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Abstract

Management and analysis of streaming data has become crucial with its applications
to web, sensor data, network traffic data, and stock market. Data streams consist of
mostly numeric data but what is more interesting are the events derived from the numer-
ical data that need to be monitored. The events obtained from streaming data form event
streams. Event streams have similar properties to data streams, i.e., they are seen only
once in a fixed order as a continuous stream. Events appearing in the event stream have
time stamps associated with them at a certain time granularity, such as second, minute, or
hour. One type of frequently asked queries over event streams are count queries, i.e., the
frequency of an event occurrence over time. Count queries can be answered over event
streams easily, however, users may ask queries over different time granularities as well.
For example, a broker may ask how many times a stock increased in the same time frame,
where the time frames specified could be an hour, day, or both. Such types of queries are
challenging especially in the case of event streams where only a window of an event
stream is available at a certain time instead of the whole stream. In this paper, we propose
a technique for predicting the frequencies of event occurrences in event streams at
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multiple time granularities. The proposed approximation method efficiently estimates the
count of events with a high accuracy in an event stream at any time granularity by exam-
ining the distance distributions of event occurrences. The proposed method has been
implemented and tested on different real data sets including daily price changes in two
different stock exchange markets. The obtained results show its effectiveness.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Count queries; Data streams; Event streams; Time granularity; Association rules; Data
mining

1. Introduction

The amount of electronic data has increased significantly with the advances in
data collection and data storage technologies. Traditionally, data are collected
and stored in a repository and queried or mined for useful information upon
request. However, in the case of applications like sensor networks and stock mar-
ket, data continuously flow as a stream and thus need to be queried or analyzed
on the fly. Streaming data (or data streams) brought another dimension to data
querying and data mining research. This is due to the fact that, in data streams, as
the data continuously flow, only a window of the data is available at a certain
time. The values that appear in data streams are usually numerical, however what
ismore interesting for the observers of a data stream is the occurrence of events in
the data stream. A very high value or an unusual value coming from a sensor
could be specified as an interesting event for the observer. The events occurring
in a stream of data constitute an event stream, and an event stream has the same
characteristics as a data stream, i.e., it is continuous and only a window of the
stream can be seen at a time. Basically, an event stream is a collection of events
that are collected from a data stream over a period of time. Events in an event
stream are observed in the order of occurrence, each with a timestamp that cap-
tures the time unit supported by the system. The time unit used can be day, hour,
second or any other granularity. Experts would like to extract information from
an event stream, such as the value of an event at a specific time-tick; frequency of
certain events, correlations between different events, regularities within a single
event; or future behavior of an event. Relationships among the events can be cap-
tured from event streams via online data mining tools.

1.1. Motivation

Given an event stream at a particular granularity, we are interested in fre-
quencies of events in the event stream at coarser time granularities. Consider,
for instance, a stock broker who wants to seec how many times a stock peaks in
hourly, daily and weekly basis. For each time granularity (i.e., hour, day,
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week), the counts change. For fraud detection in telecommunication, it may be
interesting to know the count of different calls made by a suspicious person
hourly or daily. Data stream coming from sensor networks in a battle field
for detecting the movements around a region can be queried to find out the
count of moving objects in an hourly and daily fashion to estimate the military
activities. All these example queries require the analysis of the event streams at
various granularities, such as hour, day, and week.

1.2. Contribution

The main focus of our work is to find the frequencies of events in an event
stream at different time granularities. Our main contribution is to propose a
method that efficiently estimates the count of an event at any time granularity
and runs in linear time with respect to the length of the given stream. With our
method, the event stream is analyzed only once, and summary information is
kept in an incremental fashion for frequency estimation. Our method utilizes dis-
tance histograms of event occurrences for event count prediction at multiple time
granularities. Distance histograms can also be used for event occurrence predic-
tion besides event count prediction. Although the distance histograms induce
some storage overhead, this overhead could be justified by their multiple uses.
We discuss event occurrence prediction via distance histograms in Section 6.

Most of the data mining methods proposed so far are based on finding the
frequencies of data items and then generating and validating the candidates
against the database [1]. Even the methods that do not perform candidate gen-
eration rely on finding the frequencies of the items as the initial step [16].
Therefore, in addition to efficient answering of count queries at multiple time
granularities, our methods can also be used by data mining algorithms on data
streams to find frequent itemsets at multiple time granularities.

The rest of the paper is organized as follows. The next section summarizes
the related work. Section 3 explains the basic concepts and the notation used
throughout the paper. Section 4 presents the method proposed to predict the
count of an event at different time granularities. Section 5 gives the results of
several experiments conducted on real life data to evaluate the accuracy of
the method and the impact of several parameters. Section 6 provides a brief
discussion on estimation of event occurrences through distance histograms.
Finally, Section 7 concludes the paper with a discussion of the proposed
method and further research issues.

2. Related work

In this section, we summarize previous work related to our method which can
be divided into three categories: data mining, time granularity, and histograms.
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2.1. Data mining

Handling of data streams has become a major concern for database
researchers with the increase of streaming data sources like sensor networks,
phone calls in telephone networks [3,9], client requests for data in broadcast
systems [32] and e-commerce data on World Wide Web, stock market trades,
and HHTP requests from a web server. Given these huge data sources, data
mining researchers moved into the domain of mining data streams [11,30]. In
this emerging area, the temporal dimension and time granularities are yet to
be explored.

Association rule mining has been well studied in the context of data mining
[33], however there is no work on mining associations at multiple time granu-
larities. The work we have performed can also be applied to association rule
mining at multiple time granularities. The problem and the corresponding ter-
minology in association rule mining was first introduced in market basket anal-
ysis, where the items are products in your shopping card and associations
among these purchases are looked for [1]. Each record in the sales data consists
of a transaction date and the items bought by the customer. The issue of dis-
covering frequent generic patterns (called episodes) in sequences was explained
by Mannila et al. [24] where the events are ordered in a sequence with respect to
the time of their occurrence at a certain time granularity. In their work, an epi-
sode was defined as a partially ordered set of events, and can also be described
as a directed acyclic graph. Their iterative algorithm builds candidate episodes
using the frequent episodes found in the previous iteration. They extended their
work in [23] to discover generalized episodes, and proposed algorithms for dis-
covering episode rules from sequences of events. In [8], Das et al. aimed at
finding local relationships from a time series, in the spirit of association rules,
sequential patterns, or episode rules. They convert the time series into a
discrete representation by first forming subsequences using a sliding window
and then clustering these subsequences using a pattern similarity measure. Rule
finding algorithms such as episode rule methods can be used directly on the
discretized sequence to find rules relating temporal patterns. In a recent work,
Gwadera et al. [14] investigated the problem of the reliable detection of an
abnormal episode in event sequences, where an episode is a particular ordered
sequence occurring as a subsequence of a large event stream within a window
of size w, but they did not consider the case of detecting more than one episode.
This work was extended in [2] to the case of many pattern sequences, including
the important special case of all permutations of the same sequence. All these
works are different from ours in that they investigate temporal relationships
but only at a single time granularity.

