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1 Introduction 
Solution techniques based on surface integral equations (SIEs) are widely used in compu- 
tational electromagnetics. Formulations employing SIEs express the unknown function 
on the defining surface of the problem geometry. Thus, both the surface and the unknown 
function defined on it have to be accurately represented in the solution algorithm. How- 
ever, real-life problems usually involve arbitrary geometries with curved surfaces, which 
require either exact or higher-order geometry models. In this work, the dependence of 
the accuracy of the solution on the geometry modeling is investigated. The use of dif- 
ferent basis functions to represent the unknown functions on curved surfaces will also be 
mentioned. 

2 Surface Models 
Several different schemes exist for modeling the geometries of problems that are formu- 
lated using SIEs. In the following we will briefly mention the surface-modeling techniques 
that we are investigating. 

2.1 Exact Models 
Occasionally, exact geometry model of a scatterer may exist. For instance, a body com- 
posed of spherical, cylindrical, conical, polynomial, and flat surfaces can be exactly r e p  
resented. In this summary, we will consider a sphere as a sample problem, for which an 
exact model exists. 

2.2 Polynomial Surfaces 
In most real-life problems, the scatterer is so complicated that it cannot be exactly 
represented. One is forced to use approximations. The simplest scheme is approximating 
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the scatterer by polynomial patches. In this work, we are interested in the following 
polynomial surface descriptions: 

0 Flat Triangulation 
In this modeling method, the geometry of the scatterer is approximated by a mesh 
of connected flat triangular patches. This is a powerful method for modeling arbi- 
trarily shaped scatterers due to its flexibility. Although it is so powerful, accurate 
representation of an arbitrary surface requires a large number of triangular patches. 
Since the basis functions used in the discretization of the SIE are defined on these 
patches, the size of the problem is directly proportional to the number of triangular 
patches used. 

0 Quadratic (Triangular) Patches 
A better approximation scheme for functions is the piecewise quadratic polynomial 
fitting or interpolation. A surface of arbitrary shape can be represented by a mesh 
of connected quadratic subsurfaces of the form 

r(s, t)  = as2 + bt2 + cst f ds +et + f ,  (1) 

each of which is uniquely determined by 6 discrete points in space. 

0 Biquadratic Patches 
Biquadratic patches are similar to quadratic patches, however, they are defined as 
Cartesian product surfaces 

3 3  

r(s, t )  = ~ k i s ~ - ’ t ~ - l ,  (2) 
m=l n=1 

each of which is uniquely determined by 9 discrete points in space. 

2.3 Non-Uniform Rational B-Spline (NURBS) Surfaces 
If we examine the available computer-aided graphical design (CAGD) tools for bodies 
that are fabricated by using automated machining processesl we can concluide that nearly 
all of them are based on NURBS meshes. A NURBS surface is a B-Spline element and 
consists of a set of smoothly connected BBzier patches. A rational B6zier surface is defined 
as the ratio of two polynomials. The surface is described by a set vertices farming a mesh 
which is called the defining mesh. The surface follows the shape of the dlefining mesh, 
and it does not pass through any interior nodes of the mesh. 

3 Basis Functions 
In this work, piecewise linear functions on rectangular and triangular dom<ains are used. 
On curved surfaces, these basis functions are defined as the generalizatioiis of the well 
known rooftop (RT) [l-41 and triangular functions due to Rao, Wilton, and Glisson 
(RWG) 151. On geometries represented with flat triangles, the usual “flat” RWG basis 
functions are used [6]. 
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4 Results 
Consider the problem of plane-wave scattering by a perfect-electric-conductor (PEC) 
sphere of radius ka = 0 . 4 ~ .  The incident plane-wave is given by Ei = ?eikz. Figures 1-3 
show the far-zone Eo on the 4 = 0 cut and the far-zone E+ on the 4 = cut. For com- 
parison purposes, these results are obtained using the following four solution techniques: 

1. Mie-series technique [7] is used to obtain a closed-form reference solution which is 
plotted using a solid line in Figs. 1-3. This solution satisfies the boundary condition 
on the sphere with an accuracy of 

2. A SIE technique is used with an exact geometry model of the sphere and the curved 
rooftop basis functions. These results are represented by “x”  symbols in Figs. 1-3. 

3. Results represented by “+” symbols in Figs. 1-3 are obtained from a SIE solution 
with an exact model of the sphere and the curved RWG basis functions. 

4. Results obtained using a flat triangular model of the sphere and the “flat” RWG 
basis functions in conjunction with a SIE solver are depicted by “@” symbols in 
Figs. 1-3. 
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Figure 1: Comparison of far-zone fields obtained by Mie series (-), 54 curved rooftops 
(x), 54 curved RWGs (+), and 54 flat RWGs (e), as explained in the text. 
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Figure 2: Comparison of far-zone fields obtained by Mie series (-), 169 curved rooftops 
(x), 144 curved RWGs (+), and 144 flat RWGs (e), as explained in the text. 
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Different discretizations of both the exact and the flat-triangulation models are used 
in Figs. 1-3, where an approximately equal number of basis functions are used in each plot 
for comparison purposes. In all these results, we notice that the SIE solutions employing 
an exact model of the sphere are more accurate than those employing fla.t-triangulation 
models. Also, comparing Figs. 1 and 3, we observe that a much fine:r triangulation 
with 483 basis functions is required for flat triangles to obtain nearly the same accuracy 
obtained by using an exact geometry model with 54 RT or RWG basis functions. 
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Figure 3: Comparison of far-zone fields obtained by Mie series (-), 483 curved rooftops 
(x) ,  480 curved RWGs (+), and 480 flat RWGs (@), as explained in the text. 

5 Conclusions 
By using exact and flat-triangulation models for a sphere, it is shown that accurate surface 
models increase the accuracy of the solutions. Alternatively, for a required solution 
accuracy, the problem size can be significantly reduced by using better geometry models 
for the scatterers. We are currently investigating the accuracy of the (quadratic and 
NURBS surface models. It is observed that the type of the basis function is less effective 
than the quality of the geometry model in determining the accuracy of the solution. 
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