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ABSTRACT

RULE BASED SEGMENTATION OF COLON GLANDS

Simge Yücel

M.S. in Computer Engineering

Advisor: Çiğdem Gündüz Demir

September 2018

Colon adenocarcinoma, which accounts for more than 90 percent of all colorec-

tal cancers, originates from epithelial cells that form colon glands. Thus, for its

diagnosis and grading, it is important to examine the distortions in the organi-

zations of these epithelial cells, and hence, the deformations in the colon glands.

Therefore, localization of the glands within a tissue and quantification of their

deformations is essential to develop an automated or a semi-automated decision

support system. With this motivation, this thesis proposes a new structural seg-

mentation algorithm to detect glands in a histopathological tissue image. This

structural algorithm proposes to transform the histopathological image into a new

representation by locating a set of primitives using the Voronoi diagram, to gen-

erate gland candidates by defining a set of rules on this new representation, and

to devise an iterative algorithm that selects a subset of these candidates based

on their fitness scores. The main contribution of this thesis is the following: The

representation introduced by this proposed algorithm enables us to better encode

the colon glands by defining the rules and the fitness scores with respect to the

appearance of the glands in a colon tissue. This representation and encoding

have not been used by the previous studies. The experimental results of our algo-

rithm show that this proposed algorithm improves the segmentation results of its

pixel-based and structural counterparts without applying any further processing.

Keywords: Histopathological image analysis, gland segmentation, Voronoi dia-

gram, structural method.
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ÖZET

KALIN BAĞIRSAK BEZLERİNİN KURALA
DAYANARAK BÖLÜTLENMESİ

Simge Yücel

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Danışmanı: Çiğdem Gündüz Demir

Eylül 2018

Tüm kolorektal kanserlerin yüzde doksanından fazlasını oluşturan kolon ade-

nokarsinomu, kolon bezlerini oluşturan epitel hücrelerden kaynak almaktadır.

Dolayısıyla, bu kanserin tanı ve derecelendirmesinde, epitel hücrelerin organizasy-

onlarındaki bozuklukların, bundan dolayı da kolon bezlerindeki deformasyonların

incelenmesi önemlidir. Bu nedenle, kolon dokusundaki bezlerin yerlerinin tespit

edilmesi ve deformasyonlarının nicelenmesi, otomatik veya yarı otomatik karar

destek sistemlerinin geliştirilmesi için esastır. Bu motivasyonla, bu tez, histopa-

tolojik doku görüntülerindeki bezleri saptamak için yeni bir yapısal bölütleme

algoritması önermektedir. Bu yapısal algoritma, Voronoi diyagramı kullanarak

histopatolojik görüntü üzerinde bir temel öğe kümesi yerleştirmeyi ve bu şekilde

görüntüyü yeni bir gösterime dönüştürmeyi; bu yeni gösterim üzerinde kurallar

tanımlayarak bez adaylarını üretmeyi; ve uygunluk skorlarına göre bu adaylar

arasından alt küme seçen tekrarlı bir algoritma tasarlamayı önermektedir. Bu

tezin başlıca katkısı; önerilen algoritma ile ortaya konan gösterimin, bezlerin

kolon dokusundaki görünümlerine göre kural ve uygunluk skoru tanımlayarak,

kolon bezlerinin daha iyi kodlanmasına olanak sağlamasıdır. Bu gösterim ve

kodlama daha önceki çalışmalarda kullanılmamıştır. Algoritmamızın deneysel

sonuçları, önerilen bu algoritmanın, ek bir işlem uygulamadan, piksel tabanlı ve

yapısal benzerlerinin bölütleme sonuçlarını iyileştirdiğini göstermiştir.

Anahtar sözcükler : Histopatolojik görüntü analizi, bez bölütlemesi, Voronoi diya-

gramı, yapısal yöntem.

iv



Acknowledgement

First of all, I would like to thank my advisor Çiğdem Gündüz Demir for guiding
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Chapter 1

Introduction

Colorectal cancer is the third most commonly diagnosed cancer type in Western

Europe and North America [1, 2]. It is ranked in the fourth place among all

cancer-related deaths and 1.1 million deaths are expected by 2030 [3]. The most

common type of colorectal cancer is adenocarcinoma, accounting for more than 90

percent of all colorectal cancers. Colon adenocarcinoma originates from epithelial

cells, which line up the luminal surface of colon and form colon glands together

with the lumina (see Figure 1.1). Thus, for diagnosis and grading of this cancer

type, pathologists examine the distortions in the organizations of these epithelial

cells, and hence, deformations in the colon glands.

Similar to all cancer types, the colon adenocarcinoma is diagnosed and graded

by a histopathological examination of fixed and stained colon tissue sections. In

this process, pathologists examine a colon tissue under a microscope and identify

whether or not there exist deformations in the glands, and if any, the degree of

these deformations. Thus, in order to develop an automated or a semi-automated

decision support system, which will help the pathologists make faster and more

objective decisions, it is essential to identify gland locations within a tissue and

to quantify their deformations. With this motivation, this thesis focuses on the

first part, for which it proposes a new gland segmentation algorithm.
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Figure 1.1: Sample colon tissue image, on which tissue components are illustrated.
Additionally, gland boundaries are drawn with red in the image.
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In the literature, the existing gland segmentation methods can mainly be cat-

egorized into two: pixel-based and structural methods. The pixel-based methods

commonly assign the predefined labels (e.g., nucleus and lumen labels) to image

pixels and then apply a post-processing technique on these image labels to form

individual glands. These methods indeed rely on the fact that, in a colon tissue

image, a typical gland has a large enough whitish luminal region and this region is

surrounded by a thick enough line of purplish nuclear pixels. The earlier methods

assign labels to the pixels based on their intensities, usually by thresholding [4] or

using a simple classifier [5]. On the other hand, these labeling methods may lead

to incorrect class labels especially when there exist variations and noise in the

pixel intensities. Additionally, the commonly used post-processing techniques

(e.g., region growing) applied afterwards may fail when there exist pixel-level

variations and imperfections in the gland pixels (e.g., when there exist a consid-

erable large white gap in the line of nuclear pixels due to the imperfections in the

tissue preparation steps, see Figure 1.2). More recently, the use of deep learning

classifiers [6], [7], [8] alleviates the problems related with incorrect pixel labeling.

However, they are still prone to the pixel-level imperfections in the image, since

they usually require a post-processing step (e.g., applying small area elimination

followed by morphological operations) that is applied directly on the pixel la-

bels or their probabilities. Additionally, the deep learning methods necessitate a

considerable number of annotated images, which sometimes is difficult to obtain.

The structural methods typically decompose an image into a set of multi-

type primitives (e.g., nuclear and lumen primitives), for instance by locating

circles [9] and superpixels [10], and then use the neighborhood information of

these primitives to form the glands. Since they run on the primitives (i.e., use

the spatial organization of these primitives instead of directly using that of the

pixels), these methods are expected to be less susceptible to noise and variations

observed at the pixel level (e.g., the one illustrated in Figure 1.2). In this thesis,

we propose a new gland segmentation algorithm of this kind.
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Figure 1.2: Sample colon tissue image which contains white gaps in between
epithelial nuclei due to imperfection in the tissue preparation process.
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1.1 Contributions

The proposed algorithm 1.) defines a representation by locating a set of new

primitives, 2.) generates gland candidates by defining a set of rules on this repre-

sentation according to the spatial distribution of these primitives, and 3.) devises

an iterative gland selection algorithm based on the fitness score it proposes.

In particular, the proposed representation decomposes an image into nuclear

and white circles, similar to our previous work [9], but then it constructs a Voronoi

diagram on the centroids of these circles. Compared to the case where only

the circles are used, this Voronoi diagram representation makes easier to define

rules for generating the gland candidates, especially when there exist noise and

variations.

This thesis defines the gland generation rules and its fitness score, which we

call GlandScore, with the motivation of mimicking the appearance of glands in

a colon tissue. Particularly, it uses the observations given below. The proposed

Voronoi diagram representation facilitates the encoding of these observations as

well as the quantification of the fitness measures that they use. These encodings

and the definition of their corresponding fitness measures have not been used by

the previous methods, and thus, constitute the main contribution of this thesis.