Cyclic associations where each association has a cyclic period associated with
it were studied by Ozden et al. [26]. But the authors only investigated the case
where the database has a fixed time granularity. Another work by Pavlov
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et al. considered count queries for itemsets on sparse binary transaction data
[28]. The authors used probabilistic models to approximate data for answering
queries on transactional data. In [22], Mannila and Smyth used enthropy
models to answer count queries over transactional data. In both of these works,
the authors did not consider the time dimension. Again a recent work by
Bouicaut et al. [6] describes methods for approximate answering of frequency
queries over transactional data without considering time dimension and time
granularities.

2.2. Time granularity

Given an event stream, we are interested in estimating the frequencies of
event occurrences at coarser time granularities. Data analysis at multiple time
granularities was already explored in the context of sequential pattern mining
by Bettini et al. [5]. However, the target of their work is completely different
from ours in that, they try to find sequences with predefined beginning and
ending timestamps, and they would like to find sequences that have these pre-
defined timestamps at multiple time granularities. Our target, however, is to
find frequencies of event occurrences at multiple time granularities without
any time restriction. In a more recent work, Li et al. [20] mine frequent itemsets
along with their temporal patterns from large transaction sets. They first find
the frequent itemsets using an a priori-based algorithm, and then find out if
these itemsets are still frequent with respect to some interesting patterns, which
are temporal patterns defined by users before data mining. While the set of
interesting patterns may be in terms of multiple time granularities, they should
be predefined by users.

Temporal aggregation queries were well studied and several approaches
have been proposed recently [10,13,18,21,25,34,36,38]. However, all these
works consider only a single time granularity, where this granularity is usually
the same as the granularity used to store the time attributes. To the best of our
knowledge, the only work exploring the aggregate queries of streaming data in
the time dimension at multiple time granularities appeared in [37], where
Zhang et al. present specialized indexing schemes for maintaining aggregates
using multiple levels of temporal granularities: older data is aggregated using
coarser granularities while more recent data is aggregated with finer detail. If
the dividing time between different granularities should be advanced, the values
at the finer granularity are traversed and the aggregation at coarser granularity
is computed. Their work is different from ours in that, they calculate the exact
aggregate function of the stream at predefined coarser time granularities by
performing queries. However, we scan the stream only once and estimate the
frequency of the event at any arbitrary time granularity without storing any
information at intermediate time granularities.
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2.3. Histograms

In order to estimate event occurrence frequencies at coarser time granulari-
ties, we obtain statistical information from the event stream which is similar to
histograms. In order to construct an histogram on an attribute domain X, the
data distribution 7 of attribute X is partitioned into f (>1) mutually disjoint
subsets, called buckets. A uniform distribution is assumed within each bucket,
i.e., the frequency of a value in a bucket is approximated by the average of
the frequencies of all values in the bucket. The point in histogram construction
is the partitioning rule that is used to determine the buckets. Various types of
histograms have been proposed and used in several commercial systems. The
most popular ones are the equi-width [19] and equi-height [19,29] histograms.
Equi-width histograms group contiguous ranges of attribute values into buckets
such that the widths of each bucket’s range is the same. Equi-height histograms
are partitioned such that the sum of all frequencies in each bucket is the same
and equal to the total sum of all frequencies of the values in the attribute domain
divided by the number of buckets. Another important class of histograms is the
end-biased [17] histograms, in which some of the highest frequencies and some
number of the lowest frequencies are explicitly and accurately stored in individ-
ual buckets, and the remaining middle frequencies are all grouped in one single
bucket. Indeed, this type of histogram is the most suitable data structure for our
count estimation algorithm, because, the experiments we conducted on real-life
data show that the distribution of the distance between two occurrences of an
event in a history tends to have high frequencies for some small distance values,
and very low frequencies for the remaining larger values. Therefore, we use
end-biased histograms, in which some of the values with the highest and lowest
frequencies are stored in individual buckets, and the remaining values with
middle frequencies are grouped in a single bucket. Readers who are interested
in further detailed information on histogram types, construction and mainte-
nance issues are referred to [31], which provides a taxonomy of histograms that
captures all previously proposed histogram types and indicates many new pos-
sibilities. Random sampling for histogram construction has also been widely
studied, and several algorithms have been proposed and used in many different
contexts in databases [7,12,15,27,29]. The aim of all these works is to use only a
small sample of the data to construct approximate histograms that gives reason-
ably accurate estimations with high probabilities.

3. Basic concepts and notation
This section includes the definitions of some basic concepts and the notation

used throughout the paper. For ease of reference, a summary of the most fre-
quently used notation is given in Table 1.
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Table 1

Summary of notation

Notation Description

=< Finer than

M Base stream

S, An event stream at granularity g

Cog Transformation coefficient of the
transformation S, — Sy

d§ A distance of length i in S,

D, Distance distribution of S,

We start by defining granularity, the most fundamental concept [4].

Definition 3.1. A granularity is a mapping G from the positive integers (the
time-ticks) to subsets of the time domain satisfying:

1. Vi, j e Z" such that i <j, G(i) # 0 and G(j) # 0, each number in G(i) is less
than all numbers in G(j),
2. Vi, je Z" such that i <j, G(i) = 0 implies that G(j) = 0.

The first condition states that the mapping must be monotonic. The second one
states that if a time-tick of G is empty, then all subsequent time-ticks must be
empty as well. Intuitive granularities such as second, minute, hour, day, month
all satisfy these conditions. For example, the months in year 2002 can be de-
fined as a mapping G such that {G(1)= January,..., G(12) = December},
and G(i) = for all i>12. Since the mapping G satisfies both conditions,
month is a valid granularity. There is a natural relationship between granular-
ities as follows [4]:

Definition 3.2. Let G and H be two granularities. Then, G is said to be finer
than H, denoted as G < H, if for each time-tick i in G, there exists a time-tick j
in H such that G(i) C H()).

If G < H, then H is said to be coarser than G. For example, day is finer than
week, and coarser than hour, because every day is a subset of a week and every
hour is a subset of a day.

Definition 3.3. An event stream S, is a collection of time-ticks at granularity g
and an event corresponding to each time-tick. More formally, S, = {(z;,
epli = 1, t; € T, e; € E}, where Ty is the set of time-ticks at granularity g, and
E is the universal set of event states for the particular system in concern. The
length of the stream is equal to the total number of time ticks registered for that
stream, and is denoted as S, length.
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Definition 3.4. An event stream can be given with a particular granularity to
be transformed to coarser granularities. The event stream generated by the
application in concern is called the Base Stream, denoted by S, and its time
granularity is called the Base Granularity.

As an example, consider the daily percentage price changes of a particular
stock exchanged in a stock market between January 1, 2002 and December
31, 2002. Here, event is the price change of the stock, granularity is business-
day, T, is the set of all business-days in year 2002, and E is the set of all possible
event states, such as E = {fall, no change, rise} or E = {(—00,—2%),
[—2%,0),[0,0]1,(0,2%],(2%, c0)} (At each time-tick, the event has one of the five
states according to the interval the price change falls into.). In our work, we are
interested in event streams whose set of all possible event states are 0 and 1,
namely E = {0,1}.

Definition 3.5. A 0/1 event stream is an event stream where each time-tick
records the state of the event at that time-tick, which is equal to 1 if the event
occurs, and 0 otherwise.

