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ABSTRACT 

HUB LOCATION PROBLEM FOR AIR-GROUND  

TRANSPORTATION SYSTEMS WITH TIME RESTRICTIONS  

 

Seda Elmastaş 

M.S. in Industrial Engineering 

Advisors:  Assist. Prof. Hande Yaman, Assist. Prof. Bahar Y. Kara                     

 

December, 2006 

 

In this thesis, we study the problem of designing a service network for cargo 

delivery sector. We analyzed the structure of cargo delivery firms in Turkey 

and identified the features of the network. Generally, in the literature only one 

type of vehicle is considered when dispatching cargo. However, our analysis 

showed that in some cases both planes and trucks are used for a better service 

quality. Therefore, we seek a design in which all cargo between origin and 

destinations is delivered with minimum cost using trucks or planes within a 

given time bound. We call the problem “Time Constrained Hierarchical Hub 

Location Problem (TCHH)” and propose a model for it. The model includes 

some non-linear constraints. After linearizations, the TCHH is solved with data 

taken from cargo delivery firms. The computational results are reported and 

comparison with the current structure of a cargo delivery firm is given. 

 

Keywords: Hub location problem, Time restriction, Cargo delivery, 

Hierarchical network design. 
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ÖZET    

HAVA ve KARA TAŞIMACILIK SİSTEMİNDE                             

ZAMAN KISITLI ANA DAĞITIM ÜSSÜ YER SEÇİMİ PROBLEMİ 

Seda Elmastaş  

Endüstri Mühendisliği Yüksek Lisans 

Tez Yöneticileri :  Yrd. Doç. Hande Yaman,  Yrd. Doç. Bahar Y. Kara 

 

Aralık, 2006 

 

Bu çalışmada, ana dağıtım üssü (ADÜ) yer seçimi problemi kargo sektörü 

özelinde incelenmiştir.  Literatürde geliştirilen modeller ve sezgiseller tek tip araç 

varsayımı için geçerlidir. Türkiye’deki kargo sektörü incelendiğinde belli servis 

kaliteleri için uçak kamyon bağlantılarının kullanıldığı ve ağ yapısının hiyerarşik 

olduğu gözlemlenmiştir. Bu çalışmada, iki tip araç kullanımına olanak sağlayan 

“Zaman Kısıtlı Hiyerarşik ADÜ Yer Seçimi” problemi tanımlanmış ve 

modellenmiştir. Doğrusal olmayan bazı kısıtlar doğrusal hale getirilerek, önerilen 

tamsayılı karar modeli çözülmüştür. Bulunan sonuçlar ile mevcut sistem 

karşılaştırılmış ve mevcut sistemden çok daha iyi sonuçlar elde edilmiştir. Ayrıca 

model farklı parametreler ile de denenmiştir.   

 

  Anahtar Kelimeler: ADÜ Yer Seçimi Problemi, Zaman Kısıtı,  Hiyerarşik Ağ 

Tasarımı, Kargo Dağıtım  Sektörü.



 vi 

 

 
 
 
 
 

To my family and my departed  

grandfather, Bekir Elmastaş



 vii

ACKOWLEDGEMENT 

I would like to express my sincere gratitude to Asst. Prof. Hande Yaman and 

Asst. Prof. Bahar Y. Kara for all their attention and supports during my 

graduate study and, of course, for their valuable guidance and most 

importantly for their patience and trust. 

 

I am indebted to members of my dissertation committee: Assoc. Prof. Haldun 

Süral and Assoc. Prof. Oya Karaşan for showing to kindness to accept to read 

and review this thesis. I am grateful to them for their effort, sparing their 

valuable time for me and for their support. 

 

I want to express my heartily thanks to Süleyman who have always supported 

and encouraged me and sincerely gave all the help and love he could. 

 

I am most thankful to members of Land and Missile Programs for their 

support and their patience. I would like also thank to my friends in Bilkent IE 

and Başkent IE for their friendship.  

 

I am also indebted to Burhan Tunç, for his valuable comments on the subject 

and sparing his valuable time for me.  

 

Finally, I would like to express my deepest gratitude on my family for 

believing in my work and sacrifices that they have made for me. Without their 

love and support I would never have finished the thesis. I feel very lucky to 

having such a wonderful sisters, Funda and Fulya, family and grandmother.  



 viii

And at last but not surely least, I want to express my thanks to my departed 

grandfather, Bekir Elmastaş, for his love, trust and guidance. Although he is 

not beside me, I always feel his support through my life.    



 ix

CONTENTS 

 

1 INTRODUCTION...........................................................................................1 

2   THE CARGO DELIVERY SECTOR IN TURKEY................................6 

     2.1   Aras Cargo...............................................................................................6 

     2.2   Yurtiçi Cargo...........................................................................................8 

     2.3   MNG Cargo.............................................................................................9 

     2.4  UPS.........................................................................................................12 

     2.5  FedEx......................................................................................................13 

     2.6  Synthesis of the Cargo Delivery Sector In Turkey ...............................13 

3   LITERARTURE SURVEY .......................................................................15 

     3.1   Hub Location  Problem & Related Literature ......................................15 

            3.1.1   P-hub median problem................................................................17 

            3.1.2   P-hub center and hub covering problem ....................................20 

            3.1.3  Hub location problem with fixed costs........................................22 

     3.2   Intermodal Freight Transportation & Related Literature.....................24 

4  MODEL DEVELOPMENT........................................................................29 

     4.1  Proposed Models....................................................................................36 

            4.1.1  TCHH_Tr.&P...............................................................................37 



 x 

            4.1.2  TCHH_Tr. ....................................................................................44 

     4.2  Linearizations .........................................................................................45 

 

5   COMPUTATIONAL RESULTS ..............................................................53 

     5.1  Current System of MNG Cargo.............................................................53 

     5.2  Input Data Processing ............................................................................54 

     5.3  Solution of the Model ...........................................................................55 

6   CONCLUSION AND FUTURE REMARKS..........................................65 

BIBLIOGRAPHY ............................................................................................68 

 

  

 
 
 



 xi

LIST OF FIGURES 

 

1-1: The Story of Cargo ........................................................................................ 2 

1-2: The Structure of Ground and Airway Transportation .................................. 3 

1-3: The Structure of 2-level Problem.................................................................. 4 

2-1: The Service Network of Aras Cargo............................................................. 7 

2-2: The Service Network of Yurtiçi Cargo......................................................... 9 

2-3: The Service Network of MNG Cargo......................................................... 12 

4-1: The Examples of Allocations...................................................................... 31 

4-2: The First Set of Decision Variables of the Model ..................................... 35 

4-3: The Second Set of Decision Variables of the Model ................................. 36 

5-1: The Allocation of hubs to the hub airports of MNG Cargo ....................... 54 

5-2: The Optimal Solution for p ≤ 22 ................................................................. 57 

 

 

 



 xii

LIST OF TABLES 

 
2-1: Service Network Properties of Cargo Delivery Firms in Turkey   ........... 14 

4-1: Parameters of the Model ............................................................................. 33 

4-2: The Number of Decision Variables and Constraints in the Worst 

Case for Linear Models .............................................................................. 52 

5-1: Hubs and Hub airports of  MNG Cargo...................................................... 53 

5-2: Different p and T values for fixed cost ratio .............................................. 55 

5-3: Comparison of the Optimal Solution and the Current Implementation..... 56 

5-4: Results for p ≤ 22 and different T values..................................................... 58 

5-5: Results for different p and T values ............................................................ 59 

5-6: Results for p ≤ 10 ......................................................................................... 60 

5-7: Results for p ≤ 5 .......................................................................................... 61 

5-8: Results of the TCHH_Tr. for different p values......................................... 62 

5-9: Results for T≥ 32.5 with the TCHH_Tr.&P.. ............................................. 62 

5-10: Different cost ratios for fixed p and T values ............................................. 63 

5-11: Results for T=24, p ≤ 22 and different cost ratios.. .................................... 63 

 

 

 



 

 1 

CHAPTER 1 

 

INTRODUCTION 
  

In this thesis we focus on the cargo delivery sector and we design a 

service network which is composed of agents, transfer centers and 

vehicles.  Agents are located in the proximity of commercial zones in the 

cities and customers bring their packages to these agents. After collecting 

all the packages, agents send these packages to the transfer centers. All 

outgoing and incoming packages of agents are collected in these transfer 

centers.  Each agent is assigned to a transfer center and transportation of 

packages is carried out via these transfer centers by vehicles. 

 

In the cargo delivery sector, an important issue is the customer 

satisfaction. Among many components of customer satisfaction, the cost 

of the service and delivering the cargo in a timely manner are the key 

elements of the market.  

 

Cargo delivery firms want to minimize their total cost which includes the 

cost of operating transfer centers and the transportation costs. In addition 

to the cost, the delivery time is another factor that must be taken into 

account by cargo delivery firms. Delivering the cargo within a promised 

service time, (will be referred to as “time bound”), is important for the 

quality of the service. It would be a great advantage for the firm if it can 

deliver the cargo to even most distant locations on time. These two 

elements, time and cost, are related to each other. To clarify the 

relationship between these two elements we first give the story of cargo:  
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A package that originates from an agent first travels to the corresponding 

transfer center. The transportation between an agent and a transfer center 

is provided by low capacitated vehicles (will be referred to as “middle 

trucks”). At the transfer center, vehicles are unloaded and packages are 

sorted according to their destinations. After sorting operations, packages 

are loaded to vehicles depending on their destinations. Since the flow 

between two transfer centers is usually high in volume, transportation is 

provided by high capacitated vehicles (will be referred to as “main 

trucks”) between the transfer centers. After arriving at the destination 

transfer center, packages are unloaded from the main trucks and again 

sorted according to their final destinations. Then packages are transported 

to the destination agents with middle trucks. All these operations can be 

called as “The Story of Cargo” as shown in Figure 1.1.   

 

Figure 1.1. The Story of Cargo 

 

Generally, the cargo is transported by trucks. However it may not be 

possible to travel by trucks when the distance between some origin and 

destination pairs within the time bound. In this case, some cargo delivery 

firms use also airway transportation.  

 

Structure of airway transportation is similar to the ground transportation.  

Packages travel from transfer centers to the airports. Airplanes travel 

between airports and after arriving at the destination airport, packages are 
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unloaded from airplanes and again sorted according to their final 

destinations. Then packages are loaded on main trucks and are 

transported to the transfer centers. When cargo delivery companies use 

both ground and airway transportation they have a two layer structure as 

shown in Figure 1.2. 

 

Figure 1.2. The Structure of Ground and Airway Transportation 

 

However, using planes is a costly way. As a result of this fact, the 

decision of the number of planes and the number of transfer centers/ 

airports becomes important. On the other hand, it is also important to 

obey the time bound. Therefore, in this thesis we focus on the problem of 

designing a cargo delivery network with time restrictions and we develop 

a mathematical model for this complex problem.   

 

The problem that we study has two layers. In the first layer we decide on 

the number of planes and determine the airports that will be used. In the 

second layer, we decide on the location of transfer centers. Between first 
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and second layer the problem is the allocation of transfer centers to the 

airports. Finally, we decide about the allocation of agents to these transfer 

centers. This two level structure is shown in Figure 1.3. 
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Figure 1.3. The Structure of 2-level problem  

 

 

In our model, the aim is to minimize total cost. The cost figures that we 

include are;  

�  Transportation cost between airports by planes, 

�  Transportation cost between airports and transfer centers,  

�  Transportation cost between transfer centers, 

� Transportation cost between transfer centers and agents. 

 

While we are minimizing the total cost we must also obey the time 

bound. We propose a model to design a network where all packages are 

sent between origin and destinations using trucks or planes within the 

time bound with minimum cost. The model includes non-linear 
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constraints. We first linearize these constraints and then the model is 

solved by using a commercial mixed linear programming solver. 

 

The problem described briefly is motivated by a real life application. We 

have interviewed representatives of five different cargo delivery firms to 

comprehend the basic structure of cargo delivery systems operating in 

Turkey. In the following chapter, Chapter 2, the detailed descriptions of 

their cargo delivery process and their service network structure are 

presented. Among these firms only MNG Cargo uses both ground and 

airway transportation. Therefore, we focus on MNG Cargo.  