• A colon gland should contain a white luminal region but no nuclei inside.

In our representation, this corresponds to finding a large enough connected

component of white Voronoi polygons. This component should contain no

nuclear polygon inside (or only a few of them when there exist artifacts in

the image).

To encode this observation, a gland candidate is formed by identifying each

connected component that contains white polygons more than the threshold

and combining it with its adjacent nuclear polygons. Then, to quantify the

fitness of this candidate, the precision measure is defined as the ratio of the

number of the nuclear polygons located on the candidate’s border to the

number of all nuclear polygons belonging to the same candidate.

5



• A colon gland should be surrounded by epithelial nuclei. In our represen-

tation, this corresponds to having a row of nuclear Voronoi polygons that

confine the white connected component. This connected component should

be confined by the nuclear polygons entirely (or only a few of them could

be missing when there exist noise in the image).

To encode this observation, a gland candidate is formed similarly. Its fitness

is quantified by the recall measure that is defined as the ratio of the number

of the nuclear polygons located on the candidate’s border to the number of

all polygons (nuclear and white ones) on the same border. Then, by taking

the harmonic mean of its precision and recall measures, the Fscore of the

candidate is calculated.

• A colon gland should of the tubular shape. In our representation, this

corresponds to selecting the compact candidates.

After generating a gland candidate in a similar way, its compactness is

quantified by the ConvexRatio measure, which is the ratio of the candidate’s

area to that of its convex hull. At the end, for the same gland candidate,

all these measures are combined by the GlandScore, which is the product

of its Fscore and ConvexRatio measures.

After generating gland candidates and calculating their GlandScores, this the-

sis defines an iterative algorithm that selects a subset of these candidates based

on their GlandScores. In each iteration, it selects the best candidate and updates

the remaining ones that share some polygons with the selected one. This iter-

ative algorithm continues until there remains no candidate with a high enough

GlandScore.

1.2 Outline

The structure of the remaining of this thesis is as follows. Chapter 2 gives a brief

information about the domain and reviews the existing gland segmentation meth-

ods in the literature. Then, Chapter 3 provides the details of the proposed gland
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segmentation algorithm, explaining its image representation, candidate gland gen-

eration, and iterative gland selection steps. This chapter explicitly explains the

rules used for gland generation and gives the definitions of the measures used

for quantification. Next, Chapter 4 presents experimental settings as well as the

results of the proposed algorithm. Finally, Chapter 5 concludes the thesis and

presents its future work.
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Chapter 2

Background

In the first part of this chapter, we will give general information about glands,

their structure, and the staining method. In the second part, we will explicate

the existing gland segmentation methods and discuss the feasible and weak sides

of these methods.

2.1 Domain Description

The epithelial tissue is made up of glands which produce and secrete hormones,

enzymes, and chemical substances that regulate the activity of cells or organs in

the body. Glands exist in many different parts of the human body such as lungs,

pancreas, and colon. The glands located in colon are in a tubular shape. Fig-

ure 2.1 shows the tubular structure of a gland and Figure 1.1 explicitly indicates

the parts of the glands on a tissue sample [11]. At the center of a gland, there

is a big white area which is called lumen. This area is surrounded by columnar

epithelial cells. Outer side of these cells, epithelial cell nuclei exist which compose

the boundary of a gland. In the stromal part of tissues, stromal cell nuclei are

scattered among the glands.

8



Figure 2.1: Gland structure.

In this thesis, we used images of the colon tissues stained with the hematoxylin-

and-eosin (H&E) technique. It is the routinely used staining technique in

histopathology. This method stains nucleus with hematoxylin and cytoplasm

with eosin [12]. As a result of this staining, the nuclei in images look purple and

the cytoplasm and stroma look pink.

2.2 Related Work

Gland segmentation is an important step in the automated or semiautomated

detection of colon adenocarcinoma. In the literature, there exist two main ap-

proaches to this problem: pixel-based and structural.

2.2.1 Pixel Based Methods

Earlier studies of gland segmentation include pixel-based methods which make

use of the intensities of pixels. However, after deep learning, these studies gain

another perspective. For this reason, existing pixel-based methods can be cat-

egorized into two main classes such as ‘Before Deep Learning’and ‘After Deep

Learning’.
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Before deep learning, many studies dealt with the gland detection problem

by focusing on lumen detection. They utilize the colors’ intensity difference to

differentiate luminal and nuclear areas. The study by Wu et al., proposes a

method takes an image and applies a simple thresholding to convert it to a binary

image [4]. Black parts of the binary image correspond to nuclei and white parts

to lumina and cytoplasms. Then, in order to define the initial seeds, big white

areas are found, which most probably correspond to the lumina. To find the

luminal parts, a window of radius R0 is moved on the image and the white areas,

which completely cover this window, are chosen as potential seeds.

After finding potential seeds, they are expanded by applying iterative morpho-

logical dilation operation with a circular structuring element. At each iteration,

dilated parts are added to the seed’s area if their pixels are white. The growth of

regions is terminated when the pixels reach the nucleus chains. There are some

false regions in stroma which form similar structures as glands by growing. In

order to prevent the growth of these false regions, an iteration threshold is put

and the areas are eliminated if the growth of the region does not stop until this

threshold. Then, in order to find the false detected luminal regions, which are

not eliminated in the previous step, the thickness of the boundaries are checked

by looking at the ratio between the number of nucleus pixels and the number of

total pixels on the boundary. If the ratio is very small, this gland is considered

false and eliminated.

In another study by Naik et al., a Bayesian classifier is used which classifies

pixels based on their intensity values into three classes: nucleus, lumen, and cyto-

plasm [5]. Manually labeled pixels are used for training of each class. According

to the color values of the training dataset’s pixels, the priors and the probabil-

ity density functions are generated. Then, for each pixel of a given image, the

posterior probability of a pixel belonging to a particular class is calculated by

using these priors and likelihoods using the Bayes theorem. By thresholding the

posterior probabilities with emprically determined values, potential lumen, cyto-

plasm, and nuclear regions are detected. From these detected lumens, the ones

that are most probably noise are eliminated according to the lumen size, which

is defined during the training process by using size histograms. After getting

10



the possible starting points, a level-set algorithm is performed to find the gland

regions. A level-set curve is fitted to the detected lumen areas and the algo-

rithm runs until the difference in the contours is below an empirically determined

threshold between two iterations. When the difference is higher than this pre-

defined threshold, it means that lumen pixels reach to nucleus pixels, and the

algorithm stops. The false glands are eliminated by looking at the contours of

their boundaries.

Banwari et al. propose a similar study for the purpose of gland segmenta-

tion [13]. Their study consists of three steps which are preprocessing, area thresh-

olding, and closing. In the preprocessing part, the red channel of the given image

is taken and a histogram equalization is applied in order to enhance the contrast.

The output of these steps gives the brightest part of the image. Then an average

filtering is applied for smoothing the borders of these parts and possible lumen

areas are obtained by thresholding according to pixels’ intensities. In the second

step of the study, they apply an area thresholding in order to eliminate the small

areas. To the remaining areas, the morphological dilation operation is applied.

Finally, in the third step, the closing operation is applied to the binary image in

order to get the output.

(a) (b) (c)

(d) (e) (f)

Figure 2.2: Examples of colon tissues containing gland structures.
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As a result of these studies, it is seen that finding the lumen area, and ex-

panding the area with a region growing algorithm is not always appropriate to

successfully find glands. These studies use empirically determined area thresholds

to distinguish the possible lumen areas from the potential noise. Although this

idea may give satisfying results for the images in Figures 2.2 (a), 2.2 (b), and 2.2

(c), it will not give good results for the images in Figures 2.2 (d), 2.2 (e), and 2.2

(f), since their lumen areas are not big enough. Secondly, labeling methods may

lead to incorrect class labels especially when there exist variations and noise in

the pixel intensities. Also for the same reason, the post-processing techniques

(e.g., region growing) may fail on such images.