When we transform an event stream S, at time granularity g to another
event stream S, at granularity g’, we obtain a different set of time-ticks and dif-
ferent sets of events associated with these time-ticks. Before we give the formal
definition of transformation of a stream, the following two concepts need to be
introduced.

Definition 3.6. Suppose that an event stream S, is transformed to an event
stream Sg. Then, Transformation Coefficient, denoted by c,e, is the total
number of time-ticks in S, that correspond to a single time-tick in S,.

For example, seven days form one week, yielding a transformation coeffi-
cient equal to 7.

Definition 3.7. A Transformation Operation is a mapping P: E° — E that takes
event states at ¢ successive time-ticks where ¢ is the transformation coefficient,
and returns a single event state according to the particular operation in use.

Some common transformation operations are MinMerge, MaxMerge, Avg-
Merge, SumMerge, Union, and Intersection. For example, MinMerge operation
returns the minimum event value from the set of ¢ events, where c is the trans-
formation coefficient. The other operations are defined similarly. In this paper,
we are interested in 0/1 (boolean) event stream where the universal set of event
states is {0, 1}, and we use mergeOR operation that logically ORs the event val-
ues at corresponding time-ticks. Besides mergeOR, some other transformation
operations can also be used as long as their output is also a boolean event
stream.
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Definition 3.8. Let S, = {(t;¢)|i > 1,1, € T,, e; € E} be an event stream, P be
a transformation operation, and ¢ be the transforrnation coefficient. Then, the
transformation of S, to another stream S, with granularity g’ is provided in
such a way that, Sg/ ={{t},e))lj = 1,1; € Tg/ ¢; € E}, where € = P(e(j_1yict1,
€(j—1)sc+2s - - 5 €jxc) and t €Ty corresponds to tlme ticks [#— 1)*L+1,t]*(] C T,

Consider the transactional database of a retail company that stores the pur-
chased items in a daily basis. And consider the transformation of the “milk
purchase history” at granularity day to granularity week. Then, the ith week
corresponds to the days between [day(_1y«7+1, dayi7], and stores 1 if the milk
is purchased on any of the corresponding days. For instance, the first week cor-
responds to the first 7 days, and the third week corresponds to days [15,21].
Note that, stream S, can be transformed to Sy only if g <g’, and ¢, is an inte-
ger, i.e., g’ is a multiple of g. During the transformation, the event correspond-
ing to a time-tick t} eT ; is constructed by applying the transformation
operation P to the event sequence of length ¢, in S, at time-ticks correspond-
ing to t Since the only transformation operation we use is mergeOR, we omit
the specrﬁcatlon of the operation used in transformations throughout the
paper. Then, the transformation of S, to S, becomes equivalent to dividing
S, into blocks of length ¢,y and checkmg whether the event occurs at any
time-tick in each of these blocks. If so, the corresponding #; in Sy records 1,
and 0 otherwise. Note that the number of the blocks of length ¢,y is equal

o [S, - length/c.y 1], which also gives the cardinality of T,.

The count of an event at granularity g’ can be found by constructing S and
counting the time-ticks at which the event occurred. However, this naive
method is quite infeasible in case of event streams where the stream is available
only once and as a set of windows. Considering this limitation incurred by
event streams, we propose a method that reads the given stream once and then
estimates the count of the event at any coarser granularity efficiently and accu-
rately. This is accomplished as follows: Distance between two successive occur-
rences of an event is defined as the number of time-ticks between these
occurrences. We examine the distribution of the distances within the whole
sequence, and then observe the possible values to which each particular dis-
tance value can transform during the transformation of S, to S,. We formulate
these observations to be able to capture the possible distance transformations
along with their corresponding probabilities. The formal definitions of distance
and distance distribution can be given as follows:

Definition 3.9. Given a 0/1 event stream S,(g > 1), the distance between two
event occurrences is defined to be the number of zeros between the time-ticks at
which the event occurs in the stream.

A distance of length i in S, is denoted by d5. If the event occurs at any two
successive time-ticks, then we have a distance of length 0 (df).
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Fig. 1. An example of event stream.

Table 2
The distribution of distance

! Dy[i] Fili]
0 5 0.3125
1 3 0.1875
2 3 0.1875
3 2 0.1250
4 0 0.0
5 1 0.0625
6 2 0.1250
Total 16 1.0

d,. is the possible distance values in S}, D;[i] is the count of a’1 F\[i] is the relative frequency of d}
. Dii]
Filil ===
( =5 b))

Definition 3.9 becomes ambiguous when a stream starts or ends with zero(s).
These special cases are treated in Section 4.6 in detail.

Definition 3.10. The distance distribution of an event stream S, is the set of
pairs

= {(d§, ), (df, ), (d3,¢3), - (dizgv mg)}

where m, is the maximum distance value observed in S,, and ¢ gives the count
of the distance df in S, (0 < i< my).

For convenience, we use array notation to refer the counts of distance values
such that D,[i] = ¢

8
i

As an example, consider the base event stream S; given in Fig. 1. Corre-
sponding distance distribution is given in Table 2.

4. Estimation of an event’s count at coarser granularities

The aim of our work is to estimate accurately the count of an event in an
event stream at any time granularity g by using an efficient method in terms
of both time and space considerations. The brute—force technique to scan the
given stream and generate the stream at each time granularity in question is
unacceptable due to the fact that when the person monitoring the event streams
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wants to query it in a different time granularity, the part of the event stream
that contains the past events cannot be brought back for further analysis.
The method we propose in this paper is based on analyzing the event stream
only once as it flows continuously. Some statistical information about the fre-
quency and distribution of the event occurrences is collected, and used to esti-
mate the frequency (or count) of the event at any coarser time granularity. One
can think that the event frequencies could be calculated for all possible time
granularities as the event stream flows, but this is also not practical since there
exist a large number of possible time granularities. In order to show how a par-
ticular distance can transform to different values with certain probabilities, we
first analyze the transformation of a base event stream (i.e., a stream with gran-
ularity 1) to event streams with granularities 2 and 3. Understanding how
transformation takes place with small granularities will help to generalize the
estimation method for arbitrary granularities.

4.1. Estimation at time granularity 2

For the simplest case, consider the transformation of the base event stream
S| (at granularity 1) to event stream S, (at granularity 2). During this transfor-
mation, we will examine how the distance array D; changes and transforms to
D,. As we have already mentioned, this transformation is equivalent to divid-
ing S; into blocks of length 2 and checking whether the event occurs at any
time-tick in these blocks. If so, the corresponding time-tick ¢; in S, records 1,
and 0 otherwise. This is shown in Fig. 2.

A distance d(l) indicates a subsequence “11” of length 2 in S;. During the
transformation of S; to S,, there are two cases : Either both of 1s are in the
same block, or they are in two successive blocks. As shown in Fig. 3, the first
case yields a single 1 in S5, which means that d(l) vanishes in D, (also in S5);

1 T P I T U I - |-
S |- -l - - -
2 N e S e =

Fig. 2. Transformation with granularity 2.

