [a, b] to Rn for some integer n ≥ 1. For a given function y(x) ∈ C0([a, b],Rn), ‖y‖0

is defined as [122, pp. 6], [123, Eq. 1.30, pp. 15]

‖y‖0 , maxa≤x≤b |y(x)| (6.8)

where |·| corresponds to the standard Euclidean norm defined on Rn. Similarly, for y(x) ∈
C1([a, b],Rn), ‖y‖1 is defined as [122, pp. 6], [123, Eq. 1.30, pp. 15]

‖y‖1 , maxa≤x≤b |y(x)|+ maxa≤x≤b |y′(x)| (6.9)

where y′(·) denotes the derivative of y(·).

Let J [y] be a real-valued functional defined on some space V equipped with a norm

‖·‖. Then, ŷ is a local minimizer of J [·] if there exists an ε > 0 such that for any y

satisfying ‖y − ŷ‖ ≤ ε, we have J(ŷ) ≤ J(y) [122, pp. 12], [123, pp. 15]. The local minimum
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with respect to the ‖·‖0 and ‖·‖1 norms are called as the strong minimizer and the weak

minimizer, respectively [122, pp. 13], [123, pp. 26]. In other words, both the weak and the

strong minimizers are local minimizers.

Let us consider the problem of minimizing J [y] =
∫ b
a
L(x, y, y′) dx subject to y(a) = A

and y(b) = B, where y lies on a function space V . (Similar conclusions can be made for the

functional optimization problems containing integral constraints.)

6.2.2 Definitions of First and Second Variations

The first variation is defined as [122, pp. 12]

δJ |y(η) = lim
‖η‖→0

J [y + η]− J [y] (6.10)

Analogously, in [123, Eq. 1.34, pp. 16], the first variation is defined as

δJ |y(η) , lim
α→0

J [y + αη]− J [y]

α
(6.11)

where for sufficiently small α, y + αη must be an element of V . One can clearly see that

(6.10) and (6.11) are equivalent to each other. In addition, the second variation is defined

as [122, pp. 99]

δ2J |y(η) = lim
‖η‖→0

J [y + η]− J [y]− δJ |y(η). (6.12)

Analogously, in [123, Eq. 1.39, pp. 18], the second variation is defined as

δ2J |y(η) , lim
α→0

J [y + αη]− J [y]− δJ |y(η)α

α2
(6.13)

Again, one can clearly see that (6.12) and (6.13) are equivalent to each other.

6.2.3 Necessary and Sufficient Conditions for Weak Minimizers

Necessary condition for a function to be a local minimizer is determined by Euler-Lagrange

equations as given in [122, Thm. 1, pp. 15] and [123, Eq. 2.18, pp. 30]. One should note that

Euler-Lagrange equations must hold for both types of minimizers. In particular, we must

have

Ly =
d

dx
Ly′ (6.14)
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where Ly = ∂L
∂y

and Ly′ = ∂L
∂y′

. One should note that these partial derivatives are taken

with respect to the functions. On the other hand, in the RHS of (6.14), we are taking the

regular derivative of the function Ly′ with respect to x. This is the reason why some of the

derivatives are regular while some of them are partial.

Let P (x) , 1
2
Ly′y′ and Q(x) , 1

2

(
Lyy − d

dx
Lyy′

)
, where Ly′y′ = ∂2L

∂y′∂y′
, Lyy′ = ∂2L

∂y∂y′
, and

Lyy = ∂2L
∂y∂y

. These definitions are taken from [122, Eq. 41, pp. 112] and [123, Eq. 2.59, pp. 48].

It is noted that the second variation can be written as [122, Eq. 10, pp. 102], [123, Eq. 2.58,

pp. 48]

δ2J |y(η) =

∫ b

a

P (x)(η′(x))2 +Q(x)(η(x))2 dx (6.15)

If the equation Qv = d
dx

(Pv′) has admits a solution such that v(a) = 0 and v(c) = 0 for

some c > a and c ≤ b, this point c is said to be conjugate to a [122, pp. 106], [123, pp. 52].

Now, we are ready to express the sufficient condition for optimality in the sense of weak

minimizers as follows:

y(.) is a weak minimizer if y(.) satisfies Euler-Lagrange equations, Ly′,y′(x, y(x), y′(x)) > 0

for all x ∈ [a, b] and [a, b] contains no points conjugate to a [122, pp. 116], [123, pp. 53] .

Furthermore, in [122, Thm. 2, pp. 109], it is stated that if the integral expression in (6.15),

hence, the second variation, is positive definite for all η(·) such that η(a) = η(b) = 0, then

the interval [a, b] contains no points conjugate to a, where P (x) > 0 for all x ∈ [a, b]. The

definition of positive definiteness is given in [122, pp. 98]. In fact, this definition is equivalent

to the second variation being positive.