More recently, researchers start to use deep learning classifiers to alleviate

the problems related with incorrect pixel labeling. One of the latest studies by

Chen et al. proposes a deep contour-aware network to solve gland segmentation

problem [6]. This study uses a fully convolutional neural network for multi-level

feature representation. The network takes an image as input and outputs the

segmentation probability map and depicted contours of gland objects simulta-

neously. The network’s architecture consists of down-sampling and up-sampling

paths. First of all, the network down-samples the image with convolutional and

max-pooling layers. The results of the down-sampled layers are up-sampled with

two different branches to give the segmented object and contour masks separately

as outputs. Instead of implementing separate networks for the segmentation of

objects and the detection of contours, they design a single network for both pur-

poses. Finally, both results are fused together to obtain the final output image.

Then, post-processing steps are applied to finalize the resulting image. These

steps include small area elimination, smoothing with a disk filter, and filling the

holes.

In another study by Manivannan et al., a method is presented which uses

exemplar label patches for structure prediction [7]. In the training process, label

patches are extracted from the ground truths of the training images. In order

to get a set of label exemplars, these patches are clustered with the k-means

clustering algorithm. After obtaining K exemplars, linear classifiers are defined

for each of them to learn their structures. In the test process, for each pixel

12



of a given test image, the classifiers output K separate probabilities, each of

which corresponds to each exemplar and the pixel is labeled with the one whose

probability is the highest. The higher values of the output map indicate the

possible gland locations. In order to get glands from the output map, they apply

a fixed threshold, which is defined in the training process. Then, for separating the

adjacent glands, they apply the morphological erosion operation with a circular

structuring element, and after this step, eliminate small connected components.

To finalize the result, they apply the morphological dilation operation with a

circular structuring element whose radius is twice the size of the structuring

element’s radius used in erosion.

Besides all these studies, Xu et al. propose an algorithm for gland segmentation

using deep multichannel neural networks [8]. In this approach, they aim to detect

the pixels of glands and recognize individual glands at the same time. In the

proposed algorithm, they make use of multichannel learning; one channel for

foreground segmentation, one channel for edge detection, and one channel for

individual gland recognition. The foreground segmentation channel distinguishes

glands from the background by using a fully convolutional neural network. The

edge detection channel uses a Holistically-nested Edge Detector (HED) to detect

boundaries between glands [14]. HED is a convolutional neural network based

solution for edge detection. The individual gland recognition channel makes use of

Faster Regional CNN (R-CNN) to get location information and Region Proposal

Network (RPN) to form the final gland detection result [15]. After receiving the

outputs of these three channels, which contain the information about the region,

location, and boundary, a fusion algorithm is applied to combine them. In order

to fuse these three channels, a convolutional neural network is used. To conclude,

four different neural networks are used in this study, three of them for extracting

the features, and the remaining one is to combine the outputs of the first three

ones.

Although using neural networks for gland segmentation yields promising re-

sults, it has the disadvantage of necessitating a considerable number of annotated

images and requiring a relatively larger computational time.
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2.2.2 Structural Methods

In the literature, there are few studies which handle gland segmentation via struc-

tural methods. The common approach of these methods is decomposing the image

into primitives and forming gland structures via using the neighborhood infor-

mation of these primitives.

Gunduz-Demir et al. present one of the first studies in this field [9]. In the

first step of their proposed algorithm, they quantize the image into three clusters

(nucleus, stroma, and lumen clusters) by using the k-means algorithm. Then,

they locate circular objects on the nucleus and lumen clusters, separately. They

construct an object graph on lumen objects, and extract their local features on

this graph. For each lumen object, they extract structural features, considering

the neighborhood information between this object and its closest nuclear and

lumen objects. Then, these features are used to group the lumen objects into two

classes as gland and non-gland, by using the k-means algorithm. In the second

part of the algorithm, another object-graph is constructed on nucleus circles.

Edges are drawn between each nucleus object and its closest objects. Finally, a

region growing algorithm is applied to the gland objects. The algorithm stops

when a gland structure reaches to the edges of the nucleus-graph. At the end

of the region growing process, small regions are eliminated, and a decision tree

classifier is used to eliminate false glands.

In another study, Sirinukunwattana et al. propose a Random Polygons Model

for modeling glandular structures on images [10]. In this model, first of all, they

decompose the image into superpixels by using the Simple Linear Iterative Clus-

tering (SLIC) algorithm, and for each superpixel a feature vector is extracted

which contains color and texture information [16]. Then, a random forest classi-

fier is trained on these features in order to get a glandular probability for each

superpixel. By using superpixels’ probabilities, a map is obtained which indicates

the glandular probability of each pixel on the image. Then, initial seed areas are

obtained by thresholding the probability map, and in order to get more reliable

results, the morphological erosion and smoothing operations are applied to these
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areas.

In the second part of the algorithm, by applying Otsu’s threshold to the hema-

toxylin channel of the image, the approximate locations of nuclei are obtained [17].

On those locations, randomly drawn vertices are located. However, the distance

between any two vertices should be at least a pre-defined distance threshold d,

otherwise, the vertex is rejected. Then, for each seed area, the closest vertices are

found and by drawing edges between these vertices a polygon is obtained. More-

over, each seed area is expanded by mexpand pixels from all sides of its boundary.

Finally, the Reversible-Jump Markov Chain Monte Carlo (RJMCMC) method

takes the obtained polygons, the vertices which are located on the expanded pix-

els of these polygons and the probability map as inputs and outputs a sequence

of polygons for each seed area [18]. Among these polygons they use maximum

a posteriori polygon to estimate the glandular structure. For the elimination of

false glands, they defined two criteria. Firstly, the polygons are eliminated whose

number of vertices less than or equal to a pre-defined vertex number. Secondly, if

the square root of the polygon’s area is less than or equal to the area threshold,

this polygon is also eliminated.

Fu et al. propose an unconventional modeling for gland detection [19]. First of

all, they convert the image from the Cartesian space to the polar space. Then, to

infer the possible gland boundaries they introduce a random field model. They

propose to infer the glands by using the knowledge that they form closed shapes.

Their idea is, if they place the co-ordinate’s center inside a gland and then con-

vert it to the polar space, they expect to see a line structure in the converted

image. According to this idea, if they observe a line this means there is a gland.

Therefore, they formulate the gland detection problem as detecting the lines in

the polar space.

In the Cartesian space, each point of the given image is subsampled by a

circular window with a radius of rmax. Then each window is converted to the

polar space in order to get a polar image. A Conditional Random Fields (CRF)

model is defined which consists of random variables X and Y [20]. Each row

of the polar image is represented with Xi and they are labeled with Yi where Y
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corresponds to the gland’s boundary position at that row. In order to infer Y, a

graph is constructed for each Xi. To make an inference from these graphs, two

chain structures are used. To obtain the chain structures, they generate two polar

images, one is with θ ranging from 0 to Π and the other is with θ ranging from Π

to 2Π. After generating the chain structures, the Viterbi algorithm is applied on

each structure to infer the optimal Y [21]. Then, the results are combined with

a heuristic method which is presented by them.

In this thesis, a new structural method is proposed for the purpose of gland

segmentation. Similar to the existing methods, we obtain structures from our

primitives. However, our proposed algorithm enables to encode the appearance

of glands by using the predefined gland generation rules and their fitness scores,

which have not been used by these previous methods.
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Chapter 3

Methodology

Our proposed method transforms a histopathological image into a new represen-

tation that allows us to devise an iterative gland localization algorithm. In order

to transform the image to this representation, Voronoi diagrams are used which

represent the given image’s subregions as Voronoi polygons. In the generation

process of these polygons, they are labeled as white and nuclear according to

the pixels’ colors that they are placed onto. Then, considering these polygons’

locations relative to each other, a candidate set is generated.

A typical structure of a gland consists of a white area known as lumen, which

is surrounded by a black border that corresponds to epithelial cell nuclei. In order

to generate a candidate set, connected components on white Voronoi polygons

are first found. Then, to mimic the structural organization of a gland, one-row

Voronoi polygons are added to each white connected component and candidates

are obtained. After getting the one-row added version of the candidates, we select

them according to their fitness scores. To quantitatively define this fitness score,

the GlandScore metric is introduced.