 

The rest of the thesis is organized as follows. A review of the literature is 

presented in Chapter 3. A detailed description of the problem, a mixed 

integer program and our proposed solution approach are given in Chapter 

4. In chapter 5, we present the results of the proposed model and compare 

these results with those of the current system of MNG Cargo. The 

summary of our research and future directions are given in Chapter 6. 
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CHAPTER 2 
 

THE CARGO DELIVERY 

FIRMS IN TURKEY  
 

We have interviewed five different cargo delivery firms. Two of them, 

UPS and FedEx, provide service between Turkey and foreign countries, 

i.e. either the origin or the destination of the cargo is located in a foreign 

country. The other three firms provide service within Turkey. This means 

both the origin and the destination of the cargo are located in Turkey. In 

the following sections, the companies that provide service only in Turkey 

will be described first according to their service network structures. We 

start with Aras Cargo which has the fundamental structure and then 

continue with Yurtiçi Cargo and MNG Cargo. Next, the cargo delivery 

firms that provide service between Turkey and the foreign countries, UPS 

and FedEx, are described. At the last section, we give a synthesis of the 

cargo delivery sector in Turkey.  

 

2.1 Aras Cargo  

 

ARAS Cargo is a firm that has been providing cargo delivery service 

since 1989. It has a network in Turkey with 780 agents, 26 transfer 

centers and 5000 personnel. These agents and transfer centers are 

managed by 36 region directories. ARAS Cargo uses 2500 trucks, which 

are firm’s own assets, and does not use planes for transportation.  

 



 

 7 

The transfer centers of ARAS Cargo are located in Adana, Afyon, 

Aksaray, Ankara, Antalya, Balıkesir, Bursa, Denizli, Diyarbakır, Düzce, 

Elazığ, Erzurum, Eskişehir, Gaziantep, İstanbul(2), İzmir, Kayseri, 

Kocaeli, Konya, Malatya, Mersin, Merzifon, Samsun, Trabzon and Van. 

 

As mentioned before, customers bring their cargo to the agents. The 

agents are allocated to transfer centers and dispatch the cargo via these 

transfer centers. In the service network of Aras Cargo, each agent is 

allocated to a single transfer center. Hence, all the cargo that originates 

from the same agent must first travel to the corresponding transfer center.  

 

All the transfer centers are connected to the main transfer center in 

Ankara by trucks. Cargo is collected at this main transfer center and is 

sorted out according to its destination. Then it is loaded to main trucks 

and is sent to the destination transfer center. When the cargo arrives at the 

destination transfer center it is loaded to the middle trucks and it is sent to 

the destination agents. The service network of Aras Cargo is shown in 

Figure 2.1. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. The Service Network of ARAS Cargo,         

Ankara 
(Main 

Transfer 
Center) 

 : By middle trucks 
 
 : By main trucks 
 

 

 

: Agents 
  
: Transfer Centers        
 



 

 8 

If the distance between the origin and the destination is less than or equal 

to 600 km then Aras Cargo promises to deliver the cargo in 24 hours. 

However, if this distance is greater than 600 km then cargo is delivered in 

two days.   

 

2.2 Yurtiçi Cargo  

 

YURTİÇİ Cargo, established in 1982, is the first private cargo delivery 

firm in Turkey. The firm performs service via 580 agents and 28 transfer 

centers. These agents and transfer centers are managed by 14 region 

directories. YURTİÇİ Cargo uses over 2100 trucks that are firm’s own 

assets.  

 

The service network of Yurtiçi Cargo is similar to that of Aras Cargo. Αs 

we mentioned earlier Aras Cargo has a single main transfer center, 

Ankara. On the other hand, Yurtiçi Cargo has a second main transfer 

center located in Istanbul. All transfer centers are allocated to these two 

main transfer centers. Cargo transported from transfer centers is collected 

at these main transfer centers and it is sorted out according to its 

destination. After sorting operations the cargo is sent to the destination 

transfer centers or is sent to the other main transfer center. The service 

network of Yurtiçi Cargo is shown in Figure 2.2. 
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Figure 2.2. The Service Network of Yutiçi Cargo,         

 

In the service network of Yurtiçi Cargo, an agent can be allocated to 

more than one transfer center. Because of this allocation, cargo that 

originates from the same agent can be sent to different transfer centers. 

 

Same as Aras Cargo, Yurtiçi Cargo promises to deliver cargo in 24 hours 

if the distance between the origin-destination pair is less than or equal to 

600 km. Otherwise, cargo is delivered within 48 hours.  

 

2.3 MNG Cargo 

 

MNG Cargo has been providing cargo delivery service since 1984 and 

has a wider service network in Turkey. 

The firm performs this service via 22 transfer centers, 12 of which have 

airports and over 400 agents. These agents and transfer centers are 

managed by 12 region directories. MNG Cargo has 11 airplanes, and 

more than 750 trucks.  
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The story of the cargo is similar for MNG Cargo; agents are allocated to 

transfer centers and they dispatch the cargo via these transfer centers. 

Each agent should be allocated to a single transfer center. But different 

from Aras and Yurtiçi Cargo, MNG Cargo uses both ground and airway 

transportation. Therefore it has a more complex network structure than 

the others.  In the service network of MNG Cargo, two types of transfer 

centers are present. First type is the transfer centers with airport and the 

second type is the transfer centers without airport.  

 

The airway structure of MNG Cargo is similar to the ground structure of 

Aras Cargo. Each transfer center without an airport can be allocated to a 

single airport and all airports are connected to the “central airport” that is 

in Ankara. Hence, all the cargo that originates from the same transfer 

center must first travel to the corresponding airport and then must fly to 

the Ankara central airport. If a transfer center is allocated to the central 

airport, then the cargo will be delivered using main trucks to Ankara. In 

Ankara, cargo from airports and transfer centers are sorted out according 

to their destinations and loaded to vehicles or airplanes. The planes that 

depart from the central airport should wait for all the planes and trucks 

arriving at this central airport.  

 

MNG Cargo uses airplanes if the distance between the agents is greater 

than 600 km. Otherwise, MNG Cargo delivers all cargo by trucks.  

Cargo has four possible routes and these routes are shown in Figure 2.3; 
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� Case i : Distance between origin destination pairs is less than or 

equal to 600 km; transportation by trucks.  

In Figure 2.3, the distance between agent a and agent b is less than 600 

km therefore transportation is provided by trucks.  

 

� Case ii: Distance between origin destination pairs is greater than 

600 km; transportation by airplanes and trucks. 

 

o Case ii-a: If both origin and destination transfer centers are 

allocated to airports other than Ankara:  

First, cargo is delivered to the corresponding origin airport by main 

truck. Second, it flies to the central airport and then to the final 

airport. In Figure 2.3, transfer centers i and k are allocated to the 

airports other than Ankara and cargo delivery between these two 

transfer centers is an example of this case.   

 

o Case ii-b: Origin or destination transfer center is allocated to 

Ankara and the other one is allocated to any airport other than 

Ankara. 

- Origin transfer center is allocated to Ankara and destination 

transfer center is allocated to an airport other than Ankara: Cargo is 

delivered to Ankara by main truck and it travels from Ankara to the 

final airport by plane.  

- Origin transfer center is allocated to an airport other than Ankara 

and destination transfer center is allocated to Ankara: Cargo is 

delivered to the corresponding origin airport by main truck. Then it 

flies to Ankara and then it is sent from Ankara to the destination 

transfer center by a main truck.  

In Figure 2.3, routes between the transfer centers m and k, m and i, 

j and k, j and i, are examples of these last two cases.  
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Figure 2.3. The Service Network of MNG Cargo,         

 

Since MNG Cargo uses both ground and airway transportation, firm 
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approximately 300 vehicles. The cities that are served by UPS in Turkey 

are Adana, Ankara, Antalya, Balıkesir, Bursa, Denizli, Eskişehir, 

Gaziantep, İstanbul, İzmir, Kahramanmaraş, Kayseri, Kocaeli, Konya, 

Manisa, Mersin, Samsun, Nevşehir, Muğla and Tekirdağ. All customs 

operations are performed only in Istanbul and thus UPS located its only 

transfer center in this city. All the cargo is collected in the main office 

Istanbul and then it is sent to the destination points.  

 

2.5 FedEx 

 

FedEx is an international air express company and it provides service 

between Turkey and foreign countries like UPS.  The firm provides 

service to and from 16 cities in Turkey. These are Adana, Ankara, 

Antalya, Aydın, Balıkesir, Bursa, Çanakkale, Denizli, Gaziantep, Isparta, 

İzmir, İzmit, Kayseri, Konya, Kocaeli, Muğla and Tekirdag. The 

transportation of FedEx within Turkey is performed by a subcontractor 

firm Express Kargo. Because of the same reasons with UPS, FedEx has 

its only operation center in Istanbul and all the operations are the same as 

UPS.  

 

2.6. Synthesis of The Cargo Delivery Sector In Turkey 

 

According to our interviews with cargo delivery firms, we see that the 

story of the cargo is the similar for all the cargo delivery firms operating 

in Turkey.  Customers bring their cargo to the agents and each agent is 

allocated to at least one transfer center. All incoming and outgoing cargo 

are consolidated at these transfer centers and sent to their destinations via 

these transfer centers. All these operations are completed in a 

predetermined time bound.  
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In addition to these common properties, another important point which is 

common for the cargo delivery firms is the truck departure times. Trucks 

departing from a transfer center should wait for all other trucks arriving 

at this transfer center. Otherwise, the cargo that arrives at the transfer 

center after the departure of the trucks will either require a second truck 

or wait for another 24 hours for the next day’s truck. This property is 

common for all cargo delivery firms in Turkey and we also use this fact 

in our mathematical model. Other properties of the firms are summarized 

in Table 2.1. 

 

Table 2.1. Service network properties of Cargo Delivery Firms in Turkey         

Firms 
Ground 

Trans. 

Main Transfer 

Center for 

Ground 

Trans. 

Airway 

Trans. 

Main Transfer 

Center for 

Airway Trans. 

Time Bound 

Aras 

Cargo 
Yes Ankara 

 
No 

 
No 

24 hours, if distance ≤ 600, 

48 hours, if distance>600. 

Yurtiçi 

Cargo 
Yes 

Ankara & 

İstanbul 

 
No 

 
No 

24 hours, if distance ≤ 600, 

48 hours, if distance>600. 

MNG 

Cargo 
Yes No Yes Ankara 24 hours, all distances 
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CHAPTER 3  

 

LITERATURE SURVEY 
 

The critical decision for cargo delivery firms is the location of transfer 

centers and the allocation of agents to these transfer centers with 

minimum cost. In the literature this type of problem is called the “Hub 

Location Problem”, transfer centers are named as “hubs” and agents are 

named as “demand points”.  However, there does not exist a specific term 

for the transfer centers with airport. Therefore, we call this type of 

transfer center as “hub airport”. In the rest of this thesis, these terms will 

be used. 

 

Literature on hub location problems focuses on one type of transportation 

mode: either by plane or by truck. On the other hand, the competition 

among the firms has increased and firms use different types of 

transportation modes to have a competitive advantage. So we also review 

the literature on “Intermodal Freight Transportation”. In this chapter, 

literature on hub location and intermodal freight transportation problem 

are presented.  

 

3.1. Hub Location Problem and Related Literature 

 

Hubs are central facilities and are commonly used in cargo and postal 

delivery systems and communication networks. They act as switching 

points in networks and connect a set of interacting nodes.  Generally, hub 
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location problems involve demand points and demands coming from 

these points are consolidated in the hubs.   

 

Hub location problems can be classified into two groups according to the 

connection type of demand points to hubs as single and multi allocation. 

If each demand point is assigned to exactly one hub, the problem is called 

the single assignment (allocation) problem. If a demand point can be 

assigned to more than one hub then the problem is called the multi 

assignment problem. 