6.3 Optimal Encoding Function at Transmitter

We characterize the solution of (6.7) in various scenarios by first restricting f to be monotone

strictly increasing or monotone strictly decreasing, and then by removing the monotonicity

assumption on f .
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6.3.1 f is strictly monotone increasing

If f is strictly monotone increasing, f ′(θ) > 0 for each θ ∈ [a, b]. By adding the constraint

f ′(θ) > 0 to (6.7), we formulate the proposed optimization problem as follows:

min
f

∫ b

a

w(θ)(hTf
′(θ) + hJg

′(θ))
−2
dθ (6.16a)

subject to c ≤ f(θ) ≤ d , ∀ θ ∈ [a, b] (6.16b)

f ′(θ) > 0, ∀ θ ∈ [a, b] (6.16c)

where the constant term σ2 is removed from the objective function for notational convenience.

It is noted that the objective function in (6.16a) remains constant if we shift all f(θ) values by

the same scalar number. Due to the monotonicity of f(·), if we ensure that f(b)−f(a) ≤ d−c,
we can find the optimal f(·) up to a constant. We can then adjust this constant term such

that f(·) remains in [c, d]. Another way of writing f(b)− f(a) ≤ d− c is
∫ b
a
f ′(θ) dθ ≤ d− c.

Hence, by replacing (6.16b) with
∫ b
a
f ′(θ) dθ ≤ d − c, we can concentrate on the following

problem:

min
f

∫ b

a

w(θ)(hTf
′(θ) + hJg

′(θ))
−2
dθ (6.17a)

subject to

∫ b

a

f ′(θ) dθ ≤ d− c (6.17b)

f ′(θ) > 0, ∀ θ ∈ [a, b] (6.17c)

Next, we replace the constraint in (6.17c) by the equality constraint f ′(θ) = ε+ µ2(θ) for a

sufficiently small number ε > 0 and for some function µ. We also define a function t(·) such

that ∫ b

a

f ′(θ) + t2(θ) dθ = d− c (6.18)

Hence, we can reformulate (6.17) as follows:

min
f,t,µ

∫ b

a

w(θ)(hTf
′(θ) + hJg

′(θ))
−2
dθ (6.19a)

subject to

∫ b

a

f ′(θ) + t2(θ) dθ = d− c (6.19b)

f ′(θ) = µ2(θ) + ε , ∀ θ ∈ [a, b] (6.19c)
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The following proposition characterizes the solution of (6.19).

Proposition 6.1: A solution to (6.19) admits one of the following two alternative forms:

� either f ′(θ) = ε for all θ ∈ [a, b],

� or, there exists ∅ ⊆ S ⊆ [a, b] such that

f ′(θ) = ε, if θ ∈ S, (6.20)

f ′(θ) =
(K̃w(θ))1/3 − hJg′(θ)

hT
> 0, if θ ∈ Sc, (6.21)

where Sc = [a, b] \ S and K̃ is chosen such that∫ b

a

f ′(θ) dθ = d− c. (6.22)

Proof: Let H(θ, f ′, µ, t, γ, λ) be given by

H(θ, f ′, µ, t, γ, λ) = w(θ)(hTf
′(θ) + hJg

′(θ))
−2

+ λ
(
f ′(θ) + t2(θ)

)
+ γ(θ)

(
µ2(θ) + ε− f ′(θ)

)
.

(6.23)

where λ and γ(θ) are Lagrange multipliers. Finding the extremals of (6.19) is equivalent to

finding the extremals of H[f ′, µ, t, γ], where

H[f ′, µ, t, γ] =

∫ b

a

H(θ, f ′, µ, t, γ, λ) dθ . (6.24)

From (6.23), Euler-Lagrange equations [122, pp. 36] lead to

∂H

∂f
− d

dθ

∂H

∂f ′
= − d

dθ

(
− 2hTw(θ)

(hTf ′(θ) + hJg′(θ))
3 + λ− γ(θ)

)
= 0 (6.25)

∂H

∂µ
− d

dθ

∂H

∂µ′
= 2γ(θ)µ(θ) = 0 (6.26)

∂H

∂γ
− d

dθ

∂H

∂γ′
= µ2(θ) + ε− f ′(θ) = 0 (6.27)

∂H

∂t
− d

dθ

∂H

∂t′
= 2λt(θ) = 0. (6.28)

(We use the partial derivative notation for the derivatives with respect to functions, otherwise

we use the regular derivative notation.) (6.25) implies that there exists a constant K ∈ R
such that

2hTw(θ)

(hTf ′(θ) + hJg′(θ))
3 + γ(θ) = K + λ . (6.29)
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Multiplying both sides of (6.29) with µ(θ) and using (6.26) and (6.27), we obtain