Our iterative algorithm selects the glands by starting from the one with the

highest GlandScore. At each selection, the candidates that share Voronoi poly-

gons with the selected candidate are updated. The algorithm stops when there
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is not any candidate whose GlandScore is higher than the predefined threshold.

Figure 3.1 indicates the steps of our proposed algorithm.

3.1 Voronoi Representation

The Voronoi diagram representation of a histopathological image is obtained by

following three substeps: pixel labeling, circle localization, and Voronoi diagram

construction. For the first substep, a deconvolution operation is first applied to

the image, which is stained with the hematoxylin-and-eosin technique [22]. This

deconvolution operation is used to emphasize the hematoxylin channel of the

given image. Then, the hematoxylin channel of the image is taken and according

to this channel’s average intensity value, pixels are divided into two groups. If

the intensity value of a pixel is greater than the average, we label the pixel as

white, otherwise, we label it as nuclear.

After separating pixels into two groups, the next substep locates circles on

each of these groups using the algorithm that was implemented in our research

group [23]. In this algorithm, circles are located on the given pixels’ group starting

from the largest circle to the one whose radius is at least rmin.

Then the last step takes the centers of these circles and locates a Voronoi

diagram onto them. Figure 3.2 indicates the steps of getting the Voronoi repre-

sentation for a given image. At the first step, Voronoi polygons are located on

the given image. In order to make them more noticeable, each Voronoi polygon

is painted with another color in Figure 3.2 (b). The Voronoi polygons are labeled

as white and nuclear according to the labels of the circles that they are placed

onto. In other words, if a Voronoi polygon is generated for the centroid of a circle

which is located on white pixels, then this Voronoi polygon is labeled as white,

otherwise, it is labeled as nuclear. Figure 3.2 (c) shows the white and nuclear

Voronoi polygons for the given image.
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Figure 3.1: Steps of our algorithm.
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After generating and labeling all Voronoi polygons, white connected compo-

nents are found. Figure 3.2 (d) indicates the white connected components. By

means of this representation, we are able to define gland candidates easily. In-

stead of working on pixels, we use Voronoi polygons and aim to generate possible

gland candidates on them.

(a) (b)

(c) (d)

Figure 3.2: Steps of generating the Voronoi representation: (a) Histopathological

image, (b) Voronoi diagram of the given image, (c) labeled Voronoi polygons, and

(d) connected components generated from white Voronoi polygons.
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3.2 Gland Candidate Generation

After getting nuclear and white connected components, we generate gland candi-

dates by utilizing this representation. In the ideal case, no gaps should be found

in between the Voronoi polygons that correspond to nuclei belonging to a single

gland. However, there are some gaps between them and due to this situation

we are not able to catch some candidates. Thus, we define two candidate sets,

one for the ideal case and the other for the nonideal case. Then, both of these

candidate sets are merged before selection.

3.2.1 Candidate Set-1

In order to obtain the candidates of the first set, we use the white connected

components. Each connected component of this representation acts as a gland

candidate. The logic behind directly using the connected components is to catch

the glands for the ideal case, in other words, the glands that are successfully

separated by nuclear polygons. In Figure 3.3, the connected components which

we want to catch are specified with black circles. Note that one row of Voronoi

polygons is added to each white connected component since this component only

represents the luminal part of a gland but not its epithelial cell nuclei.

3.2.2 Candidate Set-2

The purpose of defining the second set is to obtain the possible gland candidates

which are not able to be caught in the first set. For some images especially

containing pixel level noise and variations, the connected components generated

from white polygons for the first candidate set can output one large component

for multiple glands. By defining a rule, we aim to separate these large components

to their corresponding glands. These are the candidates for the nonideal case.

The green connected component in Figure 3.3 is an example for this case.
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Figure 3.3: White connected components which are used in the generation of
Candidate Set-1.

In a tissue image, luminal regions appear as white, as well as some stromal

part of the region. Thus, some white regions can exist in between the glands. In

order to differentiate white Voronoi polygons that correspond to white regions

inside a gland and those in between the multiple glands, white Voronoi polygons

are converted to nuclear which are located between nuclear Voronoi polygons.

By doing so, we aim to obtain a closed region for the lumen that belongs to a

single gland. In Figure 3.4, the places which should be converted are marked

with red circles. Afterward, the white connected components are generated on

these converted polygons. These white connected components’ one row of Voronoi

polygons added versions constitute our second candidate set.

3.2.2.1 Conversion Method for Nuclear Voronoi Polygons

In order to obtain the second candidate set, the white Voronoi polygons which are

located between two or more nuclear Voronoi polygons, are converted to nuclear

polygons. The reason behind this conversion is that some of the epithelial cell

nuclei contain gaps between them. However, we expect that the nuclei belonging
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Figure 3.4: This representation shows the connected components which are gen-
erated from nuclear Voronoi polygons, for the given image. Red circles indicate
the gaps between nuclear polygons, which should be converted.

to an individual gland should be adjacent to each other. Thus, by converting

white Voronoi polygons, we aim to fill the gaps which are located on the boundary

and obtain a path that includes all nuclear Voronoi polygons of a gland. The

important point is that if we converted all of such white Voronoi polygons to

nuclear ones, the nuclear connected components would start to close inward of

the gland.

In order to minimize this inward closing and prevent unnecessary conversions,

we define the following rule: For a white Voronoi polygon, we take its nuclear

neighbors which are one step away from this white Voronoi polygon and look

at the neighborhood relationships among these neighbors. If all these nuclear

neighbors are reachable from each other using only themselves (i.e., if there is a

single path among these nuclear neighbors), we do not change the type of this

white Voronoi polygon. However, if there is not a path among any of two, the

type of the white Voronoi polygon is changed to nuclear in order to obtain a path
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among all nuclear Voronoi polygons.

During the conversion process, there is an exceptional case for the white

Voronoi polygons which are located on the border of the image. If a white Voronoi

polygon, which is on the border, has only one nuclear neighbor that is not on the

border of the image, then this white Voronoi polygon is also converted to nuclear.

This conversion enables to catch the glands on these locations, by getting closed

structures between the nuclear Voronoi polygons and the border of the image.

Figure 3.5 demonstrates two different examples to clarify the conversion

method. Figure 3.5 (a) shows the nuclear Voronoi polygons of the given im-

age. In this figure, the parts specified with black circles are examined in detail in

Figures 3.5 (b) and 3.5 (c). In order to make them more noticeable, all nuclear

polygons are shown with blue in Figure 3.5 (b) and the converted polygons are

indicated with red in Figure 3.5 (c).

In Figure 3.5 (b), we focus on four different polygons (numbered from 1 to 4)

on each selected part. It is seen that Polygon 1 is not converted to nuclear in

Figure 3.5 (c) since there is a path between its nuclear neighbors. However, if

we separately look at the neighborhood relationships of Polygon 2’s, Polygon 3’s,

and Polygon 4’s one step away nuclear Voronoi polygons, it is seen that there

is not a single path among them. Therefore, these white Voronoi polygons are

converted to nuclear, in order to obtain a continuous path among the nuclear

Voronoi polygons on the same white polygon.

After applying the conversion method to the white Voronoi polygons, new

white connected components are found. Similar to the first set, one row of Voronoi

polygons is added to each of these connected components and they compose of the

second candidate set. Figure 3.6 shows the generation process of the candidate

sets step by step.
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(a) (b)

(c) (d)

(e)

Figure 3.6: Steps of the candidate set generation: (a) Histopathological image, (b)

white connected components, (c) nuclear Voronoi polygons before the conversion

method, (d) nuclear Voronoi polygons after the conversion method, and (e) white

connected components after the conversion operation.
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3.3 Iterative Gland Localization

After defining the first and second candidate sets, all candidates are gathered in

a single set and the gland selection process is started. In order to differentiate

true gland candidates from the false ones, a metric is defined which is called

GlandScore. For each candidate, the GlandScore is calculated. Our algorithm

selects the candidates iteratively. For each iteration, a current threshold currthr

is used, and the algorithm considers only the candidates whose GlandScores are

larger than this threshold. Among these candidates, the one whose area is the

biggest is selected and affected candidates’ GlandScores are updated. When there

exists no candidate whose GlandScore is greater than currthr, this threshold is

decreased by 0.05 and the same process is repeated. In our method, we start our

iterations with currthr=1 and continues until it becomes less than the predefined

threshold Gthr.

