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Alperin's fusion theorem and G-posets
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Abstract. Some G-posets comprising Brauer pairs or local pointed groups belong to a class of

G-posets which satisfy a version of Alperin's fusion theorem, and as a consequence, have sim-

ply connected orbit spaces.

One of the two purposes of this paper is to unify several versions of Alperin's fusion
theorem. The other is to appreciate the apparently technical conclusion topologically.
Let G be a ®nite group. A G-poset, recall, is a partially ordered set upon which G

acts as automorphisms. One form of Alperin's fusion theorem derives from Sylow's
theorem together with the nilpotency of ®nite p-groups. These two properties of p-
subgroups are expressed axiomatically in de®ning a Sylow G-poset to be a ®nite set X

equipped with G-stable relations t and W such that

(i) W is a partial ordering, and is the transitive closure of t,

(ii) G acts transitively on the maximal elements of X , and for any x A X , the stabil-
izer NG�x� acts transitively on the elements y A X which are maximal subject to
xt y.

Given an upwardly closed G-subposet Y of a Sylow G-poset X (for all y A Y and
x A X with yW x, we have x A Y ), then Y is a Sylow G-poset.

Although our results are expressed in an abstract setting, and the proofs require no
specialist knowledge, the following account of a motivation for the notion of a Sylow
G-poset assumes some familiarity with p-local representation theory, particularly as
discussed in KnoÈrr±Robinson [2] and TheÂvenaz [7]. Let p be a prime divisor of jGj,
and B a positive-defect p-block of G. Let B�B� be the G-poset of non-trivial Brauer
pairs associated with B, and L�B� the G-poset of non-trivial local pointed groups
associated with B. (The trivial Brauer pair associated with B is the unique minimal
one.) By results of Alperin, BroueÂ, Puig in TheÂvenaz [7, 40.10, 40.15, 48.1], B�B�
and L�B� are Sylow. The upwardly closed G-subposet C�B� of B�B� consisting of
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the self-centralising Brauer pairs associated with B (see TheÂvenaz [7]) is canonically
isomorphic to the upwardly closed G-subposet of L�B� consisting of the self-
centralizing local pointed groups associated with B.

The idea of reformulating Alperin's weight conjecture using self-centralizing Brauer
pairs originated in KnoÈrr±Robinson [2], and was explicit after Robinson±Staszewski
[4, 1.1]. (We emphasize this fact because a comment in [1] obscured it.) This idea is
developed in Robinson [3, Section 4], where a stronger conjecture is presented, and it
is shown that when the stabilizer NG�Q; b� of a maximal element �Q; b� of C�B�
controls strong fusion in the self-centralizing Brauer subpairs of �Q; b�, the stronger
conjecture implies that the number of irreducible ordinary characters in B of a given
defect d equals the number of irreducible ordinary characters of defect d lying in the
block of NG�Q; b� in Brauer correspondence with B. Of course, the weight conjecture
itself can be reformulated in the manner of [3, Section 4]. For instance, as has been
observed by Puig, techniques in [2] can be used to express the weight conjecture as the
assertion that the number of irreducible Brauer characters in B is

l�B� �
X

s

�ÿ1�jsj�1l�Bs�

summed over representatives of the G-orbits of chains s � �Q1; b1� < � � � < �Qn; bn�
in C�B�, with Bs denoting the block of NG�s� corresponding to bn as in [2, 3.1].

For the principal p-block B0 of G, the Sylow G-poset B�B0� may be identi®ed with
the Sylow G-poset Sp�G� consisting of the non-trivial p-subgroups of G. Symonds [5]
proved Webb's conjecture that the orbit space jSp�G�j=G is contractible. (Earlier,
TheÂvenaz [6] had veri®ed this conjecture in cases where a control of fusion condition
was available, and had suggested to the author that the general case might succumb
to Alperin's fusion theorem.) Symonds has asked whether the orbit space jXj=G