2hTw(θ)µ(θ)

(hTµ2(θ) + hT ε+ hJg′(θ))
3 = (K + λ)µ(θ). (6.30)

It is noted from (6.23) that the following relations hold:

Hf =
∂H

∂f
= 0, (6.31)

Hff ′ =
∂2H

∂f∂f ′
= 0, (6.32)

Hff =
∂2H

∂f 2
= 0, (6.33)

Hf ′f ′ =
∂2H

∂f ′2
=

6h2
Tw(θ)

(hTf ′(θ) + hJg′(θ))
4 > 0. (6.34)

Then, the second variation δ2H|f (η) is given by

δ2H|f (η) =
1

2

∫ b

a

[
η2

(
Hff −

d

dθ
Hff ′

)]
+ η′2Hf ′f ′ dθ

=
1

2

∫ b

a

η′2Hf ′f ′ dθ > 0 (6.35)

for any perturbation η(θ) [122, p. 25]. One should note that as (6.35) holds for any perturba-

tion, it holds also for the admissible perturbations. Hence, it is deduced that the interval [a, b]

contains no points conjugate to a [122, Thm. 2, p. 109]. Based on (6.35), any f(·) satisfying

(6.25)–(6.28) also satisfies the sufficient conditions to be a minimizer of (6.19) [122, p. 116].

Hence, it is concluded that the resulting f(·) is a minimizer of (6.19). Therefore, the aim

becomes finding a solution f(·) that satisfies the Euler-Lagrange equations. To obtain a

solution, K can be set to zero; i.e., K = 0. Then, based on (6.28), there exist two cases;

namely, λ = 0 or λ 6= 0:

λ = 0: From (6.30), µ(θ) = 0 is obtained for any θ. Hence, f ′(θ) = ε for all θ ∈ [a, b] due

to (6.27).

λ 6= 0: From (6.28), t(θ) = 0 for any θ. Hence, the solution f(·) should satisfy∫ b

a

f ′(θ) dθ = d− c. (6.36)

Moreover, µ(·) should satisfy the following equation:

µ(θ)
[(
hTµ

2(θ) + hT ε+ hJg
′(θ)
)3 − K̃w(θ)

]
= 0 (6.37)
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where K̃ = 2hT/λ, meaning that there exists a set S ⊆ [a, b] such that f ′(θ) is specified by

(6.20) and (6.21), and K̃ is chosen to satisfy (6.22). �

By comparing the ECRB values corresponding to the encoding functions obtained for

the two alternatives in Proposition 6.1, we can select the encoding function that yields the

lower ECRB. The following corollary characterizes the closed form solution for the optimal

encoding function when θ is uniformly distributed and g(·) is a linear encoding function.

Corollary 1: If θ is uniformly distributed and g(·) is a linear mapping, the optimal en-

coding function is given by

f(θ) = c+ (d− c)(θ − a)/(b− a) (6.38)

regardless of the value of hJ .

Proof: If θ is distributed uniformly and the encoding function of the jammer is taken

as a linear mapping, the ratio
(
(K̃w(θ))1/3 − hJg′(θ)

)
/hT becomes a constant value that is

independent of θ, which we call L. If we choose L = (d− c)/(b−a) and S = ∅, it is seen that

all of the Euler-Lagrange equations are satisfied. Therefore, if θ is uniformly distributed and

g(·) is a linear mapping, f ′(θ) must be equal to (d−c)/(b−a) for all θ ∈ [a, b]. In other words,

f also becomes a linear mapping. Namely, f(θ) is given by f(θ) = f(a)+(d− c)(θ−a)/(b−a).

By choosing f(a) = c, we find a solution that satisfies all of the Euler-Lagrange equations

and is feasible for (6.16). �

To find the encoding function specified by Proposition 6.1, we should determine set S and

parameter K̃ such that (6.20)–(6.22) are satisfied. To determine S, Algorithm 8 is proposed.

In Algorithm 8, if S(0) is not empty, in each iteration i ≥ 1, we exclude the interval in

which αi(θ) < 0. Since we have d− c− ε(b− a) =
∫

[a,b]
αi(θ) dθ <

∫
R(i) αi(θ) dθ and K̃(i+1) is

computed such that the integral of αi+1(θ) over the region R(i) is equal to d− c− ε(b− a),

it is evident that K̃(i) ≥ K̃(i+1). This also means that S(i) ⊆ S(i+1). By comparing the

ECRB values corresponding to the encoding functions obtained by the proposed algorithm

and f ′(θ) = ε, we can determine an optimal encoding function.