3.3.1 Metric Definition

A gland is characterized by a large luminal area surrounded by epithelial cell

nuclei. In our representation, the circular white luminal area is represented as

a large enough connected component of white Voronoi polygons and epithelial

cell nuclei are represented with the connected components of nuclear Voronoi

polygons. Thus, a gland in our representation should have an elliptical convex

shape. In addition to its shape, the nuclear Voronoi polygons’ distribution is

also important. According to our definition, a gland should have enough nuclear

Voronoi polygons on its boundary, whereas it does not have much inside.

To mimic the structure of a gland, we define the GlandScore metric. This

GlandScore metric is a product of two separate metrics, which are the Con-

vexRatio and the Fscore. The first one is the convex ratio which is defined for

quantifying the elliptical convex shape. In order to get the ConvexRatio, we use

the area and the convex area of a candidate. The second one is the Fscore, which

quantifies the nuclear polygons on the boundary and inside of the candidate. The
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logic behind defining the Fscore is that the nuclear Voronoi polygons’ ratio both

on the boundary and inside of a candidate will give us a value that quantifies the

likelihood of that candidate being a gland.

The structure of a gland consists of white Voronoi polygons which are en-

circled with nuclear Voronoi polygons. In order to catch the defined structure

and approximate the candidates’ closeness to glands, one-row Voronoi polygons

is added to white connected components’ boundaries in the candidate generation

process. Furthermore, while adding one-row Voronoi polygons, the candidates

that contain other candidates inside are eliminated. These correspond to the

candidates containing big gaps that another candidate can fit into. However, our

glands do not consist of hollow structures, and therefore, those false candidates

are directly eliminated at this step. Figure 3.7 shows two different examples for

the eliminated candidates.

After obtaining the gland candidates, their GlandScores are calculated ac-

cording to the following formulas. For a candidate C, let X(C) be the number of

nuclear Voronoi polygons on C ’s boundary, Y(C) be the total number of nuclear

Voronoi polygons belonging to C, and Z(C) be the total number of Voronoi poly-

gons on C ’s boundary (nuclear as well as white ones). Then, for this candidate

C,

Precision(C) =
X(C)

Y(C)
(3.1)

Recall(C) =
X(C)

Z(C)
(3.2)

ConvexRatio(C) =
Area(C)

ConvexArea(C)
(3.3)

Fscore(C) =
2× Precision(C)×Recall(C)

Precision(C) +Recall(C)
(3.4)

GlandScore(C) = ConvexRatio(C)× Fscore(C) (3.5)

Note that, when we add one-row Voronoi polygons, the original labels of these

polygons are used in the calculation of the GlandScore. This means if a white

Voronoi polygon is converted to nuclear during the conversion process, the Gland-

Score is calculated by considering the original white label of this polygon.
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There is an important point that needs to be drawn attention. While adding

one-row Voronoi polygons to each candidate’s boundary, some of these Voronoi

polygons can be used by more than one candidate. Each candidate’s GlandScore

is calculated considering these shared Voronoi polygons. However, in the selec-

tion process, the one that is first selected takes the shared Voronoi polygons and

these polygons are removed from the other candidates’ structures. As a result,

the affected candidates’ GlandScores are recalculated according to the remaining

Voronoi polygons. Figure 3.8 shows three candidates that share Voronoi poly-

gons. The Voronoi polygons shared by Candidate-1 and Candidate-2 are marked

with blue circles, whereas the polygons shared by Candidate-2 and Candidate-

3 are marked with orange circles. In the GlandScore calculation process, each

candidate uses these Voronoi polygons as if they were their own. These can-

didates’ calculated GlandScores are indicated under the pictures in Figure 3.8.

Among the three of them, Candidate-1 is to be first selected. When it is selected,

the Voronoi polygons which are specified with the blue circle are eliminated from

Candidate-2 and its GlandScore is recalculated (it drops from 0.72 to 0.61). Then

when Candidate-3 is selected, this time Candidate-2 loses the polygons that are

indicated with the orange circle and its GlandScore drops to 0.50.

3.3.2 Iterative Gland Selection Algorithm

This algorithm uses an iterative approach to localize the glands based on their

GlandScore. After generating candidate sets and calculating each candidate’s

GlandScore, our algorithm starts with selecting the “best” candidate according

to the GlandScore metric. At each iteration, the affected candidates’ GlandScores

are updated. The pseudocode of this procedure is given in Algorithm 1.

30



Figure 3.8: Candidate examples that share Voronoi polygons.
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Algorithm 1 Iterative Gland Selection Algorithm

Input: candidates C, area threshold Athr, global GlandScore threshold Gthr

Output: detected glands D

1: D = ∅
2: currthr ← 1

// currthr defines a local threshold for each iteration

3: while currthr >= Gthr do

4: while Csubset = {ci ∈ Csubset|GlandScore(ci) >= currthr

5: and area(ci) >= Athr} 6= ∅ do

6: find C∗ ∈ Csubset whose area is largest

7: D = D ∪ C∗

8: update ∀ci ∈ C
9: end while

10: currthr ← currthr − 0.05

11: end while

Before selection, the candidates whose areas are below a predefined area thresh-

old Athr are eliminated. The reason behind this elimination is that, after adding

one-row Voronoi polygons to each white connected component, the GlandScores

of some false candidates whose areas are very small become very high. These

candidates especially belong to the second set, as a result of the conversions.

This elimination prevents our algorithm to be misled by these small white con-

nected components. Figure 3.9 shows some eliminated candidates which have

been obtained from Candidate Set-2.

In our method, we select Athr to be proportional to the largest area among the

candidates whose GlandScores are higher than the global GlandScore threshold

Gthr. The reason of this is the following: Due to the different sizes of each

histopathological image’s glands, defining a fixed Athr is not feasible. Thus, at the

beginning of the algorithm, we first find the largest candidate whose GlandScore

is higher than the global threshold Gthr and set Athr as the p percent of its area.

Then, we start the iterative procedure by setting currthr = 1 and considers only
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Figure 3.9: These are some of the examples which are eliminated through area
thresholding. It is seen that their GlandScores are high enough to be considered
when one-row of nuclear polygons is added.
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the candidates whose GlandScores are greater than or equal to this currthr. (Here

note that Gthr is the global threshold until which the selection continues. On the

other hand, currthr is a local threshold whose value changes among different

iterations.) Among these candidates, our algorithm selects the one whose area is

the biggest. This step iteratively continues until all candidates whose GlandScores

are greater than or equal to currthr are selected. Then, the local threshold currthr

is decreased by 5 percent. Again, only the candidates whose GlandScores are

greater than or equal to the newly set currthr are considered, and the selection is

done similarly. The selection process stops when the value of currthr is less than

the global threshold Gthr. The results of our iterative algorithm are illustrated

on an example image in Figure 3.10.

After each selection, the selected candidate’s Voronoi polygons are eliminated

from the others’. Those affected candidates’ GlandScores and areas are recal-

culated and updated before the next iteration. Due to these changes, the ones

whose areas less than Athr are also eliminated and not considered in the next

iterations. The reason behind using multiple thresholds and decreasing currthr

by 5 percent at each iteration is to give priority to the candidates whose Gland-

Scores are greater than a value, and among those, to select the biggest first. If we

just considered the area as a criterion and started selecting the one whose area is

the largest, candidates whose GlandScores are very high would not be selected at

the beginning of the algorithm, because they are small in size even though their

GlandScores are high.

When the algorithm stops and returns the detected glands, in order to smooth

the shapes of these glands a post-processing step is applied. In this post-

processing step, for a gland, its boundary pixels are taken, and from each of

the selected pixels, a line is drawn to the nth pixel which comes after itself and

the pixels in between the lines of all pixels are included in the gland’s region.
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Figure 3.10: The glands selected by the iterative algorithm and their selection
order.
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Chapter 4

Experiments

In this chapter, firstly we give the details of the dataset that is used for training

and testing our algorithm. Secondly, our evaluation technique is described in

a detailed way. After the descriptions about the dataset and the evaluation

technique, the selected parameters and their ranges are discussed. Finally, the

results of our experiments and the results of the existing methods are presented

with a discussion about the comparisons between them.