 

The research on hub location problem began with the studies of O’Kelly 

(1986a, 1986b, 1987). The first description of the hub location problem is 

given by O’Kelly (1986a). In this paper the two cases are considered; the 

organization of a single hub network and the organization of systems 

with two hubs. The author presents real world examples and simple 

models for these two cases. O’Kelly (1986b) describes the quadratic 

structure in hub location problem and develops a heuristic for the single 

assignment problem.  

 

Hub location problems also differ in their objective functions. The most 

frequently addressed hub location problem has been the p-hub median 

problem. The p-hub median problem is to locate p hubs in a network and 

allocate demand points to hubs such that the sum of the costs of 

transporting flow between all origin destination pairs in the network is 

minimized (Campbell, 1994). Different from the p-hub median problem, 

p-hub center problem is a minimax type problem. In other words, p-hub 

center problem is to locate p hubs in a network and to allocate demand 

points to hubs such that the maximum travel time (or distance) between 

any origin-destination pair is minimized (Campbell, 1994a). Another type 

of hub location problem is the hub covering problem in which the aim is 

to maximize the covered area by the hubs obeying the maximum time 
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bound on travel time. Generally, in these hub location problems the fixed 

cost of opening facilities is ignored. Different from these types, O’Kelly 

(1992b) introduces the fixed cost of facilities into hub location problems 

and the number of hubs becomes a decision variable.  In the following 

part, the related literature on these problems is presented in three different 

subsections. Namely: p-hub median, p-hub center, hub covering and hub 

location problems with fixed costs. 

 

3.1.1 P-hub Median Problem 

 

As mentioned before the research on hub location began with the work of 

O’Kelly (1986a, 1986b, 1987). O’Kelly (1987) presents the first 

mathematical formulation for the single allocation p-hub median problem 

as a quadratic integer program which minimizes the total network cost.  

This quadratic integer program is considered as the basic model for hub 

location problem. The author also presents two heuristic algorithms for 

this problem. Heuristic 1 assigns the demand points to its nearest hub and 

Heuristic 2 selects the better of the first and second nearest hub. The 

heuristics are used to solve the problem with a data based on the airline 

passenger interactions between 25 U.S. cities in 1970 evaluated by the 

Civil Aeronautics Board (CAB). Later, this data set has been used by 

almost all of the hub location researchers and will be referred as the CAB 

data set.  

 

Kliencewicz (1991) develops exchange heuristics for the single allocation 

p-hub median problem. These heuristics are compared with a clustering 

heuristic and heuristics developed in O’Kelly (1987). Among these 

heuristics the double-exchange heuristics in Kliencewicz (1991) show 

great promise as a solution technique for p-hub median problems.  

Skorin-Kapov & Skorin-Kapov (1994), develop a new heuristic method 



 

 18 

based on tabu search for the single allocation p-hub median problem. 

They also compare their results with the heuristics of O’Kelly (1987) 

with the CAB data set. They get better solutions than other heuristics but 

the CPU times are higher than the other heuristics. Campbell (1996) 

presented two heuristics which rely on first solving the multiple 

assignment problem (via greedy exchange heuristic) and then using the 

solution of multiple assignment to develop a good network of hubs and 

allocations for the single assignment problem.  

 

The first linear integer programming formulation for the single allocation 

p-hub median problem is given by Campbell (1994b). Ernst and 

Krishnamoorthy (1996) present a new formulation which requires fewer 

variables and constraints and so it is able to solve larger problems faster. 

They develop a heuristic algorithm which is based on simulated 

annealing, and they use the upper bound of the simulation annealing to 

develop a branch and bound algorithm. They have tested both their 

heuristic and branch and bound algorithm on the CAB data set and a new 

data set, consists of 200 nodes that represent postcode districts, along 

with their coordinates, which is referred as AP (Australian Post) data set. 

 

Sohn and Park (1997) studied the single allocation two-hub median 

problems. They transform the quadratic 0-1 integer program for single 

allocation problem in the fixed two hub system into a linear program and 

solve in polynomial time when the hub locations are fixed.  

 

Up to now we have presented the related literature on single allocation p-

hub median problem. Different from single allocation, multi allocation p-

hub median problems are also studied in the literature. Campbell (1992) 

was first to formulate the multiple allocation p-hub median problem as a 

linear integer program. Although Campbell (1996) studies the single 

allocation version of the p-median problem, the author obtains solutions 
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of multiple allocation problem by a greedy-interchange heuristic because 

the heuristics for solving the single allocation p-hub median problem are 

based on the solutions of the multiple allocation p-hub median problem.  

  

Skorin-Kapov et al. (1996) develop mixed 0/1 linear formulations with 

linear programming relaxations. In this paper the authors consider 

multiple and single allocation p-hub median problems. In a subsequent 

study, Sohn and Park (1998) focused on methods to find optimal 

solutions for the allocation problems with fixed hub locations. They 

studied single allocation p-hub median problem and they have reduced 

the number of variables and constraints of the formulation provided by 

Skorin-Kapov et al. (1996) when the unit flow cost is symmetric. Besides 

single allocation, they also focus on the multiple allocation problem and 

they showed that the multiple allocation problem can be solved by the 

shortest path algorithm when p is fixed.  O’Kelly et al. (1996) present 

exact solutions for hub location models and both single and multiple hub 

allocations are considered. They presented a further reduction in the size 

of the problem to the Skorin-Kapov et al. (1996) formulation based on 

the assumption of having a symmetric flow data. An important aspect of 

O’Kelly et al. (1996) is that it includes the discussion on the sensitivity of 

the solutions.  

 

Ernst and Krishnamoorthy (1998a) present a new mixed integer linear 

programming model for the multiple allocation p-hub median problem 

based on the idea that they proposed for the single allocation p-hub 

median problem in 1996. The authors develop exact and heuristic 

algorithms for the multiple allocation p-hub median problem. They 

outline a heuristic using shortest paths and obtain exact solutions using 

two methods, namely explicit enumeration and branch and bound. In the 

paper, computational results with both the CAB and AP data set are 

presented. 
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Sasaki et al (1999), consider the 1-stop multiple allocation p-hub median 

problem which is a special case of the problem where they allow using at 

most one hub by each route in the network and they formulate the model 

as a p-hub median problem. For solving this formulation two algorithms 

are described in the paper. First one is a branch and bound type algorithm 

that uses lagrangian relaxation and the second algorithm is a greedy type 

algorithm. They test the performance of their algorithm on the CAB data 

set.  

 

3.1.2 P-hub Center and Hub Covering Problems 

 

Generally, existing studies in the literature have focused on the p-hub 

median with single and multi allocation. Different from the p-hub median 

problem, O’Kelly and Miller (1991) studied the single facility minimax 

hub location problem. In this paper, the work of O’Kelly (1986, 1987) is 

extended to the new problem of siting a hub in order to minimize the 

maximum cost of interaction in a hub networks system. Several 

approaches to this problem were reviewed, including: discrete locational 

evaluation; Helly’s Theorem, a graphical approach; linear programming 

feasibility and Drezner’s round trip location algorithm. One of these 

approaches, Drezner’s algorithm, is chosen and applied to a real world 

example. 

 

Campbell (1994b) extends hub location to center and covering problems 

by introducing the p-hub center and hub covering problems. The author 

develops integer programming models for these problems considering 

both single and multiple allocations. 
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Kara and Tansel (2000) also focus on the minimax criterion and present a 

new linearization for the single allocation p-hub center problem. They 

also prove that the single assignment p-hub center problem is NP-Hard. 

Campbell et al. (2005) address p-hub center problem when hub locations 

are fixed and they present integer programming formulations for both 

uncapacitated and capacitated cases.  

 

Kara and Tansel (2003) focus on the hub covering problem. They studied 

the single allocation hub set covering problem and proved that it is NP-

Hard. The authors develop a new model and give three linearizations for 

the old model developed by Campbell (1994b). Computational results 

show that the new model provides better CPU times than the old model.    

 

Hub location literature discussed above does not consider the transient 

times spent at hubs for loading-unloading operations. Kara and Tansel, 

(2001) consider these transient times and identified a new problem that 

they call the latest arrival hub location problem. In this problem the aim 

is to minimize the maximum arrival time at destinations. For this model 

linear and nonlinear IP formulations are given and medium sized 

problems can effectively be solved using standard optimization tools.  

 

Yaman, Kara and Tansel (2005) propose a mathematical model that 

allows stopovers for the latest arrival hub location problem. Proposed 

model is developed as a mixed integer program and it has nonlinear 

constraints. Linearization techniques are applied to these nonlinear 

constraints and valid inequalities are developed to strengthen the model. 

After linearizations and valid inequalities, the final model is tested with 

the data taken from Turkish cargo delivery firms. Inclusion of the valid 

inequalities gets the optimal solution in a smaller time.   
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3.1.3 Hub Location Problem with Fixed Costs 

 

As we mentioned before, in the p-hub location problem the fixed cost of 

opening facilities is disregarded. On the other hand, the simple plant 

location problem includes fixed facility costs. In 1992, O’Kelly 

introduces the fixed facility costs into a hub location problem and thereby 

making the number of hubs a decision variable.  

 

Campbell (1994b) presented the first linear programming formulations 

for the single and multi allocation hub location problems. Then 

Abinnoour - Helm (1998) introduced a heuristic to solve the 

uncapacitated hub location problem which is a hybrid of genetic 

algorithms and tabu search. He uses genetic algorithms to select the 

number and the location of hubs and tabu search to assign the demand 

points to the hubs. Topcuoglu et al. (2005) proposed another genetic 

algorithm for the uncapacitated hub location problem. They compare 

their results with the hybrid heuristic of Abdinnour-Helm (1998) on the 

CAB and AP data sets. Their experimental results show that their 

heuristic outperforms the heuristic proposed in Abdinnour-Helm (1998) 

with respect to both solution quality and required computational time. 

Another heuristic for the uncapacitated single allocation hub location 

problem is proposed in Chen (in press). He proposes a hybrid heuristic 

based on simulated annealing method, tabu list and improvement 

procedures. His computational results demonstrate that the proposed 

hybrid heuristic outperforms the heuristic presented in Topcuoglu et al. 

(2005) in terms of runtime and solution quality.  

 

Ernst and Krishnamoorthy (1999) concentrate on the capacitated single 

allocation hub location problem. They used a modified version of a 

previous mixed integer linear programming formulation that they 
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developed in 1996 for the p-hub median problems. The authors also 

develop heuristics for obtaining upper bounds. They obtained optimal 

solutions by using an LP-based branch and bound method with the initial 

upper bound provided by the heuristics.  They tested their algorithm on 

the AP data set because CAB data does not include capacities.  

 

J.Ebery et al. (2000) describe a new mixed integer formulation for the 

capacitated multiple allocation hub location problem. Authors construct 

an efficient heuristic algorithm based on shortest paths and the upper 

bound obtained from this heuristic is incorporated in a linear 

programming based branch and bound solution procedure.  Their 

computational experiments were carried out using the CAB and AP data 

sets. 

 

Boland et al. (2004) consider formulations and solution approaches for 

multiple allocation hub location problems. They discuss both the 

capacitated and the uncapacitated multiple allocation hub location 

problem. They give the formulations of these problems and they identify 

the various characteristics of optimal solutions to multiple allocation hub 

location problems. Then they develop preprocessing procedures and 

tighten constraints for the existing formulations by using these 

characteristics. These procedures effectively reduce the computational 

effort required to obtain optimal solutions.  

 
Marin et al. (2006) studied the uncapacitated multiple allocation hub 

location problem. They present new formulations of this problem that 

allow one or two visits to hubs and include more general cost structures 

that do not need to satisfy the triangle inequality. They checked the 

strength of these new formulations and compared them with other 

formulations presented in the literature on the CAB and AP data sets. The 

results show that formulations are better than the previous studies used 
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for small and medium problems. Canovas et al. (in press) also deals with 

the uncapacitated multiple allocation hub location problem. A heuristic 

method is presented and it is tested with CAB and AP data sets.  