Remark 6.1: When f(·) is strictly monotone decreasing, −f(·) becomes a strictly mono-

tone increasing function. Therefore, if we define p(θ) , −f(θ) for each θ, an optimization
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Algorithm 8 Proposed Algorithm for Determining S and f ′(·)
Input: w(·), g′(·), hT , hJ , ε.
Output: S, f ′(·).

1: To find K̃(0), solve the following integral equation
∫ b
a

(K̃(0)w(θ))1/3−hT ε−hJg′(θ)
hT

dθ = d− c−
ε(b− a)

2: Set α0(θ) = (K̃(0)w(θ))1/3−hT ε−hJg′(θ)
hT

for all θ ∈ [a, b].

3: Find S(0) = {θ ∈ [a, b] | α0(θ) < 0}
4: if S(0) = ∅ then
5: ρ = 0, S ← S(0), α(·)← α0(·), f ′(·)← α(·) + ε.
6: else
7: ρ = 1, i← 0, R(0) ← [a, b] \ S(0).
8: end if
9: while ρ = 1 do

10: i ← i + 1, and compute K̃(i) by solving the integral equation∫
R(i−1)

(K̃(i)w(θ))1/3−hT ε−hJg′(θ)
hT

dθ = d− c− ε(b− a).

11: Set αi(θ) = (K̃(i)w(θ))1/3−hT ε−hJg′(θ)
hT

for all θ ∈ R(i−1).

12: Find S(i) = {θ ∈ [a, b] | αi(θ) < 0}
13: R(i) ← [a, b] \ S(i)

14: if S(i) \ S(i−1) = ∅ then
15: ρ = 0, S ← S(i), α(·)← αi(·), f ′(·)← α(·) + ε.
16: end if
17: end while

problem in the same form as that in (6.16) can be formulated and the same approach as in

Section 6.3.1 can be employed.

6.3.2 f is not necessarily monotone

In this case, c ≤ f(θ) ≤ d implies that there exist µ(·) and t(·) such that f(θ) = c + µ2(θ)

and f(θ) = d− t2(θ) for each θ. Then, (6.7) can be reformulated as

min
f

∫ b

a

w(θ)(hTf
′(θ) + hJg

′(θ))
−2
dθ (6.39a)

subject to f(θ) = c+ µ2(θ), ∀ θ ∈ [a, b], (6.39b)

f(θ) = d− t2(θ),∀ θ ∈ [a, b]. (6.39c)

The following proposition characterizes the solution of (6.39).
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Proposition 6.2: If P = {θ | f(θ) = c or f(θ) = d} has zero measure and there exists

ξ ∈ R such that

max
θ∈[a,b]

c− ψ(θ)− f(a)

W (θ)
< ξ < min

θ∈[a,b]

d− ψ(θ)− f(a)

W (θ)
, (6.40)

then any f(θ) = f(a) + ψ(θ) + ξW (θ) that satisfies the Euler-Lagrange equations is an

optimal solution for (6.39), where

ψ(θ) , −hJ(g(θ)− g(a))

hT
, (6.41)

W (θ) ,
∫ θ

a

w(τ)1/3 dτ. (6.42)

Proof: Let F (θ, f, f ′, µ, t, γ(1), γ(2)) be given by

F (θ, f, f ′, µ, t, γ(1), γ(2)) = w(θ)
1

(hTf ′(θ) + hJg′(θ))
2 + γ(1)(θ)(µ2(θ) + c− f(θ))

+ γ(2)(θ)(f(θ)− d+ t2(θ)) (6.43)

where γ(1)(θ) and γ(2)(θ) are Lagrange multipliers. Finding the extremals of (6.39) is equiv-

alent to finding the extremals of F(f, f ′, µ, t, γ(1), γ(2)), which is given by

F(f, f ′, µ, t, γ(1), γ(2)) =

∫ b

a

F (θ, f, f ′, µ, t, γ(1), γ(2)) dθ.

From (6.43), the Euler-Lagrange equations can be obtained as

∂F

∂f
− d

dθ

∂F

∂f ′
= −γ(1)(θ) + γ(2)(θ) +

d

dθ

(
2hTw(θ)

(hTf ′(θ) + hJg′(θ))
3

)
= 0, (6.44)

∂F

∂µ
− d

dθ

∂F

∂µ′
= 2µ(θ)γ(1)(θ) = 0, (6.45)

∂F

∂t
− d

dθ

∂F

∂t′
= 2t(θ)γ(2)(θ) = 0, (6.46)

∂F

∂γ(1)
− d

dθ

∂F

∂γ(1)′
= µ2(θ) + c− f(θ) = 0 (6.47)

∂F

∂γ(2)
− d

dθ

∂F

∂γ(2)′
= f(θ)− d+ t2(θ) = 0. (6.48)