St oo R I Ty |- | (Case 1 : d} vanishes in Sa)
—~ TV N T
L
...... R REREREN (Case?:d(l]—>d(2))

Ste o
Il 1 [l

Fig. 3. Transformation D, — D, for dé.
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St e L0 1 | s |- ] (Case 1: d} — d3)
—~ T N T
|-l R U U |-|
St L0 | e |- (Case 2: d} — d2)
~ T N T
|| oo 1 |-|

Fig. 4. Transformation D, — D, for d{.

while the second one preserves both 1s in Sy, i.e., d(l) in S; transforms to d(z) in
S,. From a probabilistic point of view, both of these cases have 50% probabil-
ity and are equally likely to happen.

Similarly, a distance d{ represents the subsequence “101” in S} and yields
two different cases which are specified in Fig. 4. However, for the distance
d}, the two cases give the same result indicating that d} in S; always becomes
djin S,.

A similar analysis for d} in S; shows that d} becomes either d5 or d} with
equal probabilities, which can be figured as shown in Fig. 5.

Table 3 lists the transformation of D, to D, for distance values ranging from
0 to 9. As the table shows clearly, this transformation can be summarized as
follows: Vi > 1,ifiis odd then d! — di‘/%’ otherwise d! — d%[/z) or d(ll/zfl) with

St [10[ 01 |- o] (Casc 1: d} — d3)
~~ NN ~~
e oonope ol

Sptlofieeees [-1[]00 |1 |- |- | (Case 2 : db — d?)
~ VT N N T
L

Fig. 5. Transformation D, — D, for dé.

Table 3
Transformation Dy — D,

S
N

Vanish; 0

w [\ —_

o I e R I R Y
PALWLWNN——~OO
S
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equal probability. The first case implies that only d2 .1 In 8 can transform to
d? in S,, and all distances d2 ., transform to d;. The second case implies that
both distances dy, and d,,, in S| can transform to distance d? in S, and half
of these distances transform to dl2 . Eq. (1), which takes both cases into account
using a probabilistic approach, formulates this relation accordingly. Ignoring
the second case and assuming that always the first case takes place yields a dif-
ferent formula for the transformation. Although it seems not intuitive to ignore
the second case, the second estimation that counts only the first case gives rea-
sonably good results if the base stream is long enough. However, the first
approximation gives even better results than the second one.

Dy[2-1] Di[2-i+2]
5 — (1)

Dyli] = +Di2 i+ 1]+

4.2. Estimation at time granularity 3

Now, we can examine how the distance array D; changes and becomes D;
during the transformation of event stream S; (at granularity 1) to event stream
S5 (at granularity 3). The only difference from the transformation to an event
stream at time granularity 2 is the length of the blocks in Sy, which now is three
and we thus have three different cases for each distance value in D;. This is
shown in Fig. 6.

Again a distance d(l) indicates a “11”” subsequence of length 2 in S;. Three
cases to consider during the transformation of S; to S3 are: both of 1s can
be in the same block with two different possible placement in that block, or

53 H |—| H |—| H H
Fig. 6. Transformation with granularity 3.
S R R R N A A I I R . Case 1 : d} vanishes in S3
—— N—— 0
—— e N ——
|- I [1] |- I
Stotloo s [P I T O ) I PR |-_| (Case?2: d} vanishes in S3)
(Y S N e N
|- |-l (1] |- I
Sytleo i S TN O Ty I | (Case 3 : db — d3)
—~_~ TV T A T e~
|-| || 1] [1] ||

Fig. 7. Transformation D, — D; for dé.
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they can be in different successive blocks. As shown in Fig. 7, the first two cases
yield a single 1 in S5, which means that d(l) vanishes in D3; while the third one
preserves both s in Sj, i.e., d(l) in S; transforms to df) in S3. Thus, a zero dis-
tance in S vanishes in S; with probability 2/3, and becomes a zero distance in
S3 with probability 1/3.

The same analysis for distances 1-3 are given in Figs. 8-10, respectively,
without any further explanation. Table 4 lists the transformation of D; to

Sptloo e [ R [ PR |._| (Casel: d} vanishes in S3)
—~— N~ ~——
- Moo M -l

Ol e L (Case 2 : dfy — df)
—— TV N T e~
I |- 1] [1] I-|

:|777| ......... ‘777”77]_”017' ......... ‘777‘ (Case3:d54,d8)
—— TN e . T e~

-l L Il

Fig. 8. Transformation D; — D; for dj.

Syl [ RO S Y N RS SEES (Case 1: d} — d3)
SN~~~ N e e S—~—~

T I Py N P (Case 2 : d} — d3)
SN~~~ N e e S~~~

Syl el [|-- 100 1] |- freeevees (Case 3 : d} — d3)
Il -l 1 I Il

Fig. 9. Transformation D; — Ds for d;.

T I ey I N TV O S T ER (Case 1 : d} — d3)

Sl s 1000 [ e o] (Case2:dh — di)
~—— —— e TN

Spiloo i |- -1[]000] 1 _|: - |- (Case 3 : df — d3
N~ \v/\.v_/\_v_/v\ﬁ/—/\.v/

I L I

Fig. 10. Transformation D, — D; for d;.
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Table 4

Transformation D, — D3

D, D3

0 Vanish (2/3); 0 (1/3)
1 Vanish (1/3); 0 (2/3)
2 0

3 0(2/3); 1 (1/3)

4 0 (1/3); 1(2/3)

5 1

6 1(2/3); 2 (1/3)

7 1(1/3); 2 (2/3)

8 2

9 2 (2/3); 1 (1/3)

Ds for distance values 0-9 with associated probabilities given in parentheses.
Eq. (2) formulates this relation between D and Ds.

1 2 3 2
Ds]i] :D1[3-i}§+D1[3-i+1]§+D1[3~i+2]§+D1[3-i+3]§
1
+D1[3~i+4]§ (2)

4.3. Estimation at coarser granularities

Consider the transformation of the base event stream S; to event stream S,
with an arbitrary time granularity g > 2. Instead of analyzing how a particular
distance d; in Sy transforms to a distance ¢ in S, we find which distances in S
can transform to a particular distance ‘df in S, and their corresponding
probabilities.

Let g be the target granularity and ¢ be a distance in S,, where 0 < ¢t < Max-
Dist,. Let R be the possible distance values in S; that can transform to 4%. For-
mally, R = {d'|d’ € Dy,d’ — t}. Using our block structure, this transformation
can be figured as in Fig. 11.

Each block is of length g, and 4’ must be at least (¢ - g) in order to have d%.
This represents the best case, because in order to have d' = (¢- g) — ¢, the d'

t

e B oo T
~N ——— —_—— —— — —
Sg bo b1 bo be—1 by bi+1

Fig. 11. Transformation with granularity g.
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zeros in S} must start at exactly b[1], which is the first time-tick of the block b;.
The worst case occurs when the d’ zeros start at bg[2] and ends at b,y [g — 1],
spanning (¢- g + 2 - g — 2) time-ticks. Adding one more zero to d’ zeros would
fill either of the blocks by and b,y and d" would become at least df ; in D,.
Thus, we have R=[t-g,t-g+2-g—2]and RC Z.