 

A polyhedral study on the multiple allocation uncapacitated hub location 

problem is presented in Hamacher et al. (2004). The authors determine 

the dimension and derive some classes of facets for this polyhedron. 

Labbé and Yaman (2004) studied the single allocation uncapacitated hub 

location problem. The authors derive a family of facet defining 

inequalities that can be separated in polynomial time. Labbé et al. (2005) 

study the capacitated version of the single allocation hub location 

problem where each hub has a fixed capacity in terms of the traffic that 

passes through it. They investigated some polyhedral properties of these 

problems and developed a branch-and-cut algorithm based on these 

results.  

 

Hub location problems are difficult problems in general. For example the 

p-hub median problem is NP-hard. Moreover, even if the locations of the 

hubs are fixed, the allocation part of the problem remains NP-hard 

(Skorin-Kapov and Skorin-Kapov 1994). The single allocation hub center 

problem is NP-Complete as shown by Kara and Tansel (1999a). Lastly, 

when we look at the single allocation hub covering problem, we see that 

this problem is also NP-Hard as shown by Kara and Tansel, (2003).  

 

3.2. Intermodal Freight Transportation and Related 

Literature 

 

The research in OR literature has focused mostly on uni-modal transport 

problems. Hub location problems are of this type since only one type of 

vehicle is used such as planes, trucks etc. Since the number of 
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competitors of the firms has increased, a firm may want to use different 

modes of transportation. This may be useful in reducing transportation 

costs or increasing delivery speed. Using different modes of 

transportation is called intermodal freight transportation. This is a newly 

emerging research field and therefore there is not a consensus definition 

and a common conceptual model for the intermodal freight 

transportation. Intermodal transport is defined by the European 

Conference of Ministers of Transport (ECMT) as the carriage of goods 

by at least two different modes of transport in the same loading unit. 

Another description is given by Arnold et al (2004), intermodal freight 

transportation is characterized by the combination of the advantages of 

rail and road, rail for long distances and large quantities, road for 

collecting and distributing over short or medium distances. Of course, the 

modes of transportation can be different from rail, such as sea or water.  

An example of the intermodal freight transportation is seen in Turkish 

cargo delivery firms as we presented in the second chapter. In Turkey, 

two modes of transportation are used, planes and trucks. 

 

The intermodal transport system is more complex to model than the uni-

modal one and the use of OR in intermodal transport research is still 

limited. Majority of the intermodal literature has been published in the 

last ten years. In general most of the researchers have focused on the rail 

truck intermodal chain.  The main objective of intermodal rail haul 

research is to find solutions to the problem of organizing the rail haul in 

an efficient, profitable and competitive way.  

 

Generally they distinguish three levels of planning and decision making 

with respect to the organization of the rail haul: strategic planning, 

tactical planning and operational planning. At the strategic level, the 

configuration of the service network design is determined. This includes 

decisions about which rail links to use, which origin and destination 
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regions to serve, which terminals to use and where to locate new 

terminals. At the tactical level, the configuration of the train production 

system is determined. This includes decision about train scheduling, 

routing and frequency of service. The operational level involves the day 

to day management decisions about the load order of trains, redistribution 

of railcars and load units.  

 

Van Duin and Van Ham (1998) focus on to find optimal locations for 

terminals.  They develop an appropriate model for each level: At the 

strategic level, a linear programming model searches the optimal 

locations for terminals. This model takes into account the existing 

terminals in the Netherlands and can then be used in order to find some 

new good areas. In the next level a concrete location in the interesting 

area is found by the use of a financial analysis. On the lowest level a 

discrete event stimulation model of the terminal gives the possibility to 

stimulate the working of the terminal.   

 

Justice (1996) deals with the problem of a drayage company ensuring 

sufficient chassis (truck-train) available at terminals in order to meet 

demand. Reallocation is provided by truck within a region or by train 

between regions. The objective is to determine when, where, how many 

and by what means (truck-train) chassis are redistributed and to develop a 

planning model with minimum cost. The problem is mathematically 

formulated as a time based (network) transportation problem. The model 

is applied to aid interconnected terminals across the USA. 

 

Network models for terminal location decisions have been applied by 

Rutten (1995). Rutten’s objective is to find terminal locations that will 

attract sufficient freight to run daily trains to and from the terminal. He 

studies the effect of adding terminals to the network on the performance 

of existing terminals and the overall intermodal network. Woxenius 
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(1997) focuses upon existing and emerging technologies for European 

intermodal road-rail transshipment terminals and their impact on urban 

transport patterns.  

 

Marin et al. (2000) present extensions of the uncapacitated hub location 

problem with multiple allocations that can be applied to network design 

problems in intermodal public transportation. They explain the different 

models of UHL and the relations between these models.   

 

Arnold et al. (2004) deals with the problem of optimally locating 

multimodal terminals for freight transport. A mixed 0-1 program closely 

linked to multicommodity fixed charge network design problem is 

suggested and solved by a heuristic approach. The model is applied to the 

Iberian Peninsula.  

 

Racunica and Wynter (2005) present an application of locating the 

optimal configuration of intermodal freight transport hubs. The model 

that they propose for this application is based on the uncapacitated hub 

location problem and it allows for nonlinear cost functions. 

Computational experience on the Alpine freight network is provided. In 

order to solve this model a linearization procedure and two heuristics is 

developed.     

 

Çetinkaya et al. (2006) develop an iterative heuristic for the combined 

hubbing and routing problem in postal delivery systems. In the first stage, 

hub locations are determined and postal offices are multiply allocated to 

the hubs. The second stage gives the routes in hub regions. The final 

stage seeks improvements based on special structures in the routed 

network. Computational experience is reported for test problems taken 

from the literature and for a case study using the Turkish postal delivery 

system data.  
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In the rest of the thesis we compare the results of the model that we 

developed for cargo delivery systems with the current structure of MNG 

Cargo. The proposed model for that problem is presented in Chapter 4. 
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CHAPTER 4  

 

MODEL DEVELOPMENT 
 

In this chapter we analyze the structure of the problem that is special to 

cargo delivery firms. The main objective for cargo delivery firms is to 

minimize the total transportation cost. The p-hub median version of the 

hub location problem can be used to respond to the cargo delivery firms’ 

objective, but the delivery time is not considered in this type of hub 

location problems.  However, as stated before time is the key element of 

the customer satisfaction. Therefore, it is important to obey the maximum 

delivery time between any pair of nodes. Hub covering problem can be 

used to achieve this objective but in this version of the hub location 

problem the time that is spent at hubs is not considered. In the literature, 

transportation times and transient times are considered in the latest arrival 

hub location problem. On the other hand, in all these hub location 

problems only one type of vehicle is considered and using different 

modes of transportation is considered in the intermodal freight 

transportation problem. Therefore, the structure of our problem is similar 

to the combination of p-hub median, hub covering, latest arrival hub 

location and intermodal freight transportation problems which, to the best 

of our knowledge, has not been studied in the literature.  

 

In addition to these, as mentioned in the first chapter, the problem that we 

study has two layers: in the first layer we determine the number and the 

location of hub airports, in the second layer we determine the number and 

the location of hubs. For these reasons, our problem can be named as a 

“Time constrained hierarchical hub location problem (TCHH)”.  
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The problem of interest can be stated as follows: Given a transportation 

network, set of potential nodes for hubs and the set of potential nodes for 

hub airports (which is a subset of the potential hub set), find the location 

of hub airports and hubs, allocation of hubs to these hub airports and the 

allocation of demand points to the hubs so as to minimize the total cost 

and obey the time bound. The total cost includes;  

 

� Transportation cost between demand points and hubs with middle 

trucks, 

� Transportation cost between hubs with main trucks, 

� Transportation cost between hubs and hub airports with main trucks, 

� Transportation cost between airports by planes. 

 

Let us define our problem in more detail:  

 

Cargo is sent to the hubs from demand points and it is transported via 

these hubs using trucks or planes. Each demand point is allocated to 

exactly one hub. Different from demand point allocation, each hub will 

be allocated to at most one hub airport.  

 

All hub airports are connected to the central airport. From all the hub 

airports the planes bring their cargo to the central airport. After loading-

unloading, all planes go back to their initial hub airports. In the service 

network, if it is decided to use a plane then the central airport must be 

opened. Otherwise, if the cargo is only transported by trucks it is not 

necessary to open the central airport.  

 

Hubs are allocated to hub airports and they can also be allocated to the 

central airport. If a hub is allocated to the central airport, then cargo will 

be delivered using main trucks to the central airport as shown in Figure 

4.1. At the central airport, cargo sent from hubs and hub airports is sorted 
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out according to its destination and is loaded to trucks or planes. The 

planes that depart from the central airport should wait for all the planes 

and trucks coming to this central airport and after loading operations 

planes go back to their initial hub airports. Same property is valid for 

trucks that depart from hubs to demand centers. All trucks that depart 

from hubs to demand centers wait for all the trucks and planes that are 

coming from other hubs. After unloading and loading operations trucks 

dispatch the cargo to the demand centers. Therefore, the departure time 

from hubs to demand centers is always greater than the departure time 

from hubs to other hubs. 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

Figure 4.1. The Examples of Allocations,         

  

                                   

Numbered cycles symbolize the demand points. First demand point is 

allocated to the central airport directly and its cargo is sent to the central 

airport with middle trucks. Second demand point is allocated to a hub and 

its cargo is sent with middle trucks to the hub and then to the central 

airport with main trucks. Third demand point is allocated to a hub airport 

 

 
Central 
Airport 

4 

3

2

 : By middle trucks 

 : By main trucks 

 : By planes 

1

: Demand Points 

: Hubs without airports  

: Hub airports 



 

 32 

so its cargo is transported here with middle trucks and from this hub 

airport cargo is sent to the central airport by plane. Last demand point is 

allocated to a hub and its cargo is sent here using middle trucks, then to 

the hub airport by main trucks and then to the central airport by plane. As 

we mentioned before it is not necessary to allocate each hub to a hub 

airport. If there does not exist an airway transportation between any pair 

of hubs then there must be a ground transportation that connect these two 

hubs. Otherwise, it is impossible to send the cargo between these two 

hubs. On the other hand, if there does not exist a ground transportation 

between any pairs then there exist an airway that connect these two hubs. 

 

The proposed model is formulated as a mixed integer program. The 

model is subject to assignment constraints, time constraints and 

connectivity constraints.  

 

As we mentioned before; we have a set of demand points, potential hubs 

and potential hub airports. D is the set of demand points, H is the set of 

potential hubs and A is the set of potential hub airports. H is a subset of D 

which MNG Cargo operates hub. Similarly, A is a subset of H because 

we select the hub airports from the possible set of hubs which have 

airports. This means, if node is a hub airport it is also a hub, but not vice 

versa. Therefore we define the following:  

A: set of possible locations for hub airports,  

V: set of possible locations for hubs (without airport),  

0: central airport. Therefore ;  

 

{ }0∪∪= VAH  
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Parameters 

In the model p symbolizes the number of hubs to be opened and T 

symbolizes the maximum time within which cargo should be delivered 

from any node i to any node j as “time-bound”. dij is the distance between 

node i and node j,  tij  is the time to travel from node i to node j by truck. 

Since in real life the transportation time with main trucks is smaller than 

the transportation time with middle trucks, we use α to make this 

differentiation and α is the discount factor between middle and main 

trucks.  Moreover, u

it 0  is the time to travel from hub airport i to the 

central airport by plane. If a plane is used then its cost equals to $u per 

flight. The cost of a truck between a demand point and a hub is equal to 

$f per kilometer and the cost of a truck between two hubs equals to $fhub 

per kilometer.  

 

In the model we also consider the loading / unloading times at hub 

airports. The loading / unloading times at any hub airport is mina and at 

the central airport is min0.   All parameters are shown in Table 4.1.  