As P defined in Proposition 6.2 is assumed to have zero measure, we concentrate on the case

of µ(θ) 6= 0 and t(θ) 6= 0. From (6.44), for some β ∈ R, the following relation is obtained:

2hTw(θ)

(hTf ′(θ) + hJg′(θ))
3 = β +

∫ θ

a

(
−γ(1)(τ) + γ(2)(τ)

)
dτ

134



= β +

∫
[a,θ]∩P

(
−γ(1)(τ) + γ(2)(τ)

)
dτ = β. (6.49)

Therefore, f ′(θ) is given by

f ′(θ) = ((β̃w(θ))1/3 − hJg′(θ))/hT , (6.50)

where β̃ = 2hT/β. Then, f(θ) is expressed as

f(θ) = f(a) +

∫ θ

a

(β̃w(τ))1/3 − hJg′(τ)

hT
dτ. (6.51)

Let ξ , β̃1/3/hT . Then, f(θ) can be written as

f(θ) = f(a) + ψ(θ) + ξW (θ). (6.52)

We must find ξ such that c < f(θ) < d for any θ ∈ [a, b]. Equivalently, ξ must satisfy

the condition in (6.40) of Proposition 6.2. If there exists no ξ satisfying (6.40), the Euler-

Lagrange equations do not yield any solution; otherwise, f(θ) can be found from (6.52). If

there is such a ξ, similar to the proof of Proposition 6.1, one can see that Ff = Fff ′ = Fff = 0

and Ff ′f ′ > 0 for each θ. Hence, via similar arguments to those in the proof of Proposition 6.1,

we can argue that f is the local minimizer of (6.39). �

As a corollary to Proposition 6.2, if θ is distributed uniformly, g is a linear func-

tion of θ, and the condition in Proposition 6.2 holds, it is concluded that the encoding

function at the transmitter is linear as in the monotone case. Furthermore, once g(·)
and w(·) are known, the knowledge of ψ(·) and W (·) also becomes available. Hence,

maxθ∈[a,b] (c− ψ(θ)− f(a)) /W (θ) and minθ∈[a,b] (d− ψ(θ)− f(a)) /W (θ) can easily be found

in terms of f(a). By adjusting the value of f(a), one can determine whether the condition

in (6.40) is satisfied.

Remark 6.2: Since the optimal encoding functions in Propositions 6.1 and 6.2 are local

minimizers, we can compare the ECRBs achieved by these encoding functions and choose

the one that achieves the lower ECRB.

Next, we discuss what happens for the multiple transmitters-single receiver and single

transmitter-multiple receivers cases.
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6.4 Extension to the Multiple Transmitters-Single Re-

ceiver Case

Let fm(·) and h
(m)
T denote the encoding function of the mth transmitter and the channel

fading coefficient between the mth transmitter and the receiver for 1 ≤ m ≤M , respectively.

Furthermore, assume that fm(·) ∈ [cm, dm] for all m. Then, the received signal Y can be

expressed as

Y =
M∑
m=1

h
(m)
T fm(θ) + hJg(θ) +N (6.53)

By using similar steps and assuming that fm(·)’s are differentiable, it can be shown that the

Fisher information, I(θ), can be expressed as

I(θ) =

(∑M
m=1 h

(m)
T f ′m(θ) + hJg

′(θ)
)2

σ2
(6.54)

where f ′m(·) denotes the derivative of fm(·) for 1 ≤ m ≤ M . Hence, the proposed optimiza-

tion problem can be stated as

min
{fm}Mm=1

∫ b

a

w(θ)
σ2(∑M

m=1 h
(m)
T f ′m(θ) + hJg′(θ)

)2 dθ (6.55a)

subject to cm ≤ fm(θ) ≤ dm , ∀ θ ∈ [a, b] and ∀m. (6.55b)

The difficulty of solving this problem stems from the fact that we try to minimize the

objective function with respect to M different functions. After solving the Euler-Lagrange

equations, it is not easy to obtain a closed form solution as in Proposition 6.1, and it is unclear

that the solution obtained by the Euler-Lagrange equations is a local (weak) minimizer. As

the multiple transmitters-multiple receivers case is the generalization of this case, finding

a closed form solution as in Proposition 6.1 for the multiple transmitters-multiple receivers
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case is even harder.

6.5 Extension to the Single Transmitter-Multiple Re-

ceivers Case

In this case, assume that the transmitter broadcasts the signal f(θ) to each intended receiver.