Now, let us find the probability of (d¢' — d¢) for each value in R, which will
be referred to by p(d' = i — t). As we have already mentioned above, the prob-
ability of d = (¢- g) is 1/g since the d’ zeros must start at the first time-tick of
any block of length g. For d' = (¢- g + 1), the d’ zeros can start at the points
bolg] or by[1]. The first case spans the points between bo[g] and b,[g], while
the second one spans the points 5[1] to b,1[1]. Any other start point would
leave either of the blocks by or b, unfilled and violate the transformation
d —t. Thus, only two out of g points are acceptable and
p(t-g+1—1t)=2/g. Similar analysis on different values of d' can be made
to show the following relation:

i+ 1
Vd' =t-g+], Oéjég—l:&p(d'ﬁt):j; 3)
Substituting (¢ + 1) for (¢) in Eq. (3) gives

' . . ’ j+1

Vd' = (t+1)-g+], 0<J<g—1:>p(a’—>t+1):T (4)
' . . ’ j+1

Vd' = (1+1)-g+), 0<]<g—1:>p(d—>t)=1—7 (5)
’r . . " 7g—j—1

Vd' =t-g+g+j, 0<j<g-2=pd—1t)="—" (6)

g

Eq. (4) is straightforward. Eq. (5) uses the fact that Vd'=¢-g+ g+,
0<j<g-1,either d — ¢t or d — t+ 1. Therefore, p(d' —t) =1—p(d' —
t+1). Eq. (6) is just the more explicit form of Eq. (5). The combination of
Egs. (3) and (5) given below spans the whole R and is the desired generalization
of Egs. (1) and (2) to coarser time granularities.

- R B -~ . &=
Dg[l]ZZDl[g-lﬂ}—g +ZD1[g-l+g—1+J]—g (7
=0 =

4.4. Calculation of event counts using the distance matrix

Once we have estimated the distance array D,, the count of 1s in S, is found
as follows: for 1 < i< D, - length, D,[i] gives the number of distances of length
i, 1.e., the number of blocks of successive zeros of length i. Thus, the total num-
ber of zeros in S, is
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Dg.length

Count,(0) = Z i % Dgli]

=1

Then, the total count of 1s in D, is given by
Count,(1) = D,.length — Count,(0)

where D,.length = [n/g]and n is the length of Sj.

4.5. Incremental maintenance

The distance array can be updated incrementally for streaming data. At each
time tick, a variable, say current, is updated according to the current state of
the event. Whenever the event state is 1, the corresponding distance value
Di[current] is incremented by one, and current is set to zero. For each 0-state,
current is incremented by one. Eq. (3) and (6) clearly show that the count esti-
mations at granularity g can be incrementally updated as follows:

A
4

. o g—j—1
D,li — 1]+ ——g (8)

where current =g -i+j.

Dy[il+

4.6. Special cases

Before applying the method to an input event stream S, two similar special
cases should be considered. Depending on the implementation, one or both of
these cases may degrade the accuracy of the method. Suppose that the values
that appeared last in the stream S are one or more zeros, i.e., Sy : [...,1,0---0],

d
where d;, > 1. And suppose that during the distance generation phase, the dy,
zeros at the end are treated as a distance of length d), and D[d,] is incremented
by 1, where D is the distance array. Then, since a distance is defined as the total
number of successive 0s between two Is in the stream, this kind of implemen-
tation implicitly (and erroneously) assumes the presence of a 1 at the end of the
stream, just after the d) 0s. This misbehavior results in an overestimate of the
count of the event at coarser granularities by 1. Although an overestimate by 1
may seem insignificant, this can cause relatively high error rates for extremely
sparse event streams or at sufficiently high granularities where the frequency of
the event is very low.

The same effect could be made by one or more Os at the beginning of the
event stream, where the implicit (and erroneous) assumption would be the
presence of a 1 before the Os at the beginning of the stream. To prevent such
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misbehavior, the start and end of the stream should be considered separately
from the rest, or the stream should be trimmed off from both ends during
the preprocessing phase, so that it starts and ends with a 1.

4.7. Time and space requirements

In the preprocessing phase, we scan the base stream once and populate the
distance array D;, which takes O(n) time and uses O(max;) space, where » is
the length of the base stream S; and max; is the maximum distance at base
granularity. For any particular granularity g, we make the transformation
D — D, which takes O(max, X g) time where max, is the maximum distance
at granularity g. Indeed, max, is the length of D, and is less than or equal to
[max;/g]. The space required to store the distance distribution D, is also pro-
portional to max,. Thus, the run-time of our method is O(n + max, X g) =
O(n + (max;/g) x g) = O(n + max;) = O(n), and the memory required is
O(max,) if the stream is not stored after the distance distribution is con-
structed, and it is O(n + max,) = O(n) otherwise.

We use histograms to store the distance distributions of the event streams at
base granularity. As explained before, various histogram types have been intro-
duced and their construction and maintenance issues have been well studied so
far, especially in the context of query result size estimation. We used end-biased
histograms, where some of the values with the highest and lowest frequencies
are stored in individual buckets, and the remaining values with middle frequen-
cies are grouped in one single bucket.

5. Performance experiments

In this section, we give some experimental results conducted on real life
data. We used the data set gathered in [5] and available at http://cs.bil-
kent.edu.tr/~unala/stockdata. The data set is the closing prices of 439 stocks
for 517 trading days between January 3, 1994 and January 11, 1996. We have
used this data set to simulate event streams. For each stock in the data set, the
price change percentages are calculated and partitioned into seven categories:
(—o0,-5], (—5,-3], (—3,0],[0,0], (0,3], (3, 5], (5,00). Each category of price
change for each stock is considered as a distinct event, yielding a total
439 x 7=3073 number of event types and 3073 x 517 = 1,588,741 distinct
(time — tick, event state),penuype Pairs. For example, IBM 03 is an event type
that represents a price change percentage of IBM stock that falls into
(—3,0]. (200, 1);pss 03 meaning that the event IBM 03 occurred on day 200
in the stream. If a stock is not exchanged for any reason on a particular busi-
ness day, then all seven events are registered as 0 for that stock on that day.
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The machine we used for the experiments was a personal computer with a
Pentium 4 1.4 GHz processor and two memory boards, each 64 MB RDRAM,
totally 128 MB main memory.

In the experiments, we considered both single and multiple events (or event-
sets). In Section 5.1 experimental results for a single event are presented. In
Sections 5.2 and 5.3, multiple events are considered to show that our methods
can also be generalized to eventsets. Frequencies of multiple events are pre-
dicted exactly the same way as single events, i.e., using the distance distribu-
tions for each event.

As mentioned before, the experiments we conducted show that the distribu-
tion of the distance between two occurrences of an event in a history tends to
have high frequencies for some small distance values, and very low frequencies
for the remaining larger values. Therefore, we use end-biased histograms, in
which some of the values with the highest and lowest frequencies are stored
in individual buckets, and the remaining values with middle frequencies are
grouped in a single bucket.

5.1. Experiments for a single event

We first examined a single event in order to show the accuracy of our
method on finding the count (or frequency) of an event stream at coarser gran-
ularities. The count of an event stream at a particular granularity is equal to the
number of time ticks at which the event occurred at that granularity. Table 5
shows the results of the experiment in which the event was defined as no price
change of McDonalds Corp. stock. The first column gives the granularities at
which the estimations are made. The next two columns specify the actual count
of the event at the corresponding granularity and the count estimated by our
method, respectively. The last two columns give the absolute and relative errors
of our estimations, respectively, with respect to the actual values. The fre-
quency of the event at base granularity was 9.48% and the maximum distance
was 72. Fig. 12 plots the actual and estimated counts at multiple time granu-
larities. Experiments conducted on a different set of real life data gave similar
results, validating the accuracy of our method. The second data set also con-
sists of stock exchange market closing prices, and is available at http://www.
analiz.com/AYADL/ayadlOl.html. The results obtained with this data set
are not presented in this paper due to space limitations. Interested readers,
however, can find detailed information about these experiments and their
results in [35].