Table 4.1. Parameters of the model 

p The required number of hubs  

T time bound 

dij the distance between node i and node j 

tij the time to travel between node i and node  j  by truck 

u

it 0  the time to travel from  hub airport i to the central airport by plane 

u cost of a plane per flight 

f per kilometer traveling cost of a truck between a demand point and a 

hub  

fhub per kilometer traveling cost of a truck between two hubs. 

mina Loading / unloading time at any hub airport  

min0   Loading / unloading time at the central airport, 

  α discount factor between middle and main trucks where 0 < α < 1. 
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Decision variables   

 

In the model we have two sets of decision variables. The first set is the 

binary variables and the second set is the continuous variables. In the first 

set of the decision variables we have xij, wij, zij, ui, and Yi which are used 

for the allocations and operating hubs as described below.  These 

variables are schematically shown in Figure 4.2.  
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Figure 4.2. The first set of decision variables of the model 

         Hub j and Hub l are hubs without airport 

 

The decision variables in the second set are used to determine the 

departure times from hubs to demand centers and from hubs to hubs. 

These decision variables are defined separately for hubs (without airport) 

and hub airports. 
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These variables are schematically shown in Figure 4.3. 
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Figure 4.3. The second set of decision variables of the model 

   Hub h and Hub l are hubs without airport 

 

4.1 Proposed Models 

 

As we mentioned before, hubs can be allocated to at most one airport. 

Therefore, it is not necessary to use a plane when the cargo is dispatched.  

This decision is related to the time bound, T. If T is large enough then we 

do not need to use a plane to deliver cargo. However, if T is small we 

cannot deliver all cargo using trucks. Therefore, we have two cases. In 

the first case cargo is delivered by using at least one plane and in the 
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second case cargo is dispatched only by trucks. We develop two models 

for these two cases. In the first model, cargo is transported by both planes 

and trucks and we assume that at least one plane is used (will be referred 

as “TCHH_Tr.&P”). In the second model, cargo is transported only by 

trucks (referred as “TCHH_Tr.”).   

 

4.1.1 TCHH_Tr.&P 

 

The TCHH_Tr.&P aims to design a network where all packages are sent 

between origin and destinations with minimum cost by using trucks and 

planes within the time bound. The model is composed of assignment, 

connectivity and time constraints. The allocation of demand points to 

hubs and hubs to hub airports is provided by assignment constraints. The 

transportation of the cargo between all origin-destination pairs is ensured 

by the connectivity constraints. And the time constraints provide that 

cargo is delivered within a time bound.  

 

We use nine sets of decision variables in the model and forty six sets of 

constraints are developed by using these decision variables. The more 

detailed explanation of the constraints and the objective function is given 

in the following four parts.  

 

4.1.1.1 Objective Function;  

 

 

 

Our objective is to minimize the total cost of delivering cargo by trucks 

and planes. First term is the transportation cost between demand points 

and hubs. Second term represents the total transportation cost between 

hubs. The third term is the transportation cost between airports by planes. 
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4.1.1.2 Assignment and Connectivity Constraints 

Constraints (1) to (18) are the assignment and connectivity constraints. 

The location of hubs and hub airports, allocation of demand points to 

hubs and the allocation of hubs to hub airports is provided by assignment 

constraints. After these allocations the connection between these hubs 

and hub airports is provided by the connectivity constraints. The detailed 

explanation of each constraint is given below: 

  

∑
∈

∈∀=
Hj

ijx Di                                                                     1  (1) 

{ }
∑

∈

∈∀≤
0

Vi                                                                    1 
AUj

ijw  (2) 

{ }
∑

≠
∈

∈∀≤+

ij
AUj

iij Uw
0

Ai                                                             1  (3) 

∑
∈

=
Aj

jw 0,0  (4) 

∑
∈

≤
Hj

jY                                                                      p  (5) 

AiYUi ∈∀≤                                                                       i  (6) 

HjiYz jij ∈∀≤ ,                                                                         

 

(7) 

HjiYzij ∈∀≤ ,                                                                        i  (8) 

HjDiYx jij ∈∈∀≤ ,                                                                               (9) 

{ }) 0(,                                                                       ∪∈∈∀≤ AjHizw ijij
 (10) 

 
{ }) 0(,                                                                   ∪∈∈∀≤ AjHizw jiij

 

(11) 



 

 39 

AjHiUw jij ∈∈∀≤ ,                                                                        (12) 

                                                                                       , HiYx iii ∈∀=  (13) 

                      10,0 =x    (14) 

{ }) 0 V(lk,                         ))(( ∪∈∀−−≥ ∑∑
∈∈ Ar

lrl

Ar

krkkl wYwYz   
(15) 

{ } Al), 0 V(k                      )U-(Y ))(( ll ∈∪∈∀−−≥ ∑∑
≠
∈∈

lr
Ar

lrl

Ar

krkkl wYwYz

 

 
(16) 

{ })0 V(lA,k                      )U-(Y ))(( kk ∪∈∈∀−−≥ ∑∑
∈

≠
∈ Ar

lrl

kr
Ar

krkkl wYwYz

 

 
(17) 

Alk,     )U-(Y )U-(Y ))(( kkll ∈∀−−≥ ∑∑
≠
∈

≠
∈

lr
Ar

lrl

kr
Ar

krkkl wYwYz   
(18) 

 

First four constraints are the assignment constraints. According to 

constraints (1) and (9) each demand point is assigned to exactly one hub 

and an assignment is possible if that hub is opened. Constraints (2) and 

(12) force each hub Є V, to be assigned to at most one hub airport and an 

assignment is possible if that hub airport is opened. According to 

constraint (3) if a hub is from the possible hub airport set and this hub is 

opened as a hub airport by the model than it cannot be assigned to 

another hub airport. Central airport is not assigned to other hub airports 

by constraint (4).    

 

Constraint (5) ensures that the number of hubs is at most “p”. Constraint 

(6) forces that if a possible hub is opened as a hub airport then it must 

also be opened as a hub.  
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Constraints (7) and (8) allow a truck link between two hubs if the hubs at 

the endpoints are opened. Constraint (10) and (11) ensure that if a hub is 

assigned to a hub airport than there must be a truck link between the hub 

and the hub airport. Constraint (13) ensures that if hub i is opened than 

demand point i is assigned to that hub. Constraint (14) forces the central 

airport to be opened.  

 

Constraints (15) to (18) ensure that if two hubs are not assigned to hub 

airports or do not become hub airports then there must be a truck link 

between these two nodes. Otherwise, cargo can not be delivered between 

these two hubs. For instance, constraint (18) provides that if hub k and 

hub l are not opened as a hub airport and are not assigned to another hub 

airport than there must be a highway link between these hubs. Moreover, 

since central airport is neither opened as a hub airport (∉A) and nor 

assigned to it, there is always a truck link between central airport and a 

hub, where the hub is not assigned to any hub airport and is not opened as 

a hub airport.  

 

4.1.1.3 Time Constraints 
 
Constraints between (19) and (37) are the time constraints. These 

constraints are constructed to keep track of departure times from hubs / 

hub airports and to provide that all the cargo is delivered to their 

destination points within time bound T. First we give the constraints and 

then we present the detailed explanation of the constraints.   

 

( ) VDD rh ∈∀+≥ rh,                                                      z  tˆ
rhrhα  (19) 

{ })0(rV,h                                                       z  t ˆ
rhrh ∪∈∈∀













+≥ AAD rh α

 
 

 
(20) 
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VDh ∈∀≥ h                                                                    D̂ h  (21) 

AAAh ∈∀













+≥ h                                                         U tˆ

hh0,
u

0  
 

(22) 

VDA rh ∈∈∀









+≥ rA,h                                                       z  tˆ

rhrhα  
 

(23) 

{ } AAA rh ∈∪∈∀












+≥ h),0A(r                                                      z  tˆ

rhrhα

 

 
(24) 

AAh ∈∀+≥ h                                                            Umin  Â hah  
 

(25) 

                                                                  min  Â 000 +≥A  
 

(26) 

  VhD,i                                                                    x t ˆ
ihih ∈∈∀≥hD  

 
(27) 

A  hD,i                                                                    x t ˆ
ihih ∈∈∀≥hA  

 
(28) 

VDA rh ∈∈∀












+≥ rA,h                                                      w t ˆˆ

rhrhα  
 

(29) 

Ahr,                                                      w tˆˆ
rhrh ∈∀













+≥ αrh AA  

 
(30) 

  Di                                                                     x t ˆ
i,0i,00 ∈∀≥A  

 
(31) 

VDA h ∈∀












+≥ h                                                    z  t ˆˆ

h,0h,00 α  
 

(32) 

AAA h ∈∀












+≥ h                                                   z  tˆˆ

h,0h,00 α  
 

(33) 

Ah                                                       U tˆˆ
hh,0

u
0 ∈∀














+≥ hAA  

 
(34) 

VhD,i                                                     x)  t   ( ihih ∈∈∀≤+ TDh  

  

(35) 
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AhD,i                                       x)  t   ( ihih ∈∈∀≤+ TAh  (36) 

Di                                       x)  t   ( i0i00 ∈∀≤+ TA  (37) 

 
Constraints (19) to (26) are to keep track of departure times from all hubs 

(hubs Є H) to demand points. Constraints (19), (20) and (21) are for the 

hubs in set V. Constraint (19) provides that the departing vehicles at these 

hubs must wait for the trucks coming from other hubs and constraint (20) 

ensures that these departing vehicles also wait for the trucks coming from 

hub airports before delivering the cargo to demand points. Constraint (21) 

ensures that outgoing cargo must leave the hub before delivering the 

incoming cargo. Constraints (22) to (24) are written for the hub airports. 

The departing vehicles at these hub airports must wait for the trucks 

coming from other hub airports (constraint (24)) and hubs assigned to 

them (constraint (23)) and also wait for the plane coming from the central 

airport (constraint (22)) before delivering the cargo. Constraints (25) and 

(26) are written for the loading and unloading times at hub airports. 

Constraint (25) is for any hub airport and constraint (26) is for the central 

airport. 

 

Constraints (27) to (34) are written to keep track of leaving times from 

hubs to hubs, hub airports and central airport. Constraint (27) ensures that 

the departing vehicles from the hubs must wait for all the trucks coming 

from demand points assigned to that hub before sending cargo. 

Constraints (28) to (30) force that the departing vehicles from hub 

airports must wait for all the trucks coming from demand points and hubs 

assigned to that hub airport before sending cargo. Finally, the departing 

vehicles from central airport must wait for all the trucks coming from 

demand points and hubs assigned to that hub airport and also must wait 
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for the planes before sending cargo. These are ensured by constraints (31) 

to (34). 

 

Constraints (35) to (37) ensure that all the cargo is delivered to their 

destination points within time bound T. 

 

4.1.1.4 Non-negativity and Binary Restrictions  
 

{ } HjDixij ∈∈∀∈ ,                                               1,0                 (38) 

{ } HjHizij ∈∈∀∈ ,                                               1,0                 (39) 

{ } { })0(,                                               1,0                ∪∈∈∀∈ AjHiwij

 

(40) 

{ } AiU i ∈∀∈                                                 1,0                 (41) 

{ } HiYi ∈∀∈                                                 1,0                 (42) 

Vh                                                              0 ∈∀≥hD  (43) 

{ }) 0 A(h                                                              0 ∪∈∀≥hA  (44) 

   Vh                                                               0  ˆ ∈∀≥hD  
(45) 

{ }    ) 0A(h                                                               0  ˆ ∪∈∀≥hA  
 

(46) 

  

As mentioned earlier this model is constructed under the assumption of 

using at least one plane. Constraint (14) and connectivity constraints 

provide that central airport is opened and at least one plane is used. 

However, when T is large enough it is not necessary to use plane and 

cargo can be delivered only by trucks. The proposed model for this case 

is presented in the following section. 
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4.1.2 TCHH_Tr. 

In the TCHH_Tr. the aim is to design a network where all packages are 

sent between origin and destinations with minimum cost by using only 

trucks within the time bound.  

