Preconditioned MLFMA Solution of Multiple Dielectric-Metallic
Composite Objects with the Electric and Magnetic Current
Combined-Field Integral Equation (JMCFIE)

Ozgiir Ergiil2 and Levent Giirel'-2 *
1Department of Electrical and Electronics Engineering
2Computational Electromagnetics Research Center (BiLCEM)
Bilkent University, TR-06800, Bilkent, Ankara, Turkey
{ergul,lgurel} @ee.bilkent.edu.tr

Introduction

We consider fast and accurate solutions of scattering problems involving multiple dielec-
tric and composite dielectric-metallic structures with three-dimensional arbitrary shapes.
Problems are formulated rigorously with the electric and magnetic current combined-field
integral equation (JMCFIE) [1], which produces well-conditioned matrix equations. Equiv-
alent electric and magnetic surface currents are discretized by using the Rao-Wilton-Glisson
(RWG) functions defined on planar triangles. Matrix equations obtained with JMCFIE are
solved iteratively by employing a Krylov subspace algorithm, where the required matrix-
vector multiplications are performed efficiently with the multilevel fast multipole algorithm
(MLEMA) [2]. We also present a four-partition block-diagonal preconditioner (4PBDP),
which provides efficient solutions of JMCFIE by reducing the number of iterations signifi-
cantly. The resulting implementation based on JMCFIE, MLFMA, and 4PBDP is tested on
large electromagnetics problems.

JMCFIE Formulation and Its Discretization

Consider the general case involving U regions, namely, Do, Dy, --- ,Dy_j, and Dy is a
region extending to infinity. Each region D,, foru = 0,1, --- , (U—1) is either metallic with
perfect conductivity or lossless dielectric with constant electromagnetic parameters, i.e.,
permittivity €, and permeability u,,. Scattered electric and magnetic fields (E*“* and H*“*)
in a nonmetallic medium D, can be obtained from the equivalent electric and magnetic
currents (J and M) defined on its surface S, i.e.,
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1 Q;
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where 0 < ); < 4 is the internal solid angle, which is nonzero when the observation point

r is on the surface, 7, = \/ /€y, and 7o is the outward normal unit vector.

For numerical solutions, JMCFIE is discretized with the RWG functions using a Galerkin
scheme. Basis functions are indexed by firstly considering the nonmetallic surfaces, which
involve Np < N basis functions. The remaining (N — Np) basis functions, if any, are
defined on metallic surfaces to expand the electric current. Discretization of JMCFIE leads
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to (N + Np) x (N + Np) dense matrix equations in the form of
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where a1 and a(? are vectors of N and Np elements involving the coefficients of the
electric and magnetic currents, respectively. In (3), matrix elements are calculated by con-
sidering the interactions of the basis and testing functions through nonmetallic regions. As
an example, consider the interaction between a basis function b,, and a testing function ¢,
forn < N and m < N, and let a dielectric region D,, be common for the two functions. A
contribution to the matrix element in the diagonal partition Z 11 can be written as

Zu[m,n] < — % [ artu(r)-bu(r) + 6, /S drto(r) - x Kpya{ba}(r)
+ gnfm/s d"’tm(r) : Tu{bn}(r)a )

where the signs &, = %1 and &, = %1 are determined by the orientation of the basis and
testing functions. When the basis function b, is not on a metallic surface, i.e., n < Np,
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Similarly, when the testing function ¢,, is not on a metallic surface, i.e., m < Np,
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Finally, when both basis and testing functions are not on metallic surfaces, there exists a
matrix element Zgo[m,n] = Z11[m,n]. Elements of the the excitation vectors v(1) and
v in (3) are calculated by testing the incident electric and magnetic fields due to external
sources.