We then conducted three sets of experiments, each testing the behavior of
the method with respect to three parameters: granularity, support threshold,
and the number of events. In each experiment set, two of these parameters were
held constant while several experiments were conducted for different values of
the third parameter, and given a set of event streams, we estimated the frequent
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Table 5
Summary of the experiments conducted using a single event

g Actual Approx. Abs Err Rel Err (%) g  Actual Approx Abs Err Rel Err (%)
1 49 49 0 0 26 18 18 0 0
2 46 47 1 2.17 27 17 17 0 0
3 46 45 -1 —2.17 28 16 16 0 0
4 42 43 1 2.38 29 16 16 0 0
5 41 42 1 2.44 30 15 15 0 0
6 39 40 1 2.56 31 15 16 1 6.67
7 37 38 1 2.7 32 14 15 1 7.14
8§ 38 37 -1 —2.63 33 14 15 1 7.14
9 35 35 0 0 34 13 14 1 7.69
10 32 33 1 3.12 35 13 14 1 7.69
11 31 31 0 0 36 12 13 1 8.33
12 30 30 0 0 37 12 13 1 8.33
1330 29 -1 —3.33 38 12 13 1 8.33
14 26 27 1 3.85 39 12 12 0 0
15 26 26 0 0 40 12 12 0 0
16 26 25 -1 -3.85 41 12 12 0 0
17 24 24 0 0 42 11 11 0 0
18 22 23 1 4.55 43 11 11 0 0
19 22 22 0 0 44 11 11 0 0
20 21 22 1 4.76 45 11 11 0 0
21 21 20 -1 —4.76 46 10 10 0 0
2220 20 0 0 47 10 10 0 0
23 18 19 1 5.56 48 10 10 0 0
24 17 18 1 5.88 49 10 10 0 0
25 18 19 1 5.56 50 10 10 0 0
60 T
Actual —
Approx - - -

£

8

¢

S

0

1 5 10 15 20 25 30 35 40 45 50
Granularity

Fig. 12. Count estimation of a single event stream at multiple time granularities.
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eventsets at granularity in concern. The following subsections present the
results of these experiments.

5.2. Granularity

The experiments of this section were conducted with varying values of the
granularity parameter. For each granularity value, using our approximation
algorithm we estimated the eventsets that are frequent in the event stream.

Table 6 reports the experimental results. For each granularity, the second
column gives the number of actual frequent eventsets, and the third column
presents the number of estimated eventsets. The last two columns report the
number of under- and overestimated eventsets, respectively. An underestimated
eventset is one that is in the set of actual frequent eventsets but not found by
the approximation algorithm. On the other hand, an overestimated eventset is
one that is found to be a frequent eventset but is not really frequent.

As the granularity increases, the total number of frequent eventsets
decreases. We used absolute support threshold values rather than relative ones.
Since the support threshold is held constant and the count of a particular event
decreases at coarser granularities, the number of frequent eventsets of length 1
(C}) decreases as well. The candidates of length 2 are generated by the combi-
nations of frequent eventsets of length 1. Thus, a constant decrease in C; yields
an exponential reduction in the total candidate eventsets of length 2, which in
turn yields a reduction in the total number of frequent eventsets of length 2.
This is similar for coarser granularities and does explain the pattern in
Fig. 13. Note that the reduction does not follow an exact pattern and is fully
dependent on the dataset.

The absolute errors of over/under estimations fluctuate around a linearly
decreasing pattern. Fig. 14 plots the absolute errors at different granularities
and clearly shows the fluctuating pattern. The local fluctuations arise from
the distance distributions of the streams in the dataset.

Table 6

Summary of the experiments conducted for varying granularity values

Granularity Actual Approx. Under Over
2 445 443 15 13
3 309 318 6 15
4 204 207 11 14
5 124 122 10 8
6 75 77 1 3
7 49 50 2 3
8 11 9 4 2
9 1 0 1 0

10 0 0 0 0
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Fig. 13. Frequent eventset counts vs. granularity.

Absolute Estimation Error

Granularity

Fig. 14. Absolute estimation errors vs. granularity.

The relative errors (RE), given in Egs. (9) and (10), are plotted in Fig. 15.
While RE,., gives the ratio of the total estimated eventsets that are indeed
infrequent, RE 4., gives the ratio of the total actual frequent eventsets that
are not estimated by the method as frequent. As Fig. 15 shows clearly, the
relative errors stay below 8% except for the granularities at which the total
number of frequent eventsets is very small, which gives higher relative errors
for small absolute errors. The sharp increase in the Fig. 15, for example, is a
good example of such a situation, where even a small absolute error gives high
relative error because of very small frequent eventset count.

#Qver Estimations
REoer = 9
o #EstimatedEventsets ©)
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Fig. 15. Relative estimation errors vs. granularity.
#Under Estimations
REUnder = (10)

#Actual FrequentEventsets

5.3. Support threshold

We conducted several experiments under varying values of the support
threshold. One typical experiment is summarized in Table 7. As the support
threshold value increases, the number of frequent eventsets of length 1
decreases. This yields a reduction in candidate eventset count, which in turn
causes a reduction in the total number of frequent eventsets. The experiments
conducted produced similar patterns for total number of frequent eventsets,
and the results of one of these experiments are depicted in Fig. 16.

The errors of over/under estimations follow the same pattern (Fig. 17) as in
experiments conducted at different granularities and given in the previous sub-
section. The absolute errors fluctuate around a linearly decreasing pattern,
which is again due to the distance distributions of the dataset. However, the
relative errors, as shown in Fig. 18 stay below 10% except for the support
threshold values where the total number of frequent eventsets is very small.

5.4. Number of events

The last set of experiments was conducted under varying values of event
counts. We increased the number of events by incrementally adding new event
streams to the eventset. A typical experiment is summarized in Table 8.

The absolute and relative errors again showed similar behaviors as in the
previous experiment sets. The number of absolute errors increases linearly as
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Table 7
Summary of the experiments conducted for varying support thresholds
Support Actual Approx. Under Over
35 1061 1081 27 47
40 683 704 23 44
45 383 399 25 41
50 172 190 10 28
55 66 74 10 18
60 8 8 2 2
65 0 0 0 0
70 0 0 0 0
1200 T T T T -
Actual —
. Approx ---
1000 E
‘tg
]
= 800 i
[
i
§ 600 |
& 400 1
200 E
0
35 65
Support Threshold
Fig. 16. Frequent eventset counts vs. support threshold.
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Fig. 17. Absolute estimation errors vs. support threshold.
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Fig. 18. Relative estimation errors vs. support threshold.
Table 8
Summary of the experiments conducted for varying number of event streams
# Events Actual Approx. Under Over
35 4 4 0 0
70 6 7 0 1
105 27 30 1 4
140 64 68 1 5
175 66 70 1 5
210 133 142 2 11
245 292 310 3 21
280 296 314 3 21
315 379 398 8 27
350 491 512 12 33
385 544 570 12 38
420 590 619 12 41
455 593 623 12 42
490 674 705 14 45
525 702 734 15 47
560 907 946 19 58
595 1156 1197 28 69
630 1161 1200 30 69
665 1231 1270 33 72
700 1317 1364 37 84

the event count increases, and the percentage of relative errors stays under
5-6% except for very small event counts, where small frequent eventset counts
yield high relative errors for reasonable absolute errors.