 

We use five set of decision variables in the model and 16 constraint sets 

are developed by using these decision variables. The decision variables 

that are related with the hub airports and planes are not used in this 

model. The more detailed explanation of the constraints and the objective 

function is given below:  

 

 

 

 

subject to 

 (1), (5),(7),(8),(9),(13),(38),(39),(42), 

( ) HDD rh ∈∀+≥ rh,                                                   z  tˆ
rhrhα  (19*) 

HDh ∈∀≥ h                                                                  D̂ h  (21*) 

  HhD,i                                                                  x t ˆ
ihih ∈∈∀≥hD  (27*) 

HhD,i                                                    x)  t   ( ihih ∈∈∀≤+ TDh  (35*) 

Hh                                                                 0 ∈∀≥hD  (43*) 

   Hh                                                                  0  ˆ ∈∀≥hD  (45*) 

HjiYYz jiij ∈∀+≥ ,                                                           1-  (47) 

 

In this model, the objective function includes the total cost of 

transportation costs of the trucks. The difference between two objective 

functions is the transportation cost between airports by planes.  

 

∑∑∑∑
∈∈∈ ∈

+
Hj

ijijhub

HiDi Hj

ijij zdfxfd2min
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The constraints labeled with (*) are the same as the constraints in the 

TCHH_Tr.&P model but the set of nodes is different. Since we do not 

have the hub airports, the set A is an empty set and all the hub airports 

including central airport Ankara are acting as a hub. Therefore, all the 

hubs are chosen from set H. One additional constraint is the constraint 

(47) which ensures that if two hubs are opened then there must be a link 

between these two hubs.   

 

These two models include non-linear constraints. In the following part we 

give the linearization of these non-linear constraints. 

 

4.2 Linearizations: 

 

We have 6 different sets of non-linear constraints. All these nonlinear 

constraints are linearized and the proofs of these linearizations are given 

in this part. Since the structure of constraints is similar in each set, we 

only give the proof of one constraint from each set.   

 

In the first proposition we give the linearization of the first set of 

nonlinear constraints. This set consists of constraints (15) to (18) which 

are the connectivity constraints.  

 

Proposition #1 :  Constraints (15) to (18) can be linearized as ;   

 

{ })0V(lk,                             1 ∪∈∀−+≥++ ∑∑
∈∈

lk

Ar

lr

Ar

krkl YYwwz          (15’) 

 

{ } Al),0V(k                           1 Ul ∈∪∈∀−+≥+++ ∑∑
≠
∈∈

lk

lr
Ar

lr

Ar

krkl YYwwz     (16’) 

  

{ })0 V(lA,k                           1Uk ∪∈∈∀−+≥+++ ∑∑
∈

≠
∈

lk

Ar

lr

kr
Ar

krkl YYwwz     (17’)     
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Alk,               1UU kl ∈∀−+≥++++ ∑∑
≠
∈

≠
∈

lk

lr
Ar

lr

kr
Ar

krkl YYwwz       (18’)

  
 
Proof:  Among these constraints the proof of constraint (15) is given. 
 
We have four cases;   

1. If ∑
∈Ar

krw  = 1 and ∑
∈Ar

lrw  = 1 then; 

Yk  = 1 and Yl  = 1 

Constraint (15)     :  zkl ≥  0 

Constraint (15’)   :  zkl ≥  -1   

 

2. If ∑
∈Ar

krw  = 1 and ∑
∈Ar

lrw  = 0 then we have two cases; 

a. Yk  = 1 and  Yl  = 0                   

    Constraint (15)    :  zkl ≥  0 

    Constraint (15’)   :  zkl ≥  -1   

b. Yk  = 1 and  Yl  = 1                  

    Constraint (15)    :  zkl ≥  0 

    Constraint (15’)   :  zkl ≥  0   

 

3. If ∑
∈Ar

krw = 0 and ∑
∈Ar

lrw  = 1 then we have two cases; 

 a. Yk  = 0 and  Yl  = 1                  

     Constraint (15)    :  zkl ≥  0 

     Constraint (15’)   :  zkl ≥  -1   

 b. Yk  = 1 and  Yl  = 1 

     Constraint (15)   :  zkl ≥  0 

     Constraint (15’)  :  zkl ≥  0   

 

4. If ∑
∈Ar

krw  = 0 and ∑
∈Ar

lrw  = 0  then we have four cases; 

 a. Yk  = 0 and  Yl  = 0                   

     Constraint (15)    :  zkl ≥  0 

     Constraint (15’)   :  zkl ≥  -1 

b. Yk  = 1 and  Yl  = 0 

    Constraint (15)    :  zkl ≥  0 

    Constraint (15’)   :  zkl ≥  0   

c. Yk  = 0 and  Yl  = 1                    

    Constraint (15)    :  zkl ≥  0 

    Constraint (15’)   :  zkl ≥  0   

d. Yk  = 1 and  Yl  = 1 

    Constraint (15)    :  zkl ≥  1 

    Constraint (15’)   :  zkl ≥  1   
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In each case right hand side of the constraint (15’) equals to the one of 

constraint (15) or it gives a redundant lower bound for the right hand side 

of constraint (15). However, when constraint (15’) gives a redundant 

lower bound, the nonnegativity constraints ensure that zkl ≥  0.  So, we can 

linearize constraint (15) using constraint (15’).  

 

As mentioned before the structure of constraints (16) to (18) is similar to 

the one of constraint (15). These constraints can be linearized in a similar 

fashion.  

 
Second set of nonlinear constraints, constraints (19), (20), (23) and (24), 

are related with the leaving times from hubs in set V and hubs in set A to 

demand points. In these constraints the departing vehicles from the hubs 

wait for the trucks coming from other hubs.  

 

Proposition #2:  Constraints (19), (20), (23) and (24) can be linearized 

as ;   

 

VDD rh ∈∀+≥ rh,                                                      z  tˆ
rhrhα                       (19’) 

{ })0(rV,h                                                       z  tˆ
rhrh ∪∈∈∀+≥ AAD rh α        (20’) 

VDA rh ∈∈∀+≥ rA,h                                                       z  tˆ
rhrhα                 (23’) 

{ } AAA rh ∈∪∈∀+≥ h),0A(r                                                        z  tˆ
rhrhα     (24’) 

 

Proof: The proof for constraint (19) is given.  

We have two cases: 

1. If zrh = 1 then both constraint (19) and (19’) equal to 

  tˆ
rhα+≥ rh DD .  
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2. If zrh = 0 then 

Constraint (19)    :   0≥hD  

Constraint (19’)   :   rh DD ˆ≥  

When zrh = 0 constraint (19’) gives a lower bound for Dh. 

If zrh = 0, then there does not exist a truck between hub r and hub h. From 

constraints (15) to (19), we know that if there does not exist a truck 

between any pairs then there exists an airway that connect these two 

hubs. Otherwise, cargo between hub r and hub h cannot be delivered. 

Constraints (32) to (34) force that the central airport waits for all the 

cargo including the one from hub r and constraint (20) forces that hub h 

also waits for all the cargo coming from the central airport. Therefore hub 

h also waits for hub r before sending cargo to its demand points. 

Therefore, constraint (19’) is satisfied. So, we can linearize constraint 

(19) using constraint (19’) 

 

Third set of constraints are similar to the second set of constraints. They 

are related with the leaving times from hub airports to demand points but 

the departing vehicles from hubs wait for the plane coming from hub 

airports. Constraint (22) is the only element of this set and we give the 

proof for this constraint.   

 

Proposition #3: Constraint (22) can be linearized as ;   

 

AAAh ∈∀+≥ h                                                Utˆ
h

u
h0,0                     (22’) 

 

Proof: 

We have two cases: 

1. If Uh = 1 then constraint (22) and constraint (22’) yield the same right 

hand side.  
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2.If Uh = 0 then 

Constraint (22)    :   0≥hA  

Constraint (22’)   :   0ÂAh ≥  

When Uh = 0 constraint (22’) gives a lower bound for Ah.  Uh equals to 

zero means there does not exist a plane from hub airport h to central 

airport.  Hub airport h can be allocated to central airport or to another hub 

airport by truck. From constraint (24) hub airport h also waits for the 

central airport. Therefore, constraint (22’) is satisfied. So, we can 

linearize constraint (22) as constraint (22’) 

 

Constraints (29) and (30) are related with the leaving times from hub 

airports to hubs and they are the fourth set of the nonlinear constraints.  

 

Proposition #4: Constraints (29) and (30) can be linearized as;   

 

VDA rh ∈∈∀−+≥ rA,h                                          ) w- (1 M   )  tˆ (ˆ
rhrhα        (29’)  

Ahr,                                                   )w-M(1 - ) t  Â (ˆ
rhrhr ∈∀+≥ αhA              (30’) 

where M is a very big number. 

 

Proof :  The proof of constraint (29) is given. 

We have two cases; 

1. If wrh = 1 then constraint (29) and constraint (29’) yield the same right 

hand side. 

2. If wrh = 0 then; 

Constraint (29)    :   0ˆ ≥hA  

Constraint (29’)   :       M  )  ˆ (ˆ −+≥ rhrh tDA α  

When wrh = 0 constraint (29’) gives a lower bound for hÂ . Since M is a 
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big number right hand side of the (29’) gives a redundant lower bound on 

hÂ . So, we can linearize constraint (29) using constraint (29’) 

 

Fifth set of constraints, constraints (32) to (34), are related with the 

leaving times from central airport to hubs Є H.  

 

Proposition #5:  Constraints (32) to (34) can be linearized as;   

 

VDA h ∈∀+≥ h                                            z  tˆˆ
h,0h,00 α           (32’) 

AAA h ∈∀+≥ h                                            z tˆˆ
h,0 h,00 α           (33’) 

Ah                                                 Utˆˆ
h

u
h,00 ∈∀+≥ hAA           (34’) 

 

Proof: The proof of constraint (32) is given.  

We have two cases: 

1. If zh,0 = 1 then constraint (32) and constraint (32’) yield the same right 

hand side. 

2. If zh,0 = 0 then 

Constraint (32)    :   0ˆ
0 ≥A  

Constraint (32’)   :   hDA ˆˆ
0 ≥  

When zh,0 = 0 constraint (32’) gives a lower bound for 0Â . 

If zh,0 = 0, then there does not exist a highway connection between hub h 

and central airport. From constraints (15) to (19), we know that if there 

does not exist a highway connection between any pairs then there exist an 

airway that connect these two points. Otherwise, cargo between hub h 

and central airport cannot be delivered. Hub h can be allocated to any 
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other hub airport. By constraint (34), central airport waits for all cargo 

coming from the hub airports. Therefore, constraint (32) is satisfied. 

 

The last set is the constraints (35) to (37) which are constructed for the 

time bound.    

Proposition #6: Constraints (35) to (37) can be linearized as;  

 

VhD,i                                                  x t  ihih ∈∈∀≤+ TDh        (35’) 

AhD,i                                                    x t  ihih ∈∈∀≤+ TAh        (36’) 

Di                                             x t  i0i00 ∈∀≤+ TA                 (37’) 

 

Proof : The proof of constraint (35) is given. 

We have two cases: 

1. If xih = 1 then constraint (35) and constraint (35’) yield the same right 

hand side.  

2. If xih = 0 then 

Constraint (35)    : 0 ≤  T   

Constraint (35’)   : Dh ≤  T  

When xih = 0 constraint (35’) gives an upper bound for Dh. Dh must be 

smaller than T because we must deliver all cargo within T-hours. 

Therefore, constraint (35) is satisfied. 

   

After these linerarizations, we examine the number of decision variables 

and constraints for the two linear models. The number of decision 

variables in the TCHH_Tr.& P equals to 

}0{22}0{
2

∪+++++∪∪+ AVHAHAAVHD  = 

{ } { } AV2 1HD  H AV2  1A +++++∪++  and in the TCHH_Tr. 

the number of decision variables equals to HHHD 3
2

++ .  
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When we evaluate the number of constraints we see that in the 

TCHH_Tr.& P, the number of constraints equals to 

552

239363232
222

+++

+++++++++

VAAD

VDHDHAADVHVAH
 

In the TCHH_Tr. the number of constraints equals to 

1243
2

++++ DHHHD . 

  

In the worst case the number of demand points, hubs and hub airports 

equals to n. In other words, all demand points are possible hub airports 

and they are also possible hubs. In such a situation the number of 

decision variables and constraints are given in Table 4.2 for two models.  