4.1 Dataset

We conduct our experiments on the dataset which contains 72 microscopic images

of colon tissues taken from 36 patients. These images are taken from the Pathol-

ogy Department Archives of Hacettepe University School of Medicine. They are

acquired by a Nikon Coolscope Digital Microscope, by using a 20× microscope

objective lens and their resolution is 480 × 640. The first 24 images which are

taken from randomly selected 12 patients, constitute the training set. The re-

maining 48 images that are taken from the remaining 24 patients compose of the

test set. All the images in our dataset are stained with the hematoxylin-and-eosin

technique.
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4.2 Evaluation

We evaluate our segmentation results by using the gold standards of the given

images. In the gold standard, foregrounds and backgrounds are annotated. This

annotation was performed by our pathologist collaborator.

To quantitatively measure the success of our segmentation method, true posi-

tive, false positive, true negative, and false negative values are calculated at the

pixel level. Let A be the gland pixels in the gold standard and C be the gland

pixels identified by the algorithm. Then, a pixel P is considered as true positive

if P ∈ A and P ∈ C. However, if P ∈ A but P /∈ C, this pixel is considered as

false negative. Likewise, P is considered as false positive if P /∈ A but P ∈ C

and true negative if P /∈ A and P /∈ C.

Then accuracy, dice index, sensitivity, and specificity evaluation metrics are

calculated by using these four values. In particular, they are computed as:

accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

dice index =
2× TP

2× TP + FP + FN
(4.2)

sensitivity =
TP

TP + FN
(4.3)

specificity =
TN

TN + FP
(4.4)

4.3 Parameter Selection

Our rule based segmentation algorithm has the following four external parame-

ters:

• rmin is the minimum radius for the circles that are located on the given pixel

groups in the Voronoi diagram generation process. After separating pixels
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as black and white, circles are located on each of these groups starting from

the largest circle to the one whose radius is at least rmin. Then, the centers

of these circles are taken and a Voronoi diagram is located onto them.

• Gthr is the global GlandScore threshold that we use for the selection of

candidates. Our iterative algorithm starts from currthr = 1. Then, currthr

is decreased by 5 percent at each iteration, until none of the candidates’

GlandScores are greater than or equal to Gthr.

• Athr is the area threshold for the elimination of candidates. Candidates

whose area is smaller than this threshold are eliminated. Since an image

may consist of glands of different sizes, defining a fixed Athr for all images

may not be possible. Therefore, for each image, the candidate which has the

largest area among the candidates whose glandScore is greater than Gthr is

found. Athr is equal to the p percent of the area of this largest candidate.

• n is the parameter that is used for smoothing the selected glands. At the end

of our iterative algorithm, a post-processing step is applied to the selected

glands. In this process, the pixels on the boundary are taken for each gland,

and a line is drawn from each pixel to the nth pixel which comes after it.

At the end, the regions confined with these lines are included to the gland’s

region.

These parameteres are obtained using the images of the training set. The

ranges of our parameters are as follow: rmin = {3, 4, 5}, Gthr = {0.5, 0.6, 0.7,

0.8}, p = {0.10, 0.15, 0.20}, and n = {40, 60, 80}. Considering all possible

combinations of these parameters, we select the combination that gives the highest

accuracy on the training set.

4.4 Results

In Figures 4.1 and 4.2, the segmentation results on example images are visually

presented. In these figures, the first columns contain original images, the second
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columns correspond to their gold standards, and the third columns contain our

segmentation results. The images in Figure 4.1 belong to the training set and the

ones in Figure 4.2 belong to the test set.

The quantitative results obtained on the training set images are reported in

Tables 4.1, 4.2, and 4.3. These tables include the results of all possible combina-

tions of the considered parameters. The average performances and their standard

deviations are reported and the best results based on accuracy are indicated in

bold.

We compare the segmentation results of our algorithm with three different

methods. The first two of them are pixel-based methods and the last one is a

structural method. Wu et al. present two different pixel-based methods for gland

segmentation. In the first study, a region growing algorithm is presented for

detecting the glands [4]. In order to find the luminal parts, a window of radius

R0 is moved on the binary image, which is obtained by thresholding, and the white

areas which completely cover this window are chosen as potential seeds. Then,

the seeds are expanded by applying an iterative morphological dilation operation

with a circular structuring element. In the second study, a directional filtering

based method is presented [24]. They design directional two-dimensional linear

filters with different orientations, in order to lower the pixel intensities. For each

pixel, the lowest output value of these filters is selected. Then, epithelial cell

nuclei are identified by using an intensity threshold. After finding the nucleus

pixels the gaps which are surrounded by these pixels are filled with a circular

structuring element. The first study approaches gland detection as a lumen-

identification problem; on the other hand, the second study approaches it as a

nucleus-identification problem.

Both of these methods were previously implemented in our research group. Our

proposed algorithm’s and the pixel-based methods’ average quantitative results

and their standard deviations are reported in Tables 4.4 and 4.5 for the training

and test sets, respectively. According to the results, it is seen that our proposed

algorithm improves the segmentation results of these pixel-based algorithms.
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(a) (b) (c)

Figure 4.1: Example results from the training set: (a) original images, (b) gold
standards of these images, and (c) our segmentation results.
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(a) (b) (c)

Figure 4.2: Example results from the test set: (a) original images, (b) gold
standards of these images, and (c) our segmentation results.
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Table 4.1: Quantative results obtained on the training images when n=40. Av-