Fig. 19 plots both the actual and estimated numbers of frequent eventsets for
varying numbers of event streams. Fig. 20 shows the counts of overestimated
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Fig. 19. Estimation error counts vs. number of events.
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Fig. 20. Absolute estimation errors vs. number of events.

and underestimated eventsets. Finally, Fig. 21 presents the relative estimation
errors.

The experiments discussed above and many others' conducted for different
parameter values demonstrated the accuracy of our method in estimating the
count of a stream at coarser granularities. While the number of absolute errors
decreases linearly, the percentage of relative errors stays under reasonably
small values except for the points where frequent eventset counts are small.
The experiment results show that the ratio of relative errors rarely exceeds
10% and most of the time does not exceed 5% if the number of frequent event-
sets is large enough.

! The results are not presented due to space limitations.



16 T T T T T T T T T T T T T T T T
Under
Over ------

14, 4
—_ \\
Q
9\: 121 B
g \
@yl .
c \
S \
T BN
E 8L e 1
N e
S 6 T e T 3
=
3 4 1
[

2L 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0
105 140 175 210 245 280 315 350 385 420 455 490 525 560 595 630 665 700
# Events

Fig. 21. Relative estimation errors vs. number of events.
6. Prediction

The statistical information collected about the frequency and distribution of
the event occurrences can also be used for estimation of the event at future time
ticks or at previous time ticks at which the data is missing. This can be done at
the base granularity or any other coarser time granularities with the help of
corresponding distance vectors. For any time tick ¢, let s, be the distance from
that time tick to the last occurrence of the event in the interval [0, ¢]. Then, we
have sy =0, and the state s, = n can be followed only by the states s,+; =0 if
the event occurs at time 7+ 1, or 5,41 =n + 1 otherwise. This process satisfies
the Markov property and is therefore a Markov chain. The state transition dia-
gram of the system is given in Fig. 22, where the real transition probabilities p
and ¢ can be estimated using the distance histogram that stores the numbers of
distance values. Observing a distance d > n + 1 is equivalent to starting from
state 0, making a rightwards transition at each time tick until we reach the state
s =d, and finally jumping back to state 0 in our Markov Chain given in
Fig. 22. Then, whenever we have a distance d > n, we are guaranteed to make
the transition n — n + 1. Similarly, whenever we have a distance d = n, we will
definitely make the transition n — 0. Then, the state s = n is visited for all dis-
tances d > n. While the exact values of p and ¢ are not known, they can be

Fig. 22. State diagram of the Markov chain.



A. Unal et al. | Information Sciences 176 (2006) 20662096 2093

approximated using the number of transitions observed through the event ser-
ies in concern so far. p can be approximated by the ratio of the total number of
transitions n — n + 1 to the total number of visits to the state s = n. Similarly,
¢ can be approximated by the ratio of the total number of transitions n — 0 to
the total number of visits to the state s = n. Since the transition n —n+1 is
made for all distances d > n, the total number of times this transition is made
equals to the summation ). D,[i]. Similarly, the total number of times the
transition n — 0 is made equals D,[n], and the total number of visits to the state
s =n equals to the summation ), D,[i]. Then, we have

— Zi>an[i]
P D (1
and
- Dg[”]
1= D (12

Now, suppose that the number of time ticks after the last occurrence of the
event is equal to n, n > 0, and we want to predict the behavior of the event in
the next time tick. The probability of having a 1 in the next tick is equivalent to
the probability of the transition from state n to 0, which is simply ¢g. That is, ¢
gives the probability that the event occurs in the next time tick.

For various reasons, some of the values of the stream might not have been
recorded. As mentioned above, the same idea can be applied to predict the
missing information in the past time ticks.

7. Conclusion

We introduced a probabilistic approach to answer count queries for 0/1
event streams at arbitrary time granularities. We examined the distance distri-
bution of an event at base granularity, used the probabilities of the distance
transformations to approximate the distance distribution of the event at any
coarser time granularity, and used this approximation to estimate the count
of the event at the granularity in concern.

The experiments conducted on real-life data indicated that most of the time
our approach gives reasonably good estimations with error rates less than 5%.
Our method runs in O(#n) time and uses O(n) space, where # is the length of the
base event stream. The results of the experiments conducted on different real-
life data demonstrate the accuracy of our method for count estimation at mul-
tiple time granularities.

The data structure we used is a histogram that stores the possible distance
values and the corresponding distance counts in the base event stream. A
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future research issue that we are planning to investigate is the use of samples of
the base event stream to construct an approximate distance histogram, which
improves the runtime while decreasing the accuracy of the estimations. The
tradeoff between speed and accuracy can be examined in detail.

Another future research direction is to study different histogram classes to
find the best one for storing the distance distribution. One possible scheme is
to store the distance values that have the same frequencies in the same bucket,
and others in individual buckets. Another method can be to store the distance
values with high and low frequencies in individual buckets and the remaining
ones in a single bucket. In each case, the tradeoff between space and accuracy
should be analyzed carefully.

References

[1] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large
databases, in: Proceedings of the ACM SIGMOD Conference on Management of Data, 1993,
pp. 207-216.

[2] M. Atallah, R. Gwadera, W. Szpankowski, Detection of significant sets of episodes in event
sequences: algorithms, analysis and experiments, in: Proceedings of the 4th IEEE International
Conference Data Mining, 2004, pp. 3-10.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data streams, in:
Proceedings of the ACM PODS Symposium on Principles of Database Systems, 2002, pp. 1—
16.

[4] C. Bettini, C. Dyreson, W. Evans, R. Snodgrass, X. Wang, A glossary of time granularity
concepts, in: O. Etzion, S. Jajodia, S. Sripada (Eds.), Temporal Databases: Research and
Practice, Lecture Notes in Computer Science, vol. 1399, Springer-Verlag, Berlin, 1998,
pp. 406-411.

[5] C. Bettini, X.S. Wang, S. Jajodia, J. Lin, Discovering frequent event patterns with multiple
granularities in time sequences, IEEE Transactions on Knowledge and Data Engineering 10
(2) (1998) 222-237.

[6] J.F. Boulicaut, A. Bykowski, C. Rigotti, Free-Sets: A condensed representation of boolean
data for the approximation of frequency queries, Data Mining and Knowledge Discovery 7 (1)
(2003) 5-22.

[7] S. Chaudhuri, R. Motwani, V. Narasayya, Random sampling for histogram construction:
How much is enough? in: Proceedings of ACM SIGMOD International Conference on
Management of Data, 1998, pp. 436-447.

[8] G. Das, K.-I. Lin, H. Mannila, G. Ranganathan, P. Smyth, Rule discovery from time series, in:
Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining,
1998, pp. 16-22.