 

Table 4.2. The number of decision variables and constraints in the worst case for linear models  

 TCHH_Tr.& P TCHH_Tr. 

# of decision variables 3n
2 

+ 6n 2n
2
+3n 

# of constraints 20n
2
+21n+5 7n

2
+2n+1 

 

In the next chapter, we present the results of the proposed model and 

compare the current system of MNG Cargo with our results.   
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CHAPTER 5  

 

COMPUTATIONAL RESULTS 
 

In this section we describe the current system of MNG Cargo and explain 

how the input data is processed. Then we present the results obtained by 

solving the mixed integer programs given in Chapter 4 and we compare 

the current system of MNG Cargo with our results.   
 

5.1 Current System of MNG Cargo 

 

In the current system, MNG Cargo provides its service with 22 hubs, 12 

of which have hub-airports and over 400 agents. The hubs and hub 

airports are listed in Table 5.1.  

 

Table 5.1. Hubs and the hub airports of MNG Cargo. 

Adana Bursa Erzurum İzmir Samsun Düzce 

Afyon Denizli Eskişehir Kayseri Trabzon Merzifon 

Ankara  Diyarbakır Gaziantep Konya Van  
HubsHubsHubsHubs    

Antalya Elazığ İstanbul Malatya Aksaray 

 

Adana Antalya Erzurum Malatya Samsun Van HubHubHubHub    

AirportsAirportsAirportsAirports    Ankara İstanbul Diyarbakır İzmir Trabzon Gaziantep 

 

Generally, the demand points are allocated to the nearest hub and hubs 

are allocated to the nearest hub airport including the central airport. For 

the current implementation, the allocation of hubs to hub airports is given 

in Figure 5.1 and it is represented by red lines. As shown in the figure, 
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each hub is allocated to only one hub airport and each hub airport is 

assigned to the central airport as shown by black lines.  

 

 
Figure 5.1. The allocation of hubs (     ) to hub airports (    ) of MNG Cargo. 

 

5.2 Input Data Processing 

 

Since the demand locations are the points scattered throughout Turkey, 

we have grouped all of these points into clusters. We take all major cities 

of Turkey as clusters which makes 81 points and we also count Merzifon 

which is a hub in the current system. Therefore, we have 82 different 

demand points. The firm requires that each cargo will be sent in T = 24 

hours between these demand points.  

 

Since we do not have a fixed cost of operating a hub or hub airport we 

take these values parametric and we fixed the number of hubs to p.  In the 

current system p = 22.  

During the interviews, we get the cost of using plane per flight and from 

the trucking industry we get the unit distance cost for vehicles. The unit 

distance cost for each middle truck is taken as f = 0,8 YTL per kilometer 

Merzifo

Merzifon
n 
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and the unit distance cost for each main truck is taken as  fhub =1 YTL per 

kilometer. The transportation cost between airports by plane is taken as 

u=3.500 YTL for each flight.  

 

When we test our models, we take the loading/unloading times             

mina =30 minutes at any airport for a Є A and min0 =120 minutes at 

central airport. The time to travel from hub airport i to the central airport 

by plane, u

it 0  , is taken to be 90 minutes for all i Є A. 

 

Using these parameters we solve the model for the current system. 

Moreover, to see the effects of changes in parameters, we also solve the 

model for p = {22,20,15,10,5},  T={40,35,32,31,…,20} as given in Table 

5.2. 

Table 5.2. Different T and p values for fixed cost ratio. 

pppp    TTTT    

40 35 32 31 30 29 28 27  

22 26 25 24 23 22 21 20  

40 35 32 31 30 29 28 27 
20 

26 25 24 23 22 21 20  

40 35 32 31 30 29 28 27 
15 

26 25 24 23 22 21 20  

40 35 32 31 30 29 28 27 
10 

26 25 24 23 22 21 20  

40 35 32 31 30 29 28 27 
5 

26 25 24 23 22 21 20  

The solutions are presented in the following part.  

 

5.3 Solution of the Model  

Using CPLEX 9.1, the TCHH Tr.&P is solved to optimality in 1674.39 

CPU seconds for p = 22 and T = 24. The optimal solution has a total cost 
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of 44,354 YTL, using two hub airports in Diyarbakır and İzmir in addition 

to the central airport and 22 hubs. Compared to the current 

implementation, the reduction in the number of planes is 81.8 %.  

 

In the above solution, to compare the current implementation and our 

results, we fixed the number of hubs, p, to 22 and our model provides a 

better solution. We also solve the model for p ≤ 22 and the mixed integer 

linear program is solved to optimality in 11.627 CPU seconds. The 

optimal solution came up with a total cost of 37,910 YTL, using one hub 

airport in Diyarbakır in addition to the central airport and eleven hubs. 

Namely: Afyon, Ankara, Diyarbakır, Düzce, Elazığ, Erzurum, Gaziantep, 

Kayseri, Merzifon, Trabzon, Van. The number of hubs and the number of 

planes are given in the below table for our model and for the current 

implementation. As it can be seen from the table, the number of hubs 

decreases by 50% and the number of planes decreases by 90.9 %. The 

optimal solution is depicted in Figure 5.2. 

 

Table 5.3. Comparison of the optimal solution and the current implementation 

 # of Hubs# of Hubs# of Hubs# of Hubs    # of Planes# of Planes# of Planes# of Planes    

Current ImplementationCurrent ImplementationCurrent ImplementationCurrent Implementation    22 11 

Optimal SolutionOptimal SolutionOptimal SolutionOptimal Solution    11 1 
 

 

In Figure 5.2., blue lines symbolize the allocation of demand points to 

hubs, red lines symbolize the allocation of hubs to hub airports and black 

line symbolizes the allocation of hub airport to the central airport, 

Ankara.   
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Figure 5.2. The optimal solution for p ≤ 22 

 

As it is mentioned in Chapter 4, we developed two models:  

TCHH_Tr.&P is developed for the case where we use both planes and 

trucks  and the TCHH_Tr. is developed for the case where we use only 

trucks. Let us explain the necessity of these two models:  

 

In Turkey, the furthest two demand points are Çanakkale and Iğdır and 

the time to travel between these two demand points is 1950 minutes (= 

32.5 hours) by truck. This means, a cargo between these two points 

cannot be delivered in less than 32.5 hours by truck. In view of that, if we 

want to deliver cargo between any two demand points in less than 32.5 

hours we have to use a plane. Therefore, we developed two models as 

presented in Chapter 4. The first model, TCHH_Tr.&P, is used for T < 

32.5 and the second model, TCHH_Tr., is used when T ≥ 32.5. 

As it can be seen in Figure 5.2, the optimal solution is obtained from the 

TCHH_Tr.&P. We test our model for different T values using these two 

models. In the following tables, we first present the solutions of the 

TCHH_Tr.&P and then, we will present the solutions of TCHH_Tr in 

Table 5.8.   

Merzifo

Merzifon 
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In Table 5.4, for p ≤  22, optimal number of hubs, optimal number of hub 

airports, optimal values and CPU times in seconds for different T values 

are given.  The first column denotes the time-bound, the second and third 

columns indicate the number of hub airports and locations, respectively.  

 

Table 5.4. Results for p ≤ 22 and different T values. 

22≤p     

TTTT    
# of Hub Airports # of Hub Airports # of Hub Airports # of Hub Airports 
((((except central except central except central except central 

airportairportairportairport))))    

LLLLocation of hub ocation of hub ocation of hub ocation of hub 
airportsairportsairportsairports    

# of Hubs# of Hubs# of Hubs# of Hubs    
Opt. ValueOpt. ValueOpt. ValueOpt. Value    

((((YTLYTLYTLYTL))))    

CPU Times     CPU Times     CPU Times     CPU Times         
     (     (     (     (secsecsecsec.).).).)    

    

32 – 25  1 Malatya 12 35,658 -- 

24 1 Diyarbakır 11 37,910 11627.4 

23 1 Diyarbakır 10 38,101 13649.88 

22 1 Erzurum 9 40,991 83908.06 

21 2 
Diyarbakır / 

Trabzon 10 42,281 847239.49 

20 3 
Diyarbakır / 

İzmir / Trabzon 13 45,626 228331.23 

 

Since the model gives the same solutions for case T= {32, 31,…. , 25}, 

we give these solutions together in the first row in Table 5.4. In these 

cases, the CPU time does not differ a lot where the average CPU time is 

1597.86 seconds.  

 

When we decrease the time bound, the number of hub airports increases 

to deliver all cargo within the given time-bound. The number of hubs also 

increases but in case T=24, the number of hubs decreases because to 

deliver all cargo within 24 hours with minimum cost, the location of the 

hub airport changes. With this new location, the number of hubs, 

allocation of these hubs and cost also change and by operating eleven 

hubs and one hub airport all cargo can be delivered within 24 hours. 

Same situation is also valid for T=23 and T=22. It goes without argument 

that the proposed model provides a better solution than the current 
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implementation to deliver cargo within 24 hours. Moreover, it also 

provides a solution that delivers all cargo in Turkey by using 3 hub 

airports and 13 hubs within 20 hours. 

 

When we analyze the CPU times, we see that it differs a lot from instance 

to instance. However, except the last five instances, the model can be 

solved in at most 45 minutes and for the cases  T=24 and T=23, the model 

can be solved within 4 hours which is reasonable for such a data set size.  

 

As we mentioned before, we test the model for different p values. As 

presented in Table 5.5 for p ≤  22, p ≤  20 and p ≤  15, our model opens 

the same number of hubs, hub airports and obtains the same optimal 

values because in each case the model can deliver all cargo within given 

time-bound at most using 13 hubs.  

Table 5.5. Results for different p and T values. 

TTTT    

Number of Number of Number of Number of 
Hub AirportsHub AirportsHub AirportsHub Airports    

(except central (except central (except central (except central 
airport)airport)airport)airport)    

Number of Number of Number of Number of 
HubsHubsHubsHubs    

Opt. ValueOpt. ValueOpt. ValueOpt. Value    
((((YTLYTLYTLYTL))))    

CPU Times CPU Times CPU Times CPU Times 
((((secsecsecsec.).).).)    

22≤p     

CPU Times CPU Times CPU Times CPU Times 
((((secsecsecsec.).).).)    

20≤p     

CPU Times CPU Times CPU Times CPU Times 
((((secsecsecsec.).).).)    

15≤p     

32 1 12 35,658 2554.12 712.75 1718.55 

31 1 12 35,658 2486.94 913.63 1145.29 

30 1 12 35,658 1480.46 2232.37 2389.81 

29 1 12 35,658 695.90 8526.37 1135.28 

28 1 12 35,658 1276.55 1537.36 1510.48 

27 1 12 35,658 1805.69 3266.27 1037.59 

26 1 12 35,658 1638.52 2507.20 742.97 

25 1 12 35,746 844.73 751.04 1936.16 

24 1 11 37,910 11627.4 46142.77 9209.34 

23 1 10 38,101 13649.88 10628.06 3522.98 

22 1 9 40,991 83908.06 85462.29 39142.28 

21 2 10 42,281 847239.49 40969.59 97087.63 

20 3  13 45,626 228331.23 154553.25 112872.45 

 

Since the model solves the problem for p ≤ 15, we reduce the number of 

hubs and we test our model that allows at most 10 hubs. The results are 

presented in the Table5.6. Since the model gives the same solutions for 
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case T= {32, 31,…. , 26}, we give this solution together in the first row in 

Table 5.6. In these cases, the CPU time does not differ a lot where the 

average CPU time is 2151.62 seconds.  

 

In each case, except T=22, the number of operating hubs are the same in 

Table 5.6. In case T = 22, to deliver all cargo in the given time bound the 

location of the hub airport changes and with this new location, the 

number of hubs and allocation of these hubs also change and with 

operating nine hubs and one hub airport all cargo can be delivered within 

22 hours. When we compare Table 5.5 and Table 5.6 for T=23, T=22 and 

T=21 we obtain the same solutions because the number of hubs is at most 

10. We also test the model for T<20 and we get feasible solutions up to 

T=13. In other words, it is impossible to deliver all cargo within 13 hours 

(or less) by operating at most 10 hubs.  