is contractible for any upwardly closed G-subposet X of Sp�G�. In Webb [9], re-
formulations in KnoÈrr±Robinson [2] of the weight conjecture are examined via the
Lefschetz invariant LG�Sp�G��, and in Webb [10], group cohomology is calculated
using LG�Sp�G��. Both works employ the fact that, for any G-poset X , the Lefschetz
invariant LG�X � depends only on the G-homotopy class of the G-space associated
with X (see below). Thus, questions of fusion in Sylow G-posets such as C�B� are
of concern in p-local representation theory, and so are questions of G-homotopy
invariants for these G-posets. For instance, we (are are surely not the ®rst to) ask
whether C�B� is G-contractible; in the case where B � B0, this question is a special
case of Symonds' question. Theorem 1 below reveals nothing new about C�B� be-
cause a stronger result was obtained for B�B� by J. Alperin and M. BroueÂ, and like-
wise for L�B� by L. Puig; see TheÂvenaz [7, Section 48]. Theorem 3 below tells us, in
particular, that if jC�B�j=G is acyclic, then it is contractible.

For the rest of this paper, the prerequisites are elementary. Given a Sylow G-poset
X , we write d and < for the anti-re¯exive relations corresponding in the usual way
to t and W. When xt y in X , we say that y normalizes x. If y is maximal subject to
normalizing x, we call y a maximal normalizer of x. Given xW z in X , we say that x

is fully normalized in z provided that z contains a maximal normalizer of x. See
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TheÂvenaz [7, Section 48] for some historical comments on the following result, in its
original form due to Alperin. The presentation in [7] inspired the version here.

Theorem 1 (Alperin's fusion theorem). Let X be a Sylow G-poset, let xW s in X with s

maximal, and let g A G such that xg W s. Then there exist some n, and for 1W i W n,

elements si; ti A X with si maximal, and elements gi A NG�ti� such that

(a) sX ti W si , and ti is fully normalized in both s and si , and

(b) xg1...gi W ti , and g � g1 . . . gn.

Proof. We say that the elements g1; . . . ; gn (when they exist) accomplish fusion from x
to xg in s. We argue by induction on the depth of x (the maximal length r of a chain
x � x0 < � � � < xr starting at x). Supposing the depth to be positive, choose y A X

with x d yW s, and let z be a maximal normalizer of x containing y. We have zh W s

for some h A G. Since yh W s, we may, by induction, write h as a product of elements
h1; h2; . . . accomplishing fusion from y to yh in s. The elements h1; h2; . . . necessarily
accomplish fusion from x to xh in s. By replacing x, z, g with xh , zh , hÿ1g, re-
spectively, we may assume that zW s. A similar argument allows us to assume that
sgÿ1 contains a maximal normalizer z0 of x. We have z0 � z f for some f A NG�x�. By
induction, we can write gf as a product of elements f1; f2; . . . accomplishing fusion
from zgÿ1 to z f in sgÿ1 . Noting that x is (by our assumptions) fully normalized in s

and sgÿ1 , we see that f ; f
g
1 ; f

g
2 ; . . . accomplish fusion from x to xg in s.

Let us review, for a ®nite G-poset X , some well known constructions. Write sd�X �
for the G-poset consisting of the chains in X (partially ordered by the subchain rela-
tion). The G-sets X and sd�X� comprise the vertices and the simplexes, respectively,
of a G-simplicial complex D�X� whose associated polyhedron jX j is a G-space. Since
D�sd�X�� is the barycentric subdivision of D�X�, there is a G-equivariant homeo-
morphism

fX : jsd�X�j ! jX j

linearly extending the function sending each element of sd�X� to its centroid in jX j.
We have a canonical projection to the orbit space

yX : jX j ! jX j=G

and a homeomorphism

fX : jsd�X �j=G ! jX j=G

such that fX ysd�X� � yX fX . We also have a homeomorphism

cX : jsd�X�=Gj ! jsd�X �j=G
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linearly extending the function on the orbit poset sd�X�=G such that the geometric
realization of the G-orbit of an element z A sd�X � is sent to the G-orbit of the geo-
metric realization of z (see TheÂvenaz [6, Section 1]). Let

rX : jsd�X �j ! jsd�X�=Gj

be the projection linearly extending the canonical surjection sd�X� ! sd�X�=G. It is
easy to check that cX rX � ysd�X �; hence

yX fX � fX cX rX :