[9] A. Dobra, M. Garofalakis, J. Gherke, R. Rastogi, Processing complex aggregate queries over
data streams, in: Proceedings of the ACM SIGMOD Conference on Managament of Data,
2002, pp. 61-72.

[10] D. Gao, J.A.G. Gendrano, B. Moon, R.T. Snodgrass, M. Park, B.C. Huang, J.M. Rodrigue,
Main memory-based algorithms for efficient parallel aggregation for temporal databases,
Distributed and Parallel Databases Journal 16 (2) (2004) 123-163.

[11] M. Garofalakis, J. Gehrke, R. Rastogi, Querying and mining data streams: you only get one
look, in: Tutorial in ACM SIGMOD Conference, 2002, p. 635.



A. Unal et al. | Information Sciences 176 (2006) 20662096 2095

[12] P.B. Gibbons, Y. Matias, V. Poosala, Fast incremental maintenance of approximate
histograms, in: Proceedings of the 23rd Conference on Very Large Databases, 1997,
pp. 466-475.

[13] S. Govindarajan, P. Agarwal, L. Arge, CRBTree: an efficient indexing scheme for range
aggregate queries, in: Proceedings of the 9th International Conference on Database Theory,
2003, pp. 143-157.

[14] R. Gwadera, M. Atallah, W. Szpankowski, Reliable detection of episodes in event sequences,
in: Proceedings of the 3rd IEEE International Conference Data Mining, 2003, pp. 67-74.
[15] P.J. Haas, J.F. Naughton, S. Seshadri, L. Stokes, Sampling-based estimation of the number of
distinct values of an attribute, in: Proceedings of the 21st Conference on Very Large

Databases, 1995, pp. 311-322.

[16] J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in: Proceedings
of ACM-SIGMOD International Conference on Management of Data, 2000, pp. 1-12.

[17] Y. loannidis, V. Poosola, Balancing histogram optimality and practicality for query result size
estimation, in: Proceedings of ACM SIGMOD International Conference on the Management
of Data, 1995, pp. 233-244.

[18] S.T. Kang, Y.D. Chung, M.H. Kim, An efficient method for temporal aggregation with range-
condition attributes, Information Sciences 168 (1-4) (2004) 243-265.

[19] R.P. Kooi, The optimization of queries in relational databases, Ph.D. Thesis, Case Western
Reserve University, September 1980.

[20] Y. Li, S. Zhub, X.S. Wang, S. Jajodia, Looking into the seeds of time: Discovering tem-
poral patterns in large transaction sets, Information Sciences, in press, doi:10.1016/
j.ins.2005.01.019.

[21] LF.V. Lopez, R.T. Snodgrass, B. Moon, Spatiotemporal aggregate computation: a survey,
IEEE Transactions on Knowledge and Data Engineering 17 (2) (2005) 271-286.

[22] H. Mannila, P. Smyth, Approximate query answering using frequent sets and maximum
entropy, in: Proceedings of the 16th International Conference on Data Engineering, 2000,
p. 309.

[23] H. Mannila, H. Toivonen, Discovering generalized episodes using minimal occurrences, in:
Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining,
1996, pp. 146-151.

[24] H. Mannila, H. Toivonen, A.l. Verkamo, Discovering frequent episodes in sequences, in:
Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining,
1995, pp. 210-215.

[25] B. Moon, 1. Lopez, V. Immanuel, Scalable algorithms for large temporal aggregation, in:
Proceedings of the 16th International Conference on Data Engineering, 2000, pp. 145-154.

[26] B. Ozden, S. Ramaswamy, A. Silberschatz, Cyclic association rules, in: Proceedings of the 40th
International Conference on Data Engineering, 1998, pp. 412-421.

[271 H.K. Park, J.H. S, M.H. Kim, Dynamic histograms for future spatiotemporal range
predicates, Information Sciences 172 (1-2) (2005) 195-214.

[28] D. Pavlov, H. Mannila, P. Smyth, Beyond independence: probabilistic models for query
approximation on binary transaction data, IEEE Transactions on Knowledge and Data
Engineering 15 (6) (2003) 1409-1421.

[29] G. Piatetsky-Shapiro, C. Connell, Accurate estimation of the number of tuples satisfying a
condition, in: Proceedings of ACM SIGMOD International Conference on the Management
of Data, 1984, pp. 256-276.

[30] S. Pittie, H. Kargupta, B.H. Park, Dependency detection in MobiMine: a systems perspective,
Information Sciences 155 (3-4) (2003) 227-243.

[31] V. Poosola, Y. Ioannidis, P. Haas, E. Shekita, Improved histograms for selectivity estimation
of range predicates, in: Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, 1996, pp. 294-305.


http://dx.doi.org/10.1016/j.ins.2005.01.019
http://dx.doi.org/10.1016/j.ins.2005.01.019

2096 A. Unal et al. | Information Sciences 176 (2006) 20662096

[32] Y. Saygm, O. Ulusoy, Exploiting data mining techniques for broadcasting data in mobile
computing environments, IEEE Transactions on Knowledge and Data Engineering 14 (6)
(2002) 1387-1399.

[33] L. Shen, H. Shen, L. Cheng, New algorithms for efficient mining of association rules,
Information Sciences 118 (1-4) (1999) 251-268.

[34] Y. Tao, D. Papadias, C. Faloutsos, Approximatex temporal aggregation, in: Proceedings of
the 20th International Conference on Data Engineering, 2004, pp. 190-201.

[35] A. Unal, Y. Saygin, O. Ulusoy, Processing count queries over event streams at multiple time
granularities, Bilkent University Technical Report BU-CE-0504. Available from: <http://
www.cs.bilkent.edu.tr/tech-reports/2005/BU-CE-0504.pdf>.

[36] J. Yang, J. Widom, Incremental computation and maintenance of temporal aggregates, in:
Proceedings of the 17th International Conference on Data Engineering, 2001, pp. 51-60.

[37] D. Zhang, D. Gunopulos, V.J. Tsotras, B. Seeger, Temporal and spatio-temporal aggregations
over data streams using multiple time granularities, Information Systems 28 (1-2) (2003) 61—
84.

[38] D. Zhang, A. Markowetz, V.J. Tsotras, D. Gunopulos, B. Seeger, Efficient computation of
temporal aggregates with range predicates, in: Proceedings of the ACM PODS Symposium on
Principles of Database Systems, 2001, pp. 237-245.


http://www.cs.bilkent.edu.tr/tech-reports/2005/BU-CE-0504.pdf
http://www.cs.bilkent.edu.tr/tech-reports/2005/BU-CE-0504.pdf

	Processing count queries over event streams at multiple time granularities
	Introduction
	Motivation
	Contribution

	Related work
	Data mining
	Time granularity
	Histograms

	Basic concepts and notation
	Estimation of an event rsquo s count at coarser granularities
	Estimation at time granularity 2
	Estimation at time granularity 3
	Estimation at coarser granularities
	Calculation of event counts using the distance matrix
	Incremental maintenance
	Special cases
	Time and space requirements

	Performance experiments
	Experiments for a single event
	Granularity
	Support threshold
	Number of events

	Prediction
	Conclusion
	References