Multilevel Fast Multipole Algorithm

In iterative solutions of JMCFIE, we employ MLFMA to perform matrix-vector multiplica-
tions in O(N log N) time using O(N log N') memory. Each nonmetallic region is included
in a cubic box and recursively divided into clusters. Then, MLFMA calculates the distant
interactions between the basis and testing functions in a group-by-group manner consisting
of three stages, called aggregation, translation, and disaggregation, which are performed on
each tree structure in a multilevel scheme. In an aggregation stage for a nonmetallic region,
radiated fields of the clusters are calculated from the bottom of the tree structure to the high-
est level. In the lowest level, radiation patterns of the RWG functions, which are located
on the surface of the region, are multiplied with the coefficients provided by the iterative
algorithm, and they are combined to obtain the radiated fields of the lowest-level clusters.
Radiated field of a cluster in a higher level is obtained by combining the radiated fields of



its subclusters. In the translation stage, radiated fields are translated into incoming fields.
Then, in the disaggregation stage, total incoming fields at cluster centers are calculated
from the top of the tree structure to the lowest level. In the lowest level, incoming fields are
received by the testing functions. Similar to the aggregation stage, the disaggregation stage
for a region involves only the RWG functions located on the surface of the region.

Four-Partition Block-Diagonal Preconditioner

MLFMA is required but not sufficient for efficient solutions of JMCFIE. The number of
iterations should also be small, in addition to fast matrix-vector multiplications. Although
JMCEFIE is a second-kind integral equation and it provides well-conditioned matrix equa-
tions, iterative solutions of JMCFIE can be difficult, especially when the problem size is
large. To improve the iterative solutions of IMCFIE, we propose 4PBDP, which is based on
using self interactions of the lowest-level clusters, i.e.,
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Processing time required for extracting, inverting, and applying P4p are O(N).

Results

Efficiency and accuracy of the resulting JMCFIE-MLFMA-4PBDP implementation are
demonstrated on various electromagnetics problems involving relatively large objects. As
an example, Fig. 1(a) presents iteration counts for the solution of scattering problems in-
volving a composite spherical object. A dielectric core with a radius of a is coated with a
shell of radius 2a, and a changes from 0.5\ to 2.5\g, where g is the wavelength outside
the object (free space). Relative permittivities of the core and the shell are 2.0 and 4.0, re-
spectively. The object is illuminated by a plane wave propagating in the —x direction with
the electric field polarized in the y direction. Surfaces are discretized with about \g/10
mesh size leading to matrix equations with 13,176 to 316,032 unknowns. Fig. 1(a) depicts
the number of biconjugate-gradient-stabilized (BiCGStab) iterations to reach 102 resid-
ual error as a function of the number of unknowns. We observe that 4PBDP accelerates
the iterative solutions significantly compared to the no-preconditioner (NP) case. When
a = 1.67)\p, convergence cannot be achieved in 1000 iterations without preconditioning.
Using 4PBDP, the number of iterations is less than 100 for all solutions in Fig. 1(a).

Fig. 1(b) presents the solution of a larger problem involving a coated metallic sphere. A
metallic core with a radius of 5\ is coated with a dielectric shell of radius 10\, where Ag is
the wavelength outside the object (free space). Relative permittivity of the shell is 4.0. The
object is again illuminated by a plane wave propagating in the —x direction with the electric
field polarized in the y direction. Discretization of the surfaces with about A\o/10 mesh size
leads to a matrix equation with 1,264,128 unknowns. The problem is solved by employing
a 6-level MLFMA with two digits of accuracy. With the acceleration provided by 4PBDP,
the number of BiCGStab iterations to reach 10~3 residual error is 187. Fig. 1(b) depicts
normalized bistatic radar cross section (RCS/)\(Q,) in decibels (dB) as a function of the obser-
vation angle on the ¢ = 0° plane, where 0° corresponds to the forward-scattering direction.
We observe that the computational results obtained with JIMCFIE-MLFMA-4PBDP are in
agreement with the analytical results obtained by a Mie-series solution.
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Fig. 1. (a) Iteration counts for the solution of scattering problems involving a dielectric
sphere of radius a coated with a dielectric shell of radius 2a, where a changes from 0.5\
to 2.5)¢. (b) Normalized bistatic RCS (RCS/A%) of a metallic sphere of radius 5\ coated
with a dielectric shell of radius 10¢.