Let the number of the receivers be equal to K. Let h
(k)
T and h

(k)
J denote the channel fading

coefficients between the transmitter and the kth receiver, and between the jammer and the

kth receiver for 1 ≤ k ≤ K, respectively. Hence, for 1 ≤ k ≤ K, the received signal at the

kth receiver, Yk, can be expressed as

Yk = h
(k)
T f(θ) + h

(k)
J g(θ) +Nk (6.56)

where Nk ∼ N (0, σ2
k). Assuming Nk’s are independent, one can express the conditional

probability p(Y |θ), as follows:

p(Y |θ) =
K∏
k=1

1√
2πσ2

k

exp

−
(
Yk − h(k)

T f(θ)− h(k)
J g(θ)

)2

2σ2
k

 (6.57)

where Y = [Y1 Y2 . . . YK ]ᵀ. Then, one can observe that the partial derivative of log p(Y |θ)
with respect to θ is given by

∂ log p(Y |θ)
∂θ

=
K∑
k=1

1

σ2
k

(
Yk − h(k)

T f(θ)− h(k)
J g(θ)

)(
h

(k)
T f ′(θ) + h

(k)
J g′(θ)

)
. (6.58)

For the notation simplicity, we can define

γ(Yk, θ) ,
(
Yk − h(k)

T f(θ)− h(k)
J g(θ)

)(
h

(k)
T f ′(θ) + h

(k)
J g′(θ)

)
(6.59)

Then, the Fisher information, I(θ), is given by

I(θ) =

∫ ( K∑
k=1

γ(Yk, θ)

σ2
k

)2

p(Y |θ) dY (6.60)

=
K∑
k=1

K∑
l=1

∫
γ(Yk, θ)γ(Yl, θ)

σ2
kσ

2
l

p(Y |θ) dY (6.61)
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Let us compute the integral
∫ γ(Yk,θ)γ(Yl,θ)

σ2
kσ

2
l

p(Y |θ) dY for each k, l. First, consider the case of

k 6= l. One can see that the integral expression can be manipulated as∫
γ(Yk, θ)γ(Yl, θ)

σ2
kσ

2
l

p(Y |θ) dY =

∫
γ(Yk, θ)γ(Yl, θ)

σ2
kσ

2
l

p(Yk|θ)p(Yl|θ)
∏
u6=k,l

p(Yu|θ) dY (6.62)

=

∫
γ(Yk, θ)

σ2
k

p(Yk|θ) dYk
∫
γ(Yl, θ)

σ2
l

p(Yl|θ) dYl
∏
u6=k,l

∫
p(Yu|θ) dYu︸ ︷︷ ︸

=1

(6.63)

=

∫
γ(Yk, θ)

σ2
k

p(Yk|θ) dYk
∫
γ(Yl, θ)

σ2
l

p(Yl|θ) dYl (6.64)

For any k, it can be shown that ∫
γ(Yk, θ)

σ2
k

p(Yk|θ) dYk = 0. (6.65)

Hence, we can conclude that I(θ) is equal to the following expression:

I(θ) =
K∑
k=1

∫
γ2(Yk, θ)

σ4
k

p(Yk|θ) dYk (6.66)

=
K∑
k=1

(
h

(k)
T f ′(θ) + h

(k)
J g′(θ)

)2

σ4
k

∫ (
Yk − h(k)

T f(θ)− h(k)
J g(θ)

)2

p(Yk|θ) dYk︸ ︷︷ ︸
=σ2

k

(6.67)

=
K∑
k=1

(
h

(k)
T f ′(θ) + h

(k)
J g′(θ)

)2

σ2
k

(6.68)

Our aim is to minimize the ECRB, i.e, to minimize the integral expression
∫ b
a
w(θ) 1

I(θ)
dθ.

Therefore, we can formulate the proposed optimization problem as follows:

min
f

∫ b

a

w(θ)
1∑K

k=1

(
h
(k)
T f ′(θ)+h

(k)
J g′(θ)

)2
σ2
k

dθ (6.69a)

subject to c ≤ f(θ) ≤ d , ∀ θ ∈ [a, b] . (6.69b)

Let HT , HTJ , and HJ be defined as

HT ,
K∑
k=1

(
h

(k)
T

σk

)2

, HTJ ,
K∑
k=1

2h
(k)
T h

(k)
J

σ2
k

and HJ ,
K∑
k=1

(
h

(k)
J

σk

)2

. (6.70)
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As all the channel fading coefficients and the variances are assumed to be known, HT , HTJ ,

and HJ are known. Then, we can reformulate the proposed optimization problem as follows:

min
f

∫ b

a

w(θ)
σ2

HTf ′(θ)2 +HTJf ′(θ)g′(θ) +HJg′(θ)2
dθ (6.71a)

subject to c ≤ f(θ) ≤ d , ∀ θ ∈ [a, b] (6.71b)

It is noted that this problem is in a very similar form to the optimization problem described in

(6.7). In (6.7), a second-degree polynomial with respect to f ′(·) appears in the denominator

of the integrand, too. Hence, via similar techniques as in the proof of the Proposition 6.1,

we can characterize the optimal encoding strategy for the problem in (6.71) above.