erage results and their standard deviations are reported.
n = 40 Gthr

rmin p 0.5 0.6 0.7 0.8

0.10

accuracy

dice index

sensitivity

specificity

76.14 ± 12.20

76.88 ± 16.31

77.11 ± 20.02

77.01 ± 10.59

78.74 ± 13.09

78.49 ± 16.68

74.93 ± 20.04

85.22 ± 6.87

77.87 ± 16.57

76.44 ± 19.68

69.68 ± 23.48

90.35 ± 6.85

63.57 ± 20.08

49.60 ± 31.90

40.49 ± 31.19

95.81 ± 3.95

3 0.15

accuracy

dice index

sensitivity

specificity

79.24 ± 8.31

80.89 ± 8.95

80.04 ± 12.09

79.22 ± 9.32

81.03 ± 9.82

81.83 ± 9.78

77.34 ± 13.92

86.64 ± 7.08

79.11 ± 14.65

78.23 ± 15.93

70.37 ± 20.44

92.27 ± 5.58

63.31 ± 20.23

48.44 ± 32.71

39.33 ± 31.27

96.80 ± 2.89

0.20

accuracy

dice index

sensitivity

specificity

79.66 ± 8.44

80.58 ± 9.23

77.37 ± 13.04

84.44 ± 8.59

81.22 ± 9.94

81.62 ± 10.07

75.41 ± 14. 08

89.61 ± 6.94

79.07 ± 14.47

78.11 ± 15.83

69.69 ± 20.15

93.40 ± 4.83

62.79 ± 20.62

47.17 ± 33.71

38.30 ± 31.57

97.24 ± 2.76

0.10

accuracy

dice index

sensitivity

specificity

83.19 ± 7.82

85.23 ± 9.04

89.05 ± 11.09

73.91 ± 11.76

85.37 ± 7.10

86.85 ± 8.28

88.49 ± 11.00

79.88 ± 7.83

85.48 ± 9.86

86.75 ± 9.74

85.25 ± 14.26

85.13 ± 7.37

78.34 ± 15.49

77.68 ± 19.48

71.32 ± 22.98

90.45 ± 5.88

4 0.15

accuracy

dice index

sensitivity

specificity

83.43 ± 7.87

84.89 ± 9.97

86.89 ± 12.38

77.90 ± 9.89

85.39 ± 7.50

86.51 ± 9.26

86.22 ± 12.37

82.58 ± 10.02

85.38 ± 9.92

86.28 ± 10.71

83.29 ± 14.92

87.22 ± 8.58

77.22 ± 16.10

75.86 ± 21.53

68.78 ± 23.81

91.54 ± 5.26

0.20

accuracy

dice index

sensitivity

specificity

82.68 ± 9.94

83.84 ± 11.32

83.60 ± 14.93

81.97 ± 8.78

83.99 ± 9.83

84.95 ± 10.89

82.98 ± 14.80

85.17 ± 8.34

84.16 ± 11.45

84.89 ± 12.02

80.76 ± 16.57

88.86 ± 6.41

76.68 ± 16.24

75.18 ± 21.74

67.80 ± 23.88

91.80 ± 5.10

0.10

accuracy

dice index

sensitivity

specificity

72.83 ± 15.59

73.27 ± 18.53

72.22 ± 25.97

75.78 ± 11.77

73.61 ± 16.20

73.77 ± 18.88

71.28 ± 25.44

78.88 ± 10.51

73.96 ± 16.49

73.89 ± 19.30

69.95 ± 24.91

81.18 ± 10.38

70.39 ± 17.57

68.58 ± 22.29

62.05 ± 25.75

85.30 ± 8.17

5 0.15

accuracy

dice index

sensitivity

specificity

75.94 ± 13.31

77.03 ± 16.71

77.43 ± 22.27

73.51 ± 11.56

76.51 ± 13.92

77.32 ± 16.94

75.94 ± 21.70

76.92 ± 11.55

76.48 ± 14.07

77.06 ± 17.11

73.84 ± 21.34

80.12 ± 9.71

70.61 ± 17.27

68.33 ± 22.94

61.55 ± 25.75

86.42 ± 7.84

0.20

accuracy

dice index

sensitivity

specificity

74.96 ± 13.51

75.32 ± 18.14

74.35 ± 23.02

75.61 ± 11.62

75.77 ± 13.92

75.74 ± 18.31

72.91 ± 22.30

79.31 ± 10.63

75.52 ± 14.23

75.31 ± 18.34

70.58 ± 21.70

82.20 ± 9.33

69.43 ± 17.24

66.62 ± 22.67

58.92 ± 25.39

87.52 ± 6.72
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Table 4.2: Quantative results obtained on the training images when n=60. Av-

erage results and their standard deviations are reported.
n = 60 Gthr

rmin p 0.5 0.6 0.7 0.8

0.10

accuracy

dice index

sensitivity

specificity

76.20 ± 12.22

77.18 ± 16.31

76.40 ± 19.77

78.54 ± 9.77

79.09 ± 13.18

78.69 ± 16.74

74.26 ± 19.85

86.38 ± 6.66

77.99 ± 16.64

76.44 ± 19.73

69.06 ± 23.31

91.07 ± 7.03

63.52 ± 20.09

49.38 ± 31.86

39.98 ± 30.81

96.13 ± 3.99

3 0.15

accuracy

dice index

sensitivity

specificity

79.68 ± 8.20

81.15 ± 8.78

79.59 ± 11.78

80.31 ± 8.57

81.26 ± 9.83

81.98 ± 9.74

76.91 ± 13.67

87.36 ± 7.09

79.22 ± 8.20

78.29 ± 15.91

69.95 ± 20.19

92.77 ± 5.69

63.25 ± 20.17

48.27 ± 32.60

38.91 ± 30.87

97.03 ± 2.91

0.20

accuracy

dice index

sensitivity

specificity

79.87 ± 8.35

80.68 ± 9.18

77.07 ± 12.75

84.98 ± 7.84

81.32 ± 9.91

81.67 ± 9.97

75.11 ± 13.84

89.99 ± 6.91

79.09 ± 14.42

78.09 ± 15.76

69.39 ± 19.91

93.66 ± 4.90

62.72 ± 20.55

47.02 ± 33.59

37.98 ± 31.25

97.36 ± 2.84

0.10

accuracy

dice index

sensitivity

specificity

83.35 ± 7.75

85.30 ± 8.99

88.80 ± 11.02

74.47 ± 11.74

85.50 ± 7.04

86.92 ± 8.23

88.26 ± 10.93

80.36 ± 7.86

85.55 ± 9.80

86.77 ± 9.71

84.97 ± 14.12

85.52 ± 7.45

78.34 ± 15.46

77.63 ± 19.48

71.00 ± 22.79

90.78 ± 5.84

4 0.15

accuracy

dice index

sensitivity

specificity

85.53 ± 7.80

84.94 ± 9.90

86.72 ± 12.27

78.25 ± 9.91

85.47 ± 7.43

86.55 ± 9.19

86.04 ± 12.26

82.91 ± 10.01

85.43 ± 9.86

86.29 ± 10.64

83.09 ± 14.78

87.50 ± 8.62

77.23 ± 16.07

75.82 ± 21.49

68.51 ± 23.62

91.82 ± 5.20

0.20

accuracy

dice index

sensitivity

specificity

82.74 ± 9.85

83.86 ± 11.22

83.41 ± 14.77

91.82 ± 5.20

84.05 ± 9.73

84.97 ± 10.79

82.78 ± 14.64

85.46 ± 8.30

84.19 ± 11.39

84.89 ± 11.94

80.55 ± 16.40

89.12 ± 6.45

76.68 ± 16.20

75.14 ± 21.69

67.55 ± 23.68

92.06 ± 5.05

0.10

accuracy

dice index

sensitivity

specificity

72.87 ± 15.61

73.28 ± 18.61

72.08 ± 25.89

75.91 ± 11.71

73.67 ± 16.27

73.78 ± 18.97

71.15 ± 25.37

79.03 ± 10.42

74.02 ± 16.57

73.92 ± 19.38

69.84 ± 24.84

81.35 ± 10.32

70.46 ± 17.64

68.63 ± 22.35

61.93 ± 25.64

85.49 ± 8.13

5 0.15

accuracy

dice index

sensitivity

specificity

75.94 ± 13.34

77.04 ± 16.72

77.33 ± 22.19

73.46 ± 11.77

76.52 ± 13.95

77.33 ± 16.95

75.84 ± 21.62

76.89 ± 11.76

76.51 ± 14.13

77.09 ± 17.16

73.76 ± 21.28

80.15 ± 9.85

70.67 ± 17.34

68.39 ± 22.98

61.47 ± 25.66

86.56 ± 7.81

0.20

accuracy

dice index

sensitivity

specificity

74.97 ± 13.52

75.33 ± 18.14

74.28 ± 22.95

75.54 ± 11.66

75.78 ± 13.52

75.76 ± 18.31

72.85 ± 22.24

79.25 ± 10.77

75.55 ± 14.29

75.35 ± 18.36

70.52 ± 21.65

82.17 ± 9.46

69.49 ± 17.32

66.67 ± 22.71

58.86 ± 25.34

87.60 ± 6.72
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Table 4.3: Quantative results obtained on the training images when n=80. Av-