We shall need a lemma explaining how suitable paths in the orbit space jX j=G of a
®nite G-poset X may, up to homotopy, be lifted to jX j. First, let us discuss homotopy
classes of paths in a ®nite simplicial complex K . It is well known (and easily proved)
that for vertices u; v A K , any path from u to v in the polyhedron jK j is homotopic to
a path a in the 1-skeleton of jK j such that the preimage under a of the 0-skeleton of
jK j is ®nite. (Homotopies of paths are to preserve end-points.) Given a simplex fx; yg
in K (allowing the possibility that x � y), we choose a path s�x; y� from x to y in jK j
whose image is con®ned to the geometric simplex jfx; ygj (which has dimension 0 or
1). The homotopy class of s�x; y� is independent of any choice. We shall sometimes
write expressions of the form s�x0; x1�s�x1; x2� . . . s�xmÿ1; xm� where each fxiÿ1; xig
is a simplex in K . Such an expression denotes a concatenation of the paths s�x0; x1�;
s�x1; x2�; . . . ; s�xmÿ1; xm�, and is well de®ned up to homotopy. Observe that, given a
simplex fx; y; zg in K (allowing the possibility of repetitions), we have a homotopy
s�x; y�s�y; z�F s�x; z�.

Lemma 2. Given a ®nite G-poset X , and elements x; y A X , then any path in jX j=G

from yX �x� to yX �y� is homotopic to a path of the form

yX �s�z0; z1�s�z1; z2� . . . s�z2mÿ1; z2m��

where x � z0 X z1 W z2 X � � � W z2mÿ2 X z2mÿ1 W z2m and yX �z2m� � yX �y�. Further-

more, we may insist that the elements z1; z3; . . . ; z2mÿ1 are minimal, and that the ele-

ments z2; z4; . . . ; z2mÿ2 are maximal.

Proof. We have �x� A sd�X�, and rX ��x�� A sd�X �=G. Consider a path in jsd�X�=Gj
of the form

m � s�rX �z0�; rX �z1��s�rX �z1�; rX �z2�� . . . s�rX �z2mÿ1�; rX �z2m��

where rX ��x�� � rX �z0�X rX �z1�W rX �z2�X � � � W rX �z2m� � rX ��y��, and each
zi A sd�X�. In view of the identity yX fX � fX cX rX , together with our above com-
ments about paths, the main assertion will follow when we have shown that m lifts via
rX to a path in jsd�X�j. We can write �x� � h0 X h1 W h2 X � � � W h2m where each hi
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is a G-conjugate of zi . Putting

m � s�h0; h1�s�h1; h2� . . . s�h2mÿ1; h2m�
then m � rX m, and the main assertion is proved.

For 1W j Wmÿ 1, let z02 j be a maximal element of X containing z2 j . Then

s�z2 jÿ1; z2 j�s�z2 j; z2 j�1�F s�z2 jÿ1; z02 j�s�z02 j ; z2 j�s�z2 j ; z
0
2 j�s�z02 j; z2 j�1�

F s�z2 jÿ1; z02 j�s�z02 j ; z2 j�1�

and so we may insist that the elements z2 j are maximal. Similarly, we may insist that
zi is minimal for odd i.

Theorem 3. Given a Sylow G-poset X , then the orbit space jX j=G is simply connected.

Proof. The transitivity of G on the maximal elements of X implies that jX j=G is
connected. Letting s be a maximal element, we take yX �s� to be the base-point of
jX j=G. Lemma 2 tells us that any element of the fundamental group p1�jX j=G� is the
homotopy class of a path of the form

yX �s�x0; x1�s�x1; x2� . . . s�x2mÿ1; x2m��

where s � x0 X x1 W x2 X � � � W x2m , each xi A X , and each x2 j is maximal. It suf-
®ces to show that y�s�x2 jÿ2; x2 jÿ1�s�x2 jÿ1; x2 j�� is null-homotopic. This is equivalent
to the assertion that, given xW sX xg with g A G, and writing s :� s�x; s�s�s; xg�,
then the closed path yX �s� (based at yX �x� ) is null-homotopic.

Let n and the elements si , ti , gi be as in Theorem 1. Since s is homotopic to a path
passing consecutively through the points x; s; xg1 ; s; . . . ; xg1...gnÿ1 ; s; xg , we may assume
that n � 1. The element t :� t1 is ®xed by G. We have homotopic paths

sF s�x; t�s�t; s�s�s; t�s�t; xg�F s�x; t��s�t; x��g

whose composites with yX are manifestly null-homotopic.
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