 

Table 5.6. Results for p ≤ 10 

10≤p     

TTTT    

Number of Hub Number of Hub Number of Hub Number of Hub 
AirportsAirportsAirportsAirports    

(except central (except central (except central (except central 
airport)airport)airport)airport)    

    
Location of Hub Location of Hub Location of Hub Location of Hub 

AirportsAirportsAirportsAirports    
Number of Number of Number of Number of 

HubsHubsHubsHubs    
Opt. ValueOpt. ValueOpt. ValueOpt. Value    

((((YTLYTLYTLYTL))))    

CPU CPU CPU CPU     
Times (Times (Times (Times (secsecsecsec.).).).)    

    

32-26 1  Malatya 10 35,872 -- 

25 1 Malatya 10 35,961 1012.65 

24 1 Diyarbakır 10 38,013 40103.53 

23 1 Diyarbakır 10 38,101 4264.09 

22 1 Erzurum 9 40,991 84544.44 

21 2   
Diyarbakır / 

Trabzon 10 42,281 62842.26 

20 2  
Diyarbakır / 

Erzurum 10 46,865 223462.78 

 

We continue to decrease the number of hubs and we solve the model for 

p ≤ 5. When we analyze Table 5.7., we see that, the number of operating 

hubs is fixed to 5 in each case and the number of hub airports increases. 

Different from Table 5.6, the second hub airport is opened at T=23 and 
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the third one is opened at T=20 when the model allows at most 5 hubs. 

We also test the model for T<20 but we cannot obtain feasible solutions. 

It is impossible to deliver all cargo within 19 hours (or less) by operating 

at most 5 hubs.  

 

Table 5.7. Results for p ≤ 5 

5≤p     

TTTT    
# of Hub Airports # of Hub Airports # of Hub Airports # of Hub Airports 

((((except central airportexcept central airportexcept central airportexcept central airport))))    

    
Location of Location of Location of Location of 

Hub AirportsHub AirportsHub AirportsHub Airports    
# of Hubs# of Hubs# of Hubs# of Hubs    

Opt. ValueOpt. ValueOpt. ValueOpt. Value    
((((YTLYTLYTLYTL))))    

CPU Times CPU Times CPU Times CPU Times 
((((secsecsecsec.).).).)    

32 1 Diyarbakır 5 41,.208 686.35 

31 1 Diyarbakır 5 41,208 299.52 

30 1 Diyarbakır 5 41,208 394.49 

29 1 Diyarbakır 5 41,208 350.77 

28 1 Diyarbakır 5 41,340 836.10 

27 1 Diyarbakır 5 41,344 644.62 

26 1 Diyarbakır 5 41,633 1159.85 

25 1 Diyarbakır 5 42,152 1057.82 

24 1 Diyarbakır 5 42,434 677.72 

23 2 

Diyarbakır / 
Erzurum 5 48,351 3496.83 

22 2 

Diyarbakır / 
Erzurum 5 48,490 763.77 

21 2 

Diyarbakır / 
Erzurum 5 48,490 261.39 

20 3 

Diyarbakır / 
Erzurum / 

İzmir 5 54,230 31.69 

 

Comparing the current implementation with the optimal solution in terms 

of hub airports and hubs, the total number of planes decrease from 11 to 1 

and the total number of hubs decrease from 22 to 5 for T=24. Moreover, 

using 3 planes and 5 hubs, all cargo can be delivered within 20 hours. 

 

Up to now, we present the solutions of the TCHH_Tr.&P. In Table5.8 we 

present the solutions of TCHH_Tr. for different p values.   
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Table 5.8. Results of the TCHH_Tr. for different p values 

p p p p     TTTT    
Opt. Value for Opt. Value for Opt. Value for Opt. Value for 

TCHH_Tr.TCHH_Tr.TCHH_Tr.TCHH_Tr.    
Number of hubsNumber of hubsNumber of hubsNumber of hubs    CPU Times (CPU Times (CPU Times (CPU Times (secsecsecsec.).).).)    

40 43,553 4 200.49 
p ≤ 22 

35 43,553 4 194.87 

40 43,553 4 141.98 
p ≤ 20 

35 43,553 4 159.71 

40 43,553 4 246.55 
p ≤ 15 

35 43,553 4 258.6 

40 43,553 4 299.37 
p ≤ 10 

35 43,553 4 295.95 

40 43,553 4 1445.36 
p ≤ 5 

35 43,553 4 1601.42 

 

We observe that in Table 5.8 the optimal values of the TCHH_Tr. are 

always greater than the optimal values of the TCHH_Tr.&P that are 

given in the previous tables. In view of that we also solve the models for 

T ≥  32.5 with the TCHH_Tr.&P and we get the following table.  

 

Table 5.9. Results for T ≥ 32.5 with the TCHH_Tr.&P 

p p p p     TTTT    
Opt. Value for Opt. Value for Opt. Value for Opt. Value for 
TCHH_Tr.& PTCHH_Tr.& PTCHH_Tr.& PTCHH_Tr.& P    

Number of Number of Number of Number of 
hub airporthub airporthub airporthub airport    

Number of Number of Number of Number of 
hubshubshubshubs    

CPU Times CPU Times CPU Times CPU Times 
((((secsecsecsec.).).).)    

40 35,656 1 13 4054.67 
P ≤ 22 

35 35,658 1 12 3004.61 

40 35,656 1 13 1840.81 
P ≤ 20 

35 35,658 1 12 1179.59 

40 35,656 1 13 956.31 
p ≤ 15 

35 35,658 1 12 3371.49 

40 35,872 1 10 1664.05 
p ≤ 10 

35 35,872 1 10 3115.70 

40 41,208 1 5 562.37 
p ≤ 5 

35 41,208 1 5 717.66 

 

When we compare Table 5.8 and Table 5.9, we see that the number of 

hub in Table 5.9 is always greater than in Table 5.8, but this 

augmentation does not increase our optimal value because we do not 

have a fixed cost of operating hubs. We note that dispatching cargo by 

planes and trucks is always cheaper than dispatching only by trucks for 

T ≥  32.5.  



 

 63 

 

Up to now we examined the number of hub airports, hubs and the optimal 

values by changing the maximum number of hubs, p and the time-bound, 

T. However we do not make any differentiation with cost parameters. To 

see the effects of changes in cost parameters we change the ratio of the 

cost parameters and we solve the system for fixed T = 24, p = 22 and 

different cost ratios as given in Table 5.10.  

 

Table 5.10. Different cost ratios for fixed p and T value. 

p TTTT u  / u  / u  / u  / fhub 

3500 3250 3000 2750 2500 

2250 2000 1750 1500 1400 

     

22 

 

24 

1250 1000 750 600 500 

 

The results are presented in Table 5.11. 

 

                 Table 5.11. Results for T=24, p ≤ 22 and different cost ratios 

T = 24  &  22≤p     

uuuu  /   /   /   / fhub    
# of Hub Airports # of Hub Airports # of Hub Airports # of Hub Airports 

((((except central airportexcept central airportexcept central airportexcept central airport))))    
# of Hubs# of Hubs# of Hubs# of Hubs    

Opt. VaOpt. VaOpt. VaOpt. Valuelueluelue    
((((YTLYTLYTLYTL))))    

CPU Times (CPU Times (CPU Times (CPU Times (secsecsecsec.).).).)    
    

3500 1 11 37,910 11.627.4 

3250 1 11 37,410 5349.86 

3000 1 11 36,910 13552.91 

2750 1 11 36,410 7682.22 

2500 2 14 35,742 14527.77 

2250 2 14 34,742 7191.55 

2000 2 14 33,742 3059.87 

1750 2 14 32,742 3134.24 

1500 2 14 31,742 1098.29 

1400 2 14 31,342 1598.54 

1250 3 15 30,531 625.64 

1000 3 15 29,031 281.77 

750 4 15 27,370 110.53 

600 4 15 26,170 107.27 

500 4 15 25,370 38.47 
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In Table 5.11, the first column denotes the ratio of the cost of a plane for 

each flight to the cost of unit distance cost for each main truck, uuuu  /   /   /   / fhub . 

As we mentioned before, in the current system, the cost of unit distance 

cost for each main truck is taken as fhub =1 YTL per kilometer and the 

transportation cost of a plane is u=3,500 YTL for each flight. We start 

with the current implementation ratio presented as in the first row and 

when we continue to decrease the cost ratio, the number of hubs and the 

number of hub airports increase. On the other hand, concurrently with 

this decrease the objective values also decrease. Table 5.11 also shows 

that the critical ratios for the change of the number of hub airports and 

gives the interval for the same number of hub airports. For instance, 

when the cost ratio is between 2500 and 1400, the number of hub airport 

equals to 2 and the solutions are the same, but when we increase the ratio 

to 2750 then the number of hub airport decreases from 2 to 1 or when we 

decrease the ratio to 1250 the number of hub airport increases from 2 to 

3.   
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CHAPTER 6 

 

CONCLUSION AND FUTURE 

REMARKS 

 
In this thesis we focus on the cargo delivery companies in Turkey. We 

first analyze the structure of these cargo delivery firms. During this 

analysis, we identified a problem which is not satisfactorily modeled in 

the hub location literature. We analyze the problem and propose a model 

for it, “Time constrained hierarchical hub location problem (TCHH)”. 

TCHH is similar to the combination of p-hub median, hub covering, 

latest arrival hub location and intermodal freight transportation problems 

which cannot be seen in the literature.  

 

In TCHH, two different types of transportation modes are considered, 

planes and trucks. Generally, Turkish companies use trucks but one of 

these companies, MNG Cargo, uses both trucks and planes and promises 

to deliver cargo in 24 hours between all origin-destination pairs. We 

focus on its structure and propose a mixed integer programming 

formulation to design a network where all packages are sent between 

origin and destinations with minimum cost using trucks or planes within 

the time bound.  We give the linearizations of the non-linear constraints 

and after linearizations, the final linear model is tested with different 

parameters.  
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The mixed integer linear programs are solved to optimality with CPLEX 

9.1. When we compare the current implementation with the optimal 

solution obtained for the TCHH in terms of hub airports, the total number 

of hub airports decreases from 12 to 3 for p = 22 and T=24.  

Subsequently, we test the model for p ≤ 22 and the number of hubs and 

hub airports decrease to 11 and 1, respectively. We also test our model 

for different T and p values. According to our results cargo can be 

delivered using 10 hubs and 8 hub airports within 14 hours which is a 

significant improvement compared to the current implementation. 

Additionally, for p ≤ 5 and T=20, cargo can be dispatched by operating 5 

hubs and 3 hub airports. In a word, our results show that one can surely 

benefit from a better plan offered through mixed integer programming. 

We also test our model for different cost ratios and we examine the 

relations between the number of hub airports and cost ratios. 

 

As a future research direction some additional constraints may be added 

into the model. For example, one may wish to consider the flow between 

origin destination pairs. In such a case, it is needed to add the capacity 

constraints. Concurrently with adding capacity constraints, it is needed to 

take into account the demand of the hubs and the hub airports. Since our 

model is uncapacitated model, we do not take into consideration the 

number of planes between airports and we assume that there exists only 

one plane between hub airports. However, when someone studies with 

the capacitated formulation then the number of planes between hub 

airports becomes important and there can be more than one plane 

between hub airports according to their demands. On the other hand, 

similar scenario is also valid for trucks. The number of trucks can be 

different between hubs according to the demand of these hubs. Of course, 

this may also require defining new decision variables and new upper 

bounds such as the number of trucks and the number of planes.  On the 
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other hand, adding new constraints and new decision variables makes 

problem harder and this may require new modeling techniques.    

 

Also, in our model we do not take into consideration the fixed cost of 

operating hub and we fixed the number of hubs to p. However, one may 

wish to consider the fixed cost of hubs. In such a case, it is needed to add 

a new term to the objective function and some constraints will be omitted 

from the model. By considering the cost of operating hubs, the number of 

hubs becomes important and the changes in the hub numbers affect 

optimal value.   
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