6.6 Numerical Results and Conclusions

In this section, a numerical example is presented when parameter θ is uniformly distributed

between 0 and 1; that is, Λ = [a, b] with a = 0 and b = 1. In other words, w(θ) = 1

if θ ∈ [0, 1] and w(θ) = 0 otherwise. We restrict our search space to strictly monotone

increasing mappings for the encoding function f(·) at the transmitter. Also, two different

encoding functions are considered for the jammer as g(θ) = θ and g(θ) = θ2. Hence,

g(θ) ∈ Γ = [k, l] with k = 0 and l = 1. In addition, it is assumed that the range of the

encoding function f(·) is given by [0, 1]. In the simulations, ε in (6.19) is set to 0.001 and

the variance of N in (6.1) is given by σ2 = 1.

In Figure 6.2, the optimal encoding functions, f(θ), are plotted for g(θ) = θ and g(θ) = θ2

when hT/hJ ∈ {0.01, 0.1, 1, 10, 100}. It is observed that f(θ) = θ regardless of the value of

hT/hJ when g(θ) = θ; that is, f(θ) is also linear in accordance with Corollary 1. When

g(θ) = θ2 and hT = hJ , it is known via (6.20) and (6.21) that

f ′(θ) =

ε, θ ∈ S

ν − 2θ, if θ ∈ [0, 1] \ S
(6.72)

for some ν ∈ R. By choosing ν = 2 and S = ∅, we obtain the desired solution. Hence, the

optimal encoding function is given by f(θ) = 2θ − θ2 in that case, as can be verified from
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Figure 6.2. It is also noted that as hT gets significantly larger than hJ , the optimal encoding

function converges to the linear one. This is intuitive since it is known via [90, Prop.1]

that in the absence of jamming, the optimal encoding function is a linear mapping. For

comparison purposes, we consider the encoding function in [90], which is optimal in the

absence of jamming (and would be used if the transmitter were unaware of jamming). In

that case, the encoding function, denoted by f̃(θ), has the following derivative [90]:

f̃ ′(θ) =
(d− c)w(θ)∫ b
a
w(θ)1/3 dθ

. (6.73)
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Figure 6.2: f(θ) versus θ for two different encoding functions of jammer when hT/hJ ∈
{0.01, 0.1, 1, 10, 100}.

In Figure 6.3, the ECRB values achieved by f(θ) (proposed in this work) and f̃(θ) are

plotted versus hT/hJ for g(θ) = θ and g(θ) = θ2. For g(θ) = θ, f(θ) = f̃(θ); hence, the

same ECRB performance is attained. For g(θ) = θ2, the proposed encoding function leads

to lower ECRB values especially for hT < hJ , demonstrating the benefits of the proposed

optimal encoding approach.

Also, for hT < hJ , the ECRB values are lower for the case of g(θ) = θ than the case with

g(θ) = θ2. We also observe that, for g(θ) = θ and hT is much smaller than hJ , ECRB values
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Figure 6.3: ECRB versus 10 log10(hT/hJ) for two different jammer encoding functions.

are lower than the case g(θ) = θ2. This means that the linear mapping at the jammer is

not as destructive for the ECRB performance at the receiver as the nonlinear one in this

scenario. The reason is that when g(θ) = θ, as we observe from the Figure 6.2, the optimal

encoding function f(θ) = θ. In other words, when jammer chooses g(θ) = θ, transmitter

benefits from this mapping. On the other hand, when g(θ) = θ2, transmitter needs to act

differently than the jammer in order to remove the destructive effects introduced by the

jammer. Moreover, when hT is significantly larger than hJ , all the ECRB values converge

since the signal component due to the transmitter becomes dominant at the receiver and

the encoding functions become the same as seen in Figure 6.2. In conclusion, the proposed

optimal encoding approach can lead to improved estimation performance in the presence of

jamming.
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Chapter 7

Conclusion and Future Work

In this dissertation, estimation theoretic analyses of location secrecy and RIS-aided local-

ization under hardware impairments have been presented. First, in Chapter 2, a wireless

localization network consisting of eavesdropper and jammer nodes has been considered. For

the considered network, optimal selection strategies of eavesdropper and jammer nodes have

been investigated. We have first formulated the eavesdropper selection problem. The CRLB

related to the estimation of the target node position by eavesdropper nodes has been selected

as the performance metric. This CRLB has been derived, and its analytical properties in-

cluding monotonicity and convexity have been examined. We have proved that the CRLB is

a convex function of the eavesdropper selection vector. After relaxing the integer constraints,

we have approximated the eavesdropper selection problem by a convex problem. Then, we

have formulated the jammer selection problem in which jammer nodes aim to degrade the

localization accuracy of the network as much as possible. We have used a CRLB expression

from the literature as the performance metric, and we have analyzed its convexity and mono-

tonicity properties with respect to the jammer selection vector. After these analyses and

relaxation of the integer constraints, we have approximated the jammer selection problem

by a convex problem, too. Then, by combining the results obtained for the eavesdropper

selection problem and the jammer selection problem, we have formulated the joint eaves-

dropper and jammer selection problem. We have proposed some algorithms for solving these

problems, and simulation results have been presented to examine performance of the pro-

posed algorithms. Numerical results have shown that the proposed algorithms perform very
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closely to the theoretical bounds.