erage results and their standard deviations are reported.
n = 80 Gthr

rmin p 0.5 0.6 0.7 0.8

0.10

accuracy

dice index

sensitivity

specificity

76.93 ± 12.27

76.97 ± 16.37

74.66 ± 19.82

80.63 ± 9.70

78.99 ± 13.22

78.23 ± 16.83

72.63 ± 19.95

87.76 ± 6.98

77.62 ± 16.59

75.72 ± 19.76

67.58 ± 23.25

91.84 ± 7.12

63.15 ± 19.85

48.52 ± 31.55

38.81 ± 30.09

96.56 ± 3.87

3 0.15

accuracy

dice index

sensitivity

specificity

79.83 ± 8.14

81.02 ± 8.70

78.24 ± 11.81

81.65 ± 8.95

81.12 ± 9.74

81.61 ± 9.71

75.68 ± 13.67

88.09 ± 7.41

78.86 ± 14.48

77.69 ± 15.76

68.75 ± 19.89

93.13 ± 5.81

62.91 ± 19.85

47.61 ± 32.11

37.93 ± 30.05

97.24 ± 2.91

0.20

accuracy

dice index

sensitivity

specificity

80.00 ± 8.26

80.54 ± 9.13

75.83 ± 12.55

86.17 ± 7.15

81.14 ± 9.81

81.26 ± 9.95

73.92 ± 13.71

90.59 ± 7.05

78.76 ± 14.22

77.52 ± 15.58

68.23 ± 19.55

93.99 ± 4.95

62.39 ± 20.22

46.39 ± 33.09

37.05 ± 30.42

97.53 ± 2.86

0.10

accuracy

dice index

sensitivity

specificity

83.53 ± 7.78

85.27 ± 9.09

87.84 ± 11.16

75.90 ± 11.88

85.51 ± 7.07

86.77 ± 8.36

87.33 ± 11.05

81.35 ± 8.09

85.38 ± 9.79

86.46 ± 9.80

84.02 ± 14.09

86.15 ± 7.58

78.14 ± 15.36

77.26 ± 19.39

70.10 ± 22.42

91.27 ± 5.82

4 0.15

accuracy

dice index

sensitivity

specificity

83.55 ± 7.82

84.84 ± 9.97

86.07 ± 12.30

78.92 ± 10.05

85.43 ± 7.46

86.40 ± 9.29

85.41 ± 12.30

83.44 ± 10.14

85.30 ± 9.84

86.07 ± 10.69

82.42 ± 14.69

87.90 ± 8.66

77.11 ± 15.99

75.58 ± 21.40

67.86 ± 23.28

92.24 ± 5.10

0.20

accuracy

dice index

sensitivity

specificity

82.70 ± 9.84

83.73 ± 11.25

82.81 ± 14.66

82.77 ± 8.82

83.98 ± 9.72

84.81 ± 10.83

82.19 ± 14.55

85.89 ± 8.33

84.06 ± 11.36

84.68 ± 11.94

79.92 ± 16.25

89.47 ± 6.49

76.57 ± 16.12

74.93 ± 21.59

66.94 ± 23.32

92.46 ± 4.95

0.10

accuracy

dice index

sensitivity

specificity

72.90 ± 15.68

73.12 ± 18.81

71.47 ± 25.72

76.63 ± 11.44

73.71 ± 16.30

73.64 ± 19.17

70.56 ± 25.20

79.76 ± 10.05

74.04 ± 16.57

73.77 ± 19.53

69.28 ± 24.66

81.98 ± 10.14

70.45 ± 17.62

68.49 ± 22.37

61.42 ± 25.34

85.99 ± 7.82

5 0.15

accuracy

dice index

sensitivity

specificity

75.96 ± 13.36

76.97 ± 16.76

76.92 ± 22.05

73.91 ± 11.66

76.55 ± 13.96

77.27 ± 16.99

75.43 ± 21.47

77.37 ± 11.66

76.55 ± 14.14

77.04 ± 17.21

73.36 ± 21.12

80.63 ± 9.84

70.71 ± 17.35

68.33 ± 22.98

61.11 ± 25.44

87.00 ± 7.48

0.20

accuracy

dice index

sensitivity

specificity

75.00 ± 13.50

75.31 ± 18.13

74.04 ± 22.84

75.84 ± 11.43

75.82 ± 13.93

75.74 ± 18.32

72.60 ± 22.13

79.57 ± 10.59

75.55 ± 14.29

75.33 ± 18.37

70.26 ± 21.53

82.53 ± 9.36

69.53 ± 17.33

66.66 ± 22.72

58.62 ± 25.17

87.96 ± 6.45
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Table 4.4: The average results and their standard deviations obtained by our

method and the pixel-based methods, for the training set.

Accuracy Dice Index Sensitivity Specificity

Our Method 85.55 ± 9.80 86.77 ± 9.71 84.97 ± 14.12 85.52 ± 7.45

Region-Growing [4] 68.58 ± 12.75 56.12 ± 30.54 47.24 ± 29.81 97.70 ± 8.42

Directional Filtering [24] 56.34 ± 18.31 57.27 ± 19.71 55.88 ± 28.48 55.16 ± 32.47

Table 4.5: The average results and their standard deviations obtained by our

method and the pixel-based methods, for the test set.

Accuracy Dice Index Sensitivity Specificity

Our Method 84.57 ± 8.02 86.05 ± 8.80 84.50 ± 13.28 83.65 ± 7.30

Region-Growing [4] 67.62 ± 17.17 59.04 ± 30.00 52.59 ± 32.88 87.48 ± 15.12

Directional Filtering [24] 53.24 ± 13.62 54.33 ± 19.69 53.77 ± 25.67 51.67 ± 33.64

Secondly, we compare our results with those of the object-graphs method,

which was previously developed in our research group [9]. This object-graphs

method quantized the given image into three clusters, which correspond to nu-

cleus, stroma, and lumen, by using the k-means algorithm. Then, the circle-fit

algorithm is applied to fit circles on the nucleus and lumen clusters, separately.

An object graph is constructed on lumen objects, by considering nucleus and

lumen objects as nodes by drawing edges between each lumen object and its clos-

est nuclear and lumen objects. Then, structural features are extracted for each

lumen object, by taking advantage of the edges which are drawn in the graph

construction process. According to these features, lumen objects are grouped

into two classes as gland and non-gland, by using the k-means algorithm. Fur-

thermore, another object graph is constructed on nucleus objects and edges are

drawn between each nucleus object and its closest objects. Then, a region grow-

ing algorithm is applied to the gland objects. The algorithm stops when a gland

structure reaches to the edges of the nucleus-graph. Finally, small regions are

eliminated, and a decision tree classifier is used to eliminate false glands.
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Tables 4.6 and 4.7 shows the results of the object-graph method and our pro-

posed method. According to the comparison results, our proposed algorithm

improves the segmentation results of the object-graph approach before applying

a decision tree classifier. This shows that the object-graph approach necessitates

using a supervised classifier whereas our algorithm leads to good results without

using such a classifier. When such a classifier is incorporated to our method, the

results might be further improved. This is considered as a future work of this

thesis.

Table 4.6: Results of the object-graph method and our proposed method, for the

training set.

Accuracy Dice Index Sensitivity Specificity

Our Method 85.55 ± 9.80 86.77 ± 9.71 84.97 ± 14.12 85.52 ± 7.45

Object-graph (before

applying a decision

tree classifier)

77.39 ± 14.99 81.73 ± 12.71 89.61 ± 4.28 65.09 ± 25.44

Object-graph (after

applying a decision

tree classifier)

88.00 ± 4.16 88.46 ± 4.62 83.43 ± 7.73 92.30 ± 5.78

Table 4.7: Results of the object-graph method and our proposed method, for the

test set.

Accuracy Dice Index Sensitivity Specificity

Our Method 84.57 ± 8.02 86.05 ± 8.80 84.50 ± 13.28 83.65 ± 7.30

Object-graph (before

applying a decision

tree classifier)

82.57 ± 8.36 85.59 ± 7.73 90.62 ± 5.44 72.80 ± 15.38

Object-graph (after

applying a decision

tree classifier)

87.59 ± 5.01 88.91 ± 4.63 85.80 ± 6.71 89.14 ± 10.40
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Chapter 5

Conclusion

In this thesis, we propose a new structural gland segmentation algorithm for

histopathological images. The main contribution of this thesis is as follows: our

proposed algorithm enables to encode the appearance of glands by using the de-

fined gland generation rules and its fitness score, which have not been used by the

previous methods. The results of our algorithm show that our proposed method

improves the segmentation results of its pixel-based and structural counterparts

without applying any further processing.

In the first part of this algorithm, a new representation is obtained for the

given images, by using the primitives which are defined during the Voronoi di-

agram generation process. This representation facilitates the encoding of our

observations and the quantification of GlandScore. In the second part of the al-

gorithm, a set of rules are defined according to the spatial distribution of the

primitives for candidate generation. Finally, an iterative algorithm is defined for

the selection of the best candidates among the defined candidate sets.

As a future work, in order to outperform the segmentation results of the object-

graph method after applying a decision tree classifier, two different approaches can

be followed. In the first one, some features might be defined similar to the object-

graph method. By decreasing Gthr to a reasonable value, more true positive and
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false positive glands will be obtained. Then, by utilizing the defined features,

such a classifier could be trained on these glands. In the second approach, the

detected glands from our iterative algorithm can be considered as initial glands

and a new method can be defined for the ones which are not detected. In this

second method, focusing on the glands that are located on images’ borders might

lead to improved results.
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