In Chapter 3, we have formulated the anchor placement problem to minimize the CRLB

related to estimation of target node position by anchor nodes. We have approximated the

anchor placement problem as an anchor selection problem after discretization of the region

where anchor nodes are allowed to be placed. Using similar analysis techniques in Chapter 2,

it has been proved that after relaxing the integer constraints, the anchor selection problem

becomes a convex problem. In the considered problem, anchor and target nodes have been

assumed to be synchronous. However, extensions to quasi-synchronous wireless localization

networks have been also examined. By conducting simulations, we have shown that the

performance loss due to discretization can be mitigated by using a dense grid. Also, the

proposed algorithms have provided effective solutions to the anchor placement as they have

achieved the theoretical performance bounds.

As a possible future work, we can come up with game-theoretic formulations by combining

the works presented in Chapter 2 and Chapter 3. That is, placement games among the

anchor nodes and adverserial nodes (eavesdropper and jammer) can be formulated. For

a given anchor placement or selection strategy, we have already characterized the optimal

eavesdropper and jammer selection strategies and vice versa. Whether this game admits any

Nash equilibrium or not can be considered in future studies.

In Chapters 4 and 5, RIS-aided localization under hardware impairments has been in-

vestigated. In Chapter 4, RIS-aided localization has been investigated when the perfect

knowledge of RIS amplitudes is missing. In the formulation, RIS amplitudes have been

assumed to be equal to one; however, in the reality, RIS amplitudes have been considered

as a function of applied phase shifts based on a practical RIS circuit model [78]. First, we

have analyzed the localization performance loss due to mismatch between the reality and

the belief about the RIS amplitudes. To quantify this performance, we have used MCRB

analysis and computed the corresponding LB. It has been shown that being unaware of the

true RIS amplitude model can cause severe degradation in the localization accuracy. When

the RIS amplitude model is known, but the actual parameters of the model are not known,

we have derived the corresponding CRB. We also have proposed a joint localization and

RIS calibration algorithm when the RIS amplitude model is known. Our proposed algo-

rithm can calibrate the RIS model online and refine the UE location with an accuracy that
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asymptotically attains the CRB.

In Chapter 5, we have investigated RIS-aided localization when RIS pixels fail indepen-

dently with a certain probability denoted by pfail. First, we have analyzed how detrimental

pixel failures can be for localization. To quantify the effect of pixel failures, we have devised

an MCRB analysis as in Chapter 4. Numerical results have suggested that even for small

values of pfail, the degradation could be significant. To remedy this issue, we have proposed

two different joint localization and failure mask recovery algorithms. Both algorithms have

reduced the performance loss due to pixel failures significantly. The successive joint localiza-

tion and mask recovery algorithm has been shown to be asymptotically efficient as it attains

the CRB in the high-SNR regime.

In Chapters 4 and 5, we have considered only the LoS path between the UE and the

receiver. In future work, we can try to analyze multipath effects for the considered problems.

Moreover, for RIS-aided localization under pixel failures, we have worked on only biased type

of failures. In addition to the biased type of failure, disconnected type of failure can be also

considered. As discussed at the end of Chapter 5, our analyses can be extended to the only

disconnected case and the joint biased and disconnected cases as well.

In Chapter 6, we have investigated the optimal encoding strategy of the transmitter in

the presence of the jammer. In the considered setting, we have used the ECRB as the perfor-

mance metric. First, by using tools from the calculus of variations, we have characterized the

optimal encoding strategy of the transmitter when the set of possible encoding strategies are

confined to the set of monotone functions. Then, this analysis has been extended to set of

non-monotone functions. Via numerical results we have shown that the proposed encoding

strategy can improve the estimation performance under jamming attacks. In the formula-

tion, we have assumed that the transmitter has the knowledge of the encoding strategy of

the jammer. As a possible direction for future work, we can extend our analyses when the

transmitter does not know the jammer strategy exactly, but has access to statistics of the

possible jammer encoding strategies. In that scenario, while deriving the Fisher information,

we need to consider averaging over possible jammer encoding functions.
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